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Industrial Wireless Networks
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WirelessHART

Industrial wireless standard for monitoring and control
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Characteristics

» Reliable in hash industrial environments
Time Division Multiple Access
Multi-channel
Route diversity

No concurrent transmission in a same channel

» Centralized network manager

Collects topology information from the network
Generates routes and global transmission schedule
Reconfigures when devices/links break
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Real-Time Scheduling for Wireless

HE
Goals

»  Real-time transmission scheduling 2 meet end-to-end deadlines
»  Fast schedulability analysis = online admission control and adaptation

Approach
» Leverage real-time scheduling theory for processors
» Incorporate wireless characteristics

Results
»  Dynamic priority scheduling [RTSS’10]
»  Fixed priority scheduling

0 End-to-end delay analysis [RTAS11]
0 Priority assignment [ECRTS'11]
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Real-Time Flows

» Flow: sensor = controller = actuator over multi-hops

highest I(}T\west priority
» Aset of flows F={F,, F,, ..., F\} ordered by priorities

» Each flow F; is characterized by
2 A source (sensor), a destination (actuator)
2 Aroute through the controller
Q A period P,
2 Adeadline D, (< P)
0

Total number of transmissions C, along the route

=2 Washington University in St.Louis



Scheduling Problem

» Fixed priority scheduling: transmissions ordered by the
priorities of their flows.

end-’ETc\)-end delay of
> Flows are schedulable if R, <D, VFEF
v

deadline of F,
» Goal: efficient delay analysis

2 Gives an upper bound of the end-to-end delay for each flow
2 Used for online admission control and adaptation
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End-to-End Delay Analysis

» A lower priority flow is delayed due to
0 channel contention: when all channels are
assigned to higher priority flows in a slot

2 transmission conflict: two transmissions involve a
same node

» Analyze each type of delay separately

1 and 5 are conflicting
4 and 5 are conflicting

3 and 4 are conflict-free

» Combine both delays = end-to-end delay bound
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Insights

» Flows vs. Tasks
2 Similar: channel contention
2 Different: transmission conflict

» Channel contention = multiprocessor scheduling
2 A channel = a processor
0 Flow F, = atask with period P, deadline D, execution time C,
0 Leverage existing response time analysis for multiprocessors

» Need to account for delays due to transmission conflicts
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Delay due to Conflict

> When low priority flow F,
and high priority flow F,,
conflict, F, is delayed

> Q(l,h): #transmissions of F,
sharing nodes with F,

2 Inthe worst case, F, can
delay F, by Q(/,h) slots

a e.g.,QllLh)=5=> F, can \
delay F, by 5 slots

Gateway

, [delayed
\\by 2 slots

<A gl Fdelayed
Fdelayed " by 1 slot

b\ — Route for Fp,

O — Route for F,
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Acceptance Ratio

Fraction of test cases deemed schedulable based on analysis or simulations
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Wireless-Control Co-Design

Goal: optimize control performance over wireless

Challenge
»  Wireless resource is scarce and dynamic
» Cannot afford separating wireless and control designs

Cyber-Physical Systems Approach
» Holistic co-design of wireless and control

Examples
» Rate selection for wireless control [RTAS’12, TECS]
»  Wireless structural control [ICCPS’13]
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Rate Selection for Wireless Control

» Optimize the sampling rates of control loops sharing a
WirelessHART network.

» Rate selection must balance control and network delay
2 Low sampling rate = poor control performance
2 High sampling rate = long delay = poor control performance
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Control Performance Index

» Digital implementation of control loop 1
0 Periodic sampling at rate f;
0 Performance deviates from continuous counterpart

» Control cost of control loop i under rate f; [Seto RTSS'96]

0 Approximated as q, e Pili with sensitivity coefficients o, p

n
» Overall control cost of M loops Eai e Fili

i=1
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The Rate Selection Problem

» Formulated as a constrained non-linear optimization

» Determine sampling rates f ={f,, f,,.--.f,} to

n
Minimize control cost Eai e Pili

i=1

subject to R <P Delay bound

f;min < fi < fimax
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Polynomial Time Delay Bounds

>

Lagrange dual of objective

In terms of decision variables (rates), the delay bounds are

d
g
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il

IR

Non-linear
Non-convex
Non-differentiable

The optimization
problem is thus
non-convex,
non-differentiable,
not in closed form
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Scheduling-Control Co-Design

Relax delay bound to simplify optimization!
» Derive a convex and smooth, but less precise delay bounds.
u»  Rate selection becomes a convex optimization problem.
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Evaluation
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Greedy heuristic is fast but incurs higher control cost.
Subgradient method is neither efficient nor effective.
Simulated annealing incurs least control cost, but takes a long time.

Convex approximation balances control cost and execution time.
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Case Study: Wireless Structural Control

»  Structural control systems protect civil infrastructure.
»  Wired control systems are costly and fragile.
»  Wireless structural control (WSC) offers flexibility and low cost.

Heritage tower crumbles down in Hanshin Expressway Bridge after Kobe
earthquake of Finale Emilia, Italy, 2012. earthquake, Japan, 1995.
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Wireless Cyber-Physical Simulator (WCPS)

Capture dynamics of both physical plants and wireless networks
Enable holistic, high-fidelity simulation of wireless control systems
Integrate TOSSIM and Simulink/MATLAB

Open source: http://wcps.cse.wustl.edu

Realistic case studies on wireless structural control

Wireless traces from real-world environments
Structural models of a building and a large bridge
Excited by real earthquake signal traces

Cyber-physical co-design

End-to-end scheduling + control design
Improve control performance under wireless delay and loss
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Bill Emerson Memorial Bridge: Physical Model
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Element Type

—— Beam elements
Cable elements
—— Rigid links

(b)

Retained DOF
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& All DOF
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Main span: 1,150 ft.

Carries up to 14,000
cars a day over the
Mississippi River.

In the New Madrid
Seismic Zone

Replaced joints of the
bridge by actuators <

24 Hydraulic actuators

Vibration mode:

0 0.1618 Hz for 1t mode
0 0.2666 Hz for 2" mode
0 0.3723 Hz for 3 mode
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Jindo Bridge: Wireless Traces

ha Base
Station

el

» Largest wireless bride deployment [1ang 2010]
2 113 Imote2 units; Peak acceleration sensitivity of 5mg — 30mg

» RSSlI/noise traces from 58-node deck-network for this study
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Reduction in Max Control Power
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Cyber-physical co-design = 50% reduction in control power.
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Conclusion

>

Real-time wireless is a reality today
- Industrial standards: WirelessHART, ISA100

0 Field deployments world wide

Real-time scheduling theory for wireless
o Leverage real-time processor scheduling
2 Incorporate unique wireless properties

Cyber-physical co-design of wireless control systems

2 Near rate selection for wireless control systems
1 Scheduling-control co-design for wireless structural control

WCPS: Wireless Cyber-Physical Simulator
2 Enable holistic simulations of wireless control systems
o Realistic case studies of wireless structural control
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Future Directions

» Scaling up wireless control networks
0 From 100 nodes = 10,000 nodes
2 Dealing with dynamics locally
2 Hierarchical or decentralized architecture

» A theory and practice for wireless control
2 From case studies to unified theory & methodology

2 Bridge the gap between theory and systems
2 From theory = robust implementation 2 deployment

=2 Washington University in St.Louis

28



For More Information

> Real-Time Scheduling for Wireless

a A. Saifullah, Y. Xu, C. Luand Y. Chen, End-to-End Delay Analysis for Fixed Priority Scheduling in WirelessHART
Networks, IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS'11), April 2011.

a A. Saifullah, Y. Xu, C. Lu and Y. Chen, Priority Assignment for Real-time Flows in WirelessHART Networks,
Euromicro Conference on Real-Time Systems (ECRTS'11), July 2011.

Q A. Saifullah, Y. Xu, C. Lu, and Y. Chen, Real-time Scheduling for WirelessHART Networks, IEEE Real-Time Systems
Symposium (RTSS'10), December 2010.

a http://cps.cse.wustl.edu/index.php/Real-Time Wireless Control Networks

> Wireless-Control Co-Design

Q A. Saifullah, C. Wu, P. Tiwari, Y. Xu, Y. Fu, C. Lu and Y. Chen, Near Optimal Rate Selection for Wireless Control
Systems, ACM Transactions on Embedded Computing Systems, Special Issue on Real-Time and Embedded
Systems, accepted.

Q A. Saifullah, C. Wu, P. Tiwari, Y. Xu, Y. Fu, C. Lu and Y. Chen, Near Optimal Rate Selection for Wireless Control
Systems, IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS'12), April 2012.

N

Case Study on Wireless Structural Control

a B. Li, Z. Sun, K. Mechitov, G. Hackmann, C. Lu, S. Dyke, G. Agha and B. Spencer, Realistic Case Studies of
Wireless Structural Control, ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS'13), April

2013.
a CPS Project on Wireless Structural Monitoring and Control: http://bridge.cse.wustl.edu
Q Wireless Cyber-Physical Simulator: http://wcps.cse.wustl.edu
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