
Johnson’s procedure:
mechanization and parallelization

M. Filali N. Zaidi

IRIT-CNRS ; Lycée Blaise Pascal

RTSOPS
2016 July, 5th

ECRTS
Toulouse

1 / 16

Real-time

Ubiquitous and critical domain :

Application level :
Transport : avionics, space, trains, cars, . . .
Transactions : travel, business, . . .

Processor level :
Multicore architectures.
Instruction scheduling.

2 / 16

Real-Time Challenges

How to reuse the huge real-time scheduling knowledge ?
C1. Critical safety constraint
C2. How to adapt to multicores ?

3 / 16

Context

Method space DO-178C Technology space
Model-based development and verification DO-331
OO Technology and related techniques DO-332
Formal methods DO-333

4 / 16

Job shop scheduling

Generic problem(wikipedia) : Jobs consisting of multiple operations.
The basic form of the problem of scheduling jobs with multiple (M)
operations, over M machines, such that all of the first operations
must be done on the first machine, all of the second operations on
the second, etc., and a single job cannot be performed in parallel, is
known as the open shop scheduling problem.
Application :

computer science.
instruction scheduling.
railway domain.

5 / 16

Jonson’s procedure (1)
Informal presentation

Folklore of real-time algorithms (1954), presented (informally)
in most of real-time textbooks.
text :
starting from a list of jobs characterized by the durations
required sequentially and exclusively on two machines, the
optimal order is found as follows :
iteratively look for the minimum over the first durations, if this
minimum is less than the minimum over the last durations, put
this job first, otherwise put this job last.

6 / 16

Johnson’s procedure
Graphical presentation

[]

[]

[]

...

[]

7 / 16

Johnson’s procedure (2)
Formal specification

Makespan definition : ms

msi ∈ (N× N)list× (N× N)→ N× N
(l , i) (∗ (job list, initial availability ∗) 7→
reduce(λ(a1, a2) : λ(d1, d2) : (a1 + d1,max(a1 + d1, a2) + d2)), l , i)

and ms(l) = msi (l , (0, 0)).
Characterizing properties :
(J1) J is a total function : J ∈ (N× N)list→ (N× N)list.
(J2) J is conservative : J does not create or loose jobs. J generates

a permutation : ∀l . J(l) ' l .
(J3) J is optimal :

∀l l ′. l ∼ l ′ ⇒ ms(J(l))1 ≤ ms(l ′)1 ∧ms(J(l))2 ≤ ms(l ′)2.

8 / 16

Jonson’s procedure (3)

Use of the auxiliary variables : b, e.

[]︸︷︷︸
b

[]︸ ︷︷ ︸
l

e︷︸︸︷
[]

[]︸︷︷︸
b

[]︸ ︷︷ ︸
l

e︷︸︸︷
[]

...

[]︸ ︷︷ ︸
b

[]︸︷︷︸
l

e︷ ︸︸ ︷
[]

termination when l = [], the result is b ++e.
9 / 16

Jonson’s procedure (4)
Correctness

Reasoning
basic transitions : (b, l , e) (b′, l ′, e ′)

l 6= [] ∧min1(l) ≤ min2(l)
∧ b′ = b ++[J1l] ∧ l ′ = remove1(J1(l), l) ∧ e ′ = e

l 6= [] ∧ ¬(min1(l) ≤ min2(l))
∧ b′ = b ∧ l ′ = remove1(J2(l), l) ∧ e ′ = (J2l)]e

invariants
inv_permutation(li , b, l , e) = (li ' (b ++l ++e))
inv_partition(b, l , e) = b = [(x , y)← b. x ≤ y]

∧ ∀(x , y) ∈ b. ∀(x ′, y ′) ∈ l . x ≤ x ′

∧ ∀(x , y) ∈ l . ∀(x ′, y ′) ∈ e. y ≥ y ′

∧ e = [(x , y)← e. ¬x ≤ y]
∧ inc1(b)
∧ dec2(e)

10 / 16

Johnson’s procedure characterization

inv_J(L) = L =
[(x , y) for (x , y) in L if x ≥ y]

++
[(x , y) for (x , y) in L if ¬x ≥ y]

∧ inc1([(x , y) for (x , y) in L if x ≥ y])
∧ dec2([(x , y) for (x , y) in L if ¬x ≥ y])

Thanks to the invariant, we show : ∀l . inv_J(J(l))

11 / 16

Jonson’s procedure (5)
Correctness

Optimality :

∀l l ′. l ∼ l ′ ⇒ ms(J(l))1 ≤ ms(l ′)1 ∧ms(J(l))2 ≤ ms(l ′)2

two steps (lemmas) :

ms(J(l), i) ≤ ms(l , i)
Usual invariance proof : each transition decreases the
makespan.
l ' l ′ ∧ inv_J(l) ∧ inv_J(l ′)⇒ ms(l , i) = ms ′(l , i)
Reasoning simultaneously over 2 lists (double induction).

12 / 16

Mechanization

Use of the Isabelle-HOL assistant theorem prover.
formalization of the basic definitions (e.g. ms) and procedures
(J).
Proof of the invariants, optimality property.

basic theorems concern permutations and swapping properties.
proofs are difficult because the scheduled list has bad algebraic
properties.

13 / 16

Parallelization

inv_J(L) =
L =

[(x , y) for (x , y) in L if x ≥ y]
++

[(x , y) for (x , y) in L if ¬x ≥ y]
∧ inc1([(x , y) for (x , y) in L if x ≥ y])
∧ dec2([(x , y) for (x , y) in L if ¬x ≥ y])

Split

Sort1
↗1

Sort2
↙2

Merge

x ≤ y

¬x ≤ y

14 / 16

Conclusion

Presented work :
Johnson’s procedure, mechanization
 use of formal methods for addressing the critical safety
constraint.
Parallelization
 adptation of existing real-time kowledge to multicore
architectures
(hint : invariant, properties of the sequential algorithm).

Future work : real-time algorithms and their parallelization.
Disjunctive constraint.
Precise real-time analysis (link with timed automata).

15 / 16

Ja b l e = if l = [] then (b, [], e)
else ifMin1l ≤ Min2l then
Ja (b@[J1l]) (remove1(J1l)l) e

else Ja b (remove1(J2l)l) ((J2l)]e

J l = let (b′, l ′, e ′) = Ja [] l [] in
b′@e ′

16 / 16

