
Cláudio Maia

CISTER Summer Internship 2017

8/23/2017 Introduction to Real-Time Systems

• 2 Modules of 2 hours each

• Theoretical Assignment

– RTA for RM Algorithm

• Reference Book

• Reference Notes

8/23/2017 Introduction to Real-Time Systems

• A RTS is a system which correct behavior

depends not only on the result of the

computation but also on the time at which

the results are produced

• Examples of RTS that you know?

8/23/2017 Introduction to Real-Time Systems

• A RTS is a system which correct behavior

depends not only on the result of the

computation but also on the time at which

the results are produced

• Examples of RTS that you know?

– Flight control systems

– Robotics and industrial automation

– Automotive and Railway

– Military and space applications

8/23/2017 Introduction to Real-Time Systems

• https://www.youtube.com/watch?v=Bw0Ps8

-KDlQ

• Requirement of an airbag controller system?

– When a crash is detected, the system should fire

the airbag

– Fire early: System is inefective

– Fire later: Passengers may get hurt

8/23/2017 Introduction to Real-Time Systems

https://www.youtube.com/watch?v=Bw0Ps8-KDlQ

8/23/2017 Introduction to Real-Time Systems

Control

System

ActuatorsSensors

Environment

• Time is strictly related to the environment in

which the system operates

• It does not make sense to design a real-time

system without considering the timing

characteristics of the environment

– E.g., a flight control system

8/23/2017 Introduction to Real-Time Systems

• The term real time is subject to different

interpretations (not always correct!!)

– E.g., a system operates in real time if it is able to

quickly react to external events

• Interpretation: A system is considered to be real-time

if it is fast

• Is this interpretation correct?

8/23/2017 Introduction to Real-Time Systems

• The term real time is subject to different

interpretations (not always correct!!)

– E.g., a system operates in real time if it is able to

quickly react to external events

• Interpretation: A system is considered to be real-time

if it is fast

• Is this interpretation correct?

– Fast computing: minimize average response time

– Real-time computing: meet the individual timing

requirement of each task

8/23/2017 Introduction to Real-Time Systems

• Timeliness

– Results have to be correct in their computed

value and in the time domain

• Predictability

– Predict the consequences of any scheduling

decision

– Guarantee in advance that all critical timing

requirements will be met

8/23/2017 Introduction to Real-Time Systems

• How can predictability be affected in a
system?

– Internal characteristics of the processor:
pipelining, cache memory, direct memory access
(DMA), etc.

• Improve the average performance of the processor
but introduce non-determinism

• Affect the precise estimation of the worst-case
execution times (WCETs)

– Scheduling algorithms

– Synchronization mechanisms

8/23/2017 Introduction to Real-Time Systems

• Process: computation that is executed by the CPU in a sequential
manner

– synonym of task and thread

• Concurrent tasks: tasks that can overlap their execution in time

• Scheduling policy: Criterion that defines how the CPU is assigned
to tasks

• Scheduling Algorithm: set of rules that determine the order in
which tasks are executed

• Dispatching: Operation concerned with the allocation of the CPU
to a task selected by the scheduling algorithm

8/23/2017 Introduction to Real-Time Systems

• Task can be either in

– Execution: if it has been selected by the scheduling algorithm

– Waiting for the CPU: if another task is executing

• Active task: task that can potentially execute on the processor,
independently on its actual availability

• Ready task: task waiting for the processor

•

• Running task: task in execution

• Ready queue: Queue that stores all ready tasks waiting for the
processor

8/23/2017 Introduction to Real-Time Systems

• Preemption: Operation of suspending the running task (without
requiring its cooperation) and inserting it into the ready queue in
order to resume it later

• Importance of preemption

– Tasks performing exception handling may need to preempt existing
tasks so that responses to exceptions may be issued in a timely
fashion

– Tasks having different importance (phone call vs. video playing)
• Critical tasks can start as soon as they arrive.

– Allows for higher processor utilization

– Destroys program locality and introduces runtime overheads
• Inflates the execution time of tasks

8/23/2017 Introduction to Real-Time Systems

• A schedule is an assignment of tasks to the
processor so that each task is executed until
completion

• Schedule: function σ : R+ → N such that ∀t ∈
R+, ∃t1, t2 such that t ∈ [t1, t2) and ∀t ∈ [t1,
t2) σ(t) = σ(t)
– σ(t) is an integer step function

– σ(t) = k, with k > 0, means that task k is executing at
time t

– σ(t) = 0, CPU is idle

8/23/2017 Introduction to Real-Time Systems

8/23/2017 Introduction to Real-Time Systems

8/23/2017 Introduction to Real-Time Systems

• Arrival (or release time ri) (ai): time when a task becomes
ready for execution

• Computation time (Ci): time necessary for completion of a
task

• Absolute deadline (di): time before which a task should
be completed

• Start time (si): time at which a task starts its execution

• Finishing time (fi): time at which a task finishes its
execution

8/23/2017 Introduction to Real-Time Systems

• Relative deadline: Di = di − ai

• Response time: Ri = fi − ai

• Lateness (delay of a task): Li = fi − di (can be negative)

• Tardiness (exceeding time, time a task stays active after
its deadline): Ei = max(0, Li)

• Slack time (laxity): Xi = di − ai − C , maximum time that a
task can be delayed on its activation to complete within
deadline

8/23/2017 Introduction to Real-Time Systems

• Hard: producing results after its deadline may cause
catastrophic consequences for the system under
control

• Soft: producing the results after its deadline has still
some utility for the system under control,
nevertheless causing a performance degradation

• Firm: producing the results after its deadline is
useless for the system, but does not cause any
damage

8/23/2017 Introduction to Real-Time Systems

• Regularity of a task’s activation

• Periodic tasks: infinite sequence of identical
activities, called instances or jobs, that are
regularly activated at a constant rate

• Characterized by (Ci, Ti, Di)

– sensory data acquisition

– control loops

– system monitoring

8/23/2017 Introduction to Real-Time Systems

• Aperiodic tasks: task activations are not

regularly interleaved

• Sporadic task: task where its consecutive

jobs are separated by a minimum inter-

arrival time

8/23/2017 Introduction to Real-Time Systems

• Preemptive vs. Non-preemptive

– Preemptive algorithms: the running task can be
interrupted at any time in order to assign the
processor to another active task and according
to a predefined scheduling policy

– Non-preemptive algorithms: a task, once
started, is executed by the processor until
completion

• Scheduling decisions are taken when the task
completes

8/23/2017 Introduction to Real-Time Systems

• Static vs. Dynamic

– Static algorithms: scheduling decisions are

made based on fixed parameters, assigned to

tasks before their activation

– Dynamic algorithms: scheduling decisions are

based on dynamic parameters that may change

during system evolution

8/23/2017 Introduction to Real-Time Systems

• Offline vs. Online

– Offline: scheduling algorithm is executed on the

entire task set before task’s activation

• Schedule is stored in a table and later executed by a

dispatcher

– Online: scheduling decisions are taken at

runtime every time a new task enters the system

or when a running task terminates

8/23/2017 Introduction to Real-Time Systems

• Optimal vs. Heuristic

– Optimal: the algorithm minimizes a given cost

function defined over the task set or finds a

feasible schedule (if it exists) if no cost function

is specified

– Heuristic: there is a heuristic function taking

scheduling decisions

• A heuristic algorithm tries to find the optimal

schedule, but does not guarantee to find it

8/23/2017 Introduction to Real-Time Systems

• One of the most used approaches to handle
periodic tasks

• Static, Off-line schedule

• Divides the temporal axis into slots of equal
length
– One or more tasks can be executed

• Minor cycle: duration of the time slot

• Major cycle: minimum interval of time after
which the schedule repeats itself
– Also called hyperperiod

8/23/2017 Introduction to Real-Time Systems

• Task periods
– Task A = 25

– Task B = 50

– Task C = 100

8/23/2017 Introduction to Real-Time Systems

• Advantages

– Simple to implement

• timer to interrupt with a period equal to the minor

cycle

• main program invokes tasks in the order given in the

major cycle

– Runtime overhead is low

• No context switch is needed

8/23/2017 Introduction to Real-Time Systems

• Disadvantages

– Affected by overload conditions

• Domino effect or inconsistent state

– Sensitive to application changes

• Scheduling sequence may need to be reconstructed

from scratch

– Change in computation time or change in frequency

– Difficult to handle aperiodic activities efficiently

without changing the task sequence

8/23/2017 Introduction to Real-Time Systems

• Priority Assignment Rule
– Assigns priorities to tasks according to their request rates

– Tasks with higher request rates (i.e., , with shorter periods)
have higher priorities

• Static priority assignment
– Periods are constant and equal to the deadline of the task

(implicit deadlines)

– A priority is assigned to the task before execution and does
not change over time

• Preemptive/Non-preemptive
– If preemptive, the currently executing task is preempted if a

new task arrives with a shorter period

8/23/2017 Introduction to Real-Time Systems

• Example 1

– τ1= (2, 6, 6), τ2= (2, 9, 9), τ3= (3, 12, 12)

8/23/2017 Introduction to Real-Time Systems

• DM’s priority assignment weakens the

restriction “period equals deadline” in static

priority schemes

• Tasks can have relative deadlines (Di) less

than or equal to their period

– Constrained deadlines

8/23/2017 Introduction to Real-Time Systems

• Priority Assignment Rule

– Each task is assigned a fixed priority inversely
proportional to its relative deadline

– Task with the shortest relative deadline is executed first

• Static priority assignment

– Deadlines are constant

• Preemptive/Non-preemptive

– If preemptive, the currently executing task is preempted
if a new task with shorter relative arrives into the system

8/23/2017 Introduction to Real-Time Systems

• Example

– τ1 = (3, 6, 6), τ2 = (2, 4, 8), τ3 = (2, 12, 12)

8/23/2017 Introduction to Real-Time Systems

• Priority assignment rule

– At any instant the task with the earliest absolute
deadline among all ready tasks is the one that should be
executing

• Dynamic priority assignment

– Tasks are selected according to the absolute deadline

• Preemptive/Non-preemptive

• Does not depend on the task’s period

8/23/2017 Introduction to Real-Time Systems

• Example

– τ1 = (1,4,4), τ2 = (2,6,6), τ3 = (3,8,8)

8/23/2017 Introduction to Real-Time Systems

• The instances of a periodic task i are regularly

activated at a constant rate (i.e., period Ti)

• All instances of a periodic task have the same

Ci and implicit Di

• All tasks in the set are independent

– no precedence relations and no resource

constraints

8/23/2017 Introduction to Real-Time Systems

• Task utilization: fraction of processor time spent
executing task Ti

– Ui = Ci/Ti

• Processor Utilization factor: fraction of
processor time spent in the execution of the
task set

– computational load on the CPU due to the periodic
task set

8/23/2017 Introduction to Real-Time Systems





n

i i

i

T

C
U

1

• Schedulable Utilization of a scheduling
algorithm (UUB(Γ, A))
– Maximum value of U below which a task set is

schedulable and above which is not schedulable

– Depends on the task set and the algorithm

• Least upper bound Ulub(A) of the processor
utilization factor
– Minimum of the utilization factors over all task sets

that fully utilize the processor

– Ulub(A) = minΓ UUB(Γ, A)

8/23/2017 Introduction to Real-Time Systems

• Schedulable Utilization

• As the value of n increases the schedulable utilization converges
to

– Ulub = ln 2 ∼ 0.69

• The above condition is suficient but not necessary

8/23/2017 Introduction to Real-Time Systems

)12(
1

1




n

n

i

n
Ti

Ci

n 1 2 3 4

U 1 0.82 0.78 0.76

• The schedulability test consists in

– Compute task set utilization U

– If U ≤ Ulub, the task set is schedulable

– if U > 1 the task set is not schedulable

– if Ulub < U ≤ 1, the task set may or may not be

schedulable

8/23/2017 Introduction to Real-Time Systems

• Schedulable Utilization

• EDF is an optimal algorithm, in the sense

that if a task set is schedulable, then it is

schedulable by EDF

8/23/2017 Introduction to Real-Time Systems

1
1




n

i Ti

Ci

• RM is optimal among fixed-priority

algorithms

– If a task set can be scheduled by fixed-priority

algorithm then it can be scheduled by Rate

Monotonic algorithm

• EDF can schedule all task sets that can be

scheduled by RM (in fact any FP algorithm),

but not vice versa

8/23/2017 Introduction to Real-Time Systems

• Verify if a task set is schedulable by determining the
worst case response time of each task in the set
– Compute the WCRT Ri for task τi

– If Ri ≤ Di, then the task is schedulable

– Else the task is not schedulable

• It is a necessary and sufficient test

• The worst-case processor demand occurs when all
tasks are released simultaneously (Liu and Layland,
1973)
– Also known as the critical instant

8/23/2017 Introduction to Real-Time Systems

• For each task τi, the response-time Ri is

given by the sum of its WCET and the

interference imposed by higher priority tasks

• Interference

– Cumulative length of all intervals of time in

which a task is ready to execute but it cannot

due to the execution of higher priority tasks

8/23/2017 Introduction to Real-Time Systems

Ri = Ci + Ii

• Example using preemptive RM
• τ1 = (35, 80), τ2 = (10, 55), τ3 = (5, 20)

• What are the response times and interference suffered by each task?

8/23/2017 Introduction to Real-Time Systems

Critical Instant

• Example using preemptive RM
• τ1 = (35, 80), τ2 = (10, 55), τ3 = (5, 20)

• What are the response times and interference suffered by each task?

8/23/2017 Introduction to Real-Time Systems

Critical Instant

R1

R2

R3

• In preemptive RM a task may be preempted

until the end of its execution

– But the end of its execution is Ri which is the

value we want to compute

• What tasks interfere with the lowest priority

task?

• How many times do each task execute within

the interval R1?

8/23/2017 Introduction to Real-Time Systems

• How many times do each task execute within
the interval R1?

– Task 2: = = 2

– Task 3: = = 4

– Meaning: Each time Task 2 executes, it
interferes 2 x 20 time units in the execution of
Task 1

8/23/2017 Introduction to Real-Time Systems










2

1

T

R










3

1

T

R

ceiling(x) returns the least integer greater than or equal to x










55

75










20

75

• How to compute the interference for a given

task?

8/23/2017 Introduction to Real-Time Systems

• How to compute the interference for a given

task?

• Replacing Ii in Ri = Ci + Ii by the above eq.

8/23/2017 Introduction to Real-Time Systems














)(ihpj

j

j

i
i C

T

R
I




 









)(ihpj

j

j

i
ii C

T

R
CR

• What is the issue with the following

equation?

8/23/2017 Introduction to Real-Time Systems




 









)(ihpj

j

j

i
ii C

T

R
CR

• What is the issue with the following

equation?

• We are facing a recurrent equation

8/23/2017 Introduction to Real-Time Systems




 









)(ihpj

j

j

i
ii C

T

R
CR




 









)(

1

ihpj

j

j

n

i
i C

T

R
CRn

i

• To solve it we use Ri
0=Ci

• The recurrence stops when

– Ri
n+1 = Ri

n or Ri ≤ Di, ∀i

• We are determining the instant of time when

– No higher priority task than task i is pending in

the system

– Task i already completed its execution

8/23/2017 Introduction to Real-Time Systems

• Compute the WCRT for the above task set

– τ1 = (35, 80), τ2 = (10, 55), τ3 = (5, 20)

8/23/2017 Introduction to Real-Time Systems

8/23/2017 Introduction to Real-Time Systems

Start time for Task 1

• Preemptive case

8/23/2017 Introduction to Real-Time Systems

• If Task 1 is non-preemptive, then Task 3

misses its deadline at time instant 20

• We are determining the instant of time when

– No higher priority task than task i is pending in

the system

– At this point, task i executes without preemption

• Task does not depend on its response time

8/23/2017 Introduction to Real-Time Systems

8/23/2017 Introduction to Real-Time Systems

Maximum interference that Task 1 can suffer

• Instead of computing Ri as in the preemptive

case, in the non-preemptive case we need to

compute Ii first and then we add Ci time

units to it

8/23/2017 Introduction to Real-Time Systems

8/23/2017 Introduction to Real-Time Systems

Maximum interference that Task 1 can suffer




 









)(

1

ihpj

j

j

n

i C
T

I
I n

i

• But in non preemptive systems, a task with

lower priority can block the execution of a

higher priority job

• If blocking is ignored, wrong results may be

obtained

8/23/2017 Introduction to Real-Time Systems

• What is the highest blocking that task 3 can

get?

– Highest blocking situation occur when task 1 is

released into the system epsilon time units

before task 2 and task 3

8/23/2017 Introduction to Real-Time Systems

8/23/2017 Introduction to Real-Time Systems

Largest blocking caused by task 1 in other higher priority tasks

• In the non preemptive case the interference

is given by

• The first value of the iteration is computed

as follows

• where

8/23/2017 Introduction to Real-Time Systems




 









)(

1

ihpj

j

j

n

i
i C

T

I
BI n

i

 


)(

0

ihpj
jii CBI

0

}max{{ CjBi  , if i is the lowest priority task

, j are the task with lower priority than i

• Interference values for the example

8/23/2017 Introduction to Real-Time Systems

• Schedulability tests

– Utilization based tests

• Rate Monotonic and Earliest Deadline First

– Response time Analysis

• Preemptive and Non-preemptive RM

• RM

– Utilization based test is sufficient and for large n
it has a Ulub= 0.69

– RTA: sufficient and necessary test for arbitrary
deadlines and task with no offsets

8/23/2017 Introduction to Real-Time Systems

