
Linux Kernel Development (LKD)
Session 1

Loadable Kernel Modules (LKM)

Paulo Baltarejo Sousa
pbs@isep.ipp.pt

2017

PBS LKD: S1 1 / 66

Disclaimer

Material and Slides
Some of the material/slides are adapted from various:

Presentations found on the internet;
Books;
Web sites;
...

PBS LKD: S1 2 / 66

Outline

1 Basics

2 Developing LKM

3 Working with /proc directory

4 Advanced concepts

5 Concurrency

6 Books and Useful links

PBS LKD: S1 3 / 66

Basics

Basics

PBS LKD: S1 4 / 66

Basics

Extensibility

Two mechanisms for extensibility:
Loadable kernel modules (LKMs):

But you can also add code to the Linux kernel while it is running. A
chunk of code that you add in this way is called a LKMs.
These modules can do lots of things.
Also allows us to study how kernel works;
No need to recompile the kernel and then reboot;
But inherently unsafe: any “bug” can cause a system malfunction or
complete crash.

Kernel development (Next session):
If you want to add code to a Linux kernel, the most basic way to do
that is to add some source files to the kernel source tree and
recompile the kernel;

PBS LKD: S1 5 / 66

Basics

The simplest kernel module (I)

�
#include <linux/module.h> /* Needed by all modules */

#include <linux/kernel.h> /* Needed for KERN_INFO */

static int __init hello_init(void){
printk(KERN_INFO "S01-LKM: I am in the Linux kernel.\n");

return 0;

}

static void __exit hello_exit(void){
printk(KERN_INFO "S01-LKM: I am no longer in the Linux kernel.\n");

}

module_init(hello_init);

module_exit(hello_exit);

MODULE_LICENSE("GPL");

MODULE_AUTHOR("PBS");

MODULE_DESCRIPTION("The simplest kernel module ");
� �

PBS LKD: S1 6 / 66

Basics

The simplest kernel module (II)

This module defines two functions:
hello_init: it is invoked when the module is loaded into
kernel;
hello_exit: it is invoked when the module is removed from
kernel;

Macros:
module_init specify which function is executed during at module
insertion time;
module_exit specify which function is executed at module
removal time;
MODULE_LICENSE macro is used to tell the kernel that this module
bears a free license – without such a declaration, the kernel
complains when the module is loaded
MODULE_DESCRIPTION macro is used to describe what the
module does;
MODULE_AUTHOR declares the module’s author.

PBS LKD: S1 7 / 66

Basics

__init & __exit

These do not have any relevance in case we are using them for a
dynamically loadable modules, but only when the same code
gets built into the kernel.
All functions marked with__init get placed inside the init
section of the kernel image automatically during kernel
compilation; and all functions marked with __exit are placed in
the exit section of the kernel image.
What is the benefit of this?

All functions in the init section are supposed to be executed
only once during bootup (and not executed again till the next
bootup);
All functions in the exit section are supposed to be called during
system shutdown.

PBS LKD: S1 8 / 66

Basics

Kernel message logging

The printk function behaves similarly to the standard C library
function printf.
There are eight macros defined in linux/kernel.h:

Each macro represents an integer in angle brackets. Integers range
from 0 to 7, with smaller values representing higher priorities.�

#define KERN_EMERG "<0>" /* system is unusable */

#define KERN_ALERT "<1>" /* action must be taken immediately */

#define KERN_CRIT "<2>" /* critical conditions */

#define KERN_ERR "<3>" /* error conditions */

#define KERN_WARNING "<4>" /* warning conditions */

#define KERN_NOTICE "<5>" /* normal but significant condition */

#define KERN_INFO "<6>" /* informational */

#define KERN_DEBUG "<7>" /* debug-level messages */
� �
All printk calls put their output into a (log) ring buffer;

The syslog daemon running in user-space picks them up and
redirect them to /var/log/syslog (from Ubuntu 11.04).

The dmesg command parses the ring buffer and dump it to
standard output.

PBS LKD: S1 9 / 66

Basics

Function’s return guidelines

Typically, returns an integer:
For an error, it returns a negative number: a minus sign
appended with a macro that is available through the kernel header
linux/errno.h�

...

#define EPERM 1 /* Operation not permitted */

#define ENOENT 2 /* No such file or directory */

#define ESRCH 3 /* No such process */

...

#define EAGAIN 11 /* Try again */

#define ENOMEM 12 /* Out of memory */

#define EACCES 13 /* Permission denied */

#define EFAULT 14 /* Bad address */

...
� �
For success, zero is the most common return value, unless there
is some additional information to be provided. In that case, a
positive value is returned, the value indicating the information,
such as the number of bytes transferred by the function.

PBS LKD: S1 10 / 66

Basics

Compiling Kernel Modules (I)

To build a LKM, you need to have the kernel source (or, at least,
the kernel headers) installed on your system.

The kernel source is assumed to be installed at /usr/src/.
The command uname -r prints out the currently running kernel
To compile the hello.c LKM

Create a Makefile in the same directory and type make in a
terminal.�

#Makefile
obj-m:=hello.o

all:

make -C /lib/modules/$(shell uname -r)/build M=$(PWD) modules

clean:

make -C /lib/modules/$(shell uname -r)/build M=$(PWD) clean
� �
After the above successful compilation you will find a .ko file in the
same directory where the compilation took place.

In this case, hello.ko file is the LKM.

PBS LKD: S1 11 / 66

Basics

Compiling Kernel Modules (II)

In the Makefile there is no reference to kernel source code
directory, but it needs it:

The reason for that is: the /lib/modules/$(shell uname
-r)/build is a symbolic link that is linked:

To the kernel source code directory
To the kernel headers directory.

-C <dir> option instructs the make command to change to
directory <dir> before reading the makefile.
M=$(PWD) tells to the compiler where is the module source code.

PBS LKD: S1 12 / 66

Basics

Loading and Unloading Modules

To insert hello module into the kernel type the following
command:

> sudo insmod ./hello.ko

To remove hello module from the kernel type the following
command:

> sudo rmmod hello

PBS LKD: S1 13 / 66

Basics

Modules info

All modules loaded into the kernel are listed in /proc/modules.
A list of all modules loaded in the kernel can be listed using the
command:

> lsmod
Alternatively, you can cat the /proc/modules file to see all
modules:

> cat /proc/modules

Information on currently loaded modules can also be found in the
sysfs virtual filesystem under /sys/module:

> ls /sys/module

All messages printed by printk function can be listed using:
> dmesg

PBS LKD: S1 14 / 66

Developing LKM

Developing LKM

PBS LKD: S1 15 / 66

Developing LKM

Modules

A module runs in kernel space, whereas applications run in user
space.

This concept is at the base of operating systems theory.

The role of a module is to extend kernel functionality

Notice
Most applications, with the notable exception of multithreading
applications, typically run sequentially, from the beginning to the end,
without any need to worry about what else might be happening to
change their environment. Kernel code does not run in such a simple
world, and even the simplest kernel modules must be written with the
idea that many things can be happening at once.

PBS LKD: S1 16 / 66

Developing LKM

Coding Modules

Not all kernel source code is available for coding modules;
Functions and variables have to be explicitly exported by the
kernel to be visible to a module.
Two macros are used to export functions and variables:

EXPORT_SYMBOL(symbolname), which exports a function or
variable to all modules;
EXPORT_SYMBOL_GPL(symbolname), which exports a function or
variable only to GPL modules.

A normal driver should not need any non-exported function.

Example
A module can refer to the current process by accessing the current.
The current points to the process that is currently executing.
printk(KERN_INFO "The process is [%s] [%i]
\n",current->comm, current->pid);

PBS LKD: S1 17 / 66

Developing LKM

Modules’ init and exit functions (I)

At module’s initialization function, every kernel module just
registers itself in order to serve future requests, and its
initialization function terminates immediately.

The task of the module’s initialization function (hello_init in the
example) is to prepare for later invocation of the module’s functions;
it’s as though the module were saying, “Here I am, and this is what I
can do.”

The module’s exit function (hello_exit in the example) gets
invoked just before the module is unloaded.

It should tell the kernel, “I’m not there anymore; don’t ask me to do
anything else”.

PBS LKD: S1 18 / 66

Developing LKM

Modules’ init and exit functions (II)

The purpose of a module’s
entry and exit functions is:

init:
Allocating memory,
registering devices, etc.

exit:
Freeing memory,
unregistering devices, etc.

hello_init(void) and
hello_exit(void)
functions have no argument.

Shared data must be
declared as global.

�
#include <linux/module.h>

#include <linux/kernel.h>

#define BUF_SIZE 50 /*Number of bytes*/

char *buf; /*Global Variable*/

static int hello_init(void){
printk(KERN_INFO "Hello world.\n");

/*Memory allocation*/

buf = kmalloc(BUF_SIZE, GFP_KERNEL);

if (!buf)

return -ENOMEM;

return 0;

}

static void hello_exit(void){
printk(KERN_INFO "Goodbye world.\n");

if (buf){

/*freeing memory*/

kfree(buf);

}

}

module_init(hello_init);

module_exit(hello_exit);

...
� �
PBS LKD: S1 19 / 66

Working with /proc directory

Working with /proc directory

PBS LKD: S1 20 / 66

Working with /proc directory

/proc directory

It is a virtual filesystem.
It is sometimes referred to as a process information pseudo-file
system.
It does not contain ’real’ files but runtime system information (e.g.
system memory, devices mounted, hardware configuration, etc).
It can be regarded as a control and information centre for the
kernel.
In fact, a lot of system utilities are simply calls to files in this
directory.

For example,lsmod is the same as cat /proc/modules while
lspci is a synonym for cat /proc/pci.

PBS LKD: S1 21 / 66

Working with /proc directory

Create a /proc entry (I)

�
#include <linux/proc_fs.h>

#include <linux/sched.h>

#define ENTRY_NAME "hello"

struct proc_dir_entry *proc_entry = NULL;

...

static const struct file_operations proc_fops = {

.owner = THIS_MODULE,

.open = proc_open,

.read = proc_read,

.write = proc_write,

.release = proc_close,

};

int hello_proc_init(void){
proc_entry = proc_create(ENTRY_NAME,0, NULL, &proc_fops);

if(proc_entry == NULL)

return -ENOMEM;

printk("S01-LKM:/proc/%s created\n", ENTRY_NAME);

return 0;

}

void hello_proc_exit(void){
remove_proc_entry(ENTRY_NAME, NULL);

printk("S01-LKM:/proc/%s removed\n", ENTRY_NAME);

}

module_init(hello_proc_init);

module_exit(hello_proc_exit);
� �
PBS LKD: S1 22 / 66

Working with /proc directory

Create a /proc entry (II)

�
int proc_open(struct inode *inode, struct file *filp){

printk(KERN_INFO "S01-LKM:%s:[%d] open\n",ENTRY_NAME, current->pid);

return 0;

}

ssize_t proc_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos){

printk(KERN_INFO "S01-LKM:%s:[%d] read\n",ENTRY_NAME, current->pid);

return 0;

}

ssize_t proc_write(struct file *filp, const char *buf, size_t count, loff_t *f_pos){

printk(KERN_INFO "S01-LKM:%s:[%d] write\n",ENTRY_NAME, current->pid);

return count;

}

int proc_close(struct inode *inode, struct file *filp){

printk(KERN_INFO "S01-LKM:%s:[%d] release\n",ENTRY_NAME, current->pid);

return 0;

}
� �

PBS LKD: S1 23 / 66

Working with /proc directory

Manage /proc directory

proc_create: creates a file in the /proc directory;�
struct proc_dir_entry *proc_create(

const char *name, /*The name of the proc entry*/

umode_t mode, /*The access mode for proc entry*/

struct proc_dir_entry *parent, /*The name of the parent directory under /

proc*/

const struct file_operations *proc_fops /*The structure in which the file

operations for the proc entry will be created*/

)
� �
remove_proc_entry: removes a file from /proc directory;�

void remove_proc_entry(

const char *name, /*The name of the proc entry*/

struct proc_dir_entry *parent /*The name of the parent directory under /proc

*/

)
� �

PBS LKD: S1 24 / 66

Working with /proc directory

file_operations structure (I)

struct file_operations
It is a collection of function pointers.
Each open file is associated with its own set of functions;

Fields:
struct module *owner

It is a pointer to the module that “owns” the structure.
This field is used to prevent the module from being unloaded while its
operations are in use.
Almost all the time, it is simply initialized to THIS_MODULE.

ssize_t (*read) (struct file *, char __user *,
size_t, loff_t *)

It is used to retrieve data from the kernel.
A non negative return value represents the number of bytes
successfully read.

ssize_t (*write) (struct file *, const char
__user *, size_t, loff_t *)

It writes(or sends) data to the kernel.
The return value, if non-negative, represents the number of bytes
successfully written.

PBS LKD: S1 25 / 66

Working with /proc directory

file_operations structure (II)

Fields (continue):
int (*open) (struct inode *, struct file *)

This is always the first operation performed on the file structure.
int (*release) (struct inode *, struct file *)

This operation is invoked when the file structure is being released.
Parameters:

struct file
It represents an open file.
It is created by the kernel on open and is passed to any function that
operates on the file, until the last close.
After all instances of the file are closed, the kernel releases the data
structure.

inode
It is used internally by the kernel to represent files.

__user
This is a form of documentation, noting that a pointer is a user-space
address that cannot be directly dereferenced.
For normal compilation, __user has no effect, but it can be used by
external checking software to find misuse of user-space addresses.

PBS LKD: S1 26 / 66

Working with /proc directory

file_operations structure (III)

Parameters (continue):
ssize_t and size_t

ssize_t data type is used to represent the sizes of blocks that can
be read or written in a single operation. It is similar to size_t, but
must be a signed type.

loff_t
The loff_t parameter is a “long offset” and is at least 64 bits wide
even on 32-bit platforms;
The current reading or writing position.

PBS LKD: S1 27 / 66

Working with /proc directory

Interacting with /proc/entry (I)

cat /proc/entry.
The most common use of cat is to read the contents of files.

echo "1" > /proc/entry
echo is a command that writes its arguments to standard output,
however, the output can be redirect to a file by using ">".

PBS LKD: S1 28 / 66

Working with /proc directory

Interacting with /proc/entry (II)

Functions to copy data to and from user-space (defined in
asm/uaccess.h)):

unsigned long copy_to_user(void __user *to, const
void *from, unsigned long count);
unsigned long copy_from_user(void *to, const void
__user *from, unsigned long count);

The role of the two functions is not limited to copying data to and
from user-space:

They also check whether the user space pointer is valid.
If the pointer is invalid, no copy is performed;
Return value is the amount of memory still to be copied or error
codes.

PBS LKD: S1 29 / 66

Working with /proc directory

Interacting with /proc/entry (III)

PBS LKD: S1 30 / 66

Advanced concepts

Advanced concepts

PBS LKD: S1 31 / 66

Advanced concepts Memory

Memory Allocation

The most important are the kmalloc (for allocation memory) and
kfree (for freeing memory) functions.
These functions, defined in linux/slab.h:

void *kmalloc(size_t size, int flags) ;
size_t size: is the size of the block to be allocated.
int flags: it controls the behavior of kmalloc. For instance,
GFP_KERNEL means that the allocation is performed on behalf of a
process running in kernel space. In other words, this means that the
calling function is executing a system call on behalf of a process.
Using GFP_KERNEL means that kmalloc can put the current process
to sleep waiting for a page when called in low-memory situations.

void kfree(void *ptr).
Allocated memory should be freed with kfree.

PBS LKD: S1 32 / 66

Advanced concepts Memory

Memory example

�
#include <linux/module.h>

#include <linux/kernel.h>

#define BUF_SIZE 50 /*Number of bytes*/

char *buf; /*Global Variable*/

static int hello_init(void){
printk(KERN_INFO "Hello world.\n");

/*Memory allocation*/

buf = kmalloc(BUF_SIZE, GFP_KERNEL);

if (!buf)

return -ENOMEM;

return 0;

}

static void hello_exit(void){
printk(KERN_INFO "Goodbye world.\n");

if (buf){

/*freeing memory*/

kfree(buf);

}

}

module_init(hello_init);

module_exit(hello_exit);

...
� �
PBS LKD: S1 33 / 66

Advanced concepts Magical macro

container_of (I)

�
#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)

/**

* container_of - cast a member of a structure out to the containing structure

* @ptr: the pointer to the member.

* @type: the type of the container struct this is embedded in.

* @member: the name of the member within the struct.

*

*/

#define container_of(ptr, type, member) ({ \

const typeof(((type *)0)->member) *__mptr = (ptr); \

(type *)((char *)__mptr - offsetof(type,member));})
� �
It takes three arguments – a pointer, type of the container, and
the name of the member the pointer refers to.
The macro retrieves the address of the container which
accommodates the respective member.

PBS LKD: S1 34 / 66

Advanced concepts Magical macro

container_of (II)

PBS LKD: S1 35 / 66

Advanced concepts Linked Lists

Linked lists (I)

The Linux kernel has a standard implementation of circular,
doubly linked lists;
To use the list mechanism, your module must include the file
<linux/list.h>. This file defines a simple structure of type
list_head:�

struct list_head {

struct list_head *next, *prev;

};
� �
When working with the linked list interface, you should always
bear in mind that the list functions perform no locking.

PBS LKD: S1 36 / 66

Advanced concepts Linked Lists

Linked lists (II)

struct list_head field is embedded into a structure;
Given the address of a list, you can iterate through the list
elements, add and delete elements, and so on.

container_of macro is used to get the address of the data
structure element.

PBS LKD: S1 37 / 66

Advanced concepts Linked Lists

Linked list API (I)

List heads must be initialized prior to use with the
INIT_LIST_HEAD macro;
list_add(struct list_head *new, struct list_head
*head)

Adds the new entry immediately at the beginning of the list.
list_add_tail(struct list_head *new, struct
list_head *head)

Adds a new entry just before the given list head;
list_del(struct list_head *entry)

Removes the entry from the list;
list_empty(struct list_head *head)

Returns a nonzero value if the given list is empty.;
list_for_each(struct list_head *cursor, struct
list_head *list)

This macro creates a for loop that executes once with cursor
pointing at each successive entry in the list.

PBS LKD: S1 38 / 66

Advanced concepts Linked Lists

Linked list API (II)

list_entry(struct list_head *ptr,
type_of_struct, field_name)

Returns a pointer to type_of_struct variable that embeds
field_name, where ptr is a pointer to the struct list_head
being used.

PBS LKD: S1 39 / 66

Advanced concepts Linked Lists

Linked list example

�
struct todo_struct {

struct list_head list;

int priority;

};

struct list_head todo_list;

INIT_LIST_HEAD(&todo_list);

void todo_add_entry(struct todo_struct *new)

{

struct list_head *ptr;

struct todo_struct *entry;

//for (ptr = todo_list.next; ptr != &todo_list; ptr = ptr->next) {

list_for_each(ptr, &todo_list) {

entry = list_entry(ptr, struct todo_struct, list);

if (entry->priority < new->priority) {

list_add_tail(&new->list, ptr);

return;
}

}

list_add_tail(&new->list, &todo_struct)

}
� �
PBS LKD: S1 40 / 66

Advanced concepts Red-black tree

Tree concepts (I)

A tree is a data structure that provides a hierarchical tree-like
structure of data. Mathematically, it is an acyclic, connected,
directed graph in which each vertex (called a node) has zero or
more outgoing edges and zero or one incoming edges.
A binary tree is a tree in which nodes have at most two outgoing
edges – that is, a tree in which nodes have zero, one, or two
children.
A binary search tree is a binary tree with a specific ordering
imposed on its nodes. The ordering is often defined via the
following induction:

The left subtree of the root contains only nodes with values less
than the root.
The right subtree of the root contains only nodes with values
greater than the root.
All subtrees are also binary search trees.

PBS LKD: S1 41 / 66

Advanced concepts Red-black tree

Tree concepts (II)

The depth of a node is measured by how many parent nodes it is
from the root. Nodes at the “bottom” of the tree – those with no
children – are called leaves.
The height of a tree is the depth of the deepest node in the tree.
A balanced binary search tree is a binary search tree in which
the depth of all leaves differs by at most one.
A self-balancing binary search tree is a binary search tree that
attempts, as part of its normal operations,to remain (semi)
balanced.
A red-black tree is a type of self-balancing binary search tree.

PBS LKD: S1 42 / 66

Advanced concepts Red-black tree

rbtree

The Linux implementation of red-black tree is called rbtree.
It is declared in <linux/rbtree.h>

The root of an rbtree is represented by the rb_root structure.
Each node of an rbtree is represented by the rb_node
structure.

PBS LKD: S1 43 / 66

Advanced concepts Red-black tree

rbtree API (I)

struct rb_node *rb_first(struct rb_root *tree)
Returns a pointer to the first node, if it exists, or NULL, otherwise;

struct rb_node *rb_last(struct rb_root *tree)
Returns a pointer to the last node, if it exists, or NULL, otherwise;

struct rb_node *rb_next(struct rb_node *node) and
struct rb_node *rb_prev(struct rb_node *node)

Moving forward and backward through the tree is a simple matter of
calling rb_next andrb_prev.
In both cases, a return value of NULL indicates that the requested
node does not exist.

PBS LKD: S1 44 / 66

Advanced concepts Red-black tree

rbtree API (II)

void rb_link_node(struct rb_node *new_node,
struct rb_node *parent, struct rb_node **link)

Links the new node into the tree as a red node;
void rb_insert_color(struct rb_node *new_node,
struct rb_root *tree)

Rebalance the tree;
void rb_erase(struct rb_node *victim, struct
rb_root *tree)

Remove a node from a tree and if it is required rebalance it.
rb_entry(ptr, type_of_struct, field_name)

Returns a pointer to type_of_struct variable that embeds
field_name, where ptr is a pointer to the struct rb_node
being used.

PBS LKD: S1 45 / 66

Advanced concepts Red-black tree

rbtree Example (I)

Defining data structure:�
struct node_item{

int id;

struct rb_node node;

};
� �
Creating the root of a rbtree:�

\lstinputlisting{code/rbtree1.tex}
� �
Checking if there is any element into the tree:�

if(RB_EMPTY_ROOT(root)){
// empty tree

}else{
//There is/are some nodes

}
� �
PBS LKD: S1 46 / 66

Advanced concepts Red-black tree

rbtree Example (II)

Inserting an item:�
struct node_item * rb_insert_node_item(struct rb_root * root, int target){

struct rb_node **n = &root->rb_node;

struct rb_node *parent = NULL;

struct rb_node * source = NULL;

struct node_item * ans;

while(*n){
parent = *n;

ans = rb_entry(parent, struct node_item, node);

if(target < ans->id)

n = &parent->rb_left;

else if(target > ans->id)

n = &parent->rb_right;

else
return ans;

}

source = (struct node_item *)kmalloc(sizeof(struct struct node_item),

GFP_KERNEL);

source->id = target;

rb_link_node(source, parent, n); //Insert this new node as a red leaf.

rb_insert_color(source, root); //Rebalance the tree, finish inserting

return NULL;

}
� �
PBS LKD: S1 47 / 66

Advanced concepts Red-black tree

rbtree Example (III)

Searching an item:�
struct node_item * rb_search_node_item(struct rb_root * root, int target){

struct rb_node *n = root->rb_node;

struct node_item * ans;

while(n){
//Get the parent struct to obtain the data for comparison

ans = rb_entry(n, struct node_item, node);

if(target < ans->id)

n = n->rb_left;

else if(target > ans->id)

n = n->rb_right;

else
return ans;

}

return NULL;

}
� ��
struct rb_node *n;

for (n = rb_first(&root); n;n = rb_next(n)){

ans = rb_entry(n, struct node_item, node);

...

}
� �
PBS LKD: S1 48 / 66

Advanced concepts Red-black tree

rbtree Example (IV)

Removing an item:�
void rb_erase_node_item(struct rb_node * source, struct rb_root * root){

struct node_item * target;

target = rb_entry(source, struct node_item, node);

rb_erase(source, root); //Erase the node

kfree(target); //Free the memory

}
� �

PBS LKD: S1 49 / 66

Concurrency

Concurrency

PBS LKD: S1 50 / 66

Concurrency

Race conditions and critical sections

A race condition could occurs when a shared resource is
accessed at the same time by two or more threads.
Code paths that access and manipulate shared resource are
called critical regions or critical sections.
In the Linux system, there are numerous sources of concurrency
and, therefore, possible race conditions;

Multiprocessing support implies that kernel code can
simultaneously run on two or more processors;
Kernel code is preemptible, which means, the scheduler can
preempt kernel code at virtually any point and reschedule another
task;
Interrupts are asynchronous events

Notice
So the first rule of thumb to keep in mind is to avoid shared resources
whenever possible. If there is no concurrent access, there is no race
conditions.

PBS LKD: S1 51 / 66

Concurrency

Context switch

A context switch (also sometimes referred to as a process switch
or a task switch) is the switching of the CPU from one process or
thread to another.
Context switch occurs because of:

Internal events: system calls and exceptions (software interrupts);
External events: interrupts;

Race conditions can be avoided by preventing context switch:
Eliminate internal events: disable preemption;
Eliminate external event: disable interrupts.

PBS LKD: S1 52 / 66

Concurrency

Preemption Disabling

Because the kernel is preemptive, a process in the kernel can
stop running at any instant to enable a process of higher priority to
run.

This means a task can begin running in the same critical region as
a task that was preempted.

It can be useful in per-processor variables.
kernel preemption can be disabled via preempt_disable.

The call is nestable; you may call it any number of times.
For each call, a corresponding call to preempt_disable is
required.
The final corresponding call to preempt_enable re-enables
preemption.

Example:�
preempt_disable();

/* preemption is disabled ... */

preempt_enable();
� �
PBS LKD: S1 53 / 66

Concurrency

Interrupts Disabling

Interrupts are signal that are sent across IRQ (Interrupt Request
Line) by a hardware or software.
Interrupts are used to let CPU knows that something needs its
attention.

Once the CPU receives an interrupt Request, CPU will temporarily
stop execution of running program and invoke a special program
called Interrupt Handler;
After the interrupt is handled CPU resumes the interrupted
program.

Disabling an interrupt forces the waiting for the completion of
currently executing interrupt handler (if any).

By disabling interrupts, it is guarantee that an interrupt handler will
not preempt the executing thread.

Example:�
local_irq_disable();

/* interrupts are disabled .. */

local_irq_enable();
� �
PBS LKD: S1 54 / 66

Concurrency

Deal with shared resources

To prevent concurrent access during critical regions, the
programmer must ensure that code executes atomically

Operations must complete without interruption as if the entire
critical region were one indivisible instruction.

Example: i=7; i++ ;
Race condition

Atomic operation

PBS LKD: S1 55 / 66

Concurrency

Deadlocks

A deadlock is a condition involving one or more threads of
execution and one or more shared resources, such that each
thread waits for one of the resources, but all the resources are
already held.
The threads all wait for each other, but they never make any
progress toward releasing the resources that they already hold.
Therefore, none of the threads can continue, which results in a
deadlock.

PBS LKD: S1 56 / 66

Concurrency

Prevention of deadlock

Implement lock ordering.
Nested locks must always be obtained in the same order.
This prevents the deadly embrace deadlock. Document the lock
ordering so others will follow it.

Prevent starvation. Ask yourself, does this code always finish? If
foo does not occur, will bar wait forever?

In computer science, starvation is a problem encountered in
multitasking where a process is perpetually denied necessary
resources. Without those resources, the program can never finish
its task.

Do not double acquire the same lock.
Design for simplicity. Complexity in your locking scheme invites
deadlocks.

PBS LKD: S1 57 / 66

Concurrency

Contention and Scalability

Lock contention, occurs whenever one thread attempts to
acquire a lock held by another thread.

High contention can occur because a lock is frequently obtained,
held for a long time after it is obtained, or both.
A highly contended lock can become a bottleneck in the system,
quickly limiting its performance.

Scalability is a measurement of how well a system can be
expanded.

Could be related to a large number of processes, a large number of
processors, or large amounts of memory.

Rule
The more fine-grained the available locks, the less likely one
process/thread will request a lock held by the other. (For example,
locking a row rather than the entire table, or locking a cell rather than
the entire row.)

PBS LKD: S1 58 / 66

Concurrency

atomic_t variables

Sometimes, a shared resource is a simple integer value.
Example: i++;
The kernel provides an atomic integer type called atomic_t,
defined in <asm/atomic.h>;
An atomic_t holds an int value on all supported architectures.

Because of the way this type works on some processor
architectures, however, the full integer range may not be available;
thus, you should not count on an atomic_t holding more than 24
bits.

atomic_t guarantees atomic operations

PBS LKD: S1 59 / 66

Concurrency

Atomic API

atomic_set(atomic_t *v, int i)
Set the atomic variable v to the integer value i;

atomic_read(atomic_t *v)

Return the current value of v.

atomic_add(int i, atomic_t *v)

Add i to the atomic variable pointed to by v.

atomic_inc_and_test(atomic_t *v)
Perform an increment and test the result; if, after the operation, the
atomic value is 0, then the return value is true; otherwise, it is false.

atomic_add_return(int i, atomic_t *v)
Behave just like atomic_add with the exception that they return
the new value of the atomic variable to the caller.

atomic_add_unless(atomic_t *v,int a, int u)
Atomically adds a to v, so long as it was not u. Returns non-zero if
v was not u, and zero otherwise.

PBS LKD: S1 60 / 66

Concurrency

Spinlocks

A spinlock is a mutual exclusion component that can have only
two values: “locked” and “unlocked”.
Whenever a thread gets a spinlock:

If the lock is available, the “lock” value is set and the code continues
into the critical section.
Otherwise, the code goes into a tight loop where it repeatedly
checks the lock until it becomes available.

Example:�
spin_lock(&my_lock);

/* critical section */

spin_unlock(&my_lock);
� �
Notice
The critical section protected by a spinlock is not allowed to sleep. So,
be very careful not to call functions which can sleep!

PBS LKD: S1 61 / 66

Concurrency

Spinlock API (I)

The “test and set" operation must be done in an atomic manner
Only one thread can obtain the lock, even if several are spinning at
any given time.
kernel preemption is disabled when the kernel is in a critical region
protected by a spinlock.

It is defined in <linux/spinlock.h>;
spin_lock_init(spinlock_t *lock)

Initializes the lock variable;
Initialize lock to 1 (unlocked).

spin_lock(spinlock_t *lock)
Getting a lock;
Spin until lock becomes 1, then set to 0 (locked).

spin_unlock(spinlock_t *lock)
Releasing a lock.
Set spin lock to 1 (unlocked).

PBS LKD: S1 62 / 66

Concurrency

Spinlock API (II)

There are a few other spinlock operations:
spin_lock_irqsave(spinlock_t *lock, unsigned long
flags)

Like spin_lock.
Also disables the interrupts on the local CPU, the previous interrupt
state is stored in flags.

spin_lock_irqrestore(spinlock_t *lock, unsigned
long flags)

Undoes spin_lock_irqsave. The flags argument passed to it
must be the same variable passed to spin_lock_irqsave.

There is also a set of nonblocking spinlock operations:
int spin_trylock(spinlock_t *lock)

Set lock to 0 if unlocked and return 1; return 0 if locked.

...

PBS LKD: S1 63 / 66

Books and Useful links

Books and Useful links

PBS LKD: S1 64 / 66

Books and Useful links

Books

Linux Kernel Development: A thorough guide to the design and
implementation of the Linux kernel, 3rd Edition, Robert Love.
Addison-Wesley Professional, 2010.
Professional Linux Kernel Architecture, Wolfgang Mauerer. Wrox

, 2008.
Linux Device Drivers, 3rd Edition, Jonathan Corbet, Alessandro
Rubini, Greg Kroah-Hartman. O’Reilly, 2005.
Understanding the Linux Kernel, 3rd Edition, Daniel P.Bovet,
Marco Cesati, O’Reilly Media, 2005.

PBS LKD: S1 65 / 66

Books and Useful links

Links

elixir.free-electrons.com/linux/v4.10/source

www.kernel.org/doc/htmldocs/kernel-api/

kernelnewbies.org/Documents

lwn.net/Kernel/LDD3/

PBS LKD: S1 66 / 66

elixir.free-electrons.com/linux/v4.10/source
www.kernel.org/doc/htmldocs/kernel-api/
kernelnewbies.org/Documents
lwn.net/Kernel/LDD3/

	Basics
	Developing LKM
	Working with /proc directory
	Advanced concepts
	Memory
	Magical macro
	Linked Lists
	Red-black tree

	Concurrency
	Books and Useful links

