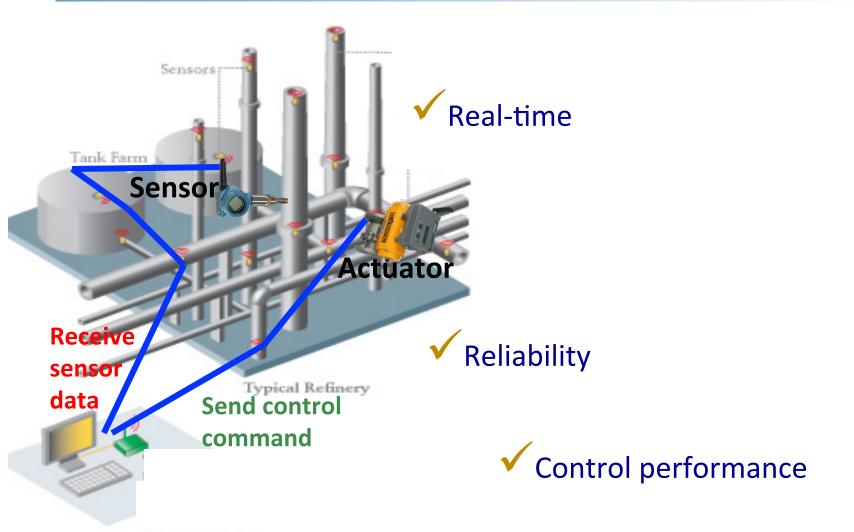
Real-Time Wireless Control Networks for Cyber-Physical Systems

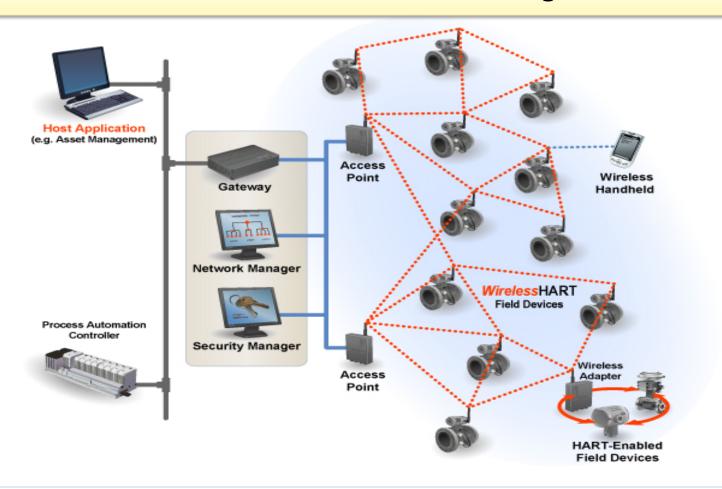

Chenyang Lu

Cyber-Physical Systems Laboratory

Department of Computer Science and Engineering

Wireless Control Networks

Industrial Wireless Networks


Courtesy: Eric Rotvold, Emerson

Outline

- WirelessHART: real-time wireless in real industry
- Real-time scheduling theory for wireless
- Wireless-control co-design
- Case study: wireless structural control

WirelessHART

Industrial wireless standard for monitoring and control

Characteristics

- Reliable in hash industrial environments
 - Time Division Multiple Access
 - Multi-channel
 - Route diversity
 - No concurrent transmission in a same channel
- Centralized network manager
 - Collects topology information from the network
 - Generates routes and global transmission schedule
 - Reconfigures when devices/links break

Real-Time Scheduling for Wireless

Goals

- Real-time transmission scheduling > meet end-to-end deadlines
- Fast schedulability analysis -> online admission control and adaptation

Approach

- Leverage real-time scheduling theory for processors
- Incorporate wireless characteristics

Results

- Dynamic priority scheduling [RTSS'10]
- Fixed priority scheduling
 - End-to-end delay analysis [RTAS'11]
 - Priority assignment [ECRTS'11]

Real-Time Scheduling for Wireless

Goals

- Real-time transmission scheduling > meet end-to-end deadlines
- Fast schedulability analysis -> online admission control and adaptation

Approach

- Leverage real-time scheduling theory for processors
- Incorporate wireless characteristics

Results

- Dynamic priority scheduling [RTSS'10]
- Fixed priority scheduling
 - End-to-end delay analysis [RTAS'11]
 - Priority assignment [ECRTS'11]

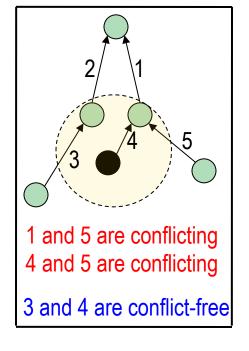
Real-Time Flows

Flow: sensor \rightarrow controller \rightarrow actuator over multi-hops

- highest lowest priority
 A set of flows $F = \{F_1, F_2, ..., F_N\}$ ordered by priorities
- Each flow F_i is characterized by
 - A source (sensor), a destination (actuator)
 - A route through the controller
 - A period P_i
 - A deadline D_i ($\leq P_i$)
 - Total number of transmissions C_i along the route

Scheduling Problem

Fixed priority scheduling: transmissions ordered by the priorities of their flows.

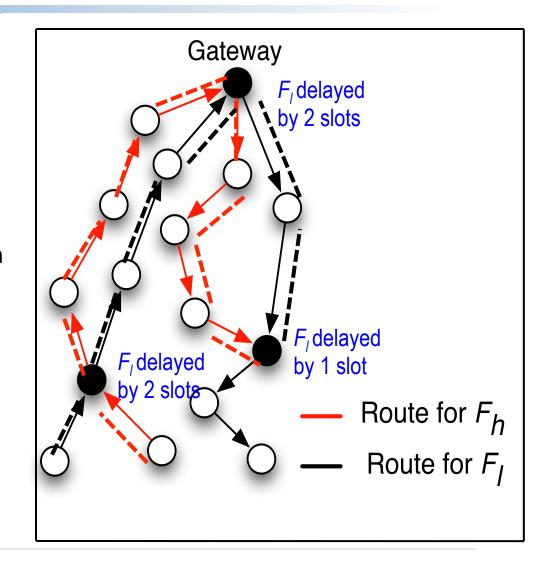

end-to-end delay of F_i

- Flows are schedulable if $R_i \le D_i$ $\forall F_i \in F$ deadline of F_i
- Goal: efficient delay analysis
 - Gives an upper bound of the end-to-end delay for each flow
 - Used for online admission control and adaptation

End-to-End Delay Analysis

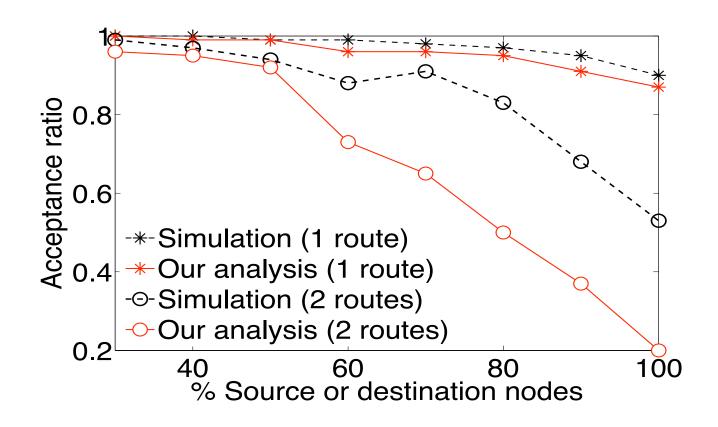
- A lower priority flow is delayed due to
 - channel contention: when all channels are assigned to higher priority flows in a slot
 - transmission conflict: two transmissions involve a same node

Analyze each type of delay separately


Combine both delays -> end-to-end delay bound

Insights

- Flows vs. Tasks
 - Similar: channel contention
 - Different: transmission conflict
- Channel contention > multiprocessor scheduling
 - □ A channel → a processor
 - ightharpoonup Flow $F_i \rightarrow$ a task with period P_i , deadline D_i , execution time C_i
 - Leverage existing response time analysis for multiprocessors
- Need to account for delays due to transmission conflicts


Delay due to Conflict

- When low priority flow F_1 and high priority flow F_h , conflict, F_1 is delayed
- \triangleright Q(I,h): #transmissions of F_h sharing nodes with F_l
 - In the worst case, F_h can delay F_l by Q(l,h) slots
 - e.g., $Q(I,h) = 5 \rightarrow F_h$ can delay F_1 by 5 slots

Acceptance Ratio

Fraction of test cases deemed schedulable based on analysis or simulations

Wireless-Control Co-Design

Goal: optimize control performance over wireless

Challenge

- Wireless resource is scarce and dynamic
- Cannot afford separating wireless and control designs

Cyber-Physical Systems Approach

Holistic co-design of wireless and control

Examples

- Rate selection for wireless control [RTAS'12, TECS]
- Wireless structural control [ICCPS'13]

Rate Selection for Wireless Control

- Optimize the sampling rates of control loops sharing a WirelessHART network.
- Rate selection must balance control and network delay
 - Low sampling rate → poor control performance
 - \square High sampling rate \rightarrow long delay \rightarrow poor control performance

Control Performance Index

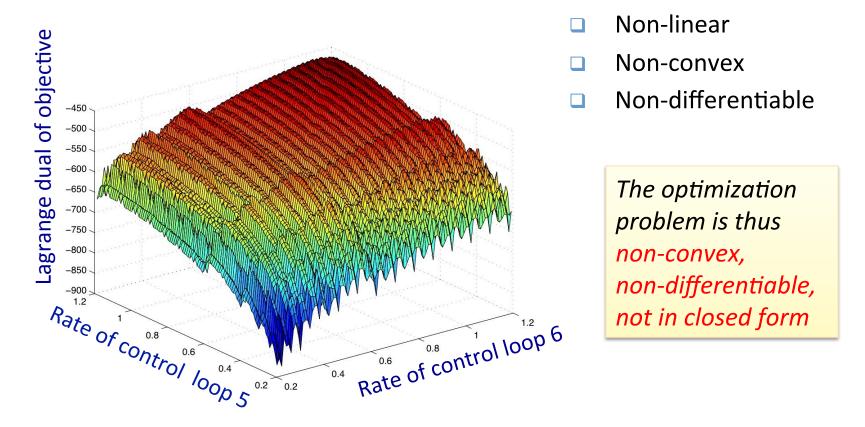
- \succ Digital implementation of control loop i
 - $lue{}$ Periodic sampling at rate f_i
 - Performance deviates from continuous counterpart
- \triangleright Control cost of control loop i under rate f_i [Seto RTSS'96]
 - \square Approximated as $\alpha_i e^{-\beta_i f_i}$ with sensitivity coefficients α_i , β_i
- \triangleright Overall control cost of n loops $\sum_{i=1}^{n} \alpha_i e^{-\beta_i f_i}$

The Rate Selection Problem

- Formulated as a constrained non-linear optimization
- Determine sampling rates $f = \{f_1, f_2, \dots, f_n\}$ to

Minimize control cost
$$\sum_{i=1}^{n} \alpha_i e^{-\beta_i f_i}$$

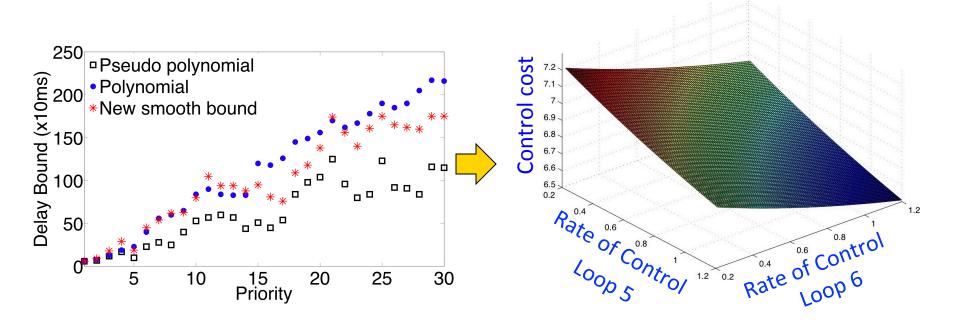
subject to

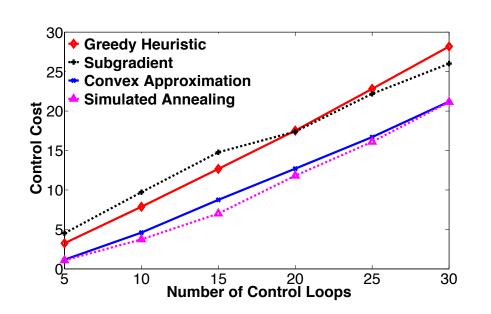

$$R_i \leq P_i$$

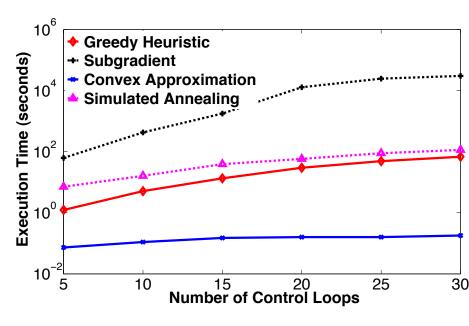
 $R_i \leq P_i$ Delay bound

$$f_i^{min} \le f_i \le f_i^{max}$$

Polynomial Time Delay Bounds


In terms of decision variables (rates), the delay bounds are


Scheduling-Control Co-Design


Relax delay bound to simplify optimization!

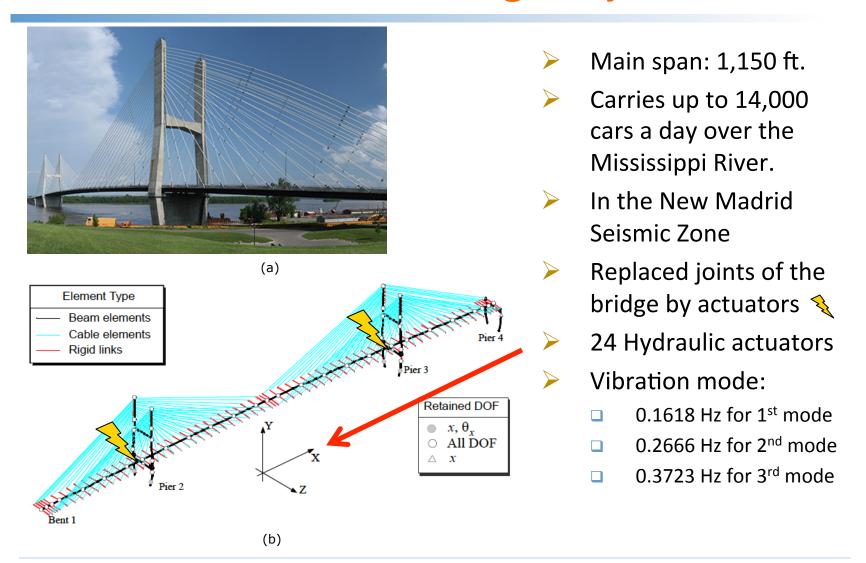
- Derive a convex and smooth, but less precise delay bounds.
- Rate selection becomes a convex optimization problem.

Evaluation

- Greedy heuristic is fast but incurs higher control cost.
- Subgradient method is neither efficient nor effective.
- Simulated annealing incurs least control cost, but takes a long time.
- Convex approximation balances control cost and execution time.

Case Study: Wireless Structural Control

- Structural control systems protect civil infrastructure.
- Wired control systems are costly and fragile.
- Wireless structural control (WSC) offers flexibility and low cost.

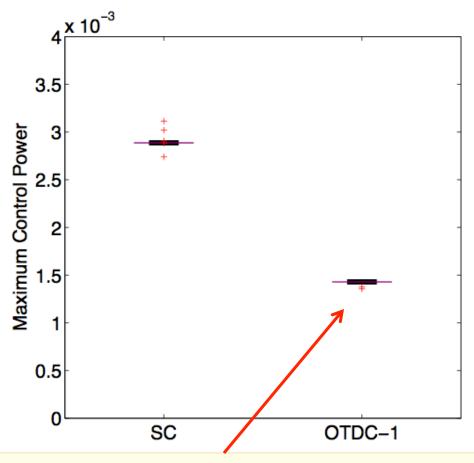

Heritage tower crumbles down in earthquake of Finale Emilia, Italy, 2012.

Hanshin Expressway Bridge after Kobe earthquake, Japan, 1995.

Contributions [ICCPS'13]

- Wireless Cyber-Physical Simulator (WCPS)
 - Capture dynamics of both physical plants and wireless networks
 - Enable holistic, high-fidelity simulation of wireless control systems
 - Integrate TOSSIM and Simulink/MATLAB
 - Open source: http://wcps.cse.wustl.edu
- Realistic case studies on wireless structural control
 - Wireless traces from real-world environments
 - Structural models of a building and a large bridge
 - Excited by real earthquake signal traces
- Cyber-physical co-design
 - End-to-end scheduling + control design
 - Improve control performance under wireless delay and loss

Bill Emerson Memorial Bridge: Physical Model



Jindo Bridge: Wireless Traces

- Largest wireless bride deployment [Jang 2010]
 - 113 Imote2 units; Peak acceleration sensitivity of 5mg 30mg
- RSSI/noise traces from 58-node deck-network for this study

Reduction in Max Control Power

Cyber-physical co-design \rightarrow 50% reduction in control power.

Conclusion

- Real-time wireless is a reality today
 - Industrial standards: WirelessHART, ISA100
 - Field deployments world wide
- Real-time scheduling theory for wireless
 - Leverage real-time processor scheduling
 - Incorporate unique wireless properties
- Cyber-physical co-design of wireless control systems
 - Near rate selection for wireless control systems
 - Scheduling-control co-design for wireless structural control
- WCPS: Wireless Cyber-Physical Simulator
 - Enable holistic simulations of wireless control systems
 - Realistic case studies of wireless structural control

Future Directions

- Scaling up wireless control networks
 - From 100 nodes \rightarrow 10,000 nodes
 - Dealing with dynamics locally
 - Hierarchical or decentralized architecture
- A theory and practice for wireless control
 - From case studies to unified theory & methodology
 - Bridge the gap between theory and systems
 - \square From theory \rightarrow robust implementation \rightarrow deployment

For More Information

- Real-Time Scheduling for Wireless
 - A. Saifullah, Y. Xu, C. Lu and Y. Chen, End-to-End Delay Analysis for Fixed Priority Scheduling in WirelessHART Networks, IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS'11), April 2011.
 - A. Saifullah, Y. Xu, C. Lu and Y. Chen, Priority Assignment for Real-time Flows in WirelessHART Networks, Euromicro Conference on Real-Time Systems (ECRTS'11), July 2011.
 - A. Saifullah, Y. Xu, C. Lu, and Y. Chen, Real-time Scheduling for WirelessHART Networks, IEEE Real-Time Systems Symposium (RTSS'10), December 2010.
 - http://cps.cse.wustl.edu/index.php/Real-Time_Wireless_Control_Networks
- Wireless-Control Co-Design
 - A. Saifullah, C. Wu, P. Tiwari, Y. Xu, Y. Fu, C. Lu and Y. Chen, Near Optimal Rate Selection for Wireless Control Systems, ACM Transactions on Embedded Computing Systems, Special Issue on Real-Time and Embedded Systems, accepted.
 - A. Saifullah, C. Wu, P. Tiwari, Y. Xu, Y. Fu, C. Lu and Y. Chen, Near Optimal Rate Selection for Wireless Control Systems, IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS'12), April 2012.
- Case Study on Wireless Structural Control
 - B. Li, Z. Sun, K. Mechitov, G. Hackmann, C. Lu, S. Dyke, G. Agha and B. Spencer, Realistic Case Studies of Wireless Structural Control, ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS'13), April 2013.
 - CPS Project on Wireless Structural Monitoring and Control: http://bridge.cse.wustl.edu
 - □ Wireless Cyber-Physical Simulator: http://wcps.cse.wustl.edu
- Cyber-Physical Systems Laboratory: http://cps.cse.wustl.edu
- Home Page: http://www.cse.wustl.edu/~lu