M. Filali N. Zaidi

IRIT-CNRS ; Lycée Blaise Pascal

RTSOPS
2016 July, 5th
ECRTS
Toulouse

ACADIE

1/16

Real-time

Ubiquitous and critical domain :

o Application level :

e Transport : avionics, space, trains, cars, ...
e Transactions : travel, business, ...

@ Processor level :

e Multicore architectures.
e Instruction scheduling.

2/16

Real-Time Challenges

How to reuse the huge real-time scheduling knowledge 7
o C1. Critical safety constraint

@ C2. How to adapt to multicores?

3/16

@ Method space DO-178C Technology space

o Model-based development and verification DO-331
e OO Technology and related techniques DO-332
e Formal methods DO-333

4/16

Job shop scheduling

Generic problem(wikipedia) : Jobs consisting of multiple operations.
The basic form of the problem of scheduling jobs with multiple (M)
operations, over M machines, such that all of the first operations
must be done on the first machine, all of the second operations on
the second, etc., and a single job cannot be performed in parallel, is
known as the open shop scheduling problem.
Application :

@ computer science.

@ instruction scheduling.

@ railway domain.

5/16

Jonson's procedure (1)

Informal presentation

e Folklore of real-time algorithms (1954), presented (informally)
in most of real-time textbooks.

@ text :
starting from a list of jobs characterized by the durations
required sequentially and exclusively on two machines, the
optimal order is found as follows :
iteratively look for the minimum over the first durations, if this
minimum is less than the minimum over the last durations, put
this job first, otherwise put this job last.

6/16

[o

[/ ..:;.]

[]
EEECE

7/16

Johnson's procedure (2)

Formal specification

Makespan definition : ms

ms; € (N x N)list x (N xN) - Nx N
(1,7) (* (job list, initial availability) —
reduce(A(a1, a2) : A(di, d2) : (a1 + di, max(a1 + d1, a2) + d2)), /, /)

and ms(/) = ms;(/, (0, 0)).
Characterizing properties :
(J1) Jis a total function : J € (N x N)list — (N x N)list.

(J2) Jis conservative : J does not create or loose jobs. J generates

a permutation : V/. J(/) ~ .

(J3) Jis optimal :
VI I ~1"=ms(J(/)1 <ms(/')1 Ams(J(/))2 < ms(/)s.

8/16

Jonson's procedure (3)

Use of the auxiliary variables : b, e.

P,
[I 10
~—

b

P
[11 I

[I]
~—

S— |
b

termination when / = [], the result is b + +e.
9/16

Jonson's procedure (4)
Correctness

Reasoning
e basic transitions : (b, /,e) ~ (b, ', €)
1'% [] Aming(/) < mina(/)
A b =b++[Al Al =removel(Ji(I),) e =e
I [] A =(ming (1) < miny(/))
A b =bAI" =removel(h(l),]) Ne = (hl)te
@ invariants

e inv_permutation(/;, b, /,e) = (i ~ (b+ +/ + +e))

e inv_ partition(b, /,e) = b=[(x,y) < b. x <y]
Vix,y)eb. ¥V(X',y')el. x<x
V(x,y) e LV(X,yYee y>y
e=[(x,y) e ~x <yl
incl(b)
deca(e)

> > > > >

10/16

Johnson's procedure characterization

[(x,y) for (x,y) in Lif x > y]
inv_J(L) = L= ++
[(x,y) for (x,y) in Lif —x > y]
A inci([(x,y) for (x,y) in Lif x > y])
A deco([(x,y) for (x,y) in Lif =x > y])

Thanks to the invariant, we show : V/. inv_ J(J(/))

11/16

Jonson's procedure (5)
Correctness

Optimality :

VI D~ 1 = ms(J(/)1 < ms(I")1 Ams(J(/))2 < ms(/')2

two steps (lemmas) :

e ms(J(1),i) < ms(l,i)
Usual invariance proof : each transition decreases the
makespan.

o [~/I"Ninv_J(I)Ninv_J(I") = ms(l,i) = ms'(],i)
Reasoning simultaneously over 2 lists (double induction).

12/16

Mechanization

@ Use of the Isabelle-HOL assistant theorem prover.

e formalization of the basic definitions (e.g. ms) and procedures
(J)-

@ Proof of the invariants, optimality property.

e basic theorems concern permutations and swapping properties.
e proofs are difficult because the scheduled list has bad algebraic
properties.

13/16

Parallelization

[(x,y) for (x,y) in Lif x> y]
L= ++
inv_J(L) = [(x,y) for (x,y) in Lif =x > y]
A inci([(x,y) for (x,y) in Lif x > y])
A deca([(x,y) for (x,y) in Lif =x > y])

14/16

Conclusion

@ Presented work :

e Johnson's procedure, mechanization
~ use of formal methods for addressing the critical safety
constraint.

o Parallelization
~~ adptation of existing real-time kowledge to multicore
architectures
(hint : invariant, properties of the sequential algorithm).

@ Future work : real-time algorithms and their parallelization.

e Disjunctive constraint.
e Precise real-time analysis (link with timed automata).

15/16

Jable= if =] then (b,]],e)
else if Mini/ < Miny! then
Ja (bQ[U11]) (removel(Jil)]) e
else J, b (removel(Jh/)l) ((J2l)te

Ji= let (.1, &)= J,[] I [in
b' Qe

16 /16

