
Efficient Execution of Dependent Tasks on
Many-Core Processors
Hamza Rihani, Claire Maiza, Matthieu Moy

Univ. Grenoble Alpes Verimag

RTSOPS 2016, July 5, 2016

Context

High Level Language

τ1 τ2 τ3

τ4

τ5 τ6

i1

i2

o

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

◦ Hard real-time systems
◦ Dependent tasks statically scheduled, on a many-core processor

! Unpredictable delays due to shared resource interference

Use tightly estimated upper bounds on delays
Connect existing approaches for an optimally efficient execution

2 ,

Context

High Level Language

τ1 τ2 τ3

τ4

τ5 τ6

i1

i2

o

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

◦ Hard real-time systems
◦ Dependent tasks statically scheduled, on a many-core processor

! Unpredictable delays due to shared resource interference
Use tightly estimated upper bounds on delays

Connect existing approaches for an optimally efficient execution

2 ,

Context

High Level Language

τ1 τ2 τ3

τ4

τ5 τ6

i1

i2

o

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

◦ Hard real-time systems
◦ Dependent tasks statically scheduled, on a many-core processor

! Unpredictable delays due to shared resource interference
Use tightly estimated upper bounds on delays
Connect existing approaches for an optimally efficient execution

2 ,

Outline

1 Solved Problems
Code Generation
Task Mapping
WCRT Analysis

2 Toward a Solution

3 The Open Problem

3 ,

Solved Problems

Static
Mapping/Scheduling

WCRT with
Interferences

Local WCRT
Analysis

Timing models
(static analysis)

Probabilistic
Models

High-level
Program

+

Executable Binary

Binary Generation

Code Generation

Dependencies

Tasks

Mapping

Execution
Order

Release
Dates

+
Tasks WCRT

WC Access

4 ,

Solved Problems

Static
Mapping/Scheduling

WCRT with
Interferences

High-level
Program

+

Executable Binary

Binary Generation

Code Generation

Dependencies

Tasks

Mapping

Execution
Order

Release
Dates

4 ,

Solved Problems: Code Generation

Static
Mapping/Scheduling

WCRT with
Interferences

High-level
Program

+

Executable Binary

Binary Generation

Code Generation

Dependencies

Tasks

Mapping

Execution
Order

Release
Dates

τ1 τ2 τ3

τ4

τ5 τ6

i1

i2

o

Outputs
◦ Task binaries
◦ Task dependency graph
◦ Execution models: (Pellizzoni et al.[6])

◦ Single phase execution
◦ acquisition, execution, replication phases

5 ,

Solved Problems: Task Mapping/Scheduling

Static
Mapping/Scheduling

WCRT with
Interferences

High-level
Program

+

Executable Binary

Binary Generation

Code Generation

Dependencies

Tasks

Mapping

Execution
Order

Release
Dates

PE2

PE1

PE0 wcrt0

τ0

wcrt1

τ1

wcrt2

τ2

wcrt3

τ3

wcrt4

τ4

wcrt5

τ5

(*)wcrtx: safe WCRT

◦ Respect the dependency constraints
◦ Optimize the overall response time

Puffitsch et al. 2013 [7],
Giannopoulou et al. 2013 [4],
Walter et al. 2015 [8]

6 ,

Solved Problems: WCRT Analysis

Static
Mapping/Scheduling

WCRT with
Interferences

High-level
Program

+

Executable Binary

Binary Generation

Code Generation

Dependencies

Tasks

Mapping

Execution
Order

Release
Dates

PE2

PE1

PE0 wcrt+0

τ0

wcrt+1

τ1

wcrt+2

τ2

wcrt+3

τ3

wcrt+4

τ4

wcrt+5

τ5

(*)wcrt+x : refined WCRT

◦ Take the interference into account
◦ Update the release times

The overall response time may not be optimal

7 ,

Solved Problems: WCRT Analysis

Static
Mapping/Scheduling

WCRT with
Interferences

High-level
Program

+

Executable Binary

Binary Generation

Code Generation

Dependencies

Tasks

Mapping

Execution
Order

Release
Dates

PE2

PE1

PE0 wcrt+0

τ0

wcrt+1

τ1

wcrt+2

τ2

wcrt+3

τ3

wcrt+4

τ4

wcrt+5

τ5

(*)wcrt+x : refined WCRT

◦ Take the interference into account
◦ Update the release times

The overall response time may not be optimal

7 ,

Toward a Solution

Static
Mapping/Scheduling

WCRT with
Interferences

High-level
Program

+

Executable Binary

Binary Generation

Code Generation

Dependencies

Tasks

Mapping

Execution
Order

Release
Dates

Provide new timing information to the
mapping/Scheduling analysis

8 ,

Toward a Solution

Static
Mapping/Scheduling

WCRT with
Interferences

High-level
Program

+

Executable Binary

Binary Generation

Code Generation

Dependencies

Tasks

Mapping

Execution
Order

Release
Dates

◦ Mapping/Scheduling:
◦ Taking into account new timing information

◦ Co-schedule communications and
computations (Melani et al. 2015 [5])

◦ Clustering non-interfering tasks
(Choi et al. 2016 [2])

◦ WCRT Analysis:
◦ Trade-off: run-time/ pessimism

Altmeyer et al. 2015 [1], Dasari et al. 2015[3]

Fixed-point search algorithms

9 ,

Toward a Solution

Static
Mapping/Scheduling

WCRT with
Interferences

High-level
Program

+

Executable Binary

Binary Generation

Code Generation

Dependencies

Tasks

Mapping

Execution
Order

Release
Dates

◦ Mapping/Scheduling:
◦ Taking into account new timing information

◦ Co-schedule communications and
computations (Melani et al. 2015 [5])

◦ Clustering non-interfering tasks
(Choi et al. 2016 [2])

◦ WCRT Analysis:
◦ Trade-off: run-time/ pessimism

Altmeyer et al. 2015 [1], Dasari et al. 2015[3]

Fixed-point search algorithms

9 ,

Toward a Solution

Static
Mapping/Scheduling

WCRT with
Interferences

High-level
Program

+

Executable Binary

Binary Generation

Code Generation

Dependencies

Tasks

Mapping

Execution
Order

Release
Dates

◦ Mapping/Scheduling:
◦ Taking into account new timing information

◦ Co-schedule communications and
computations (Melani et al. 2015 [5])

◦ Clustering non-interfering tasks
(Choi et al. 2016 [2])

◦ WCRT Analysis:
◦ Trade-off: run-time/ pessimism

Altmeyer et al. 2015 [1], Dasari et al. 2015[3]

Fixed-point search algorithms

9 ,

The Open Problem

Static
Mapping/Scheduling

WCRT with
Interferences

High-level
Program

+

Executable Binary

Binary Generation

Code Generation

Dependencies

Tasks

Mapping

Execution
Order

Release
Dates

Iterate until an optimal solution is found
What about convergence?

Suboptimal:
◦ Compute several solutions,

choose the best one
◦ How many iterations?

Multi/Many-core processors are a game changer in the interaction
between WCRT analysis and task mapping/scheduling

10,

The Open Problem

Static
Mapping/Scheduling

WCRT with
Interferences

High-level
Program

+

Executable Binary

Binary Generation

Code Generation

Dependencies

Tasks

Mapping

Execution
Order

Release
Dates

Iterate until an optimal solution is found
What about convergence?

Suboptimal:
◦ Compute several solutions,

choose the best one
◦ How many iterations?

Multi/Many-core processors are a game changer in the interaction
between WCRT analysis and task mapping/scheduling

10,

The Open Problem

Static
Mapping/Scheduling

WCRT with
Interferences

High-level
Program

+

Executable Binary

Binary Generation

Code Generation

Dependencies

Tasks

Mapping

Execution
Order

Release
Dates

Iterate until an optimal solution is found
What about convergence?

Suboptimal:
◦ Compute several solutions,

choose the best one
◦ How many iterations?

Multi/Many-core processors are a game changer in the interaction
between WCRT analysis and task mapping/scheduling

10,

Efficient Execution of Dependent Tasks on
Many-Core Processors

Hamza Rihani, Claire Maiza, Matthieu Moy

Univ. Grenoble Alpes
Verimag

11,

References I

S. Altmeyer, R. I. Davis, L. Indrusiak, C. Maiza, V. Nelis, and J. Reineke.
A generic and compositional framework for multicore response time analysis.
In Proceedings of the 23rd International Conference on Real Time and
Networks Systems, RTNS ’15, pages 129–138. ACM, 2015.

J. Choi, D. Kang, and S. Ha.
Conservative modeling of shared resource contention for dependent tasks in
partitioned multi-core systems.
In 2016 Design, Automation Test in Europe Conference Exhibition (DATE),
pages 181–186.

D. Dasari, V. Nelis, and B. Akesson.
A framework for memory contention analysis in multi-core platforms.
Real-Time Systems, pages 1–51, 2015.

12,

References II

G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele.
Scheduling of mixed-criticality applications on resource-sharing multicore
systems.
In Embedded Software (EMSOFT), 2013 Proceedings of the International
Conference on, pages 1–15, Sept 2013.

A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-Spaccamela, and
G. Buttazzo.
Memory-processor co-scheduling in fixed priority systems.
In 23rd ACM International Conference on Real-Time Networks and Systems
(RTNS), Lille, France, November, 2015.

R. Pellizzoni, A. Schranzhofer, J.-J. Chen, M. Caccamo, and L. Thiele.
Worst case delay analysis for memory interference in multicore systems.
In Proceedings of the Conference on Design, Automation and Test in Europe,
DATE ’10, pages 741–746.

13,

References III

W. Puffitsch, E. Noulard, and C. Pagetti.
Mapping a multi-rate synchronous language to a many-core processor.
In Real-Time and Embedded Technology and Applications Symposium (RTAS),
2013 IEEE 19th, pages 293–302.

J. Walter and W. Nebel.
Energy–aware mapping and scheduling of large–scale macro data–flow
applications.
In 1st International Workshop on Investigating Dataflow in Embedded
Computing Architecture, 2015.

14,

	Solved Problems
	Code Generation
	Task Mapping
	WCRT Analysis

	Toward a Solution
	The Open Problem

