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◦ Hard real-time systems
◦ Dependent tasks statically scheduled, on a many-core processor

! Unpredictable delays due to shared resource interference

Use tightly estimated upper bounds on delays
Connect existing approaches for an optimally efficient execution
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Solved Problems: Code Generation
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◦ Task binaries
◦ Task dependency graph
◦ Execution models: (Pellizzoni et al.[6])

◦ Single phase execution
◦ acquisition, execution, replication phases
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Solved Problems: Task Mapping/Scheduling
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◦ Respect the dependency constraints
◦ Optimize the overall response time

Puffitsch et al. 2013 [7],
Giannopoulou et al. 2013 [4],
Walter et al. 2015 [8]
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Solved Problems: WCRT Analysis
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◦ Take the interference into account
◦ Update the release times

The overall response time may not be optimal
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Toward a Solution
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mapping/Scheduling analysis
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◦ Mapping/Scheduling:
◦ Taking into account new timing information

◦ Co-schedule communications and
computations (Melani et al. 2015 [5])

◦ Clustering non-interfering tasks
(Choi et al. 2016 [2])

◦ WCRT Analysis:
◦ Trade-off: run-time/ pessimism

Altmeyer et al. 2015 [1], Dasari et al. 2015[3]

Fixed-point search algorithms
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The Open Problem
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Iterate until an optimal solution is found
What about convergence?

Suboptimal:
◦ Compute several solutions,

choose the best one
◦ How many iterations?

Multi/Many-core processors are a game changer in the interaction
between WCRT analysis and task mapping/scheduling
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