Proceedings of the

8! Junior Researcher Workshop
on Real-Time Computing

JRWRTC 2014

http://www.cister.isep.ipp.pt/jrwrtc2014/

Versailles, France
October 8-10, 2014

CISTER

.mmgg / Research Center in
FRESEAUX F\" L Real-Time & Embedded

Computing Systems

e

(‘EAP'TRDHIE SChnEider
ik & Electric

Message from the Workshop Chairs

We are delighted to welcome you to the 8" Junior Researcher Workshop on Real-Time Com-
puting taking place in Versailles, October 2014. As part of the 22"? International Conference on
Real-Time and Network Systems (RTNS), the workshop provides junior researchers the opportu-
nity to present their work, share and discuss their ideas and meet with the real-time community in
a relaxed forum.

We would like to take this opportunity to express our gratitude to the members of the Program
Committee listed below for thoroughly reviewing all the submitted papers. We would also like
to thank all the authors who submitted their work to the workshop and hence contributed to its
success. This year, JRWRTC accepted 13 of 15 peer-reviewed papers, which cover various topics
of the real-time field such as scheduling, WCET analysis, time predictability, mixed criticality and
sensor networks.

Yet, JRWRTC would not have been possible without the support of many people. We especially
thank the General Chairs Mathieu Jan (CEA LIST, Gif-sur-Yvette, France) and Belgacem Ben
Hedia (CEA LIST, Gif-sur-Yvette, France) and the local organizing committee, as well as the
Program Chairs Jo€l Goossens (Université Libre de Bruxelles (ULB), Belgium) and Claire Maiza
(Grenoble INP / Verimag, France) of RTNS 2014, for their help and support and for allowing this
workshop to be, once more, part of the main event of the conference.

On behalf of the Program Committee, we wish you a pleasant workshop. We hope you will
enjoy the presentations and invite you to discuss the presented ideas with the authors during the

poster session.

Dorin Maxim, Polytechnic Institute of Porto
Geoffrey Nelissen, Polytechnic Institute of Porto
JRWRTC 2014 Workshop Chairs

v

Program Committee

Bader Alahmad
Andrea Baldovin

Hugo Cruz-Sanchez
Pontus Ekberg

Glenn Elliott

Vikram Gupta

Junsung Kim

Leonidas Kosmidis
Vincent Legout

Mitra Nasri

Moritz Neukirchner
Victor Pollex

Manar Qamhieh
Abhilash Thekkilakattil
Martijn Van Den Heuvel

The University of British Columbia, Canada
Universita degli Studi di Padova, Italy
MyFOX, France

Uppsala University, Sweden

University of North Carolina, USA
Polytechnic Institute of Porto, Portugal
Carnegie Mellon University, USA
Barcelona Supercomputing Center, Spain
Virginia Tech, USA

TU Kaiserslautern, Germany

TU Braunschweig, Germany

Ulm University, Germany

Université Paris-Est, France

Milardalen University, Sweden

TU Eindhoven, The Netherlands

Table of Contents

Message from the Workshop Chairs. i en iii

A Framework for the Optimization of the WCET of Programs on Multi-Core Processors 1

Maximilian John and Michael Jacobs

Statically Resolving Computed Calls via DWARF Debug Information...................... 5
Florian Haupenthal

Schedulability-Oriented WCET-Optimization of Hard Real-Time Multitasking Systems.. 9
Arno Luppold and Heiko Falk

Accounting for Cache Related Pre-emption Delays in Hierarchical Scheduling with Local
EDF Scheduler. 13

Will Lunniss, Sebastian Altmeyer and Robert Davis

Alignment of Memory Transfers of a Time-Predictable Stack Cache........................ 17

Sahar Abbaspour and Florian Brandner

The WCET Analysis using Counters - A Preliminary Assessment.......................... 21

Remy Boutonnet and Mihail Asavoae

Adaptation of RUN to Mixed-Criticality Systems.uuiiiiiieeeiinnnnnnnnnnnn. 25

Romain Gratia, Thomas Robert and Laurent Pautet

Study of Temporal Constraints for Data Management in Wireless Sensor Networks 29

Abderrahmen Belfkih, Bruno Sadeg, Claude Duvallet and Laurent Amanton

An Approach for Verifying Concurrent C Programs............, 33
Amira Methni, Matthieu Lemerre, Belgacem Ben Hedia, Serge Haddad and Kamel Barkaoui

Resource Sharing Under a Server-based Semi-partitioned Scheduling Approach............. 37

Alexandre Esper and Eduardo Tovar

Externalisation of Time-Triggered communication system in BIP high level models. 41

Hela Guesmi, Belgacem Ben Hedia, Simon Bliudze and Saddek Bensalem

Towards Exploiting Limited Preemptive Scheduling for Partitioned Multicore Systems. 45
Abhilash Thekkilakattil, Radu Dobrin and Sasikumar Punnekkat

Multi-Criteria Optimization of Hard Real-Time Systems, 49
Nicolas Roeser, Arno Luppold and Heiko Falk

A Framework for the Optimization of the WCET of
Programs on Multi-Core Processors

Maximilian John
Saarland University
Saarbrlcken, Germany
s9mnjohn@stud.uni-sb.de

ABSTRACT

For a timing-critical system, it is mandatory to guaran-
tee upper bounds on the execution times of its programs.
Such bounds can be derived using worst-case execution time
(WCET) analysis. WCET analysis for multi-core processors
is challenging as the behavior of one processor core in gen-
eral depends on the behavior of the other cores. A common
option to reduce this dependency is the use of time division
multiple access (TDMA) bus arbitration.

We consider a multi-core processor with a shared TDMA
bus. A system schedule for this processor assigns hard real-
time tasks to processor cores and determines their execution
order. A bus schedule determines which processor core is
allowed to access the bus at which points in time. The
WCET of a program executed on the processor depends
on the choice of the system schedule and the bus schedule.
We propose a framework that aims at reducing the overall
WCET of the system by simultaneously constructing both
schedules. Furthermore, we introduce a system model that
allows to describe the considered programs in a simple way.
We subsequently discuss how to overcome some restrictions
of our system model. Finally, we sketch possible evaluations
of our framework.

1. INTRODUCTION

For timing-critical applications, it is mandatory that their
response times do not exceed the deadlines defined by the
physical environment. A timing-critical application may be
implemented by a composition of several programs. If there
is a safe estimation of the WCET of each such program,
we can give an upper bound on the total response time
of the application. In many cases, it is important that
these estimates are relatively tight in order to verify the
timeliness of the application. WCET analysis is commonly
used to derive an upper bound on the execution times of a
program and thereby estimates the WCET of the program.
The WCET analysis of programs executed on single-core
processors is already studied well [1].

Multi-core processors typically share resources—like caches
or buses—between several processor cores. Some of the ad-
vantages of multi-core processors are reduced weight, reduced
production costs and a good ratio between performance and
energy consumption. Therefore, it is a current trend to also
use them for the design of timing-critical embedded systems.
However, the resource sharing leads to the cores behaving
in a different manner than with dedicated resources of the
same capacities. We refer to these effects as shared resource
interference [2]. As a consequence of this interference, the

Michael Jacobs
Saarland University
Saarbricken, Germany
jacobs@cs.uni-sb.de

behavior of one processor core may depend on the behavior of
all other processor cores. In this case, a precise WCET anal-
ysis is challenging. It is no longer sufficient to focus on one
core’s behavior in order to derive a tight upper bound on the
execution times of a program executed on it. To bound the
complexity of such an analysis, existing approaches mainly
concentrate on bounding the direct timing penalties due to
shared resource interference, e.g. the time that a processor
core is blocked at the shared bus before its access request is
granted [3, 4].

In this paper, we focus on the interference caused by shared
buses. It is common to assume that the shared bus must not
be accessed by more than one processor core at the same
time. Therefore, there is typically an instance defining which
core is allowed to access the shared bus at a particular point
in time—the bus arbiter. We say that a processor core is
blocked as long as one of its access requests is not granted
by the arbiter. Obviously, the blocking time contributes to
the overall execution time of a processor while executing a
particular program. Thus, it is important to also consider
the bus blocking in WCET analysis. In general, the precise
consideration of the bus blocking experienced by one core
requires the examination of the concurrent cores. This makes
WCET analysis complex. However, in combination with
TDMA bus arbitration, the bus blocking that one processor
core suffers from does not depend on concurrent cores. This
allows the WCET analysis to precisely model bus blocking
without modeling concurrent processor cores. In this paper,
we assume a system with a shared bus arbitrated according
to a TDMA policy.

TDMA bus arbitration bases its decisions on a static bus
schedule that assigns every time slot to the processor core
which is allowed to access the bus at that instant. A pro-
gram’s execution time heavily depends on the static choice
of this bus schedule. Thus, the eased analyzability comes at
the cost of having to choose a bus schedule. This choice of
the bus schedule should ideally lead to low WCET bounds
for time-critical programs.

We present a heuristical framework that optimizes the
system schedule and the bus schedule for a given task set
and a given number of processor cores. The optimization
goal is to minimize the WCET. The framework is modular
in the sense of defining an interface for heuristics that select
the task to be executed next on a particular processor core.

Throughout our paper, we make the following contribu-
tions:

1. A simple system model for hard real-time tasks with
access to a shared bus

2. A modular framework for the optimization of the WCET
of hard real-time systems

3. Approaches to apply the framework to real-world sys-
tems

2. SYSTEM MODEL

Our model is denoted by the following characteristic pa-
rameters. It consists of several equal processor cores, a shared
bus and a set of hard real-time tasks. Each task may request
access to the shared bus at several points in time during its
execution. Assume for the moment that every access request
to the bus is granted immediately. Figure 1 depicts an exem-
plary task. It has two bus accesses (marked purple) at time
units 1 and 3, respectively. The second access is twice as long
as the first one. The execution time of this task—assuming
that both access requests are granted immediately—is 6 time
units. Note that it is a fundamental assumption of our system
model that every task is characterized by a single execution
behavior and thus also by a single execution time (we will
sketch in Section 4.2.1 how to support tasks with several
execution behaviors).

Figure 1: An example task

In our model all tasks are released simultaneously at time
unit 0 and have to be executed exactly once. We assume that
a task can be started independently of the progress of other
tasks. In addition, there is a static assignment from tasks
to the processor cores. The tasks assigned to a particular
processor core are scheduled non-preemptively following a
static task order. The use of non-preemptive scheduling
offers several advantages for hard real-time systems [5]. We
refer to the combination of the task assignment and the task
orders as system schedule. Figure 2 shows an example of a
system schedule.

SRR

P [n]]

Figure 2: A system schedule

The example system schedule assigns five tasks to two
processor cores. Tasks 7o and 73 are executed on the first
processor core whereas the remaining tasks are executed on
the second one. Furthermore, the presented system schedule
describes the task order per core, e.g. task 7 is executed after
task 73. According to this system schedule, both processor
cores request access to the bus at time unit 4. However, the
shared bus can only serve one processor core per time unit.
In the following, we introduce a bus arbitration to guarantee
this.

Our system model uses TDMA bus arbitration. That
means, the arbiter has static knowledge about which proces-
sor core is allowed to access the bus at which point in time.
This static knowledge is present in the form of a bus schedule
which maps time units to processor cores. Note that we do
not rely on periodic bus schedules. An access request of a
core that is not allowed to access the bus is blocked. Figure
3 shows the system schedule of Figure 2 supplemented with
a bus schedule.

G [

P [|n] Al

bus : ‘Pl PP PP PP, PP

Figure 3: The effect of a bus schedule

Note that processor core P; is blocked at time unit 4 because
P, is allowed to access the bus. Thus, the considered pair of
system schedule and bus schedule leads to a response time
of 9 time units for task 74. As a consequence, the overall
execution time (maximum over the response times of all
tasks) also amounts to 9 time units.

Intuitively, we assume that the number of time units that
a task is blocked just adds up to its execution time. This
assumption is commonly known as timing compositionality.
For a detailed discussion of timing compositionality we refer
to an article by Hahn et al. [6].

For the next example, consider the same system schedule
and bus schedule as in Figure 3. But this time, we replace
T4 by T4.

!
Ty

Figure 4: New task 74

This leads to the access of task 74 being interrupted. Accord-
ing to our system model, interrupted bus accesses have to
be restarted from scratch. Therefore, the system schedule
and the bus schedule lead to an overall execution time of 10
time units for the task set (as shown in Figure 5). Thus, the
number of time units used for interrupted accesses also adds
up to the execution time in a compositional way.

e [mE W7]

Py Ts |‘f'1| Ta

bus : ‘Pl P PL P, PP P P P P

Figure 5: An interrupted and restarted access

Problem statement: Obviously, the system schedule as
well as the bus schedule influence the overall execution time
of the system. We assume that the task set and the number
of processor cores is already given. Based on this input, we
try to find a pair of system schedule and bus schedule leading
to a short overall execution time for the task set.

As our system model assumes a single execution time
per task (ignoring possible bus blocking effects), the overall
execution time of the task set and the overall WCET of
the task set coincide for our system model. For the sake
of generality and comparability, we will only use the term
overall WCET in the rest of this paper.

Finding an optimal static multiprocessor schedule is known
to be a hard optimization problem already in the absence
of accesses to a shared bus [7]. Therefore, we focus on
developing a heuristic approach that finds a pair of system
schedule and bus schedule leading to an overall WCET close
to the possible minimum.

3. APPROACH

In this section, we present a framework that allows us to
heuristically optimize the overall WCET of a task set on a

Data: tasks: set of tasks,
n: number of processor cores,
th: task selection heuristic,
bh: bus schedule heuristic
(sys, bus) < empty schedules for n processor cores;
while tasks # () do
task < th(tasks, sys, bus);
p_idle < find first idle core in (sys, bus);
sys <— add task in sys to p_idle;
bus < bh(sys, bus, partial”);
tasks < tasks\ {task};
end
bus < bh(sys, bus,”complete”);
return (sys, bus);

© 0 N o AW N

=
o

Algorithm 1: Optimization procedure

multi-core processor system by choosing a system schedule
and a bus schedule. It is centered around Algorithm 1, which
is similar to the approach by Rosén et al. [8]. In contrast to
the work of Rosén, however, our algorithm is parametric in
the task selection heuristic. It integrates the construction of
the system schedule and the construction of the bus schedule
by alternately adding a task to the system schedule and
building a part of the bus schedule.

The algorithm takes as input parameters the set of tasks,
the number of processor cores, the task selection heuristic
th and the bus schedule heuristic bh. The task selection
heuristic th selects one of the remaining tasks to be added to
the already existing system schedule. It may base its decision
on the already constructed parts of the system schedule and
the bus schedule. The bus schedule heuristic bh continues
the construction of the given bus schedule.

Algorithm 1 starts by assuming that none of the processor
cores is assigned any of the tasks. We call this an empty
system schedule. Analogously, an empty bus schedule is yet
undefined for all time slots. In line 3 we select one of the
remaining tasks to be added to the system schedule. As
a next step, we consider the first point in time for which
the bus schedule is yet undefined. Now, let p_idle be one
of the processor cores which has finished the execution of
its assigned tasks up to this point. Line 5 extends the
existing system schedule by assigning the selected task to
p-idle. The task order of the system schedule is extended
such that the added task is executed after the tasks previously
assigned to p_idle. After this extension, there may be points
in time for which the bus schedule is not yet defined although
no processor core is idle. Therefore, line 6 continues the
construction of the bus schedule until one of the processor
cores is idle again ("partial”). Afterwards, we remove the
selected task from the set of remaining tasks (line 7) and
repeat the previous lines until no task remains (line 2). As
a final step, line 9 continues the construction of the bus
schedule up to the point in time at which all processor cores
are idle ("complete”).

4. FUTURE WORK

4.1 Access-Aware Task Selection Heuristics
The quality of the results obtained by our framework is

mainly determined by the quality of the heuristics used for

the construction of the system schedule and the bus schedule.

P n |

| n | n]

(a) System schedule created by placing
the longest tasks first

A n |

P [m | gl

bus : ‘P1 Py Py P, P, P, P, P»
(b) Optimal schedule

Figure 6: Influence of the system schedule on the possible
execution time

(a) Simple overlay

[= |
[] = @]

7' | o1 02

(b) Access-aligned overlay

Figure 7: Computing a single execution behavior

Thus, it will be our main goal to develop and compare
different heuristics.

A recent approach by Rosén et al. [8] presents a rather
simple task selection heuristic which can be used in our
framework. In combination with our system model, this
heuristic boils down to selecting the longest remaining task
to be scheduled next. An exemplary system schedule created
according to this heuristic is depicted in Figure 6(a). Note
that any bus schedule added to this system schedule leads
to a blocking of at least 3 time units for at least one of the
ProCessor Cores.

In contrast, Figure 6(b) shows that it is in fact possible
to come up with a system schedule that fully utilizes all
processor cores without necessarily delaying one of them.
Intuitively, this is possible because the system schedule ar-
ranges the tasks in a way that no bus accesses overlap. This
motivates us to develop task selection heuristics which try
to reduce the access overlaps. In order to do so, it is manda-
tory to take into account the access behavior of the different
candidate tasks.

4.2 Generalizing the Approach

4.2.1 Tasks with Multiple Execution behaviors

bus : ‘P1 PrPLPL PP P P
(a) Legal bus schedule

bus : ‘P1 PrPr PP P, P2 P>
(b) Tllegal bus schedule

Figure 8: Bus schedule with bus-processor ratio 4

Our system model assumes tasks with a single execution
behavior (ignoring possible bus blocking effects). This as-
sumption guarantees the efficiency of our approach as there
is no need to enumerate many different execution behaviors
per task.

However, real-world tasks executed on modern hardware
platforms typically exhibit various execution behaviors. We
aim at supporting such tasks without giving up the efficiency
and simplicity of our system model. In order to support a
task with a set of execution behaviors, we propose to replace
this set by a single execution behavior. For every possible
bus schedule, this single execution behavior should lead to
an execution time at least as high as the maximum over the
execution times of all members of the original set.

One possible way to obtain the single execution behavior
is to overlay the execution behaviors of the original set. The
principle of overlaying is depicted in Figure 7(a). Essentially,
every relative position of the resulting behavior is marked as
access if at least one of the original behaviors has an access at
this position. Note that the resulting behavior may contain
strictly more time units of bus accesses than every original
behavior.

Another approach to the construction of the single execu-
tion behavior aligns the accesses of the original behaviors
before performing the overlay. Figure 7(b) illustrates this
approach for the same set of behaviors as already used in the
example of Figure 7(a). The intuition is that we number the
accesses in the increasing order of their appearance per exe-
cution behavior. Subsequently, we add the minimal amount
of margin to the execution behaviors such that all accesses
with the same number start at the same instant. We see that
the resulting execution behavior contains one time unit of
bus access less than the result in Figure 7(a). However, this
comes at the cost of a longer execution time (8 time units
compared to 7 in Figure 7(a)).

4.2.2 Task Dependencies

So far, we consider a scenario without task dependencies.
However, supporting such dependencies in our approach is
straight-forward. The task selection heuristic simply has to
return a task for which all predecessors in the dependency
graph already finished their execution.

This treatment of the task dependencies may—in certain
situations—lead to the task selection heuristic not being able
to select any of the remaining tasks. We can simply solve
this problem by allowing the heuristic to return a dummy
task of length 1 without bus access in such cases.

4.2.3 Less Fine-Grained Bus Schedules

In our system model, we assume that we can define the
bus schedule at the same granularity of time units as the
execution behavior of the tasks. If we assume that our tasks
are defined at the granularity of a processor cycle, then for

many realistic hardware platforms the bus schedule will not
be definable at the same granularity. It is common to have
an integer factor K defining the bus-processor ratio for a
given hardware platform. Then the value of the bus schedule
may only change at integer multiples of K.

Yne€N. n#0 mod K = bus(n) = bus(n — 1)

Consider for example a bus-processor ratio of 4. Figure 8(a)
shows a bus schedule that conforms to this ratio. The bus
schedule in Figure 8(b) does not conform to this as it changes
its value at time unit 3.

Our approach naturally supports such restrictions by using
bus schedule heuristics that only create allowed bus schedules.

4.3 Evaluation

We plan to extract execution behaviors (as defined by our
system model) from real-world programs. Subsequently, we
intend to construct task sets based on these behaviors. We
will use these task sets to compare the effectiveness and
efficiency of different task selection and bus schedule heuris-
tics. Additionally, we will compare the different heuristics to
provably optimal results for relatively small examples.

Furthermore, we are interested in how the different ways
to generalize our approach (cf. Section 4.2) influence the
overall WCET obtained by our approach. For example, we
want to find out which is the best way to replace a set of
execution behaviors by a single behavior.

5. REFERENCES

[1] R. Wilhelm et al., “The worst-case execution-time

problem — overview of methods and survey of tools,”

ACM Transactions on Embedded Computing Systems,

vol. 7, no. 3, pp. 36:1-36:53, 2008.

A. Abel et al., “Impact of resource sharing on

performance and performance prediction: A survey,” in

CONCUR, 2013, pp. 25-43.

[3] R. Pellizzoni and M. Caccamo, “Impact of
peripheral-processor interference on wcet analysis of
real-time embedded systems,” IEEFE Transactions on
Computers, vol. 59, pp. 400-415, 2010.

[4] R. Pellizzoni et al., “Worst case delay analysis for
memory interference in multicore systems,” in
Proceedings of the Conference on Design, Automation
and Test in FEurope, 2010, pp. 741-746.

[5] M. Marouf and Y. Sorel, “Scheduling non-preemptive
hard real-time tasks with strict periods,” in Emerging
Technologies Factory Automation (ETFA), 2011 IEEE
16th Conference on, 2011, pp. 1-8.

[6] S. Hahn et al., “Towards compositionality in execution
time analysis — definition and challenges,” in Proceedings
of the International Workshop on Compositional Theory
and Technology for Real-Time Embedded Systems, 2013.

[7] M. R. Garey and D. S. Johnson, Computers and
Intractability: A Guide to the Theory of
NP-Completeness, 1990.

[8] J. Rosén et al., “Bus access optimization for predictable
implementation of real-time applications on
multiprocessor systems-on-chip,” in Proceedings of the
28th IEEE International Real-Time Systems Symposium,
2007, pp. 49-60.

[2

Statically Resolving Computed Calls
via DWARF Debug Information

Florian Haupenthal
AbsInt Angewandte Informatik GmbH
Science Park 1
66123 Saarbriuicken, Germany

haupenthal@absint.com

ABSTRACT

Allowing virtual functions for safety-critical (embedded) sys-
tems allows for easier programming, but makes static pro-
gram analysis harder. Classical analyses are too imprecise
or too expensive to resolve computed calls introduced by
virtual functions in C++. We present an approach that uses
the DWARF debug information as an additional information
source to resolve computed calls. We evaluate our approach
on a set of example programs on which a value analysis
cannot resolve all computed calls. Our approach resolves all
the computed calls without increasing the cost of the value
analysis, but still needs to be tested on real-world programs.

Categories and Subject Descriptors

D.1.5 [Software Engineering]: Object-oriented Program-
ming; D.2.4 [Software Engineering]: Software/Program
Verification; D.3.2 [Software Engineering]: C++; D.4.7
[Software Engineering]: Real-time systems and embedded
systems

General Terms

Verification

Keywords

Computed calls, static program analysis, DWARF debug
information

1. INTRODUCTION

Safety-critical (embedded) software ideally runs through a
verification process. This process aims to provide guarantees
for every possible execution. The behaviour of a single exe-
cution depends on the program, the state of the underlying
hardware, and the environment — input or sensor values for
example. These configurations can be unknown. A verifica-
tion by running the program for every possible configuration
separately is expensive or infeasible. An abstract interpret-
ation in the form of a static program analysis considers all
possible configurations in one analysis run.

One example is a stack analysis. An embedded system
provides a limited amount of memory and a program must
stay within this limit. Therefore, an analysis has to provide
an upper bound on the maximum amount of memory used
by a program. A part of this amount is the needed space for
local variables. The compiler introduces additional memory
use. For example, if one function calls another one, the
compiler introduces code that stores the address where the

—_

O © 00O Uk WN

execution of the program has to proceed when the called
function returns. A stack frame for each function instance
contains this information. For each function call, the program
creates an additional stack frame and puts it on top of the
stack. If a function returns, its frame gets removed from
the stack. Therefore, an analysis has to find the maximum
height of the stack.

For some function calls, the call target or whether a con-
crete call actually takes place depends on run-time informa-
tion. A stack analysis needs to account for every call target
that is possible in at least one execution.

int main(int argc, charxx argv)

{
foo ();
if(arge !'= 23) {
bar ();
}

return 0;

Figure 1: Excerpt of an example program with two
function calls and a maximum of two stack frames
on the stack at once. Whether the second call takes
place depends on run-time information.

max. stack usage

| Lo]

execution progress

main

o | o] [

Figure 2: Different stack heights during an execu-
tion of the program from Figure 1.

Figure 1 shows an excerpt of an example program with
two function calls. The first call happens in every execution.
Whether the second call takes place, depends on the input
values. For our static analysis, we have to consider the
highest possible stack. This is the one for an execution where
the second call actually takes place.

Figure 3: Static call graph of the example program
from Figure 1.

Figure 2 shows a graphical representations of the stacks.
The size of each box represents the size of the stack frame.
The dashed lines indicate that the corresponding frame will
only be there in some executions. For a guarantee over all
possible executions, we have to consider this call.

Figure 3 shows a static call graph for this program. It is
static as it shows a call edge for the second function call. The
a® tool from AbsInt uses binaries as inputs and transforms
them into a graph representation. Besides the stack usage
analysis, the value analysis and the worst-case execution time
analysis use this representation as well. Note that we use
this graph representation without the source code.

Virtual functions as part of C++ can lead to calls with
more than one call target. The compiler automatically re-
solves calls with only one possible target. If there are more
possible targets, the compiler introduces a computed call.
This is a call, where the program can look up which function
to call at run time.

C++ programs generate objects from class descriptions.
Every class description is a type. Objects start with a pointer
to their corresponding class description. This class descrip-
tion starts with a list of pointers to the functions that this
class implements itself or that this class has available because
it inherits it from another class. We call this list a vtable.

The example in Figure 4 shows three code snippets. All of
them show virtual function calls. The compiler can resolve
the first one. Only one call target is possible and therefore,
there is a concrete address for the function call. For the
remaining ones, it will produce computed calls.

For the second example, a precise value analysis can still
track the possible targets after the condition. Using the
results of this analysis, we can create a call graph, containing
two edges for the two different possible call targets. The
value analysis has to keep a separate value for each possible
dynamic type. This increases the cost of the whole value
analysis.

For the third example, the precision in the value analysis
is useless. We analyse only a part of a program. The only
information for the first call is the static type. However, the
binary contains no types. A value analysis can track the
pointer after the assignment in line 4, but after the store in
line 6 it loses every information, since this is a store to an
unknown memory location.

An analysis using static type information can resolve all
computed calls from the example above to generate the
call graph. Since compilers can optimise their output, it is
hard to interconnect points in the resulting binary and the
source code. Therefore, it is hard to transfer the static type
information from the source code to the call in the binary.

DWAREF is a standardised format allowing a debugger to
read additional information for the current state of the exe-
cution of an executable. This debug information contains the

[\

O © 00O Utk WN -

—_

© 00 O Utk W~

C c;
c.cookie ();

Ax a;
B b;
C c;
if (777)
a = &b;
else
a = &c;

a—>cookie ();

example (Ax a, intx location, int number) {
a—>cookie ();

B b;

a = &b;

location* = number;

a—>cookie ();

Figure 4: Code snippets with virtual functions of
different analysability. The classes B and C in these
snippets extend A and have own implementations
for cookie(). Note that the store in line 6 is a store
to an unknown memory location.

static types of variables and a relation between registers on
the binary level and variables in the source code. Combining
all this information, we can find a safe (over-)approximation
for the set of possible call targets.

An advantage of reading the DWARF debug information
is that it is similar for different compilers and platforms.
This reduces the platform dependent parts of our code to a
minimum.

1.1 Contributions

We introduce an extension to the current analysis frame-
work of the a® tool by AbsInt. This extension makes the
DWARF debug information available to analyses. We use
this additional information to resolve former unresolved com-
puted calls originating from virtual function calls. With this
extension, we can analyse programs that were only analysable
when manually annotated.

These are our contributions in short:

e We implemented a static reader for DWARF debug
information in the a® tool by AbsInt. A debugger inter-
prets this information while running an instance of the
program. Our implementation can extract information
without having a running instance.

e We used the additional information to analyse com-
puted calls originating from virtual function calls for
PowerPC.

e Computed calls originating from virtual functions were
not automatically analysable. Therefore, programmers
omitted using them and example binaries are hard to

SO W N

find. We evaluated our approach with artificial ex-
amples. This shows at least that an automatic analysis
of these calls is possible.

2. OUR APPROACH

Our approach consists of two parts. We implemented a
static reader for DWARF debug information and scanned
the binary for patterns of computed calls.

The DWARF format uses compression. When a debug-
ger uses the DWARF debug information, it has a running
instance of a program. It is only interested in information
about the current state of execution of the program. The
DWARF format takes advantage of these restrictions. A
debugger can resolve relative addresses during debugging.

Even the incomplete, relative information can be useful. A
debugger can jump from one type description to its base type
description, starting from the current this pointer. Without
a running instance of the program, our implementation can
only store all the descriptions and their relations. This
suffices to reconstruct the complete type hierarchy, but is
separated from a concrete object. A debugger needs to
know how to interpret the value of a local variable for a
certain state of execution. Therefore, the DWARF debug
information can contain a frame base relative location of this
variable. The debugger knows the current state of execution
and can resolve this location. Our interest is only in the type
of the variable, but not the value. Therefore, it suffices to
relate the offsets of the load instructions in the binary to
these relative locations.

We store all read DWARF debug information into a sqlite
database.

lwz r9, +0(r9)
addi r9, r9, +4
lwz r0, +0(r9)

mtspr ctr, r0

lwz r3, +8(r3l)

betrl

Figure 5: Typical assembler sequence for a com-

puted call on a PowerPC.

Figure 5 shows how a typical instruction sequence for a
computed call on a PowerPC looks like. The first instruction
loads the address of the vtable. The second instruction adds
an offset to this address to load the second entry of the vtable.
The address of the second entry is the address of the first one
plus the size of one pointer, 4 bytes. The third instruction
loads the address of the call target from the vtable. Instead
of adding an offset to the address of the vtable, optimised
code loads with an offset immediately. This platform uses
a special purpose register for this function call. The fourth
instruction loads the target address into this special purpose
register. The fifth instruction copies the this pointer. In
optimised code, this only happens if the called function uses
the this pointer. The last instruction is the actual call to
the target.

We implemented a pattern, matching this sequence and its
variations. Our approach wants to use the static type of the
variable via that the virtual function is called. The assembler
only shows registers. If there is a load for copying the this
pointer (line 5), our approach can use the source register

from this instruction. If an optimisation removed this load,
it can use the load of the vtable address (line 1). We use this
order since the pattern matching starts at the unresolved call
in the last line and goes backwards. The DWARF debug in-
formation contains information on which variable is assigned
to which register at which program counter. In addition,
it contains information on which variable has which static
type. From the addition or the load instruction in line 3 our
approach can extract the index of the virtual function in the
vtable. With this information, querying the DWARF debug
information yields a set of possible call targets, restricted by
the static type. At the end, we can add the call targets to
the branch instruction.

Querying for the possible call targets consists of two parts.
In the first part, a query has to collect all implementations in
classes that extends the given static type. Since the dynamic
type can at most be equal to the static type, we need a second
part. Here, the query needs to add the implementation of
the function in static type. If there is none, it has to look
for its parents in the inheritance hierarchy. This is similar to
the first part, but with the difference that this query recurs
only until it finds the first implementation. The first part of
the query analyses the children in the hierarchy, but recurs
through the whole hierarchy. The reason for this difference
is that the static type is a bound on the dynamic type, but
only upwards the hierarchy.

Traditionally, a value analysis tries to find out about these
call targets, but this has limitations that our approach sur-
passes. The value analysis has to keep separate values for
every possible dynamic type. For our approach, the value
analysis can be more abstract and — as presented in the Evalu-
ation — even such a simple value analysis can still refine some
results from our approach. A value analysis cannot find any
call targets if the creation of the corresponding objects lies
outside the analysed part of the program. Our approach only
uses the local information at the call site and the DWARF
debug information. Therefore, it needs no knowledge about
the creation of the object.

3. EVALUATION

We evaluated an implementation of our approach on a set
of example programs. In this paper, we only present two of
these examples.

Figure 6 shows the inheritance hierarchy of one of our
examples and where we have implementations of our function
of interest. An additional mark shows where in this hierarchy
we can find the static type of the variable, via which we call
the function. Our approach adds the implementations from
B, F and G to the call graph and omits the implementations
in C and E. This is a safe and precise approximation. If the
dynamic type for this call is different from D, a following
value analysis might declare a call to the implementation
in B infeasible. An approach that cannot use the whole
inheritance hierarchy has to add all five implementations
instead of three.

In the example program in Figure 7, the DWARF debug
information knows only the static type of this. Therefore,
our approach adds two possible call targets to the call graph,
the implementations from both classes. If we want to analyse
the whole program, then it is already guaranteed that this
call will call the implementation in class “Derived”. A simple
value analysis on a graph containing both targets from above
can declare the superfluous call edge infeasible.

© 00 ~JO ULk Wi+

Figure 6: Inheritance hierarchy of an example pro-
gram. A is the most general class. A virtual
function has an implementation in the highlighted
classes. The implementations in the double high-
lighted classes are part of a precise solution. We
call the function via a variable of static type “D”.

class Base {
public:
virtual void functionA ()
{
}
void functionB ()

{
}

this—>functionA ();

}s

class Derived
public:
void functionA ()

{
}

public Base {

Base :: functionA ();

}s
int main(int argc, charxx argv) {
Derived derived;

derived . functionB ();

return 0;

Figure 7: Program where the static and the dy-
namic type of “this” differ. The call in “functionB”
calls the implementation of “functionA” in class
“Derived”

4. RELATED WORK

Both the works of Jones [2] and Shivers [4] introduce con-
trol flow analysis (CFA) considering functional and object
oriented programming languages. Their work can resolve
computed calls, but they have additional information avail-
able since they work on source code.

In [1] Dewey and Giffin present an analysis that finds
vtable escape vulnerabilities. They search for a pattern of
an invocation of a constructor to find vtables. Since we have
to be able to analyse parts of programs, we cannot find all
vtables with their method.

In [3], Koster finds that it is hard to interconnect program
points on source code level and their corresponding instruc-
tions on binary level. Current techniques only allow for a
mapping between entry and exit points of functions.

In [5], the DWARF debug information is used to find the
addresses of vtables. However, they assume code for which
the compiler will never produce the computed calls that we
want to analyse.

In [6] Troger and Cifuentes present a static analysis that
finds the call sites of computed calls, but for the call targets,
they use a dynamic analysis at run time.

5. CONCLUSIONS AND FUTURE WORK

From our examples, we can conclude that our approach is
effective. For profound conclusions about its efficiency, we
need more real world example programs. Since our approach
only looks at small portions of the program under analysis,
the efficiency only depends on the size of the inheritance hier-
archy. The size of the overall program has no direct influence.
For the precision, we have to compare our results against
the results of a more expensive value analysis. However, our
examples cover all the scenarios that can occur in real pro-
grams, but real-world programs, in addition, have different
importance and frequency for those different scenarios.

In the future, we plan to examine more instruction se-
quences for computed calls on other platforms. Furthermore,
we plan to perform more experiments.

6. REFERENCES

[1] D. Dewey and J. T. Giffin. Static detection of C++
vtable escape vulnerabilities in binary code. In NDSS.
The Internet Society, 2012.

[2] N. D. Jones. Flow analysis of lambda expressions.
Springer, 1981.

[3] M. Koster. Interconnecting Value Analysis Results at
the Source and Binary Level. Bachelor’s thesis, Saarland
University, 2010.

[4] O. Shivers. Control flow analysis in scheme. In ACM
SIGPLAN Notices, volume 23, pages 164-174. ACM,
1988.

[5] Y. Terashima and K. Gondow. Static Call Graph
Generator for C++ using Debugging Information. In
Software Engineering Conference, 2007. APSEC 2007.
14th Asia-Pacific, pages 127-134. IEEE, 2007.

[6] J. Troger and C. Cifuentes. Analysis of Virtual Method
Invocation for Binary Translation. In A. van Deursen
and E. Burd, editors, WCRE, pages 65-74. IEEE
Computer Society, 2002.

Schedulability-Oriented WCET-Optimization of Hard
Real-Time Multitasking Systems’

Arno Luppold and Heiko Falk
Institute of Embedded Systems / Real-Time Systems
Ulm University
{arno.luppold|heiko.falk}@uni-ulm.de

ABSTRACT

In multitasking hard real-time systems, each task’s response
time must provably be lower than or equal to its deadline.
If the system does not hold all timing constraints, WCET-
oriented optimizing compilers can be used to improve each
task’s worst-case runtime behaviour. However, current opti-
mizations do not account for a system’s schedulability con-
traints. We provide an approach based on Integer-Linear
Programming (ILP) for schedulability-oriented WCET op-
timization of hard real-time systems.

1. INTRODUCTION

One of the main issues for the compiler is to determine
which tasks should be optimized to which amount in order
to achieve a schedulable system while complying with the
limited hardware resources on embedded platforms. Cur-
rent approaches on sensitivity analysis are able to provide
WCETsS for each task which will result in a schedulable sys-
tem. However, these approaches are performed on a system-
level basis, without respecting the compiler’s low-level op-
timization capabilities for each task or the system’s specific
hardware capabilities and restrictions. As an example which
will be used throughout this paper, many embedded plat-
forms provide a very fast but small memory, called scratch-
pad memory (SPM). Putting a task into the SPM reduces
its execution time, but the SPM is usually too small to keep
all tasks - sometimes even too small for one complete single
task. We therefore aim for integrating schedulability analy-
sis into an optimizing WCET-aware compiler framework.
The key contributions of this paper are:

o We provide an ILP-based method to determine which
tasks should be optimized to which amount in order
to achieve a schedulable system.

e We provide approaches on both dynamic and fixed pri-
ority based systems.

e We provide initial evaluation results which show the
potential of our approach.

This paper is organized as follows: Section 2 gives a brief
overview of related projects. Section 3 shows our underlying
approach. In Section 4 we integrate the approach into a
WCET-oriented optimizing compiler framework and provide
initial evaluation results. This paper closes with a conclusion
and future challenges.

*This work was partially supported by Deutsche Forschungs-
gesellschaft (DFG) under grant FA 1017/1-2

2. RELATED WORK

In [7], Liu and Layland proposed an iterative approach to
calculate the response times of a hard real-time multitasking
system.

i—1
Ti:Cz"'FZ’V%—"Cj (1)
j=0 177

In their approach, each task 7; is defined by a priority i, a
net worst-case execution time (WCET) ¢;, and the minimal
period of two consecutive stimuli 7;. The system is defined
to be schedulable, if each task’s WCRT r; is lower than or
equal to its deadline d;. Since then, response time analysis
has been intensively studied, and more flexible task models
have been proposed. Huge progress has been made to pro-
vide tight bounds on event-driven task sets which are not
strictly periodical [1, 5].

However, those approaches don’t give hints on how an un-
schedulable system could be turned into a schedulable one.
To the best of our knowledge, the first work covering the
issue of modification of task and system parameters was [6].
In this approach, a constant factor was introduced which
scaled all tasks equally up to the system’s first deadline
miss. Analysing how system parameters may be tuned to
keep or to establish a schedulable system is called sensitiv-
ity analysis. Since that first approach, sensitivity analysis
has been improved massively. A method to sustain schedu-
lability when adding a new task to a feasible system which is
scheduled using EDF is described by [11]. Arbitrary activa-
tion patterns are analyzed in [8], and [9] proposes a method
to perform a sensitivity analysis on distributed systems. Ad-
ditionally, theoretical approaches have been introduced for
parameter tuning of rate-monotonic scheduling in [2].

Although providing a system-level view on a system’s sen-
sitivity and robustness, those approaches either focus on
task stimuli relaxation or do not offer clear optimization
hints for optimizing compilers. They do offer sets of valid
system parameters but the system engineer is still required
to manually choose a set and try and optimize the tasks ac-
cordingly. Depending on the system’s size, this may result
in a tedious challenge. We therefore aim at providing a new
approach which can be tightly coupled to both existing and
future WCET-oriented compiler optimizations, allowing for
a largely automated design and compilation of hard embed-
ded real-time systems.

3. APPROACH
3.1 Task Model

At the current state of our work we focus on strictly peri-
odical preemptive systems. A task 7; is defined by its WCET
¢;, its deadline d;, period p; and execution period T;. We
currently assume that each task’s deadline d is lower than
or equal to its respective period T. In case of fixed prior-
ities, the index i denotes the task’s priority, with 0 being
the highest priority. We assume all timing values to be in-
tegers. This may be achieved without loss of generality e.g.,
by using CPU clock cycles as time unit.

3.2 ILP Model

We use the formulation provided by [10] which models the
WCET of a task using integer-linear constraints. A task is
split into its basic blocks, which are defined as an instruc-
tion sequence that must be traversed from top to bottom.
Therefore, e.g., any branch instruction must be the very
last instruction of a basic block. Variables are introduced
for each basic block’s execution time. The accumulated exe-
cution time w; of a basic block i is defined to be greater than
or equal to i’s execution v;, plus the accumulated execution
time of its successor j:

w; > Vi + Wwj (2)

Multiple successors are described by using multiple con-
straints. The ILP can then be solved using an objective
function which tries to minimize the accumulated execution
time of a task’s entry block. This block provides a safe
overapproximation of the task’s WCET. The model can be
accompanied by further constraints to perform ILP-based
WCET optimizations. E.g., [3] used the model to perform
a WCET-oriented scratch-pad memory (SPM) allocation.
They perform static timing analysis on a given program,
once with the whole program in slow Flash memory result-
ing in a worst-case execution time v; r for each basic block,
and once with the whole program being assigned to the SPM,
resulting in v;,s. Eq. (2) may then be extended to

w; > vy p — bi - (Vi,F — vi,5) + wj (3)

b; denotes a binary decision variable which is set to 1 if
the block is located in SPM, and 0 else. Additional con-
straints are added to respect the SPM’s overall size and ad-
ditional jump instructions. Without size constraints, the
ILP solver would simply assign the whole program to the
SPM. When minimizing the accumulated execution time of
the program’s entry block wg, the ILP solver will minimize
the overall WCET of the whole program. Additionally, wo
will be a safe overapproximation of the program’s WCET.
In a multitasking environment wg corresponds to the task’s
WCET c. Our approach integrates the model by Suhendra
et.al. and illustrates its usage using a slightly improved ver-
sion of the SPM allocation as an example for multitasking
optimizations. The improvements are mostly technical and
will therefore not be discussed any further.

3.3 Dynamic Priority Systems

We will consider systems which are scheduled using Ear-
liest Deadline First (EDF). For a system which is scheduled
using EDF, [7] shows that the system is schedulable iff

Ci
— <1 4
B (4)

10

With ¢; being the WCET of task 7 and T; being the minimal
period between two consecutive task executions.

For dynamic priority systems where each task’s deadline
equals its period, the system may easily be optimized in a
schedulability oriented approach by choosing Eq. (4) as the
ILP’s objective function. If the optimized system’s workload
is lower than or equal to 1, the system is schedulable using
EDF. Timing overheads inflicted by the task scheduler may
be modeled by additional tasks.

3.4 Fixed Priority Systems

Currently our approach for fixed priority systems covers
periodical systems, but should be adaptable to more com-
plex systems like event triggered multitasking systems. We
define a set of n tasks 7;,0 < i < n — 1, each with a period
T;, a WCET ¢;, and deadline d;. 7y is defined as the highest
priority task and 7,_1 the lowest priority task, respectively.
r; is defined as the WCRT of 74, i.e., the maximum time span
between a task becoming ready for execution and its end of
execution, including all blocking times by other tasks. In a
first step, response time analysis is performed by iterating
over eq. (1) until one of the following conditions occurs:

e The resulting r; does not change for any 7;, and each
Ti, 7; < di. In this case, the system is schedulable and
no further steps have to be performed.

e The resulting r; does not change for any 7;, but for at
least one task 7;, r; > d;. In this case, the system is
stable but is not schedulable.

e At least one r; might get larger than the task’s period
T;. In this case, the fix point iteration is aborted and
the system is said to be unstable.

We define the maximum number of preemptions of a task 7;
by another task 7; as p; ;. If the task is not stable, we define
Di,j to be the maximum allowed number of preemptions:

[L} i <Tj<i

Tj
Pij = Hﬂ ifr > Ty,j <i ()
0 if 5>

Based on eq. (1), the schedulability of a system can be ex-
pressed as a set of inequations:

co < do
T1
— <d
ca+ [To—‘ co < di
T2 T2
— —= <d
co + [To—‘ co + [Tl—‘ c1 < dz
Tp— T
en—1+ [Toﬂ co+ .+ [Tn,;—‘ Cn2<dn1 (6)

The system is schedulable if all equations hold. We establish

linearity by substituting “ﬂ—l—‘ ¢; with the precalculated p; ;.
J

The WCETs ¢; are left as ILP variables and may be adapted

to achieve a schedulable system. Our approach will now
optimize the system performing the following steps:

1. Calculate the maximum number of preemptions p; ;
for the original system, as described in eq. (5).

2. Create an ILP as shown in equation (6).

3. Solve the ILP, with eq. (7) as the ILP’s objective func-
tion. The ILP will provide a ¢; for each task 1.

4. Re-calculate all p;,; with the newly calculated c;

5. Modify the ILP as shown in eq. (8) and calculate the
relaxed WCETS ¢; relazed-

6. Generate the new objective function for any subse-
quent WCET optimizations, and perform the opti-
mization itself.

To avoid a quadratic problem, it is necessary to assume a
constant number of preemptions during the first iteration of
the ILP. This will inevitably lead to an underestimation of
the maximum allowed WCET for each task. Therefore, op-
timizations like the aforementioned SPM allocation cannot
be integrated in this step of the algorithm. To ease com-
piler optimizations and to reduce side effects, we use the
minimization of the relative change in each task’s WCET as
objective. The target function will be defined as:

mlnz Ci,orig — Ci (7)
i

Ci,orig

Ciorig 1S the original WCET of task 7; without any opti-
mizations. ¢; is the optimized WCET of the task which will
lead to a schedulable system. Using this method, the ILP
solver will propose WCETSs for each task which will lead to
a schedulable system, while trying to modify the WCETSs as
little as possible.

Next, we relax the calculated maximum WCETs: We use
eq. (1) to calculate updated values for each p; ;. We can
now allow each ¢; to increase if the increase in execution
time will not change the number of maximum preemptions.
To achieve this, we modify the set of linear equations from
eq. (6). For each inequation, we substitute the task’s dead-
line on the right-hand side of the inequation by

min (di, H—J To, ... [Tij TH> (8)

Each task’s WCRT may still never exceed its deadline. As
an additional constraint, the task’s response time may not
be larger than the minimum stimulus interval of each higher-
priority task. This prevents the ILP solver from increasing a
task’s WCET to an amount that would allow for additional
preemptions by a higher-priority task. Figure 1 illustrates

this for the tasks 7 and 7o with [%—‘ = 2. Given the new

constraints, the ILP is solved a second time, leading to the
relaxed WCET ¢; retazed for each task i.

ILP constraints denoting compiler constraints like plat-
form dependent lower bounds on each task’s WCET can
be directly added to the second ILP. In theory, constraints
for WCET-oriented optimizations like [3] could be added
as well. However, those optimizations usually do not model
the architectural behaviour exactly. For complexity reasons,
jump timing penalties are overapproximated, and other be-
haviour, like changes in the CPU’s pipelines, are not mod-
eled at all. This leads to an overapproximation of a task’s
WCET when moving individual basic blocks to the SPM.
We use the results from our proposed sensitivity analysis to
formulate a new objective function for WCET based opti-
mizations. Given this objective function, the tasks will be

11

| | |

TO 2TO 3T()

T2, max

time

Figure 1: Maximum response time of m» without ad-
ditional preemptions by 7

optimized with regard to the system’s schedulability, with-
out need for exact WCET estimates within the optimization
algorithm. Normalizing the tasks to account for different ex-
ecution times and considering the necessary relative decrease
in the tasks’ WCET leads to:

. max CO,ori Cn,ov‘i CO,o'ri
min (9 '7 57) . 9 cco+ ...+
Co,0T1g Co,relazed
max (CO,OT’L'gy) Cn,om‘g) Cn,orig c (9)
Cn, 0T1g Cn,relazed

This objective can now be applied to WCET-oriented com-
piler optimizations as proposed in [3].

4. EVALUATION

We illustrate the approach’s performance on a set of tasks
from the MRTC benchmark suite [4]. We use the WCET
aware C compiler framework WCC which was also used by
[3]. The target platform was chosen to be the Infineon Tri-
Core 1796 micro processor running at 150MHz. The SPM
size was limited to 10% of the total program size. We did
not apply any standard compiler optimizations (e.g., loop
unrolling) to improve comparability for the reader. All tim-
ings printed in this section were obtained using Abslnt aiT
(version 14.04, build b217166). Due to the limited space in
this paper, we only chose a subset of MRTC benchmarks to
show the possibilities of our approach. We tried to model
a realistic system with both small, but frequently executed
tasks (e.g., to poll sensor values) and much larger, but less
frequently called tasks (e.g., I/O operations). We chose st,
Ims and matmult, as they had the largest WCET out of the
MRTC benchmark suite on our platform. We then randomly
chose two smaller benchmarks, in this case fibcall and sqrt.
To show the effects of our different optimization approaches,
we chose the periods to differ by several magnitudes. For
simplification reasons, we only evaluated a strictly periodic
system where each task’s deadline d equals its period T'.

i | Name T Corig min} c; | min}S #
0 fibcall 50 4.84 5.62 2.20

1 sqrt 100 88.79 100.03 50.11

2 st 50,000 | 3401.87 | 2570.15 2481.53
3 Ims 75,000 | 9125.07 | 7002.59 9125.07
4 | matmult | 100,000 | 2699.29 | 1831.07 2699.29

Table 1: Dynamic priorities, times are in us

Table 1 shows the WCETsSs for each task, without optimiza-
tion, with SPM optimization which tries to minimize the
sum over all WCETSs, and the EDF-oriented SPM optimiza-
tion. Table 3 shows the corresponding system load. It can be
seen that the system is not schedulable without the SPM op-
timization. When applying the SPM optimization without
regarding tasks’ periods, the system load even goes up, be-
cause cp and c¢; increase. This somewhat strange behaviour

Prio. Name T Corig Crelazed Cfinal
0 fibcall 50 4.84 4.84 4.84
1 sqrt 100 88.79 54.99 51.35
2 st 50000 | 3401.87 | 3401.87 | 3401.87
3 Ims 75000 | 9125.07 | 9124.61 | 7002.59
4 matmult | 100000 | 2699.29 | 2699.29 | 2699.29

Table 2: Fixed priorities, times are in us.

Load

Unopt. 1.20

min Y ¢; 1.27
min) ¢i/1; 0.74
Opt. Fixed Prio. | 0.79

Table 3: System Load

stems from the fact that the TriCore processor performs in-
struction fetches on 64bit memory block boundaries. The
SPM optimization moves parts of the larger tasks st, lms
and matmult to the SPM, therefore instruction addresses of
the unoptimized tasks fibcall and sqrt change and cause a
change in the system’s instruction fetch behaviour, leading
to an increase of the tasks’ WCET. The ILP formulation
of the optimization does not account for this, and is there-
fore not aware of the increase in the tasks” WCET. This is
a purely random phenomenon which did not occur on the
fixed priority optimization (compare Table 2). When apply-
ing the EDF-oriented optimization which tries to minimize
the system load, it can be observed that the load drops to
0.74, thus resulting in a schedulable system.

The results for the fixed priority optimization are shown
in Table 2. The 5th column, labeled ¢yeiqzed, Shows the tar-
get WCET for each task, as it is calculated by subsequently
calling the ILP as discussed in section 3.4. It can be seen
that only the tasks 7 and 73 are to be optimized. For the
SPM optimization we used, the SPM model only allows ei-
ther to keep or to decrease a task’s WCET. We take this
into consideration and adapt eq. (9) by only adding those
tasks, of which the WCET must be reduced. This results in
the following objective function:

9125.07 88.79
88.79 54.99

9125.07
9124.61°°

) ~ min (166¢1 + c¢3)

(10)

Table 4 shows the resulting response times. We compared
the response times using the approach for fixed priority sys-
tems with the response times which would arise if the tasks
which were optimized for EDF were scheduled using fixed
priorities. Due to the different optimization targets, the
response times are higher when using the fixed priority ap-
proach. However, that approach may be adapted for systems
which are not strictly periodical. In this example, both ap-
proaches lead to a schedulable system.

5. FUTURE CHALLENGES

We provided an approach to adapt single-task WCET-
oriented compiler optimizations to achieve schedulability of
multitasking hard real-time systems. Future work will cover
an improved optimization strategy for fixed priority tasks, as
well as profound analysis of the suboptimality which is inher-
ent for fixed priority systems. We will analyse, if, and under

12

Name r opt dyn. | r fixed | Deadline
fibcall 2.2 4.84 50
sqrt 54.51 61.03 100
st 5479.77 8772.81 50, 000
Ims 25562.02 | 26761.40 | 75,000
matmult | 31477.60 | 33671.99 | 100,000

Table 4: Response time using RMS, times are in us

which circumstances, the fixed priority approach will out-
perform the system load oriented approach. Additionally,
we are currently working at integrating the fixed priority
approach into event-based systems to perform an improved
optimization of systems which are not strictly periodical. In
the long run, we are planning on extending the approach to
cover scheduler overheads and inter-task dependencies like
cache-related preemption delays.

6. REFERENCES

[1] K. Albers and F. Slomka. An event stream driven
approximation for the analysis of real-time systems. In
Proceedings of ECRTS, pages 187-195, 2004.

[2] E. Bini, M. Di Natale, and G. Buttazzo. Sensitivity

analysis for fixed-priority real-time systems.

Real-Time Systems, 39:5-30, 2008.

H. Falk and J. C. Kleinsorge. Optimal Static

WCET-aware Scratchpad Allocation of Program

Code. In Proceedings of DAC, pages 732-737, 2009.

J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper.

The Milardalen WCET Benchmarks — Past, Present

and Future. In B. Lisper, editor, Proceedings of the

International Workshop on Worst-Case Ezxecution

Time Analysis (WCET), pages 137147, 2010.

[5] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter,
and R. Ernst. System level performance analysis - the
SymTA/S approach. Proceedings of Computers and
Digital Techniques, 152(2):148-166, 2005.

[6] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic
scheduling algorithm: exact characterization and
average case behavior. In Proceedings of RTSS, pages
166-171, 1989.

[7] C. L. Liu and J. W. Layland. Scheduling Algorithms
for Multiprogramming in a Hard-Real-Time
Environment. Journal of the ACM (JACM),
20(1):46-61, 1973.

[8] M. Neukirchner, S. Quinton, T. Michaels, P. Axer,
and R. Ernst. Sensitivity Analysis for Arbitrary
Activation Patterns in Real-time Systems. In
Proceedings of DATE, pages 135-140, 2013.

[9] R. Racu, A. Hamann, and R. Ernst. Sensitivity
Analysis of Complex Embedded Real-Time Systems.
Real-Time Systems, 39:31-72, 2008.

[10] V. Suhendra, T. Mitra, A. Roychoudhury, et al.
WCET Centric Data Allocation to Scratchpad
Memory. In Proceedings of RTSS, pages 223-232,
2005.

[11] F. Zhang, A. Burns, and S. Baruah. Sensitivity
analysis of arbitrary deadline real-time systems with
EDF scheduling. Real-Time Systems, 47:224-252,
2011.

3

[4

Accounting for Cache Related Pre-emption Delays in

Hierarchical Scheduling with Local EDF Scheduler
Will Lunniss Sebastian Altmeyer Robert I. Davis
Department of Computer Science Computer Systems Architecture Group ~ Department of Computer Science
University of York University of Amsterdam University of York
York, UK Netherlands York, UK
wi510@york.ac.uk altmeyer@uva.nl rob.davis@york.ac.uk

ABSTRACT

Hierarchical scheduling provides a means of composing multiple
real-time applications onto a single processor such that the
temporal requirements of each application are met. This has
become a popular technique in industry as it allows applications
from multiple vendors as well as legacy applications to co-exist in
isolation on the same platform. However, performance enhancing
features such as caches mean that one application can interfere
with another by evicting blocks from cache that were in use by
another application, violating the requirement of temporal
isolation. In this paper, we present some initial analysis that
bounds the additional delay due to blocks being evicted from
cache by other applications in a system using hierarchical
scheduling when using a local EDF scheduler.

1. INTRODUCTION

Hierarchical scheduling provides a means of composing multiple
applications onto a single processor such that the temporal
requirements of each application are met. This is driven by the
need to re-use legacy applications that once ran on slower, but
dedicated processors. Each application, referred to as a
component, has a dedicated server. A global scheduler then
allocates processor time to each server, during which the
associated component can use its own local scheduler to schedule
its tasks.

In hard real-time systems, the schedulability of each task must be
known offline in order to verify that the timing requirements will
be met at runtime. However, in pre-emptive multi-tasking
systems, caches introduce additional cache related pre-emption
delays (CRPD) caused by the need to re-fetch cache blocks
belonging to the pre-empted task which were evicted from the
cache by the pre-empting task. These CRPD effectively increase
the worst-case execution time of the tasks. It is therefore
important to be able to calculate, and account for, CRPD when
determining if a system is schedulable or not. This is further
complicated when using hierarchical scheduling as servers will
often be suspended while their components’ tasks are still active,
that is they have started but have not yet completed execution.
While a server is suspended, the cache can be polluted by the
tasks belonging to other components. When the global scheduler
then switches back to the first server, tasks belonging to the
associated component may have to reload blocks into cache that
were in use before the global context switch.

Hierarchical scheduling has been studied extensively in the past
15 years. Deng and Liu [7] were the first to propose such a two-
level scheduling approach. Later Feng and Mok [8] proposed the
resource partition model and schedulability analysis based on the
supply bound function. Shin and Lee [16] introduced the concept
of a temporal interface and the periodic resource model, and
refined the analysis of Feng and Mok. When using a local EDF
scheduler, Lipari et al. [11] [12] have investigated allocating
server capacity to components, proposing an exact solution.

13

Recently Fisher and Dewan [9] have developed a polynomial-time
approximation with minimal over provisioning of resources.

Hierarchical systems have been used mainly in the avionics
industry. For example, the ARINC 653 standard [2] defines
temporal partitioning for avionics applications. The global
scheduler is a simple Time Division Multiplexing (TDM), in
which time is divided into frames of fixed length, each frame is
divided into slots and each slot is assigned to one application.

Analysis of CRPD uses the concept of useful cache blocks
(UCBs) and evicting cache blocks (ECBs) based on the work by
Lee et al. [10]. Any memory block that is accessed by a task while
executing is classified as an ECB, as accessing that block may
evict a cache block of a pre-empted task. Out of the set of ECBs,
some of them may also be UCBs. A memory block m is classified
as a UCB at program point p, if (i) m may be cached at p and (ii)
m may be reused at program point ¢ that may be reached from p
without eviction of m on this path. In the case of a pre-emption at
program point p, only the memory blocks that are (i) in cache and
(if) will be reused, may cause additional reloads. For a more
thorough explanation of UCBs and ECBs, see section 2.1 “Pre-
emption costs” of [1].

A number of approaches have been developed for calculating the
CRPD when using fixed priority pre-emptive scheduling under a
flat, single-level system. A summary of these approaches, along
with the state-of-the-art approach is available in [1]. In 2013,
Lunniss et al. [14] presented a number of approaches for
calculating CRPD when using pre-emptive EDF scheduling.

In 2014, Lunniss et al. [13] extended previous works to include
CRPD analysis under hierarchical scheduling when using a local
FP scheduler.

The remainder of the paper is organised as follows. Section 2
introduces the system model, terminology and notation used.
Section 3 recaps existing CRPD and schedulability analysis.
Section 4 introduces the new analysis for calculating component
level CRPD incurred in hierarchical systems when using a local
EDF scheduler. In section 5 the analysis is evaluated, and section
6 concludes with a summary and outline of future work.

2. SYSTEM MODEL

We assume a single processor system comprising m components,
each with a dedicated server (S'..S™) that allocates processor
capacity to it. We use ¥ to represent the set of all components in
the system. G is used to indicate the index of the component that
is being analysed. Each server S® has a budget Q° and a period
P€, such that the associated component will receive QG units of
execution time from its server every P® units of time. Servers are
assumed to be scheduled globally using a non-pre-emptive
scheduler, as found in systems that use time partitioning to divide
up access to the processor. While a server has remaining capacity
and is allocated the processor, we assume that the tasks of the
associated component are scheduled using pre-emptive EDF.

The system comprises a taskset I' made up of a fixed number of
tasks (t..1,) divided between the components. Each component
contains a strict subset of the tasks, represented by T'®. For
simplicity, we assume that the tasks are independent and do not
share resources requiring mutually exclusive access, other than
the processor.

Each task, 7; may produce a potentially infinite stream of jobs that
are separated by a minimum inter-arrival time or period T;. Each
task has a relative deadline D;, a worst case execution time C;
(determined for non-pre-emptive execution). We assume that
deadlines are either implicit (i.e. D;=T;) or constrained (i.e. Di<T;).

Each task t; has a set of UCBs, UCB; and a set of ECBs, ECB;
represented by a set of integers. If for example, task 1, contains 4
ECBs, where the second and fourth ECBs are also UCBs, these
can be represented using ECB, = {1,2,3,4} and UCB,; = {2,4}.
Each component G also has a set of UCBs, UCB® and a set of
ECBs, ECB®, that contain respectively all of the UCBs, and all of
the ECBs, of their tasks, i.e. UCB® :U ~ .ucBi and
Ecs® = J ECBi . vner

rier®
Each time a cache block is reloaded, a cost is introduced that is
equal to the block reload time (BRT). We assume a direct mapped
cache, but the work extends to set-associative caches with the
LRU replacement policy as described in section 2 of [1]. We
focus on instruction only caches.

3. EXISTING SCHEDULABILITY AND
CRPD ANALYSIS

Schedulability analysis for EDF uses the processor demand bound
function [3], [4], in order to determine the demand on the
processor within a fixed interval. It calculates the maximum
execution time requirement of all tasks’ jobs which have both
their arrival times and their deadlines in a contiguous interval of
length t. Baruah et al. showed that a taskset is schedulable under
EDF iff Vt>0,h(t)<t. We use a modified equation for h(t)
from [14] which includes yt; to represent the CRPD caused by
task t; that may affect any job of a task with both its release times
and absolute deadlines within an interval of length t.

h(t) = i[nﬁx{O,l+L%J}C; +yt,j] 1)

In order to determine the schedulability of a taskset in a
hierarchical system, we must account for the limited access to the
processor. The supply bound function [16], or specifically the
inverse of it, can be used to determine the maximum amount of
time needed by a specific server to supply some capacity c. We
define the inverse supply bound function, ishf, for component G as
isbf® [15]:

isbf® (c) = ¢ + (PC —QG)GQLG1+1] @)
4. NEW CRPD ANALYSIS

In [13] Lunniss et al. presented a number of approaches for
calculating CRPD in hierarchical systems when using a local FP
scheduler. We now describe how CRPD analysis can be adapted
for use with a local EDF scheduler. This analysis assumes a non-
pre-emptive global scheduler (i.e. the capacity of a server is
supplied without pre-emption, but may be supplied starting at any
time during the server’s period).

The analysis must account for the cost of reloading any UCBs into
cache that may be evicted by tasks running in the other
components, which we call component level CRPD. To account
for the component level CRPD, we define a new term y; that

14

represents the CRPD incurred by tasks in component G due to
tasks in the other components running while the server (S¢) for
cog1ponent G is suspended. Combining (1), with isbf®, (2), and
7t , we get the following expression for determining the
processor demand within an interval of length t.

h(t) = isbfe[zn:[max{OJ{t fI_D‘ J}Cj 0] + th] 3)
=1 j

In the computation of 7 , we use a number of terms, described
below. We use Ej(t) to denote the maximum number of jobs of
task t; that can have both their release times and their deadlines in
an interval of length t, which we calculate as follows:

Ej(t):nnx(o,lJ{t_TD‘ B @)
i

We use E® (t) to denote the maximum number of times server ¢
can be both suspended and resumed during t. Note that (5) can be
used with t=D; to calculate the maximum number of times server
S® can be suspended and resumed during a single job of task T

eot)-1+ | o | ©

We use the term disruptive execution to describe an execution of
server SZ while server S® is suspended that results in tasks from
component Z evicting cache blocks that tasks in component G
might have loaded and may need to reload in an interval of length
t. Note that if server S% runs more than once while server S° is
suspended, its tasks cannot evict the same blocks twice and as
such, the number of disruptive executions is bounded by the
number of times that server S® can be both suspended and
resumed. Specifically, we are interested in how many disruptive
executions a server can have during an interval of length t. We use
XZ to denote the maximum number of such disruptive executions.

XZ[SG,t]:Mn[EG(t),1+“—ZU 6

4.1 Component level CRPD

We first calculate an upper bound on the UCBs that if evicted by
tasks in the other components may need to be reloaded. We do
this by forming a multiset that contains the UCBs of task t
repeated E°(DJE«(t) times for each task in rx eI'®. This
multiset reflects the fact that server S® can be suspended and
resumed at most E®(D,) times during a single job of task 7, and
there can be at most Ex(t) jobs of task 7, that have their release
times and absolute deadlines within the interval of length t.

ucb _
MG,t -

| Jucs @
wker® \ E® (DK)Ek (t)

The second step is to determine which ECBs of the tasks in the
other components could evict the UCBs in (7), for which we
present three different approaches.

4.1.1 UCB-ECB-Multiset-All

The first option is to assume that every time server S is
suspended, all of the other servers run and their tasks evict all the
cache blocks that they use. We therefore take the union of all
ECBs belonging to the other components to get the set of blocks
that could be evicted. We form a second multiset that contains
EC (t) copies of the ECBs of all of the other components in the
system. This multiset reflects the fact that the other servers’ tasks
can evict blocks (that need to be reloaded) at most EG(t) times
within an interval of length t.

meeA = J| (JecB? ®)
EC() V%E‘é‘

The total CRPD incurred by tasks in component G due to the
other components in the sa/sﬁtem is then givAen by the size of the
multiset intersection of Mgy (7) and M&7 ™" (8).

7C =BRToe

4.1.2 UCB-ECB-Multiset-Counted

The above approach works well when the global scheduler uses a
TDM schedule such that each server has the same period and/or
components share a large number of ECBs. If some servers run
less frequently than server S€, then the number of times that their
ECBs can evict blocks may be over counted. One solution to this
problem is to consider each component seEara\t:jy by calculatin%

ME AME ©

the number of disruptive executions, X SG,t , that server S
can have on tasks in component G during t. We form a second
multiset that contains X ZESG ,tﬁ copies of ECB? for each of the
other components Z in the system. This multiset reflects the fact
that the tasks of each component Z can evict blocks at most
X (SG .t? times within an interval of length t.

Mere = ECB? (10)
vZeW¥\ x? SG,t)
AZ#G
The total CRPD incurred by task t;, in component G due to the
other components in the system is then given by the size of the
multiset intersection of MY (7) and M&Y© (20).

7¢ = BRTo|M& AMET| (1)
4.1.3 UCB-ECB-Multiset-Open
In open hierarchical systems, the other components may not be
known a priori as they can be introduced into a system
dynamically. Additionally, even in closed systems, full
information about the other components in the system may not be
available until the final stages of system integration. However, as
the cache utilisation of the other components can often be greater
than the size of the cache, the precise set of ECBs does not matter.
We form a second multiset that contains E®(t) copies of all
cache blocks. This multiset reflects the fact that server S¢ can be
both suspended and then resumed, after the entire contents of the
cache have been evicted at most EC(t) times within an interval

of length t.
MER° = (2N} (12)
EC()
Where N is the number of cache sets.

The total CRPD incurred by tasks in component G due to the
other unknown components in the system is then tgiven by the size
of the multiset intersection of M &% (7) and M&© (12).

7€ =BRTo[M& AMET®| (13)

For all approaches, we calculated the limit (largest value of t that
needs to be checked in (1)) using an inflated utilisation in a
similar way to that described in section V. D of [14].

5. EVALUATION

In this section we compare the different approaches for
calculating CRPD in hierarchical scheduling using synthetically
generated tasksets. The evaluation was setup to model an ARM
processor clocked at 100MHz with a 2KB direct-mapped

15

instruction cache. The cache was setup with a line size of 8 Bytes,
giving 256 cache sets, 4 Byte instructions, and a BRT of 8ps. To
generate the components and tasksets, we generated n (default of
24) tasks using the UUnifast algorithm [6] to calculate the
utilisation, U; of each task so that the utilisations added up to the
desired utilisation level. Periods T;, were generated at random
between 10ms and 1000ms according to a log-uniform
distribution. C; was then calculated via C; = U; T; We assigned
implicit deadlines, i.e. D; = T;. We used the UUnifast algorithm to
obtain the number of ECBs for each task so that the ECBs added
up to the desired cache utilisation (default of 10). Here, cache
utilisation describes the ratio of the total size of the tasks to the
size of the cache. A cache utilisation of 1 means that the tasks fit
exactly in the cache, whereas a cache utilisation of 10 means the
total size of the tasks is 10 times the size of the cache. The
number of UCBs was chosen at random between 0 and 30% of the
number of ECBs on a per task basis, and the UCBs were placed in
a single group at a random location in each task. We then split the
tasks at random into 3 components with equal numbers of tasks in
each and set the period of each component’s server to 5ms. We
generated 1000 systems using this technique.

For each system, the total task utilization across all tasks not
including pre-emption cost was varied from 0.025 to 1 in steps of
0.025. For each utilization value, we initialised each servers’
capacity to the minimum possible value, (i.e. the utilisation of all
of its tasks). We then performed a binary search between this
minimum and the maximum, (i.e. 1 minus the minimum
utilisation of all of the other components) until we found the
server capacity required to make the component schedulable. As
the servers all had equal periods, provided all components were
schedulable and the total capacity required by all servers was
< 100%, then the system was deemed schedulable at that specific
utilisation level. For every approach, the intra-component CRPD
(between tasks in the same component) was calculated using the
Combined Multiset approach given by Lunniss et al. [14].

100 % — &
No-Component-Pre-emption-Cost
UCB-ECB Multiset Open =

o UCB-ECB Multiset All
5 80% UCB-ECB Multiset Counted
o
v
£
L 60% —
Id
>
[)
@
°
© 40%
=l
o
[}
<
1%
V20 %

0% T T T T T T L R R

0 01 02 03 04 05 06 07 08 09 1
Utilisation
Figure 1. Percentage of systems deemed schedulable

Figure 1 shows that the UCB-ECB-Multiset-All and UCB-ECB-
Multiset-Open approaches deem the same number of tasksets
schedulable. This is due to the cache utilisation of the other
components being greater than the size of the cache, which causes
the set of ECBs to be equal, i.e. contain all cache blocks. The
UCB-ECB-Multiset-Counted approach deems a lower number of
tasksets schedulable because it considers the effects of the other
components individually. As the components have equal server
periods, each time a component is suspended, it is assumed that
each other component will evict it’s set of ECBs, when in fact

they may only be evicted once per suspension. We note that the
results show that the analysis is somewhat pessimistic, as there is
a large difference between the No-Component-Pre-emption-Cost
case, and the approaches that consider component pre-emption
costs. Examining equation (7), we note that E°(D,)Ex (t) is based
on the deadline of a task and as such, the analysis effectively
assumes the UCBs of all tasks in component G could be in use
each time the server for component G is suspended.

The server period is a critical parameter when composing a
hierarchical system. The results for varying the server period from
Ims to 20ms, with a fixed range of task periods from 10 to
1000ms are shown in Figure 2 using the weighted schedulability
measure [5]. When the component pre-emption costs are ignored,
having a small server period ensures that short deadline tasks meet
their time constraints. However, switching between components
clearly has a cost associated with it making it desirable to switch
as infrequently as possible. As the server period increases,
schedulability increases due to a smaller number of server context
switches, and hence component CRPD, up until around 7-8ms for
the best performance. At this point, although the component
CRPD continues to decrease, short deadline tasks start to miss
their deadlines due to the delay in server capacity being supplied
unless server capacities are greatly inflated, and hence the overall
schedulability of the system decreases.
1~

No-Component-Pre-emption-Cost
UCB-ECB Multiset Open

UCB-ECB Multiset All ——
UCB-ECB Multiset Counted

0.8 —’—\

o
=
3
0
© 06 [
153
=
o
[]
=
5 04l
o
=
02 [

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
Server Period

Figure 2. Weighted measure of the schedulability when
varying the server period from 1 to 20ms

6. CONCLUSION

In this paper, we have presented some initial analysis for
bounding CRPD under hierarchical scheduling when using a local
EDF scheduler. This analysis builds on existing work for
determining CRPD under single-level EDF scheduling [14], and
hierarchical scheduling with a local FP scheduler [13]. We also
showed that when taking inter-component CRPD into account,
minimising server periods does not maximise schedulability.
Instead, the server period must be carefully selected to minimise
inter-component CRPD while still ensuring short deadline tasks
meet their time constraints. We note that the analysis is somewhat
pessimistic due to the use of a tasks’ deadline for determining
how many times its component could be suspended and resumed
during its execution. In future work we would like to investigate
ways to resolve this. Furthermore, we believe that the analysis
could be optimised when using harmonic server periods, which
could lead to an improvement in the UCB-ECB-Multiset-Counted
approach. Finally, we would like to extend the analysis for use
with a pre-emptive global scheduler.

16

ACKNOWLEDGEMENTS

This work was partially funded by the UK EPSRC through the
Engineering Doctorate Centre in Large-Scale Complex IT Systems
(EP/F501374/1), the UK EPSRC funded MCC (EP/K011626/1), the
European Community's ARTEMIS Programme and UK Technology
Strategy Board, under ARTEMIS grant agreement 295371-2 CRAFTERS,
and COST Action IC1202: Timing Analysis On Code-Level (TACLe).

REFERNECES

[1] Altmeyer, S., Davis, R.l., and Maiza, C. Improved Cache Related
Pre-emption Delay Aware Response Time Analysis for Fixed Priority
Pre-emptive Systems. Real-Time Systems, 48, 5 (2012), 499-512.

[2] ARINC. ARINC 653: Avionics Application Software Standard
Interface (Draft 15). Airlines Electronic Engineering Committee
(AEEC), 1996.

[3] Baruah, S. K., Mok, A. K., and Rosier, L. E. Preemptive Scheduling
Hard-Real-Time Sporadic Tasks on One Processor. In Proceedings of
the 11th IEEE Real-Time Systems Symposium (RTSS) (1990), 182-
190.

[4] Baruah, S. K., Rosier, L. E., and Howell, R. R. Algorithms and
Complexity Concerning the Preemptive Scheduling of Periodic Real-
Time Tasks on One Processor. Real-Time Systems, 2, 4 (1990), 301-
324,

[5] Bastoni, A., Brandenburg, B., and Anderson, J. Cache-Related
Preemption and Migration Delays: Empirical Approximation and
Impact on Schedulability. In Proceedings of Operating Systems
Platforms for Embedded Real-Time applications (OSPERT) (2010),
33-44.

[6] Bini, E. and Buttazzo, G. Measuring the Performance of
Schedulability Tests. Real-Time Systems, 30, 1 (2005), 129-154.

[7]1 Deng, Z. and Liu, J. W. S. Scheduling Real-Time Applications in
Open Environment. In Proceedings of the IEEE Real-Time Systems
Symposium (RTSS) (1997).

[8] Feng, X. and Mok, A. K. A Model of Hierarchical Real-Time Virtual
Resources. In Proceedings of the 23rd IEEE Real-Time Systems
Symposium (RTSS) (2002), 26-35.

[9] Fisher, N. and Dewan, F. A Bandwidth Allocation Scheme for
Compositional Real-time Systems with Periodic Resources. Real-
Time Systems, 48, 3 (2012), 223-263.

[10] Lee, C., Hahn, J., Seo, Y. et al. Analysis of Cache-related Preemption
Delay in Fixed-priority Preemptive Scheduling. IEEE Transactions
on Computers, 47, 6 (June 1998), 700-713.

[11] Lipari, G. and Baruah, S. K. Efficient Scheduling of Real-time Multi-
task Applications in Dynamic Systems. In Proceddings Real-Time
Technology and Applications Symposium (RTAS) (2000), 166-175.

[12] Lipari, G., Carpenter, J., and Baruah, S. A Framework for Achieving
Inter-application Isolation in Multiprogrammed, Hard Real-time
Environments. In Proceedings of the 21st IEEE Real-Time Systems
Symposium (RTSS) (2000), 217-226.

[13] Lunniss, W., Altmeyer, S., Lipari, G., and Davis, R. I. Accounting for
Cache Related pre-emption Delays in Hierarchical Scheduling. In
Proceedings of the 22nd International Conference on Real-Time
Networks and Systems (RTNS) (2014).

[14] Lunniss, W., Altmeyer, S., Maiza, C., and Davis, R. I. Intergrating
Cache Related Pre-emption Delay Analysis into EDF Scheduling. In
Proceedings 19th IEEE Converence on Real-Time and Embedded
Technology and Applications (RTAS) (2013), 75-84.

[15] Richter, K. Compositional Scheduling Analysis Using Standard
Event Models. PhD Dissertation, Technical University Carolo-
Wilhelmina of Braunschweig, 2005.

[16] Shin, I. and Lee, I. Periodic Resource Model for Compositional Real-
Time Guarantees. In Proceedings of the 24th IEEE Real-Time
Systems Symposium (RTSS) (2003), 2-13.

Alignment of Memory Transfers of a
Time-Predictable Stack Cache

Sahar Abbaspour
Dep. of Applied Math. and Computer Science
Technical University of Denmark

sabb@dtu.dk

ABSTRACT

Modern computer architectures use features which often com-
plicate the WCET analysis of real-time software. Alterna-
tive time-predictable designs, and in particular caches, thus
are gaining more and more interest. A recently proposed
stack cache, for instance, avoids the need for the analysis of
complex cache states. Instead, only the occupancy level of
the cache has to be determined.

The memory transfers generated by the standard stack
cache are not generally aligned. These unaligned accesses
risk to introduce complexity to the otherwise simple WCET
analysis. In this work, we investigate three different ap-
proaches to handle the alignment problem in the stack cache:
(1) unaligned transfers, (2) alignment through compiler-gen-
erated padding, (3) a novel hardware extension ensuring
the alignment of all transfers. Simulation results show that
our hardware extension offers a good compromise between
average-case performance and analysis complexity.

Categories and Subject Descriptors

C.3 [Special-Purpose and Application-Based Systems]|:

Real-time and embedded systems; B.3.2 [Memory Struc-
tures]: Design Styles—Cache memories

General Terms

Algorithms, Measurement, Performance

Keywords
Block-Aligned Stack Cache, Alignment, Real-Time Systems

1. INTRODUCTION

In order to meet the timing constraints in systems with
hard deadlines, the worst-case execution time (WCET) of
real-time software needs to be bounded. Many features of
modern processor architectures, such as caches and branch
predictors, improve the average performance, but have an
adverse effect on WCET analysis. Time-predictable com-
puter architectures thus propose alternative designs that are
easier to analyze, focusing in particular on analyzable cache
and memory designs [13, 8]. One such alternative cache de-
sign is the stack cache [5, 9], i.e., a cache dedicated to stack
data. The stack cache is a complement to a regular data
cache and thus reduces the number of accesses through the
data cache. This promises improved analysis precision, since
unknown access addresses can no longer interfere with stack
accesses (and vice versa). Secondly, the stack cache design

Florian Brandner
Computer Science and System Eng. Dep.
ENSTA ParisTech
florian.brandner@ensta-paristech.fr

is simple and thus easy to analyze [5]. The WCET anal-
ysis of traditional caches requires precise knowledge about
the addresses of accesses [13] and has to take the complex
replacement policy into account. The analysis of the stack
cache on the other hand is much easier and amounts to a
simple analysis of the cache’s fill level (occupancy) [5].

The original stack cache proposes three instructions to re-
serve space on the stack (sres), free space (sfree), and to
ensure the availability of stack data in the cache (sens). The
reserve and ensure instructions may cause memory transfers
between the stack cache and main memory and thus are rel-
evant for WCET analysis. Since these stack cache control
instructions operate on words, the start addresses of mem-
ory transfers are not guaranteed to be aligned to the memory
controller’s burst size. Therefore, unaligned transfers incur
a performance penalty that needs to be analyzed. This is in
contrast to traditional caches where the cache line size is typ-
ically aligned with the burst size. This risks anew to intro-
duce complexity to the otherwise simple WCET analysis of
the stack cache. We thus compare three approaches to han-
dle this alignment problem for the stack cache: (1) a stack
cache initiating unaligned transfer, (2) compiler-generated
padding to align all stack cache allocations (and thus all
transfers), and (3) a novel hardware extension that guaran-
tees that all stack cache transfers are block-aligned.

For our hardware extension a burst-sized block of the stack
cache is used as an alignment buffer, which can be used to
perform block-aligned memory transfers. The downside of
this approach is that the effective stack cache size is reduced
by one block. On the other hand, the block-aligned trans-
fers simplify WCET analysis. In addition, this allows us to
perform allocations at word granularity, which improves the
cache’s utilization. The hardware overhead of our approach
is minimal: the implementation of sres and sens is sim-
plified, while sfree requires some minor extensions. The
free instructions may need to initiate memory transfers to
preserve the alignment of the stack cache content.

Section 2 introduces the stack cache, followed by a dis-
cussion of related work. In Section 4, we explain the block-
aligned stack cache and its impact on static analysis. We
finally present the results from our experiments in Section 5.

2. BACKGROUND

The original stack cache [1] is an on-chip memory imple-
mented as a special ring buffer utilizing two pointers: stack
top (ST) and memory top (MT). The ST points to the stack
data either stored in the cache or main memory. The MT
points to the stack data in main memory. The difference

17

MT — ST represents the occupied space in the stack cache.
Since this value cannot exceed the total size of the stack
cache (]SC|), 0 < MT — ST < |SC| always holds.

Three control instructions manipulate the cache (more de-
tails are available elsewhere [1]):

Subtract x from ST. If this violates the equa-
tion from above, i.e., the stack cache size is ex-
ceeded, a spill is initiated, which lowers MT until
the invariant is satisfied again.

Ensure that the occupancy is larger than x. If
this is not the case, a fill is initiated, which
increments MT accordingly so that MT — ST > .
Add z to ST. If this results in a violation of the
invariant, MT is incremented accordingly. Mem-
ory is not accessed.

The analysis of the stack cache [5] is based on the obser-
vation that the concrete values of ST and MT are not relevant
for the worst-case behavior. Instead the focus is on deter-
mining the occupancy, i.e., the value MT — ST. The impact
of function calls is taken to account by the function’s dis-
placement, i.e. the number of cache blocks spilled to main
memory during the function call. The analysis then con-
sists of the following phases: (1) an analysis of the mini-
mum/maximum displacement for call sites on the call graph,
(2) a context-independent, function-local data-flow analysis
bounding the filling at ensure instructions, (3) a context-
independent, function-local data-flow analysis bounding the
worst-case occupancy for call sites, and (4) a fully context-
sensitive analysis bounding the worst-case spilling of reserves.

The spilling and filling bounds at the stack control instruc-
tions can then be taken into account during WCET analysis
to compute a final timing bound. Note that the alignment
is not considered here and thus handled conservatively.

sres I:

sens I:

sfree x:

3. RELATED WORK

Static analysis [12, 3] of caches typically proceeds in two
phases: (1) potential addresses of memory accesses are de-
termined, (2) the potential cache content for every program
point is computed. The alignment usually is not an issue,
as the size can be aligned with the main memory’s burst
size. Through its simpler analysis model, the stack cache
does not require the precise knowledge of addresses, thus
eliminating a source of complexity and imprecision. It has
been previously shown that the stack cache serves up to 75%
of the dynamic memory accesses [1]. An extension to avoid
spilling data that is coherent between the stack cache and
main memory [9] was presented.

Our approach to compute the worst-case behavior of the
stack cache has some similarity to techniques used to stati-
cally analyze the maximum stack depth [2]. Also related to
the concept of the stack cache, is the register-window mech-
anism of the SPARC architecture, for which limited WCET
analysis support exists in Tidorum Ltd.’s Bound-T tool [11].

Alternative caching mechanisms for program data exist
with the Stack Value File [6] and several solutions based
on Scratchpad Memory (SPM) (e.g. [7]), which manage the
stack in either hardware or software.

4. BLOCK-ALIGNED STACK CACHE

As explained above, the original stack cache operates on
words and thus does not automatically align transfers ac-
cording to the main memory’s requirements. With regard

to average performance, this is less of an issue and may only
lead to a less optimal utilization of the main memory’s band-
width. For the WCET analysis the issue is more problem-
atic. The alignment of the stack cache content needs to be
known or otherwise all access have to be assumed unaligned.
This information, however, is highly dependent on execution
history and thus inevitably increases analysis complexity.

4.1 Hardware Modifications

This work proposes a hardware extension that guarantees
that the stack cache initiates aligned memory transfers only,
i.e., the start address as well as the length of the memory
transfer are multiples of the memory’s alignment require-
ment, i.e. the burst size. This avoids the need to track the
alignment of the stack cache content during the WCET anal-
ysis, while allowing us to perform all stack cache operations
at word granularity, which improves the cache’s utilization.

The stack cache is organized in blocks matching the burst
size. Moreover, we logically reserve a block in the stack cache
as an alignment buffer. Note that this reserved block is not
fixed, instead the last block pointed to by MT dynamically
serves as this alignment buffer. This block is not accessible,
for instance, to the compiler, and thus reduces the effective
size of the stack cache by one block. The buffer allows us
to align all the memory transfers to the desired block size.
With regard to the original stack cache (see Section 2), this
corresponds to an additional invariant that needs to be re-
spected by the stack cache hardware given a block size BS:

MT mod BS = 0. (1)

In order to respect this new invariant the stack control
instructions have to be adapted as follows:

sres x: Subtract x from ST. If the occupancy exceeds
the stack cache size, a spill is initiated, which
lowers MT by multiples of BS until the occupancy
is smaller than |SC|.

If the occupancy is not larger than z, a fill is
initiated, which increments MT by multiples of
BS so that MT — ST > x.

Add z to ST. If MT < ST, set MT to the smallest
multiple of BS larger than ST and fill a single
block from main memory.

It is easy to see that the modifications to sres and sens
are minimal. Clearly, when Eq. 1 holds, spilling and filling
in multiples of BS ensures that the equation also holds after
these instructions. The reserved block serving as an align-
ment buffer, in addition guarantees that sufficient space is
available during filling to receive data and sufficient data is
available during spilling to transmit data.

The situation is more complex for sfree. Whenever a
number of sfree instructions are executed in a sequence
such that the occupancy becomes zero, the MT pointer needs
to be updated. In order to satisfy Eq. 1, two options exist:
(a) set MT to the largest multiple of BS smaller than ST or
(b) set MT to the smallest multiple of BS larger that ST. The
former option would mean that the cache’s occupancy be-
comes negative, which would entail non-trivial modifications
to the other stack control instructions. The second option,
which represents a non-negative occupancy, thus is prefer-
able. However, in order to guarantee that the content of the
stack cache reflects the occupancy (MT — ST) a single block
has to be filled from main memory.

sens I:

sfree z:

18

4.2 Static Analysis

The static analysis proposed for the standard stack cache [5]
is in large parts applicable to the new block-aligned stack
cache proposed as well. The main difference is that the tim-
ing of sfree instructions also has to be analyzed.

An sfree is required to perform a fill, iff, the minimal oc-
cupancy before the instruction is smaller than the instruc-
tion’s argument z. The analysis problem for free instructions
is thus identical to the analysis of ensure instructions [5].

In addition, the displacement of function calls has to be
refined to account for data of the caller that is reloaded
to the cache by an sfree before returning from the call.
This is particularly important for the minimum displace-
ment, needed for the analysis of sens-instructions, as the
original displacement analysis is not safe anymore, unless
lazy spilling [9] is used. This information can easily be de-
rived and propagated on the program’s call graph.

5. EXPERIMENTS

For our experiments we extended the hardware implemen-
tation of the stack cache available with the Patmos proces-
sor [10] as well as the cycle-accurate simulation infrastruc-
ture and the accompanying LLVM compiler (version 3.4).
The average case performance was measured for all bench-
marks of the MiBench benchmark suite [4]. The benchmaks
were compiled, with optimizations (-02) and stack cache
support enabled, and then executed on the Patmos simu-
lator to collect runtime statistics. The simulator was con-
figured to simulate a 2 KB data cache (32 B blocks, 4 way
set-associative, LRU replacement policy, and write-through
strategy), a 2 KB method cache (32 B blocks, associativ-
ity 8), and a 128 B stack cache (with varying configurations).
All caches are connected to a shared main memory, which
transfers data in 32 B bursts. A moderate access latency of
14 cycles for reads and 12 cycles for writes is assumed.

The benchmarks were tested under three different scenar-
ios: (1) the stack cache performs unaligned memory trans-
fers (unaligned), (2) the compiler generates suitable padding
to align all stack allocations and consequently all memory
transfers (padding), and (3) the stack cache employs the
block-aligned strategy from Section 4 (block-aligned).
Stack data is usually aligned at word boundaries for Pat-
mos, which applies to the unaligned and block-aligned
configurations. The padding configuration, however, aligns
all data with the burst size (32 B).

1.08

block-aligned I [padding I unaligned

1.02

BT

Total Execution Cycles (normalized)

>>Y1:‘N:1 ::"“‘"'—‘: s = om0 = =
FEERTE5TIEIREELTEDE S
S E o & £ £ T ©T E TS B g E E 3§ E =
L 2 B = @ nom = =R~ B (S B 7 B B) 7}
= [P [= = & & Lo LT)
Y g geF T eEERIgES g 2
E 2 § 5A&7° %% g "5 & g
S = 2 2 T 7 < 2 o 2
Z 5 = z & 2
< T

Q

Figure 1: Total execution cycles normalized to the
block-aligned configuration (lower is better).

block-aligned I [l padding In unaligned

AncHlinil

Stack Cache Stall Cycles (normalized)

bitcents
crc-32
erijndael
fit-tiny -
ifft-tiny
patricia -
gsort-small -
say-tiny -
search-large

basicmath-tiny -
cj pcg—small
csusan-small
dijkstra-small
esusan-small
search-small
ssusan-small

Figure 2: Total number of stall cycles induced by the
stack cache normalized to the block-aligned config-
uration (lower is better).

The runtime impact of the various strategies to handle the
alignment of memory transfers between the stack cache and
the main memory is summarized in Figure 1. Overall, the
unaligned and block-aligned configurations are very close
with respect to runtime, while the padding configuration
performs the least. In particular, the bitcnts, basicmath-
tiny, fft-tiny, and ifft-tiny benchmarks here show run-
time increases of 1.5% and more.

Note that the runtime contribution of the stack cache is
relatively small, which in general precludes very large vari-
ations in the total runtime due to the stack cache. The
simulator thus was extended to collect detailed statistics on
the number of stall cycles induced by the stack cache as well
as the spilling and filling performed. Figure 2 shows the
total number of stall cycles induced by the stack cache, nor-
malized to the block-aligned configuration. The padding
configuration increases the number of stall cycles in all cases
in relation to our block-aligned strategy (up to a factor
of more than 4). The padding introduced by the compiler
generally increases the stack cache’s occupancy and conse-
quently leads to additional memory transfers. Also for the
unaligned configuration the number of stall cycles is larger
than our new strategy, since the small unaligned memory
transfers performed by this configuration induce some over-
head. For two benchmarks, cjpeg-small and erijndael,
the number of stall cycles is considerably smaller in this
configuration. Our block-aligned stack cache here suffers
additional filling and spilling due to its reduced effective size,
as shown in the following Table.

The impact of the various configurations on the amount
of data spilled and filled from/to the stack cache is shown
in Table 1. As noted above the padding configuration per-
forms additional memory transfers (spills and fills) due to
the padding introduced by the compiler to ensure alignment.
The unaligned configuration on the other hand requires the
least filling and spilling as it transfers the precise amount
of data needed. In addition, the reduced stack cache size
available for the block-aligned strategy (recall that one
block is reserved as an alignment buffer) plays in favor of
the unaligned configuration.

To summarize, compiler generated padding is a simple so-
lution to the alignment problem for the stack cache, which
is easy to analyze and generally performs reasonably well,

19

Block-Aligned Padding Unaligned
Benchmark Spill Fill Spill rel. Fill rel. Spill rel. Fill rel.
basicmath-tiny 791288 968544 1696832 2.14 1981192 2.05 1026895 1.30 1165108 1.20
bitcnts 1201992 1202720 3603152 3.00 3604328 3.00 826933 0.69 827437 0.69
cjpeg-small 96 840 123048 113512 1.17 155672 1.27 12821 0.13 24500 0.20
crc-32 2984 3312 11256 3.77 38688 11.68 2961 0.99 3114 0.94
csusan-small 9184 10000 32136 3.50 35936 3.59 13403 1.46 13619 1.36
dbf 11984 78136 22456 1.87 124672 1.60 10395 0.87 66056 0.85
dijkstra-small 98 056 99 520 472944 4.82 478152 4.80 49047 0.50 50518 0.51
djpeg-small 28032 29112 33688 1.20 36 336 1.25 14688 0.52 15369 0.53
drijndael 168 584 212800 329600 1.96 373952 1.76 29693 0.18 49823 0.23
ebf 37536 103624 65040 1.73 243872 2.35 30618 0.82 114959 1.11
erijndael 196 240 240520 366280 1.87 410696 1.71 34258 0.17 54502 0.23
esusan-small 18952 19912 57896 3.05 61912 3.11 30528 1.61 30852 1.55
fit-tiny 215936 217712 448480 2.08 470464 2.16 277788 1.29 279011 1.28
ifft-tiny 206 464 207952 425440 2.06 446864 2.15 264063 1.28 264994 1.27
patricia 3883936 4590920 6638160 1.71 8089800 1.76 3740659 0.96 4514761 0.98
gsort-small 643296 1283680 1126664 1.75 2411584 1.88 772978 1.20 1493122 1.16
say-tiny 261016 358976 303296 1.16 460560 1.28 98239 0.38 118011 0.33
search-large 216 632 322344 323680 1.49 534 824 1.66 207978 0.96 366106 1.14
search-small 8528 14816 12688 1.49 24984 1.69 7963 0.93 16214 1.09
sha 5448 30248 8656 1.59 33608 1.11 1935 0.36 2007 0.07
ssusan-small 18280 19096 66736 3.65 71336 3.74 16247 0.89 16463 0.86

Table 1: Words spilled and filled by the stack cache configurations block-aligned, padding, and unaligned (lower
is better, rel. indicates the normalized value in comparison to the block-aligned configuration).

but may suffer from bad outliers. It generally leads to in-
creased spilling and filling as well as a reduced utilization
of the stack cache. Generating unaligned memory transfers
naturally performs well for the average case. but, compli-
cates WCET analysis since the alignment of the stack data
is highly context dependent. The new solution proposed in
this work, the block-aligned stack cache, offers a reasonable
trade-off, which combines moderate hardware overhead with
good average-case performance and simple WCET analysis.

Acknowledgment

(6]

(7]

B

This work was partially funded under the European Union’s
7th Framework Programme under grant agreement no. 288008:
Time-predictable Multi-Core Architecture for Embedded Sys-
tems (T-CREST).

6.
(1]

2l

3]

(4]

[5]

REFERENCES

S. Abbaspour, F. Brandner, and M. Schoeberl. A
time-predictable stack cache. In Proc. of the Workshop
on Software Technologies for Embedded and
Ubiquitous Systems. 2013.

C. Ferdinand, R. Heckmann, and B. Franzen. Static
memory and timing analysis of embedded systems
code. In Proc. of Symposium on Verification and
Validation of Software Systems, pages 153-163.
Eindhoven Univ. of Techn., 2007.

C. Ferdinand and R. Wilhelm. Efficient and precise
cache behavior prediction for real-time systems.
Real-Time Systems, 17(2-3):131-181, 1999.

M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M.
Austin, T. Mudge, and R. B. Brown. MiBench: A free,
commercially representative embedded benchmark
suite. In Proc. of the Workshop on Workload
Characterization, WWC ’01, 2001.

A. Jordan, F. Brandner, and M. Schoeberl. Static
analysis of worst-case stack cache behavior. In Proc. of
the Conf. on Real-Time Networks and Systems, pages
55-64. ACM, 2013.

[9

[10]

[11]

[12]

[13]

20

H.-H. S. Lee, M. Smelyanskiy, G. S. Tyson, and C. J.
Newburn. Stack value file: Custom microarchitecture
for the stack. In Proc. of the International Symposium
on High-Performance Computer Architecture, HPCA
’01, pages 5-14. IEEE, 2001.

S. Park, H. woo Park, and S. Ha. A novel technique to
use scratch-pad memory for stack management. In In
Proc. of the Design, Automation Test in Europe
Conference, DATE ’07, pages 1-6. ACM, 2007.

J. Reineke, 1. Liu, H. D. Patel, S. Kim, and E. A. Lee.
PRET DRAM controller: Bank privatization for
predictability and temporal isolation. In Proc. of the
Conference on Hardware/Software Codesign and
System Synthesis, pages 99-108. ACM, 2011.
S.Abbaspour, A. Jordan, and F. Brandner. Lazy
spilling for a time-predictable stack cache:
Implementation and analysis. In Proc. of the
International Workshop on Worst-Case Execution
Time Analysis, volume 39 of OASICS, pages 83-92.
Schloss Dagstuhl, 2014.

M. Schoeberl, P. Schleuniger, W. Puffitsch,

F. Brandner, C. Probst, S. Karlsson, and T. Thorn.
Towards a Time-predictable Dual-Issue
Microprocessor: The Patmos Approach, volume 18,
pages 11-21. OASICS, 2011.

BoundT time and stack analyzer - application note
SPARC/ERC32 V7, V8, V8E. Technical Report
TR-AN-SPARC-001, Version 7, Tidorum Ltd., 2010.
R. T. White, C. A. Healy, D. B. Whalley, F. Mueller,
and M. G. Harmon. Timing analysis for data caches
and set-associative caches. In Proceedings of the
Real-Time Technology and Applications Symposium,
RTAS 97, pages 192-203, 1997.

R. Wilhelm, D. Grund, J. Reineke, M. Schlickling,
M. Pister, and C. Ferdinand. Memory hierarchies,
pipelines, and buses for future architectures in
time-critical embedded systems. Trans. Comp.-Aided
Des. Integ. Cir. Sys., 28(7):966-978, 2009.

The WCET Analysis using Counters - A Preliminary
Assessment

Remy Boutonnet
Verimag, UJF
Grenoble, France
remy.boutonnet@imag.fr

ABSTRACT

The Worst-Case Execution Time (WCET) analysis aims to
statically and safely bound the longest execution path of a
program. It is also desirable for the computed bound to be
as close as possible to the actual WCET, thus making the
result of a WCET analysis tight. In this paper we propose
a methodology for the WCET analysis using an abstract
program (with special program variables called counters),
in order to better exploit the underlying program seman-
tics (via abstract interpretation) and to produce potentially
tighter WCET bounds.

Categories and Subject Descriptors

H.4 [Information Systems Applications|: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complezity mea-
sures, performance measures

Keywords

WCET Analysis, abstract interpretation, semantic analysis

1. INTRODUCTION

The interaction of hard real-time systems with their exter-
nal environment is governed by a set of timing constraints.
In order to solve these constraints, it is necessary to esti-
mate the worst-case execution time (WCET) of the system
components. A WCET analysis computes for a given task
or program, a WCET bound which should be safe and tight
(close to the actual WCET).

The WCET analysis is performed at the binary level, with
knowledge about the underlying architecture. First, the typ-
ical WCET analysis workflow as standardized in [18], ex-
tracts the control-flow graph (CFG) from the binary code.
Subsequently, this CFG is the working structure for both
flow- and architecture-related analyses. Their result, which
is an annotated CFG, is used to compute the WCET bound
in a final phase, called path analysis. In order to achieve
tight bounds, a WCET analysis relies on a number of spe-
cific analyses, from flow analysis (e.g. detection of loop
bounds and infeasible paths) to architecture analysis (e.g.
of caches).

In this work, we address the flow analysis from the follow-
ing angle: how to extract more accurate semantic properties
which can help the WCET analysis by removing some infea-
sible paths. We denote an analysis which extracts semantic
properties, invariants on program executions, as a semantic
analysis. More specifically, in our context a semantic analy-
sis targets invariants which are directly translated into inte-

21

Mihail Asavoae
Verimag, UJF
Grenoble, France
mihail.asavoae@imag.fr

x=0;i=0;s=0; //a=0,8=0~v=0;

while (i < N) { /] a++;
if(x < 10){
s+=3; /] B++;
}
if(s < N){
, s +=2; x ++; /] v+
i+

Figure 1: Our example program instrumented with
counters «a, 3,y

ger linear programming (ILP) constraints, as emphasised by
the implicit path enumeration technique (IPET) [17]. Our
work uses a program analyzer called Pagai [11], at the LLVM
Intermediate Representation level, over the LLVM compiler
infrastructure [15]. The key element of our approach is the
extraction of invariants from an abstract representation of
the input program, as an instrumented code with counters.
A counter is a special program variable which is attached
to a program part (e.g. a basic block) and incremented ev-
ery time the control flows through that part. We propose
the following workflow: after an automated instrumentation
of LLVM-IR code, the semantic analysis is performed using
Pagai (with a linear arithmetic abstract domain [6]). The
invariants, as relations between counters, are transferred to
binary code (actually to the path analysis formulation of
Otawa [4]), using a block-level traceability tool. We mea-
sure the improvements on the WCET bounds on a set of
syntactic and standard benchmarks.

We use the program described in Figure 1 to advocate on
how the WCET analysis can benefit from a counter-based
approach. The counters are «, 3,7, and N is a loop bound.

The following relations can be derived on those counters,
which are satisfied at the end of the program:

B+v<a+10 (1)

It shows that the blocks 4 and 6 of the control flow graph
of this program, in Figure 2, are both executed in the same
iteration of the while loop at most 10 times. Therefore, this
information is interesting for us since it leads to refinements
in the WCET of the whole program.

Outline. In Section 2 we overview the existing methods
on extraction of semantic properties for the WCET analysis.

b2

true

—(z <10 b3
b4 s=s+3 false

Figure 2: The control flow graph corresponding to
this example.

In Section 3 we elaborate on how our system is designed,
implemented and experimented with. We draw conclusions
and discuss about directions of future work in Section 4.

2. RELATED WORK
The WCET analysis requires knowledge about loop bounds

and infeasible paths in order to compute tight WCET bounds.

The existing support for automatic extraction of semantic
properties like the aforementioned ones is usually coming
in two flavours: as a result of abstract interpretation or of
symbolic execution. More recent approaches also use state
of the art satisfiability modulo theory (SMT) solving to ad-
dress parts of the WCET analysis.

Abstract interpretation, introduced in [5] is one of the
major program reasoning techniques. It relies on abstract
domains, like linear arithmetic [6] and fixpoint computation
to generate invariants at the program points of interest. In
the context of WCET analysis, abstract interpretation plays
a key role [19] in both control-flow (e.g. in value analysis)
or processor behaviour analyses (e.g. in cache analyses).

Symbolic execution [13] is a technique which uses arbi-
trary values as program inputs and allows program reason-
ing at the level of execution paths. Symbolic execution has
drawn interest from the WCET analysis community [9, 14],
but while it is potentially very precise, it suffers from scala-
bility issues when it is applied on large programs. As a con-
sequence, symbolic execution in WCET analysis is coupled
with search space reduction [9] techniques or it is applied on
code fragments [14].

Recent works [14, 10] rely on SMT-solving techniques
to compute WCET bounds. For example, WCET squeez-
ing [14] employs a form of symbolic execution on paths
returned by an external WCET analyzer. This technique
embeds the path analysis into a CEGAR loop, allowing an
incremental strengthening of the WCET bound. The ap-
proach in [10] computes WCET bounds as solutions of op-
timisation modulo theory problems (i.e. extensions of the

22

SMT to maximisation problem). The program semantics
are encoded as an SMT formula. To maintain the scalabil-
ity of the analysis, the original SMT formula is augmented
with additional constraints called ”cuts”, which express sum-
maries of portions of code.

Using counters to extract semantic properties is not new,
existing counter-based approaches have been proposed, for
example in (8] using a single counter and in [12] with multi-
ple counters. The former considers one counter which repre-
sents time and accumulates the program semantics into it.
The later overcome the issue with the single-counter annota-
tions to work with complex invariant generation tools, CFG
graph transformation and generation of progress invariants,
it computes loop bounds and infeasiblilty relations.

The existing WCET analyzers span from industrial strength
platforms, like aiT [1] to academic tools like Otawa [4],
SWEET [2] and Chronos [16]. The oRange tool 7] comple-
ments the Otawa timing analyzer by computing loop bounds
using static analysis with abstract interpretation [5, 3] on
C programs. The SWEET tool supports an implementa-
tion of the abstract execution over the domain of intervals.
The Chronos timing analyzer integrates a pattern-based se-
mantic analysis which keeps track, for a particular branch,
of which assignments or other branches may influence it.
The industrial timing analyzer aiT uses a similar pattern-
driven analysis to identify code portions (e.g. loop or branch
shapes) and apply the appropriate analysis. While we con-
ducted limited experiments on SWEET, Chronos and aiT,
these tools seem capable to detect certain types of bounds
and infeasibility relations: for SWEET - up to the strengths
of the abstract domain and for Chronos and aiT - up to
the code structure which exhibits certain syntactic patterns.
However, using a specialised static analyzer to compute se-
mantic properties and to transfer these properties seems to
offer power (through various abstract domains) as well as
flexibility (i.e. driven by the strengths of the static ana-
lyzer).

3. SYSTEM DESIGN AND IMPLEMENTA-
TION

3.1 General System

In the most general context, a counter-based methodology
for WCET analysis is driven by two elements: a compilation
toolchain (which also fixes the input language) and a WCET
analyzer (which includes the necessary processor behaviour
analyses). Next in Figure 3 we describe an implementation
of this methodology over the LLVM infrastructure and the
Otawa timing analyzer.

The standard WCET analysis workflow, in Figure 3 (left)
computes the WCET bound of the binary code (in our case it
is ARM code) generated from LLVM-IR code. The Otawa
timing analyzer relies on an ILP formulation of the path
analysis and embeds an ILP solver to compute the result
(i.e. the WCET bound). Our counter-based analysis work-
flow, in Figure 3 (right) could be seen as a plugin for the
WCET analysis. For the purpose of semantics extraction,
the Pagai static analyzer uses the initial LLVM-IR code,
instrumented with counters. Pagai computes invariants on
the counters, at the LLVM-IR level, using either abstract
interpretation or its combination with SMT solving. The
invariants are directly translated into ILP constraints. Fi-

Instrumented
LLVM-IR
Code

LLVM compiler

PAGATI Analyzer

Invariants
(LLVM)
Traceability Tool

Otawa Tim-
ing Analyzer

ILP For-
mulation T~~.

’

Sem. Pro\pérﬁes\ Invariants
(ARM)
ILP Solver
Legend:

Data > (Phase)

< WCET >

Figure 3: General workflow for Counter-based
WCET Analysis

nally, a traceability tool maps the LLVM-IR blocks to ARM
basic blocks and facilitates the transfer of Pagai invariants
on counters at the binary level. These properties are inte-
grated into the path analysis of Otawa and solved in order to
obtain the WCET bound. The WCET analysis is performed
over the initial program, the instrumented code is used only
to extract invariants w.r.t. program semantics. Moreover,
our workflow does not consider code optimisations between
the LLVM-IR and ARM levels, however the code could and
should be optimized from C (i.e. not represented in the
workflow) and LLVM-IR levels. Our counter-based method-
ology works when replacing Otawa with the aiT, SWEET or
Chronos timing analyzers (all using IPET), up to some sup-
ported architectures. The counters approach can be used in
difference scenarios: to find or refine loop bounds or infeasi-
ble paths, particularly those created by mutually exclusive
conditions.

By processing the example of Figure 1 through the PA-
GAI static analyzer, we automatically obtain the following
constraint between the counters «, 5 and ~:

04+a—8—v > 0 (2)

aswellas —a+38+2y>0,a—fF>0and a—~v > 0.

This relation shows what we have derived by hand for
our example: the then-parts of the two conditions in the
while loop are both executed in the same iteration at most
ten times. Therefore, the counters approach with a static
analyzer is able to automatically find a non-trivial case of
infeasible path: the path containing the blocks b4, b5, b6,
b7 is executed at most ten times.

We can also use the counters approach to find or refine a
loop bound where other tools like oRange cannot find one.
In our example in Figure 1, if the condition of the while loop
i < N is replaced by z < 10 and the second condition s < N

23

by s < 150, the PAGAI static analyzer outputs the relation
—10 + a = 10 which enables us to show that the while loop
is executed at most 10 times in that case.

3.2 Experiments

Our set of benchmark programs covers a wide range of ap-
plications (though of small size - column LOC in Figure 4).
We include automatically generated code from high-level de-
signs - (e.g. asnapshot called selector and avionics-specific
controllers in roll-control and cruise-control) as well as
several syntactic programs with complicated infeasible paths
(e.g. sou, even, break, and rate_limiter). In order to ex-
tract semantic properties using the Pagai static analyzer, we
automatically instrument the LLVM IR code (the working
level for Pagai) with a number of counter variables (in col-
umn #Cntrs) and a set of invariants (in column #Inv)
which are fed into the ILP representation of path analysis.
In this paper, we use the processor behavior analysis as pro-
vided by Otawa, our main concern being the program-level
semantic analysis.

The set of invariants covers relations between basic blocks
(represented by their respective counter variable) of several
forms. First, there are the loop bounds types of relations,
like for the benchmarks break and selector. Second, the
path infeasibility relations are expressed either as invariants
on two counter variables (in the case of pairwise exclusive
branches) - for the benchmark programs sou and even - or
as a counter value which is equal to zero (i.e. the paths going
through the particular basic block are infeasible) - for the
benchmark rate_limiter. Moreover, for some benchmarks
like selector, the infeasibility relations are more expressive
as an invariant on three counter variables than the pairwise
relations. Third, the set of invariants also includes relations
which do not contribute to a reduction of the WCET bound.
Overall, the experiments show promising results because, in
general it is difficult to obtain improvements of more than
several percents (indeed, the code size is rather small).

4. CONCLUSIONS

In this paper we addressed the problem on how to tune
the WCET analysis so as to produce tighter WCET bounds.
As such, we proposed a methodology to extract semantic in-
formation via special program variables called counters. We
used a program analyzer, called Pagai, to compute flow re-
lations (as relations between these counters). Finally, we
transferred these relations into an IPET formulation of the
path analysis and observed encouraging results with im-
provements over 20% on certain benchmarks. The method-
ology is still under development as we would like to investi-
gate how our counter-based WCET analysis compares with
and could complement existing WCET analyzers using au-
tomated extraction of semantic properties.

5. ACKNOWLEDGMENTS

The authors thank Fabienne Carrier and Claire Maiza for
their valuable comments on the paper content and Julien
Henry for his help with the Pagai static analyzer. This work
was partially funded by grant W-SEPT (ANR-12-INSE-0001)
from the French Agence national de la recherche.

6. REFERENCES
[1] AbsInt Angewandte Informatik: aiT Worst-Case

Execution Time Analyzers.

Name Program Description | LOC | #Cntrs | #Inv | WCET init | WCET final | Red % |

selector Fragment of SCADE design | 134 14 14 1112 528 52.6%
roll — control From the SCADE Suite 234 25 19 501 501 0%
cruise — control From the SCADE Suite 234 35 31 881 852 3.3%

sou Syntactic benchmark 1 69 3 3 99 67 47.8%

even Syntactic benchmark 2 82 9 8 2807 2210 21.3%
break Syntactic benchmark 3 114 4 5 820 820 0%

rate_limiter Program from [10] 35 2 2 43 29 32.6%

Figure 4: Set of benchmarks for the counter-based WCET analysis

2]

3

http://www.mrtc.mdh.se/projects/wcet /sweet /index.html.

Z. Ammarguellat and W. L. H. III. Automatic

recognition of induction variables and recurrence

relations by abstract interpretation. In PLDI, pages

283-295, 1990.

C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat.

OTAWA: An open toolbox for adaptive WCET

analysis. In SEUS, 2010.

P. Cousot and R. Cousot. Abstract interpretation: a

unified lattice model for static analysis of programs by

construction or approximation of fixpoints. In POPL,

1977.

P. Cousot and N. Halbwachs. Automatic discovery of

linear restraints among variables of a program. In

POPL, 1978.

M. de Michiel, A. Bonenfant, H. Cassé, and P. Sainrat.

Static loop bound analysis of ¢ programs based on flow

analysis and abstract interpretation. In RTCSA, 2008.

[8] S. Gulwani, K. K. Mehra, and T. M. Chilimbi. Speed:

precise and efficient static estimation of program

computational complexity. In POPL, pages 127-139,

2009.

J. Gustafsson, A. Ermedahl, C. Sandberg, and

B. Lisper. Automatic derivation of loop bounds and

infeasible paths for WCET analysis using abstract

execution. In RTSS, 2006.

[10] J. Henry, M. Asavoae, D. Monniaux, and C. Maiza.
How to compute worst-case execution time by
optimization modulo theory and a clever encoding of
program semantics. In LCTES, pages 43-52, 2014.

[11] J. Henry, D. Monniaux, and M. Moy. Pagai: A path
sensitive static analyser. Electr. Notes Theor. Comput.
Seci., 289:15-25, 2012.

[12] N. Holsti. Computing time as a program variable: a
way around infeasible paths. In WCET, 2008.

[13] J. C. King. Symbolic execution and program testing.
Commun. ACM, 19(7):385-394, 1976.

[14] J. Knoop, L. Kovécs, and J. Zwirchmayr. Wcet
squeezing: on-demand feasibility refinement for proven
precise wecet-bounds. In RTNS, pages 161-170, 2013.

[15] C. Lattner and V. S. Adve. Llvin: A compilation
framework for lifelong program analysis &
transformation. In CGO, pages 75-88, 2004.

[16] X. Li, L. Yun, T. Mitra, and A. Roychoudhury.

4

[5

6

[7

9

24

(17]

(18]

(19]

Chronos: A timing analyzer for embedded software.
Sci. Comput. Program., 69(1-3):56—67, 2007.

Y.-T. S. Li, S. Malik, and A. Wolfe. Efficient
microarchitecture modeling and path analysis for
real-time software. In IEEE Real-Time Systems
Symposium, pages 298-307, 1995.

R. Wilhelm and all. The worst-case execution-time
problem—overview of methods and survey of tools.
ACM TECS, 7(3):1-53, 2008.

R. Wilhelm and B. Wachter. Abstract interpretation
with applications to timing validation. In CAV, pages
22-36, 2008.

Adaptation of RUN to Mixed-Criticality Systems

Romain GRATIA
Technological Research
Institute SystemX
romain.gratia@irt-
systemx.fr

ABSTRACT

Mixed-criticality scheduling provides a method to better al-
locate CPU resources between tasks, whose criticalities, e.g.
importance, are not the same for the well functioning of the
overall system. Considering that tasks have different CPU
consumption modes, the core idea is to accept that when
tasks enter higher CPU consumption modes then lesser crit-
icality tasks may no longer be scheduled. Hence, it allows
deploying more tasks on fewer processors accepting that in
the worst mode only most critical tasks will respect their
deadlines.

This paper presents a method to adapt RUN, an optimal
scheduling algorithm for multicore processor, to cope with
mixed-criticality task sets. The RUN approach deeply relies
on a data structure called reduction tree computed off-line
to elect tasks [6]. We adapt this tree to define a scheduler
compatible with mixed-criticality requirements. We briefly
present how these modifications impact the on-line part of
the original RUN algorithm. Even if optimality is lost, pre-
liminary experiments are encouraging, even with task sets
identified as difficult for our proposal.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics

General Terms
Theory

Keywords

Mixed-Criticality, Multiprocessor, Global Scheduling

1. INTRODUCTION

Automotive industry is currently undergoing a major evo-
lution, as the number of embedded software applications in
cars is skyrocketing. This is due to the multiplication of Ad-
vanced Driver Assistance Systems (ADASs) and telecommu-
nication capabilities. With current architecture, integrating
these new functionalities will become more and more com-
plex as each one of them would require the integration of
its own execution platform. Therefore, a new architecture
has to be found, so that this integration becomes practicable
and tractable. The current trend leads to the use of multi-
core platforms, as uni-processors are less and less produced
by hardware manufacturers. These platforms are associated
with virtualization layers for the re-usability of previously

Thomas ROBERT
Institut Mines-Telecom
thomas.robert
paristech.fr

25

Laurent PAUTET
Institut Mines-Telecom

laurent.pautet@telecom-
paristech.fr

telecom-

developed applications. Such a context offers the opportu-
nity to consider new scheduling problems. Indeed, this ar-
chitecture will result in the execution of hard real-time and
multimedia applications on the same platform while abiding
by stringent safety standards.

Scheduling theory has become mature on problems re-
lated to multicore scheduling. Partitioned scheduling has
often been preferred to global scheduling as its low utiliza-
tion bound is counterbalanced by the high overheads, due to
migrations or preemptions, induced by most global schedul-
ing algorithms. However, recent papers have proposed very
interesting global algorithms which, apart from being opti-
mal, also limit the number of preemptions and of migrations.
One of those algorithms is the algorithm RUN [6].

The completion of critical tasks is absolutely required for
the safety of a system. To ensure this, safety requirements
tend to impose highly conservative hypotheses when deriv-
ing their WCETs. The use of these hypotheses leads to
very pessimistic WCETS, which results in under-utilization
of hardware platforms in average case. Mixed-Criticality
scheduling aims at reducing this under-utilization as much
as possible. This field of research is pretty active [2], yet mul-
ticore scheduling remains an issue. We propose a method to
adapt RUN algorithm to Mixed-Criticality systems (further
denoted MC).

The rest of the paper is organized as follows: section 2
gives a brief overview of how the scheduling algorithm RUN
works and recalls MC objectives. Section 3 briefly presents
our method. Finally, section 4 discusses preliminary results.

2. PRINCIPLESOF RUNAND MIXED CRIT-
ICALITY

This section presents a brief overview of RUN algorithm,
and some background on MC knowledge.

2.1 RUN scheduling

RUN is a global scheduling algorithm that is optimal. It
means that whenever a task set is schedulable by any method
on a given set of processors, then RUN proposes a schedule
relying on less or the same number of processors. Besides
that, RUN is known to entail few context switches and mi-
grations which are usually the curse of global scheduling
algorithms [1].

We consider a set of tasks denoted 7 complying with the
Periodic Task model with implicit deadlines, similar to [5].
T contains tasks 71, ..., 7, with the following parameters de-
fined for each task 7;:

e A period P, which is the time between each activa-
tion of the task. ”Implicit deadlines” means that a
task must have completed its execution before its next
activation.

e An execution time budget C;, corresponding to the
Worst Case Execution Time of the task.

Tasks are first activated synchronously when the system
starts. U(7;) is the utilization of a task 7;:

1>

This definition can be extended to task sets T considering
U(T)=3_,c7U(1). RUN ensures that the number of pro-
cessors required for scheduling a task set 7 is the smallest
integer greater than U(T), denoted [U(T)].

RUN scheduler relies on a hierarchy of scheduling servers
to decide which tasks should actually be running. This hi-
erarchy is organized as a tree, called "Reduction” tree, and
is computed off-line. The root of this tree is a server and its
leaves are servers comprising only one task of 7. Each server
S is characterized by activation times and a list of servers
to schedule, referred as ”children”, and a constant rate r(.S).
Activation times of a server is the union of activation times
of its children (and thus may not be simply periodic). On
each time interval I between two activations of a server S
such that the duration of I is D;, server S time budget is
defined as 7(S) * D;. Yet, there are two kinds of servers,
each with a specific behavior.

The first kind of servers ensures that if the server is exe-
cuted then one of its children is selected for execution until
the server depletes his or its executed children budget, or
is preempted. This server is called primal server as it cor-
responds to usual definition of scheduling servers. Primal
server rate is defined as the sum of its children rates (or
utilization if its children are tasks). For this reason, we use
for both servers and tasks U() to either denotes server rates
or task utilizations. The root of the tree is a primal server.
In the remainder, EDF is used to schedule primal server
children considering activation time as deadlines.

The other kind of server has a single child and is seen
as the dual of its child as the child is executed only when
its parent is not (detailed mathematical justifications are
detailed in the seminal paper). A dual server utilization
equals 1 minus its child utilization (always positive if its
child utilization is lower than 1). The dual server of a server
S is noted S™.

During execution, the scheduler is called each time a task
or a server is activated, a task completes its execution, or a
server exhausts its time budget. The root server is executed
as long as its budget is not depleted. All scheduling decisions
made by servers end up by the correct scheduling of tasks
thanks to the way the Reduction tree is built.

RUN proposes a method for building the Reduction tree,
and typing servers so the scheduler is optimal, i.e. schedules
T with [U(T)] processors. More formally, two operations
are defined: pack and dual. They are applied on sets of
servers and produce sets of servers I'. The result of the first
function, pack(T'), is a set of primal servers that enforces
three properties. All servers in I' are the child of exactly one
element of pack(I"). Any server in pack(I") has an utilization
lower than 1. For any two servers in pack(I') their total
utilization is greater than 1. The second function creates for

26

Root

Name | Period(s) | U(-)

ST USE S Root 2,6,12 1
S|1 S|2 I3 S1* 2 0.23
T, T, T, 527 6 0.29
S3* 12 0.48
Sl=mn 2 0.77
S2=m 6 0.71
S3=m13 12 0.52

Figure 1: Example of a Reduction tree

each server S in I' a dual server S™, such that S* schedule S
with same activation times, and U(S*) =1 —U(S).

A Reduction tree is computed applying the composition
of dual and pack, dual o pack, on a set of servers until the
result is a singleton. The initial set of servers is denoted as
pack(T). The server in the resulting singleton will be the
root server. An example of such tree is detailed in figure 1.
This task set will be reused and extended to illustrate mixed
criticality concepts and our approach. Due to lack of space,
we only present this simple Reduction tree with each task
having its own server. It also requires only one application
of the composition of dual and pack operations.

Next subsection introduces some definitions on Mixed-
Criticality systems.

2.2 Background in Mixed-Criticality Concepts

We presented and motivated the use of MC systems in
the introduction, and we now give an overview of its the-
ory. MC scheduling algorithms often use several modes of
operation and by changing mode when necessary. One mode
in which critical tasks consume few CPU resources and an-
other one in which they are considered to consume their
pessimistic and safe WCETs. A mode change with respect
to a scheduler consists in a modification of task attributes
while they are scheduled. It consists in leaving a mode in
which critical tasks consume few CPU resources to another
one in which they are considered consuming their pessimistic
and safe WCETSs. The gain of such an approach lies in the
fact that the first mode would be more likely, and allows
scheduling additional non critical tasks, e.g. tasks that can
be stopped without causing harm, when the second mode is
detected.

First formalization of this principle has been proposed as
an extension of a Periodic Task model [8]. Each task 7; is
extended as follows:

e Each task has a criticality level x; in the ordered set
{Low, Hi} such that Low < Hi.

e Each timing attribute (P;, C;, and U(7;)) becomes a
function depending on the criticality level: any at-
tribute A turns in A(L), L being a criticality level.

Usually only WCETSs, and consequently utilizations, vary
according to the criticality that is why we limit ourselves
to this case, leading to constant period attributes. Hence,
C; is a function that always verifies C;(Low) < C;(H3) and
Ci(Hi) = Ci(x:). Task set presented in figure 1 can be ex-
tended by two tasks of Low criticality, considering 71, 72, 73
from figure 2 of criticality Hi.

At run time, the scheduler that provides a correct schedule
for 7 has to cope with the following constraints:

Period | x:i | U(m)(Low) | U(m)(Hi)
T 2 Hi 0.53 0.77
T2 6 Hi 0.05 0.71
T3 12 Hi 0.32 0.52
T4 4 Low 0.54 0.54
Ts 12 Low 0.56 0.56

Figure 2: Example of a MC task set

e As long as each task 7; execution time is smaller than
Ci(Low) then all tasks should meet their deadlines
whatever their criticality level is.

e As soon as one task execution time exceeds its Low
criticality time budget, then only deadlines of Hi crit-
icality tasks should be ensured from this instant.

The time at which one task exceeds its low time bud-
get is called a timing failure event and triggers a mode
change. Hence, even an activated task may have its at-
tributes changed altering the scheduler objectives. It is a
particular case of dynamic scheduling where scheduling ob-
jectives and task attributes are piece-wise constant along
time. Given this setting, MC scheduler behavior is often
described through two operational modes: before and after
the timing failure, said Low and Hi modes. However, mode
changes must be carefully done.

Indeed, if a timing failure event occurs when the system
is in Low mode, a mode change is triggered. Hi tasks can
now use their Hi WCETs. And they should be able to use
it before their deadlines. Thus the mode change should be
performed while Hi tasks have still enough time to execute
up their Hi WCETSs diminished by its potential execution
time done while in Low mode. Therefore, the scheduling
performed in the Low and Hi modes are not independent.
Next section details how we developed this idea, creating
RUN schedules for Hi and Low modes compatibles with this
constraint.

3. ADAPTING RUN

This section details how RUN is adapted to support modes,
and how to use them to implement MC. Finally preliminary
results are discussed.

Designing a MC scheduler is easier to handle if each time
the timing failure occurs all Hi tasks have either completed
their execution or have not even started to be executed. A
solution to ensure this property is to transform tasks as it has
been done in [7]. Each Hi task 7; € T is decomposed in two
tasks 77 and T,L.f , called start and finish tasks respectively.
Attributes of these tasks are defined as P} = Pif P;
C;(Hi) = C;(Low) = Ci(Low), and C!(Hi) = C;(Hi) —
Ci(Low) and Cf(Low) = 0. Low criticality tasks remain
unchanged. This task set will be referred as split(T). As
long as start and finish tasks of same index are not scheduled
simultaneously and 7} is executed before Tif , scheduling this
task set is equivalent to schedule 7.

We propose to compute a Reduction tree, denoted HiLowT ree,

to schedule start and finish tasks with Hi attributes respect-
ing the exclusion condition. To do so, we first compute a Re-
duction tree of Hi tasks of 7 denoted HiOnlyTree. Then
we replace each task 7; by its corresponding pair of start
and finish tasks in HiOnlyTree. These tasks pairs will be

27

scheduled by the same primal server and thus cannot be si-
multaneously executed. Besides, when replacing the original
Hi task, the start task is executed first. Thus, we respect
the two conditions previously exposed.

Then, we enhance the RUN approach by introducing a
new kind of server: modal server. Such a server is used as a
replacement for finish tasks in the Reduction tree HiLowT ree.
Its activation time and rate equals the finish task Hi at-
tributes. Besides, a modal server has two sets of tasks to
schedule depending of the mode in which the system is. In
Hi mode, it schedules the finish task it has replaced. But,
in Low mode, a modal server schedules a set of Low tasks
whose utilisations and periods respect some conditions.

With our method, a MC system is designed by following
these steps off-line :

1. Replace each finish task in the Reduction tree HiLowTree

by its corresponding modal server with an empty set
of Low tasks, noted M S;.

2. Determine subsets LT; of Low tasks of split(T) that
M S; would be able to schedule LT; with its budget.

3. Build another Reduction tree, denoted LowOnlyTree,
for Low tasks not in U LT;.

i|lxi=Hi
Then the scheduling is executed on-line as follows:

1. At run-time in Low mode, schedule LowOnlyT'ree ac-
cording to original RUN rules, and HiLowTree with
modal servers in Low mode. Both trees are configured
on a distinct set of processors.

2. At run-time in Hi mode, stop executing LowOnlyTree
and execute HiLowT ree with its modal servers in High
mode.

Due to point 2 and 3 all Low tasks will meet their deadline
in Low mode. Deadlines of Hi tasks are ensured in Low mode
due to use of HiLowTree that generates a correct schedule
of start tasks. Hi mode scheduling is correct as the scheduler
behaves just as if it would have used HiOnlyTree. In the
next section, we present the first evaluations of our method.

4. EVALUATION

In this section we describe how we evaluate the perfor-
mances of our method and describe the first results of our
experiments.

4.1 Evaluation

We first need criteria to compare our results with. These
criteria could be the number of processors that are neces-
sary to schedule a task set T by other algorithms. In our
case, we compare with unmodified RUN. For example, if we
consider the task set described in figure 2, a RUN scheduler
requires up to 4 processors to schedule all tasks according to
Hi values for WCETSs. Scheduling only Hi tasks takes only
2 processors. From these observations, we introduce three
constants computed from MC task set attributes to assess
the performances of a MC scheduler:

e Uni+rLow: task set utilization for all tasks of 7 con-
sidering most pessimistic WCETs (notice that for Low
task C;(Hi) = C;(Low)).

o Up;: task set utilization restricted to tasks of Hi crit-
icality in T.

o Urow: task set utilization restricted to Low criticality
tasks in T.

As RUN is optimal, we know that all tasks could be sched-
uled in their worst case with [Ugi+rLow]| processors. More-
over, any optimal MC scheduler should handle a timing fail-
ure occurring at time 0, and need at least [Um;| processors.

Now, let us denote I—Ubundled.l the amount of processors
required by our method. First, a sanity check consists in
comparing the behavior of the approach in the worst case:
no Low tasks are integrated to modal servers. It leads to
[Ubundled-l = [UHZ1 + |—Ulow-| < |—UHi+Low-‘ + 1. This upper
bound is not as bad as it seems as we observed that being
able to schedule Hi and Low tasks on [Ugni+row| + 1 proces-
sors offers better performances than other MC schedulers.
The interest of this approach lies in the fact that we do not
only compare to other MC schedulers but also to classical
ones (and especially RUN) using most pessimistic scenarios.
Thus, it enables us to judge if the use of a MC scheduling al-
gorithm is opportune or not. In the next section we present
the results of our method.

4.2 First Experiments

Due to space limitation, we only present the results of
the method on the task set introduced in figure 2. The
application of our method resulted in the allocation of task
75 in the modal server of task 72. However, the task 74 can
not be executed in any modal server. Finally, we have the
resulting modal servers described in figure 3.

Hi Primal Servers | Hi Tasks | Modal Server
S1 T [
Sa T2 T5
S3 T3 [

Figure 3: Created Modal Servers

Thanks to our method, we can save up to a processor
to execute this system, compared with the four processors
needed in Hi4+Low mode as can be seen in figure 4.

Task Set Utilization Number of
processors required
Hi+Low 3.1 4
Bundled 3 3
Low Task ¢ modal server 0.54 1
in Bundled task set

Figure 4: Results of our method

More experiments are under processed, but until now our
method has never required more processors than the Hi+Low
mode. For these experiments, values used for utilization
were drawn from applying the uunifast algorithm adapted
to multi-core platforms [3]. Besides, generation of periods
has been bone by using an algorithm described in [4].

5. CONCLUSION

In this paper, we find a way to adapt the algorithm RUN
to the scheduling of MC systems. This has been achieved by

28

enabling the use of modes by RUN. First experiments pro-
vided some promising results, even in the case of unfavorable
task sets.

Further work will be to enhance our method by deriving a
more sophisticated assignment policy of the Low tasks into
modal servers.

6. ACKNOWLEDGMENTS

This research work has been carried out in the framework
of the Technological Research Institute SystemX, and there-
fore granted with public funds within the scope of the French
Program ”Investissements d’Avenir”.

7. REFERENCES

[1] S. Baruah, N. Cohen, C. Plaxton, and D. Varvel.
Proportionate progress: A notion of fairness in resource
allocation. Algorithmica, 15(6):600-625, 1996.

A. Burns and R. Davis. Mixed criticality systems - a
review. www-users.cs.york.ac.uk/ burns/review.pdf,
2013.

R. Davis and A. Burns. Priority assignment for global
fixed priority pre-emptive scheduling in multiprocessor
real-time systems. In Real-Time Systems Symposium,
2009, RTSS 2009. 30th IEEE, pages 398-409, Dec 2009.
P. Emberson, R. Stafford, and R. I. Davis. Techniques
For The Synthesis Of Multiprocessor Tasksets.
1(1):6-11, 2010.

C. L. J. W. Layland. Scheduling Algorithms for
Multiprogramming in a Hard- Real-Time Environment
Scheduling Algorithms for Multiprogramming.
(1):46-61, 1973.

P. Regnier, G. Lima, E. Massa, G. Levin, and

S. Brandt. RUN: Optimal Multiprocessor Real-Time
Scheduling via Reduction to Uniprocessor. 2011 IEEE
32nd Real-Time Systems Symposium, pages 104—115,
Nov. 2011.

J. Theis, G. Fohler, and S. Baruah. Schedule table
generation for time-triggered mixed criticality systems.
In 1st Workshop on Mized Criticality Systems, IEEE
Real-Time Systems Symposium, December 2013.

S. Vestal. Preemptive Scheduling of Multi-criticality
Systems with Varying Degrees of Execution Time
Assurance. 28th IEEE International Real-Time Systems
Symposium (RTSS 2007), pages 239-243, Dec. 2007.

2l

Study of Temporal Constraints for Data Management in
Wireless Sensor Networks

Abderrahnmen BELFKIH, Bruno SADEG, Claude DUVALLET, Laurent AMANTON

University of Le Havre
BP 1123, 76063 Le Havre cedex

{Abderrahmen.Belfkih, Bruno.Sadeg, Claude.Duvallet,
Laurent. Amanton}@univ-lehavre.fr

ABSTRACT

Over the last years, extensive research has been carried out,
to study data processing in wireless sensor networks (WSN).
Real-time aspect is an important factor for sensor applica-
tions in order for the data to reflect the current state of the
environment. Several research efforts have focused on effec-
tive query processing in WSN and others are focused on the
use of abstract database technology (Cougar, TinyDB,...) to
manage data efficiently in sensor networks. However, there
is some work dealing with the temporal constraints when
managing sensor data.

In this paper, we study some temporal constraint parame-
ters like response time, period and computing time through
two data processing techniques for WSN. The first is based
on a warehousing approach, in which data are collected and
stored on remote database. The second is based on query
processing using an abstract database like TinyDB. This
study has allowed us to identify the factors which enhance
the respect of temporal constraints.

Keywords

wireless sensor network, data collection, query processing,
sensors database, time constraints.

1. INTRODUCTION

Wireless sensor networks (WSN) can be considered as a
type of ad hoc wireless networks. They are composed of
small wireless nodes which are manually or randomly de-
ployed in a region of interest to sense different physical char-
acteristics of the environment like temperature, humidity,
pressure, light, etc. The nodes transmit the sensed data to
a sink node referred to as a Base Station. This process is
called data collection, it must be able to meet certain dead-
lines and the timely data delivery, to reflect the current state
of the environment.

Actually, the sensor networks are deployed without con-
sidering the transmission delays of data or their deadlines.
Generally, researchers are interested in data processing tech-
niques to reduce the number of data transmissions and to
offer an efficient solution to increase the lifetime of the net-
work. They have proposed news methods for data processing
like data aggregation techniques, efficient transmission con-
trol protocols and query processing systems such as Cougar
[4] and TinyDB [6], to simplify the extraction and manage-
ment of data. Sensor network loses its intended function

29

(consistency) if data is delivered late. Many WSN applica-
tions like industrial process control and monitoring, can be
considered time critical. They require a strict deadline for
data delivery to the sink.

The idea in this paper is to study temporal constraints and
data arrival times from sensors to users/actuators and the
factors that may influence this time using two approaches:
abstract database and periodic data collection.

Data collection and query processing are two different
technologies which are two popular techniques used for data
processing in WSN. The first present a traditional technique
used in many applications where all sensors send data peri-
odically to the sink at predetermined times. The second is a
recent technique for data processing in WSN based on SQL-
like query language, where queries are issued to the sensors
to get the required information which has been redefined in
the query. Many research are interested in this technology,
because it has shown good results so far.

The remainder of this paper is structured as follows. Sec-
tion 2 reviews the related work. In Section 3, we describe the
two approaches cited previously. In Section 4, we give sim-
ulation results and we discuss them. Finally, in Section 5,
we conclude the paper by showing how to effectively exploit
the two techniques in WSN and we give some perspectives
to this work.

2. RELATED WORK

In literature, many research works have been interested to
improve the time of data management in WSN. Kshama et
al. [7] suppose that the freshness of data is maintained as
the process of data collection is as much faster as possible.
In their paper, they discuss different methods of data collec-
tion in WSN like the methods for fair data collection and a
various TDMA scheduling schemes. Choi et al. [3] propose
a new data aggregation algorithm in WSN with time con-
straint. Their goal is to provide data while respecting their
constraint time and to limit the number of transmissions
which reduce the energy consumption in WSN. In [8], au-
thors have used the Time Division Multiple Access (TDMA)
schedule to reduce the latency of data collection and to con-
serve energy at sensor nodes. They have divided the time
into slots and the duration of a time slot allows a sensor
node to transmit one packet.

Data query processing using an abstract database has
been cited for the first time by Bonnet et al. in their pa-
per [2]. They present a declarative approach to facilitate

the description and processing of queries in the WSN. The
data required by the base station form a virtual table, in
which columns represent the data requested by the user.
TinyDB and Cougar represent the first generation of query
processing systems in wireless sensor networks. Corona [5]
is a distributed query processor. It makes the WSN like a
table in a relational database and it uses SQL-style syntax
to formulate a queries.

3. NETWORK MODEL

The basic model is composed of three parts: (i) sensor
nodes, randomly deployed over an area. They can retrieve
data like humidity, temperature and light and send values
to a base station, (ii) the base station periodically collects
data from sensor nodes and inserts them into a database, (iii)
users can connect to the database to get information about
WSN. We have update the model in the second scenario
and we have added an abstract database for WSN named
TinyDB, which allows the user to send queries to the base
station and to get responses. Our goal is to compare the
timing properties using a static database versus an abstract
in-network database abstraction.

3.1 Firstscenario: data collection with remote
database

In this scenario, sensors send data periodically to the base
station. The data collected by WSN are streamed to a re-
mote database, where can be stored. Next, user can query
stored data at any time.

Sensor network

Database server
~

—»

Qu riesTi’esP‘mse

U;r 2 User3

Figure 1: Data collection with remote database

3.2 Second scenario: query processing with
WSN abstract database

This scenario is based on a query processing technique, in
which we use an abstract database system named TinyDB
connected to the base station of WSN. Users specify the data
they want to collect through SQL-like declarative queries, to
send them to the base station via the the abstract database
interface. The base station will broadcast these queries over
the network. Each sensor that receives a query, responds
with the values requested for a duration fixed in the query
by the user. Finally, the base station send the responses
back to the user via the abstract database system, which
can be stored also in a remote database.

30

Sensor network

Database server

~
eriesT ispl?"se

<)| (.

User2 User3

Figure 2: Query processing with WSN abstract
database

In the next section, we implement the two scenarios de-
scribed above and we discuss some time parameters such as
network convergence time and data collection time. We an-
alyze also the impacts of network topologies and the impact
of choosing the database on average response time.

4. SIMULATION AND RESULTS

For the first scenario, we have used COOJA network simu-
lator for Contiki [9] to create the WSN simulation. We have
created one sink node and a set of Sky Motes sensors. The
nodes are randomly distributed in a area within 80m*80m
and the sink is placed at the center of the deployment area.
The number of sensors vary from 10 to 100 with step of
10. Each node sends temperature and humidity to the base
station (sink node) every 60 seconds. We have used RPL
routing protocol [11] to provide the communication between
sensor nodes and the base station. RPL is more efficient
for data delivery time than other existing known protocols
such as LOAD (LOAD is derived from AODV), DSR and
DSDV [10, 1]. RPL provides efficient routing paths guaran-
teeing data delivery before deadline in WSN. It is based on
a Destination-Oriented Directed Acyclic Graph (DODAG)
anchored at one or more nodes (DAG root(s)). Each node
computes its rank in the RPL tree and maintains a routing
table to reach all nodes in this sub-DODAG".

The second scenario is based on Mica2 sensors randomly
scattered in the field. We have varied the number of sensors
from 10 to 100 by step of 10. We use the UDP? to make
communication between sensors and the base station. We
have used TinyDB system using Tossim the simulator of
TinyOS. TinyDB assumes a fixed tree-based topology, where
all nodes try to form a tree to the root node based upon the
link quality information between the node and its neighbors.

4.1 Impact of number of nodes on network
convergence time
Network convergence is defined as the time needed to start
the different devices, to make connection between sensors
and base station and to build routing tables of nodes. This

!The sub-DODAG of a node is the set of other nodes whose
paths to the DODAG root pass through that node.
2User Datagram Protocol

step comes just before the process of data collection. It can
affect the arrival time of data. The shorter the convergence
time, the quicker the availability of the data.

500
~—®— Data collection
400

300

200 -

Time (second)

100

0 T T T T T T T T

) o o o o o o o o
& & 2 & 2
<\°Q <\°Q <\"€> &
LN N P)

Figure 3: Network convergence time for data collec-
tion

In Figure 3, the network convergence time increases when
the number of nodes increases. Usually, network conver-
gence time depends on the DODAG building process, which
begins at the root (base station). The root starts the dis-
semination of information about the structure using DIO
(DODAG Information Object) message. The nodes not con-
nected to the tree (without communication with the root)
receive the message DIO and process it. Then they decide
to join or not the structure. Once the node has joined the
structure, it has a route to the root of the DODAG struc-
ture. Building the final routing table depends on the number
of nodes and the path cost between nodes.

—®— Query processing ,’
10 | /
I
/
—_
a - /S
E o
S
"
2 6 L e
— -~
2
£ 4] i o
F e
T
] o /
o L
' T T T T T T T T T T
& o & & o & o
F F F FFHFFHFF F Yy FF
< < < < <« < < <« <t < <
& =)))) o o) o 2
«, 7 s B “ @ A) o Ky

Figure 4: Network convergence time for TinyDB

We note also that the convergence time for TinyDB is less
than that of data collection (cf. Figure 4). TinyDB consti-
tutes a routing tree or Directed Acyclic Graph (DAG) with
all sensors in which the root is the sink (gateway). TinyDB
uses a selecting multi-hop tree based on efficiency of routing
which depends on energy consumption. Sensors make intel-
ligent routing decisions, where every node selects a parent
based on link quality to the base station. The nodes keep
both a short list of neighbors which have a recently heard
transmit, and some routing information about the connec-
tivity of those neighbors to the rest of the network.

31

4.2 TImpact of number of nodes on data collec-
tion time

Data collection time present the time taken to get the re-
sponses from all sensors connected to the base station. It
can affects the data validity time and not reflect the current
state of the environment. The time required to send the
data from sensor to the base station depends on the sensors
capacity, its position and the path quality which can be the
number of hops to the base station. Generally, the sender
uses multi-hop paths to send its data when the base station
is far located which leads to transmission delay and they
can cause a failure to respect the data validity time. Figure

600 ~
~&— Data collection

500 4 —&— Query processing (TinyDB)

400

300

Time (second)

200

100

T
G

‘ T T T T
(2:9 Ea“‘ (245: 245’ (24‘3
F & &S

o
L) \‘Q ’lS} - _;(3 a 4}(} o A %Q D’(} \‘0(3

Figure 5: Completed Cycle Time

5 shows the time spent by the nodes to complete the send-
ing of their data, using data collection technique and query
processing technique. We observe that the curve increases
when the number of sensors increases for the two techniques.
The time required to send the data depends of the number
of hops and the availability of parent nodes to send data
received from children. Their availability is not guaranteed
all time because the choice of parent node depends on the
node decision to join or not the structure.

We also notice in Figure 5 that the time required to obtain
results from all sensors by using the technique of processing
request is less than that of data collection. With TinyDB,
the data is regularly reported and aggregated by a tree or
a directed acyclic graph from the nodes to an access point
network. It includes aggregation and filtering operations in-
side the sensor network to maintain all routing information.
The parent nodes near the root put agreements with their
children on a time interval for the data listened to them.
The whole process is repeated for each period and query.

4.3 TImpact of choosing the database on aver-
age response time

We use in this test three DBMS?: PostgreSQL, MySQL,
SQLite, to evaluate queries response time.

Table 1: Average response time (ms)

100 insertion queries from | 9.397 | 48.626 | 72.788
base station to database

100 random select queries | 0.992 | 0.690 | 0.225
from users to database

3DataBase Management System

Table 1 shows that SQLite database gives the best av-
erage response time for the SELECT queries, next we find
MySQL and finally PostgreSQL. For the INSERT queries,
PostgreSQL database has the less average response time
compared with MySQL and SQLite. SQLite takes a lot
of time to insert data, because it does not have a central
server to coordinate accesses. It must close and reopen
the database file, and invalidate its cache, for each trans-
action. It does not allow multiple concurrent writes in the
same time. PostgreSQL allows multiple transactions to pro-
ceed with inserts, concurrently. MySQL is better than Post-
greSQL for reading tables because it has a "Query Cache”
to make queries faster. SQLite is faster than MySQL be-
cause it uses a disk access to read and write directly from
the database files on disk.

4.4 Impact of network topologies on data col-
lection time
We have tested 15 sender nodes and one sink node with
four network topologies. The table below shows the time
spent to collect data from all sensors during a complet cycle
of data collection for the two technologies.

Table 2: Complet cycle time (ms)

Topologies | Data collection | Query processing
Star 62312 1832
Mesh 56002 1362
Grid 54121 2163
Tree 53515 2143

‘We note that the tree network topology for data collection
technology is more faster versus the other topologies. In fact,
RPL forms a tree-like topology rooted at the sink, reflecting
the above results. Star, mesh and grid topologies have not
shown good results. RPL takes a time to to define DODAG
networks and to build path to the root. It can not fully ex-
ploit, which affects the quality of paths. For the query pro-
cessing technology, the mesh topology gives the best complet
cycle time versus the other topologies. In mesh topology, all
nodes cooperate in the distribution of data in the network.
The same technology is used by TinyDB. The nodes make
an intelligent routing decisions, where every node selects a
parent based on link quality to the base station.

5. CONCLUSION

In this work, we study and we compare the timing prop-
erties of the data collection from a sensor network using a
static database versus an abstract in-network database ab-
straction, named TinyDB. We evaluate temporal constraints
such as data collection time, database response time, and
network convergence time in both approaches. We have
found according to the tests performed that many factors
can affect the temporal constraints in a WSN. We have de-
termined that the network topology and the routing proto-
col, together may play an important role on data collection
time. The convergence time also has an impact on the pro-
cess of data collection. We have shown clearly the timing-
response advantage of using a TinyDB approach compared
to accessing the data stored in an external database. So we
can conclude that the great choice of the network topologie

32

and the routing protocol with the right approach can im-
proves the temporal constraints in WSN. We plan to work
in this direction in a future works and we plan to take data
temporal consistency.

6. REFERENCES

[1] L. Ben Saad, C. Chauvenet, and B. Tourancheau.
Simulation of the RPL Routing Protocol for IPv6
Sensor Networks: two cases studies. In International
Conference on Sensor Technologies and Applications
SENSORCOMM 2011, Nice, France, 2011. IARIA.

[2] P. Bonnet, J. Gehrke, and P. Seshadri. Towards sensor
database systems. In Proceedings of the International
Conference on Mobile Data Management, pages 3—14,
London, UK, UK, 2001. Springer-Verlag.

[3] J. Y. Choi, J. Lee, K. Lee, S. Choi, W. H. Kwon, and
H. S. Park. Aggregation time control algorithm for
time constrained data delivery in wireless sensor
networks. In Proceedings of the 63rd IEEE Vehicular
Technology Conference, VTC Spring 2006, 7-10 May
2006, Melbourne, Australia, pages 563-567, 2006.

[4] W. F. Fung, D. Sun, and J. Gehrke. Cougar the
network is the database. In International conference
on Management of data, pages 621-621, New York,
NY, USA, 2002. ACM.

[5] R. Khoury, T. Dawborn, B. Gafurov, G. Pink, E. Tse,
Q. Tse, K. Almi’Ani, M. M. Gaber, U. R6hm, and
B. Scholz. Corona: Energy-efficient multi-query
processing in wireless sensor networks. In DASFAA
(2), pages 416-419, 2010.

[6] S. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. The design of an acquisitional query
processor for sensor networks. In Proceedings of the
2003 ACM SIGMOD International Conference on
Management of Data, pages 491-502, New York, NY,
USA, 2003. ACM.

[7] J. D. Pandya and T. Vasavda. Data collection in
tree-based wireless sensor network using tdma
scheduling. In International Journal of Advanced
Research in Computer Science and Software
Engineering, pages 101-105, 2014.

[8] V. R. Yogeswari. A survey on efficient data collection
in wireless sensor networks. In International Journal of
Innovative Research in Computer and Communication
Engineering, pages 2181-2184. IJIRCCE, 2013.

[9] N. Tsiftes, J. Eriksson, and A. Dunkels. Low-power
wireless ipv6 routing with contikirpl. In International
Conference on Information Processing in Sensor
Networks, pages 406-407, New York, 2010. ACM.

[10] M. Vucinic, B. Tourancheau, and A. Duda.
Performance comparison of the rpl and loadng routing
protocols in a home automation scenario. In WCNC,
pages 1974-1979, 2013.

[11] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey,
P. Levis, K. Pister, R. Struik, J. Vasseur, and
R. Alexander. RPL: IPV6 Routing Protocol for
Low-Power and Lossy Networks, mar 2012.

An Approach for Verifying Concurrent C Programs

Amira Methni,
Matthieu Lemerre

Belgacem Ben Hedia
CEA, LIST,

91191 Gif-sur-Yvette, France
first.last@cea.fr

ABSTRACT

As software system and its complexity are fast growing,
software correctness becomes more and more a crucial is-
sue. We address the problem of verifying functional prop-
erties of real-time operating system (microkernel) imple-
mented with C. We present a work-in-progress approach for
formally specifying and verifying concurrent C programs di-
rectly based on the semantics of C. The basis of this ap-
proach is to automatically translate a C code into a TLA+
specification which can be checked by the TLC model checker.
We define a set of translation rules and implement it in a
tool (C2TLA+) that automatically translates C code into
a TLA+ specification. Generated specifications can be in-
tegrated with manually written specifications that provide
primitives that cannot be expressed in C, or that provide
abstract versions of the generated specifications to address
the state-explosion problem.

1. INTRODUCTION

Formal software verification has become a more and more
important issue for ensuring the correctness of a software
system implementation. The verification of such system is
challenging: system software is typically written in a low-
level programming language with pointers and pointer arith-
metic, and is also concurrent using synchronization mecha-
nisms to control access to shared memory locations. We
address these issues in the context of formal verification of
operating systems microkernels written in C programming
language. We note that we are interested to check functional
properties of the microkernel and not timed properties.

In this paper we present a work-in-progress approach for
formally specifying and verifying C concurrent programs us-
ing TLA+ [11] as formal framework. The proposed approach
is based on the translation from C code to a TLA+ speci-
fication. We propose a translator called C2TLA+ that can
automatically translate from a given C code an operational
specification on which back-end model checking techniques
are applied to perform verification. The generated speci-
fication can be used to find runtime errors in the C code.
In addition, they can be completed with manually written
specifications to check the C code against safety or liveness
properties and to provide concurrency primitives or model
hardware that cannot be expressed in C. The manually writ-
ten specifications can also provide abstract versions of trans-
lated C code to address the state space explosion problem.

Why TLA+?.

The choice of TLA+ is motivated by several reasons. TLA+
is sufficiently expressive to specify the semantics of a pro-
gramming language as well as safety and liveness properties
of concurrent systems [10]. Its associated model checker,

33

Kamel Barkaoui
CEDRIC Laboratory, CNAM,

Paris, France
kamel.barkaoui@cnam.fr

Serge Haddad
LSV, ENS Cachan, & CNRS &
INRIA, France
haddad@Isv.ens-cachan.fr

TLC, is used to validate the specifications developed and
is also supported by the TLAPS prover. TLA+ provides a
mechanism for structuring large specifications using differ-
ent levels of abstraction and it also allows an incremental
process of specification refinement. So we can focus on rele-
vant details of the system by abstracting away the irrelevant
ones.

Outline.

The rest of the paper is organized as follows. We dis-
cuss related work in Section 2. We give an overview of the
formal language that we used (TLA+) in Section 3. Sec-
tion 4 presents the global approach and our current work.
Section 5 concludes and presents future research directions.

2. RELATED WORK

There exist a wealth of work on automated techniques
for formal software verification. The seL4 [9] is the first OS
kernel that is fully formally verified. The verification of sel.4
has required around 25 person-years of research devoted to
developing their proofs and more than 150,000 lines of proof
scripts. Deductive techniques are rigorous but require labor-
intensive as well as considerable skill in formal logic. We
focus here on more closely related work based on the model
checking technique.

SLAM [2] and BLAST [6] are both software verification
tools that implement the counter-example-guided predicate
abstraction refinement (CEGAR) approach [5]. They use an
automatic technique to incrementally construct abstractions
i.e. abstract models cannot be chosen by user. But, SLAM
cannot deal with concurrency and BLAST cannot handle
recursion.

Another approach consists to transform the C code into
the input language of a model checker. Modex [8] can auto-
matically extract a Promela model from a C code implemen-
tation. The generated Promela model can then be checked
with SPIN [7] model checker. As Promela does not handle
pointer and has no procedure calls, Modex handles these
missing features by including embedded code inside Promela
specifications. On the other hand, the embedded code frag-
ments cannot be checked by SPIN and might contain a di-
vision by zero error or null pointer dereference, Modex in-
struments additional checks by using assertions. But, not all
errors can be anticipated and the model checker can crash
[8]. CBMC [3] is a bounded model checker for ANSI C pro-
grams. It translates a C code into a formula (in Static Single
Assignment form) which is then fed to a SAT or SMT solver
to check its satisfiability. It can only check safety properties.
CBMC explores program behavior exhaustively but only up
to a given depth, i.e. it is restricted to programs without

deep loops [4].

In this work, we propose a methodology to specify and
verify C software systems using TLA+ as formal frame-
work. With TLA+, we can express safety and liveness prop-
erties unlike SLAM, BLAST and CBMC which have limited
support for concurrent properties as they only check safety
properties. Our approach uses abstraction and refinement
in order to structure specifications and mitigate the state
explosion problem for modular reasoning which is not the
case of Spin and CBMC.

3. AN OVERVIEW OF TLA+

TLA+ is a formal specification language based on the
Temporal Logic of Actions (TLA) [10] for the description of
reactive and distributed systems. TLA combines two logics:
a logic of actions and a temporal logic. To specify a system
in TLA, one describes its allowed behaviors. A behavior is
an infinite sequence of states that represents a conceivable
execution of the system. A state is an assignment of val-
ues to variables. A state predicate or a predicate for short
is a boolean expression built from variables and constant
symbols. An action is an expression formed from unprimed
variables, primed variables and constant symbols. It repre-
sents a relation between old states and new states, where
the unprimed variables refer to the old state and the primed
variables refer to the new state. For example, £ = 3’ + 2 is
an action asserting that the value of z in the old state is two
greater that the value of y in the new state.

Formulas in TLA are build from actions using boolean
connectives, TLA quantification and temporal operators O
(always). The expression [A]vers where A is an action and
vars the tuple of all system variables, is defined as A V
vars’ = wars. It states that either A holds between the
current and the next state or the values of wars remain un-
changed when passing to the next state.

A TLA+ specification consists on a single mathematical
formula Spec defined by:

Spec £ Init A O[Next]vars A Fairness (1)
where

e Init is the predicate describing all legal initial states,

e Next is the next-state action defining all possible steps
of the system,

e Fairness is a temporal formula that specifies fairness
assumptions about the execution of actions.

The formula Spec is true of a behavior iff Init is true of the
first state and every state that satisfies Nezt or a “stuttering
step” that leaves all variables vars unchanged.

To show that a property holds for a program, we must
check that the program implements the property ¢, which
is formalized as Spec = ¢. This formula is said to be valid
iff every behavior that satisfies Spec also satisfies ¢.

Moreover, TLA+ has a model checker (TLC) that allows
to check if a given model satisfies a given TLA formula. TLC
can handle a subclass of TLA+ specifications that we believe
includes most specification that describe our systems.

4. SPECIFICATION AND VERIFICATION
APPROACH

The specification and verification approach is illustrated
in Figure 1. The first step of the approach is to automat-
ically translate a C code implementation to a TLA+ spec-
ification using the translator that we developed C2TLA+.

34

L)

C files Manual
specification
C2TLA+ :
l ; Integration

g
1N | D 1 [N N :
I 1
I 1
| - [Jo
Generated TLA+ | Abstract TLA+ TLA+ Concurrency |
modules | Todtles___ properis__pimifes

model
checker

[TLA+ Coverage]
[C Coverage]

[TLA+ error lmce]
[C error trace]

Figure 1: Specification and verification approach

C2TLA+ uses CIL [13] to transform intricate constructs of
C into simpler ones. After obtaining the Abstract Syntax
Tree (AST) of the normalized C code, C2TLA+ generates
a TLA+ specification according to a set of translation rules
that we define in Subsection 4.2. The generated specifica-
tions can be checked by TLC without any user interaction
for potential C errors.

TLA+ specifications are organized into modules that can
be reused independently. The methodology provides for the
user the possibility to connect generated modules to other
manually specified modules. These latter can model syn-
chronization primitives like “compare-and-swap” and “test-
and-set” instructions, model hardware like interruptions, or
provide an abstract model of a specification. All modules
are integrated together to form the whole system to verify.
The user defines a set of safety and liveness properties ex-
pressed in TLA and TLC explores all reachable states in the
model, looking for one in which (a) an invariant is violated,
(b) deadlock occurs (there is no possible state), (c) the type
declaration is violated. When a property is violated, TLC
produces the minimal length trace that leads from the initial
state to the bad state. To improve usability, we reimplement
this trace in the C code. In addition, TLC also collects cov-
erage information by reporting the number of times each
action of a specification was “executed” to construct a new
state. This information is used to generate the C code cover-
age of an implementation, which may be helpful for finding
untested parts of the C code.

4.1 Considered features

We handle a subset of C according to simplifications done
by CIL. The C aspects that we consider include basic data-
types (int, struct, enum), arrays, pointers, pointer arith-
metic, all kinds of control flow statements, function calls,
recursion and concurrency. We do not yet consider floating
point operations, non-portable conversions between objects
of different types, dynamic allocation, function calls through
pointers, and assignment of structs. We note that these fea-
tures are not needed by the system that we aim to check.

4.2 Translation from C to TLA+

4.2.1 Concurrency and memory layout

A concurrent program consists in many interleaved se-
quences of operations called processes, corresponding to

threads in C. C2TLA+ assigns to each process a unique
identifier id.

The memory of a concurrent C program is divided by
C2TLA+ into four regions:

e A region that indicates for each process where is in its
program sequence. This region is modeled by a TLA+
variable stack_regs, associating to each process a stack
of records. Each record contains two fields:

— pe, the program counter, points to the current
statement of the function being executed, repre-
sented by a tuple (function name, label);

— fp, the frame pointer, contains the base offset of
the current stack frame.

The top of each stack register (Head(stack_regs/id]))
indicates the registers of the function being currently
executed.

e A region that contains global (and static) variables and
called mem. It is modeled by an array and it is shared
by all processes.

e A region called stack_data and contains stack frames.
Each process has its own stack which contains the pa-
rameters of a function and its local variables. Stack
frames are pushed when calling a function and popped
when returning.

e A region that contains values to be returned by pro-
cesses and it is modeled by an array indexed by the
process identifier, called ret.

Figure 2 gives an example of a C code in which one process
(with id equals “p1”) executes p1() function and the second
one (with id equals “p2”) executes p2() function. C2TLA+
assigns to each C variable a unique constant that we called
“address”. This latter specifies the memory region where
data is stored (local or global) and the offset of the data
in the memory region. For example, the TLA+ expression
[loc — 7"mem”, offs — 0] denotes the record Addr_count
such that Addr_count.loc equals ” mem” and Addr—count.offs
equals 0.

mem Addr_count = [loc — "mem",offs — 0]

int count = 0; [[val— 0] | Addr_add_param_a = [loc — "stack_data",offs —0]

Addr_pl_i = [loc — "stack_data",offs —0]

1
2
3 intadd(int a) Addr_p2_j = [loc — "stack_data",offs —0]
4 { count = count + a; e
5 return x;} stack_data["p1"]
6 1 1 stack_data["p2"]
7 Y°i$1 p10{ I [val —4] }md‘.(’)m:";“k ! T .
sitizg g el e}
9 count = add(i); L va = frame
10 -} ret"p1"] ret["p2']
1
12 void p2(){ [val—Undet] M
—13intj=2;]
14 ..} stack_register["p1"] stack_register["p2"]

|
10p— [[pe— (add”, 16L_47), fp— 1] | [[pe—(p2-1bL13"), fp— 0]
[pc— ('pl","1b9.1%), fp— 0]

Figure 2: Example of a C code and its memory rep-
resentation in TLA-+

4.2.2 Loading and assignment

Variable names, fields data structure and arrays in C
are lvalues. C2TLA+ translates an lvalue into an ad-
dress. Loading an lvalue is performed by the TLA+ operator
load(). An assignment of an lvalue is translated by C2TLA+
using the store() operator which saves the value of the right-
hand operand into the memory location of the lvalue. The
definition of load() and store() are given in Figure 3. For

35

example, accessing to the value of count is expressed by the
TLA+ expression load(id, Addr_count).

load(id, ptr) 2
IF ptr.loc = "mem” THEN mem/|[ptr.offs]
ELSE stack_data[id][Head(stack_regs[id]).fp + ptr.offs]

store(id, ptr, value) 2
V A ptr.loc = "mem”
A mem’ = [mem EXCEPT ![ptr.offs] = value]
A UNCHANGED stack_data
V A ptr.loc = “stack_data”
A stack_data’ = [stack_data EXCEPT
! [id][Head(stack_regs[id]).fp + ptr.offs] = value]
A UNCHANGED mem

Figure 3: Definition of load() and store() operators

4.2.3 Function definition

A C function definition is translated into an operator with
the process identifier id as argument. Translating the func-
tion body consists of the disjunction of translating each
statement that contains. C2LTA+ uses label values given by
CIL to identify statements and each C statement is trans-
lated into an atomic action defined as a conjunction of sub-
actions. At a given state one and only one action is eval-
uated to true. Each action updates the stack_regs variable
by modifying its head by the label value of the action done
once the call has finished.

4.2.4 Function call

Each function call results in a creation of a stack frame
onto the local memory stack_regs[id] of the process id. The
stack frame contains local variables and formal parameters
which are initialized with the values with which the func-
tion was called. Then, the program counter is updated by
changing its head to a record whose pc field points to the
action done once the call has finished (the instruction fol-
lowing the function call). At the top of the stack register is
pushed a record whose pc field points to the first statement
of the called function, and fp field points to the base address
of the new stack frame.

4.2.5 Return statement

Once the function returns, the returned value is stored on
value returning memory ret. Its stack frame and the top
of the stack register are popped and the program control is
returned to the statement immediately following the call.

4.3 Checking the specification

C2TLA+ generates the main specification Spec that de-
scribes the execution of the C program.

e The Init predicate which specifies the initial values of
all variables.
e The tuple of all variables wars
(mem, stack_data, stack_regs, ret).
e The predicate process(id) defines the next-state
action of the process id. It asserts that one of the
functions is being executed until its stack register
becomes empty. For the example of Figure 2, the

process() predicate is defined as:
process(id) 2 A stack_regs[id] # ()
A add(id) V pl(id) V p2(id))

>

e The Next action states that one process is non-
deterministically selected among those which can
take an execution step or that leaves all vari-
ables unchanged when all processes terminate.

Nexzt 2
V 3 id € ProcSet : process(id)
V(Y id € ProcSet : (stack_regs[id] = ())\ (UNCHANGED vars))
e The main specification is defined by Spec =
Init A O[Nezt]vars A WFyars (Next). To check liveness
properties in the system, we must consider fairness as-
sumptions.

The generated specification can be directly checked by
TLC. In that case, errors reported by TLC correspond to
runtime errors in the C code, e.g. dereferencing null-pointer,
uninitialized data access and division by zero.

4.4 Integrating abstract models

When checking whether a concurrent program satisfies a
given properties, the size of the state space of the program
limits the application of the model checking. A way to tackle
the state space explosion problem is abstraction. A program
usually have internal actions which need not to be considered
in the verification process. Ignoring such actions reduces the
state space of the program and makes the model checking
feasible. With TLA+, it is possible to define different levels
of abstraction and model check the existence of refinement
relationship between two specifications. A specification R
is a refinement of an abstract specification S iff R = S.
This is true iff there exists a refinement mapping between
the two specifications R and S. The refinement mapping [1]
maps states of the concrete specification with states of ab-
stract specification. From a generated TLA+ specification
by C2TLA+, TLC can check if this specification refines an
abstract model w.r.t. a refinement relation which preserves
the properties of the abstract system.

4.5 Results and current work

Currently, we developed the translator C2TLA+ which
automatically generates a TLA+ specification from C code.
The translator is based on the semantics of C. We assume
that generated specification behaves exactly as the C pro-
gram. We tried many academic examples of C code that we
checked using C2TLA+ and TLC. Actually, we are applying
the methodology on a critical part of the microkernel of the
PharOS [12] real-time operating system (RTOS). This part
consists of a distributed version of the scheduling algorithm
of the RTOS tasks. Examples of properties that we aim to
check include safety properties e.g. that all spinlocks pro-
tect the critical sections, at any instant of time, the system
schedules the (ready) task having earliest deadline, and also
liveness properties e.g. if a thread entered its critical section,
it will eventually leave it.

5. CONCLUSION AND FUTURE WORK

We have proposed an approach for specifying and verify-
ing concurrent C programs based on an automated trans-
lation from C to TLA+. The goal of the approach is to
make concrete and abstract specifications interact. Abstract
models can define aspects not expressed in C code like con-
currency primitives, or define an abstract specification of a
concrete one. Using model checking technique, we can check
the refinement relations between two specifications and the
correctness properties of the whole system.

We aim to extend this work along several directions. We
plan to further study the use of TLA+ modules with differ-
ent levels of refinement. We also plan to check equivalence
between a C code and another simplified C code. The sim-
plified code contains less steps which would reduce the state
space of the system to verify. Another avenue of future work

36

include updating the translator to support missing features.
It would be interesting to profit from data analysis in C in
order to generate TLA+ code with less interleaving between
the processes. Finally, we plan to use the TLA+ proof sys-
tem to prove properties on an abstract TLA+ specification
and prove that a generated specification by C2TLA+ is a
refinement of this abstract specification.

We must remind that we are reporting the current state of
a work in progress and we shall further improvement in the
approach process and making it applicable on a considerable
case study.

6. REFERENCES

[1] M. Abadi and L. Lamport. The existence of refinement
mappings. Theor. Comput. Sci., 82(2):253-284, 1991.

[2] T. Ball and S. K. Rajamani. The SLAM project:
Debugging System Software via Static Analysis.
SIGPLAN Not, 2002.

[3] E. Clarke, D. Kroening, and F. Lerda. A Tool for
Checking ANSI-C Programs. In K. Jensen and
A. Podelski, editors, TACAS, volume 2988 of Lecture
Notes in Computer Science, pages 168-176. Springer,
2004.

[4] V. D’Silva, D. Kroening, and G. Weissenbacher. A
Survey of Automated Techniques for Formal Software
Verification . IEEE Trans. on CAD of Integrated
Circuits and Systems, 27(7):1165-1178, 2008.

[5] E. A. Emerson and A. P. Sistla, editors. Computer
Aided Verification, 12th International Conference,
CAV 2000, Chicago, IL, USA, July 15-19, 2000,
Proceedings, volume 1855 of Lecture Notes in
Computer Science. Springer, 2000.

[6] T. A. Henzinger, R. Jhala, R. Majumdar, and
G. Sutre. Software Verification with BLAST. pages
235-239. Springer, 2003.

[7] G.J. Holzmann. The Model Checker SPIN. I[EEE
Trans. Software Eng., 23(5):279-295, 1997.

[8] G. J. Holzmann. Trends in Software Verification. In
Proceedings of the Formal Methods Europe Conference,
Lecture Notes in Computer Science, pages 40-50.
Springer, 2003.

[9] G. Klein, K. Elphinstone, G. Heiser, J. Andronick,
D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,

R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and
S. Winwood. sell4: Formal Verification of an OS

Kernel. In SOSP, pages 207-220, New York, USA,
2009.

[10] L. Lamport. The Temporal Logic of Actions. ACM
Trans. Program. Lang. Syst., 16(3):872-923, 1994.

[11] L. Lamport. Specifying Systems, The TLA+ Language
and Tools for Hardware and Software Engineers.
Addison-Wesley, 2002.

[12] M. Lemerre, E. Ohayon, D. Chabrol, M. Jan, and
M.-B. Jacques. Method and Tools for
Mixed-Criticality Real-Time Applications within
PharOS. In Proceedings of AMICS 2011: 1st
International Workshop on Architectures and
Applications for Mized-Criticality Systems, 2011.

[13] G. C. Necula, S. Mcpeak, S. P. Rahul, and
W. Weimer. CIL: Intermediate Language and Tools
for Analysis and Transformation of C Programs. In
International Conference on Compiler Construction,
pages 213-228, 2002.

Resource Sharing Under a Server-based Semi-Partitioned
Scheduling Approach

Alexandre Esper 11

t Critical Software S.A.
Portugal

aresper@criticalsoftware.com

ABSTRACT

The rapid evolution of commercial multicore platforms has
raised the industry interest in developing and running ap-
plications independently on the same platform. However, in
realistic industrial settings, tasks belonging to different ap-
plications share resources that are not limited to the CPUs.
Applications share hardware components (e.g. co-processors
and actuators), and need to access portions of code that may
be protected by semaphores or mutexes.

In this paper we address the important challenge of re-
source sharing on multicore platforms through the use of
servers, i.e, through a hierarchical scheduling approach, which
is an effective technique to ensure the integration of indepen-
dently developed applications on the same computing plat-
form as well as the isolation of tasks. To solve that problem
we adapt and extend the MrsP [6] resource sharing protocol
and further combine it with the NPS-F scheduling algorithm
[5], which employs a server-base approach. A schedulability
analysis is then provided for the resulting framework.

1. INTRODUCTION

The interest of industry in real-time embedded applica-
tions has recently gained strength. This has been mainly
driven by the important need of taking as much benefit as
possible of the processing power offered by multicore plat-
forms, which can now be easily found in products ranging
from portable cell phones and smartphones to large com-
puter servers. Additionally, current software development
processes often involve more than one independent devel-
opment team (e.g. subcontractors) that produce software
components, which are further integrated to form a final
product.

In order to reach that goal, server-based techniques emerged
as an intuitive solution to effectively ensure the temporal
isolation and protection, while respecting all real-time con-
straints of the applications. Servers allow for the reservation
of a portion of the embedded system capacity for a specific
application. Therefore, it allows applications to run inde-
pendently through time partitioning.

The research on real-time systems for uniprocessor (sin-
gle core) is well established and consolidated, and there are
multiple works extending the uniprocessor scheduling algo-
rithms to multicore [7]. However, in practice, several chal-
lenges emerge when considering all the resources that must
be accessed by tasks running in a multicore environment.

In a realistic industrial application, the resources shared
by different tasks are not limited to the CPUs. Applications
share hardware components and need to access data or exe-

37

Eduardo Tovar

TCISTER/INESC-TEC
Portugal

emt@isep.ipp.pt

cute portions of code that may be protected by semaphores
or mutexes. This adds an additional layer of complexity
to the scheduling problem and requires the introduction of
Resource Sharing Protocols.

The objective of this work is to set the basis for the design
of a framework that is able to effectively handle the hierar-
chical scheduling of tasks on multicore platforms whilst tak-
ing the shared logical resources into consideration. Hence,
we adapt and combine the MrsP [6] resource sharing proto-
col with the NPS-F [5] scheduling algorithm.

2. SYSTEM MODEL

We consider the general sporadic task model, where each
task 7; in a system 7 is characterized by its minimum inter-
arrival time T;, relative deadline D;, and worst-case compu-
tation time, C;. That is, each task 7; can generate a poten-
tially infinite number of jobs at least 7; time units apart,
and each job must execute for at most C; time units before
its deadline occurring D; time units after its release. Arbi-
trary deadlines are assumed, but jobs from the same task
can never execute in parallel. The utilization u,; of a task 7;
is defined as u; = C;/T; and the system utilization, U(7), is
defined as U(7) = Y 1" | ui.

The execution platform is composed of m identical phys-
ical processors, uniquely numbered P; ... P,,. We also con-
sider a set of k servers, uniquely numbered S; ...S;. The
tasks are first mapped to a server, which are then allocated
to the processors. The server utilization U(Sy) is defined as:

US) = > w (1)

T, €7(Sq)

where 7(S,) is the set of tasks assigned to Sq. We assume
that the utilization of a server never exceeds 1 and that it
never executes on more than one processor at a time.

Shared Resources (denoted as r?) are defined as the data
structures that are shared between tasks. They are divided
in two types; those that are shared by tasks mapped to
the same server, called local resources, and those that are
shared between tasks mapped to different servers, which are
called global resources. The code associated with a resource
is called a critical section and must be accessed under mu-
tual exclusion. The blocking time experienced by a task 7;
when accessing a locked local resource is defined as the local
blocking time. Similarly, the blocking time experienced by
7; when it tries to access a locked global resource is defined
as the global blocking time.

The relation between tasks and resources is given by two
functions: F(7;) and G(r?). F(7;) returns the set of re-

sources used by task 7; and G(rj) returns the set of tasks
that use resource 7. The parameter ¢’ is used to denote the
worst case execution time of the resource 7/ when accessed
by any task.

3. RELATED WORK

This section provides an overview of the MrsP protocol [6]
and the NPS-F scheduling algorithm [5], which constitute
the basis for the present work.

3.1 Review of MrsP

One of the most recent resource sharing protocols for mul-
ticore platforms is MrsP [6]. MrsP is restricted to fully par-
titioned systems where tasks are scheduled using fized prior-
ities. The general sporadic task model is employed and each
processor Pj, implements a local extension of the Stack Re-
source Policy (SRP) applied to the Priority Ceiling Protocol
(PCP) [11] (denoted as PCP/SRP), where all resources
are assigned a set of ceiling priorities, one for each processor
Py. The ceilings are defined as the maximum priority of all
tasks allocated to P, that use r/. Whenever a task 7; at-
tempts to access 77, its priority is raised to the local ceiling
of 7. For local resources, MrsP behaves as an implementa-
tion of the uniprocessor PCP/SRP. For global resources, the
access to a resource is granted through a FIFO queue. While
waiting to gain access to resource 7 that is already locked
by another task 7y, 7; remains active, i.e., it busy-waits for
the lock to become available (spin-based locking).

The characteristics of MrsP reviewed so far are similar to
MSRP [9], of which it is a variant. Its main difference is
that tasks busy-waiting may use their “spin” time to under-
take the execution of other waiting tasks. This means that
although MrsP is defined for partitioned systems, the tasks
still have the ability to migrate from one processor to an-
other at run-time. If a task 7; is preempted whilst accessing
a resource ¢, then 7; can migrate to any processor on which
a task is waiting to gain access to r’. The authors claim that
this property effectively leads to a schedulability analysis
that presents an identical form to the response-time analysis
for uniprocessor, thus providing several desirable properties
of the single processor PCP/SRP [11][2]. Therefore, under
MrsP, tasks can execute requests from other tasks, thus pre-
venting a degradation of the system performance that would
result from a preemption of the task holding the resource.

It was proved in [6] that the MrsP resource sharing pro-
tocol can be incorporated in the Response-Time Analysis
(RTA)[1] in the following way:

R
’7?1—‘ X Cj (2)

J

Ri = C; + max{é,b} + Z

7 €hpl(i)

where hpl(7) is the set of local tasks with priority greater

than 7;. The parameter é is the maximum execution time of

a resource used by a local task with priority less than that of

7; and a local task with an equal or higher priority than ;.

The parameter b is the maximum non-preemptive execution

time induced by the Real-Time Operating System (RTOS).
The C; parameter for each task is given by:

C;=WCETi+ > mnixé (3)
r-7€F(T,i)

where WCET; is the worst-case execution time of the task,
ignoring the time it takes to access resources (but including

38

all time spend in the RTOS). The second term of Equation
3 accounts for the increased cost of the potential parallel ac-
cess to resource 7 due to tasks running on different proces-
sors. n; is the number of times 7; uses r; and parameter e’
is the maximum amount of time 7; might need to execute 77,
including its spinning time, given by: e/ = |map(G(r?))|x?,
where function |map(G(r?))| returns the number of proces-
sors onto which tasks that use resource r’ can execute.

3.2 Review of NPS-F

NPS-F is a semi-partitioned scheduling algorithm [5]. The
semi-partitioned approach allows the development of algo-
rithms with a higher utilization bound than the partitioned
approach (better work balance between processors) and also
reduces the number of migrating tasks by avoiding the use
of global shared queues for scheduling tasks to processors,
when compared to the global scheduling approaches.

This algorithm employs a server-based approach, consid-
ering a set of k servers. In the so-called flat-mapping, the
tasks are assigned to the servers and each server is then as-
signed to one or two processors at most. A server has a
utilization upper-bounded by 1 and can never execute on
more than one processor at a time. Hence, each sever S is
equivalent to a unicore processor with a computing capacity
U(Sy). Each server serves one or more tasks using EDF as
the internal scheduling policy.

The NPS-F algorithm is composed of 4 steps. The first
step is the assignment of tasks to the servers, based on the
task’s utilization (u;). The second step is the computa-
tion of the capacity of each server S,. NPS-F ensures the
schedulability of all tasks allocated to Sq, even under the
most unfavorable arrival phasings, i.e. when there are ready
tasks, but their associated servers are not executing. This is
achieved by inflating the utilization of the server, given by
Equation (1) (see [5][13] for more details). The third step of
the off-line procedure is the allocation of the servers to the
processors, following a semi-partitioned approach. Servers
that are assigned to only one processor are called non-split
servers, whereas servers that are assigned to two proces-
sors each are called split servers. Note that the servers that
serve the spli-tasks must be carefully positioned within the
time slots in order to avoid their overlapping in time. The
last step of the algorithm is performed at run-time, when
the dispatching inside each server is performed under EDF
policy.

Under NPS-F, it is the execution time of the servers which
is split - not directly that of the underlying tasks served. In
principle, this allows an improved efficiency in the utiliza-
tion of a multiprocessor system. NPS-F has a utilization
bound of 75% configurable up to 100% at the cost of more
preemptions and migrations.

Recently, a new schedulability test for mapping tasks to
servers for NPS-F has been proposed in [13]. But since we
aim at defining a hierarchical scheduling framework that al-
lows resource sharing between tasks, we first present some
useful concepts defined in [12]. The Resource Demand of
a task set 7(S,) represents the collective workload resource
requirements that the tasks in 7(S;) request within a cer-
tain interval of time ¢. The Demand Bound Function(DBF)
[4] of 7(Sq) calculates the maximum possible resource de-
mands required to satisfy its timing requirements within a
time interval of length ¢. The Resources Supply represents
the amount of time the system can provide for 7(Sg)’s execu-

tion, which is in fact the execution time provided by a server
Sq, onto which 7(S,) has been assigned. The Supply Bound
Function (SBF) calculates the minimum possible resources
supplies provided by a server S; during a time interval of
length t. A server S, is said to satisfy 7(S54)’s execution
demand if:

DBF(S,,t) < SBF(S,t),¥t > 0 (4)

Inequality (4) is then used as the new NPS-F schedula-
bility test, meaning that the execution demand by all jobs
assigned to a server (computed using the DBF) cannot ex-
ceed the amount of time supplied by the server for their
execution, for every time interval of length ¢. Since the test
is based on the concept of the DBF (exact test for unicore
platforms) rather than on the utilization, it allows to over-
come many sources of pessimism that existed in the previous
analysis [5].

Assuming sporadic task sets with arbitrary deadlines and
ignoring all overheads (which can however be easily accounted
for as shown in [13]), the DBF(Sy, t) is given by:

DBF(S,,t) = 3 max (o, V* DiJ + 1) xCi (5)

T;
T;€Sq

To perform the assignment of the tasks to the servers,
NPS-F iterates over the set of all system tasks and attempts
to fit each one of them (according to the bin-packing heuris-
tic used, e.g., Next-Fit (NF) or First-Fit (FF)) in the servers.
Each task 7; is provisionally added to the chosen server S,
and the length of the testing time interval ¢ is calculated.
The schedulability test defined by Equation (5) is then ap-
plied and if successful for some server S;, the task 7; is per-
manently mapped to it. Otherwise, a new server is opened
and the task 7; is added to it. If the schedulability test
fails for a server with only one task, then the task set is
considered unschedulable.

4. ACCOUNTING FOR SHARED
RESOURCES IN NPS-F

A current limitation of NPS-F is that it does not con-
sider the interaction between tasks (i.e. the access to shared
resources). The solution we propose in this paper comple-
ments NPS-F in that sense. It is based on an extension and
further adaptation of the MrsP [6] resource sharing proto-
col that takes the particularities of NPS-F into account. In
Section 4.1 we explain how the schedulability test of NPS
can be adapted to introduce MrsP resource sharing proto-
col. Then, the problem of mapping tasks to servers is briefly
addressed in Section 4.2.

We adapt MrsP to work with servers by instantiating the
concept of bandwidth inheritance [8]. With that solution,
one server may undertake the processing of a resource crit-
ical section on behalf of another task assigned to another
server. In order to better visualize the impact of such band-
width inheritance protocol, consider a simple system com-
posed of two servers and four tasks. It is assumed that both
servers are assigned to different physical processors and that
the global resource r! is shared between the servers. Tasks
71 and 72 are allocated to server Sp; task 7 uses the local
resource 7' and task 72 does not use any shared resource
(apart from processor). Tasks 73 and 74 are allocated to
server Sa; task 73 also uses the global resource r! and task
74 does not use any resource (apart from the processor).

39

r*locked

1
:
S.ir, 11 T S
1: 1 : 1.0t 2 Tlv,x: 1| T,
1
: B :r‘locked
T
SZ: T, | T, |73V,JIT3 T,
1
—t t t —t ——
tl 2 t3 t4 t5 t6 t7 t8 tQ
(a) without bandwidth inheritance
1
! r*locked
R ——
f T
Sl: LT, | T, |r1
1
! B, i ocked
R —
f T T
ST Y N
1
t

L, t, tg tg t,
(b) with bandwidth inheritance

Figure 1: Example schedule with shared resource.

Two simple example schedules (with and without band-
width inheritance) for the system are provided in Fig.1 to
illustrate the solution. In Fig.1(a), tasks 71 and 73 are ex-
ecuting at instant ¢1. At instant ¢z task 7 locks resource
r! and execute its critical section, represented by the nota-
tion 7y ;1. At instant t3, task 73 tries to access r! but gets
blocked (represented in gray) because the resource is already
locked by 1. Even worse, task 7 is preempted by task 72 at
ts. Task 73 will only be able to continue its execution at t7,
after 72 has finished its execution (¢5) and after 71 releases r1
(ts). The blocking interval of task 73 is represented by Bs.
In Fig.1(b), the notion of bandwidth inheritance is depicted.
The main difference in relation to the previous schedule is
that server Sy is able to undertake the processing of task
71 when it is preempted by 72 at instant t4. Task 71 then
executes the critical section and releases r* at t = 5. Task
T3 is then able to lock 71 much earlier than in the schedule
presented in Fig.1(a) and hence Bjs is reduced.

4.1 Adaptation of the NPS-F Schedulability
Analysis

The main adaptation required is related to the restric-
tion adopted in MrsP [6] where tasks are scheduled using
fized priority. Due to the fact that under NPS-F each server
serves one or more tasks employing an EDF scheduling pol-
icy [10], the scheduling analysis defined by Equation (2)
can no longer be applied. Considering this, a schedulability
analysis that accounts for resources sharing under the EDF
scheduling policy needs to be defined.

Thus we need to investigate how to account for the effects
of (global and local) shared resources into Equation (4). As
shown in [3], EDF-scheduled systems in which accessess to
shared resources are arbitrated by SRP can be integrated
into the analysis using a Blocking Function B(t). This func-
tion provides the longest blocking time a higher priority task
can experience when blocked by a lower priority task. Based
on (3], the Blocking Function B(t) can be approximated by
a function B (S,) and incorporated into Equation (4), re-
sulting in the following schedulability test:

vt : BY(S,) + DBF(S,, t) < SBF(S,, t) (6)

where BX(S,) = max{é, b} is the blocking term due to local
resources used by tasks served by S;. In order to account
for the global resources shared under the MrsP protocol, the
DBF can be expanded as follows:

BL(t)Jrimax (0, V —Tka + 1) x Cy, < SBF(S,,t) (7)

where C}, is given by:

Cy =WCET(re)+ > ¢ (8)

ri €F (7))

where e/ is now given by e/ = |mapserv(G(r?))| x ¢!. Func-
tion mapserv returns the set of servers onto which the tasks
accessing 7/ are assigned. Therefore, similarly to Equation
(4), the worst-case execution time of a task 7; is augmented
by the maximum number of parallel access to each resource
used by 7. Since global accesses are performed in a FIFO
manner and because a priority ceiling protocol is used locally
to each server, there may be at most one parallel access per
server in which the resource is used. The C; of each task is
therefore influenced by the number of servers accessing the
resource rather than the number of processors as it was the
case in Equation (4).

4.2 Mapping of tasks to servers

Equation (8) shows that the execution time e’ of resource
r7 depends on the number of servers that have parallel access
to 7. This leads to one of the key challenges foreseen when
applying Inequality (7), i.e. how to perform the mapping
of tasks into servers under NPS-F. This mapping uses the
schedulability test provided by Inequality (7). However, to
perform that schedulability test on a task 7;, it is necessary
to know where the tasks accessing the same resources than
7; are assigned (through function mapserv). Therefore, this
leads to a circular dependency between the calculation of
the parallel access time to the resources and the assignment
of tasks to the servers.

One of the possible solutions to overcome this circularity
issue for global resources is to assume a worst case scenario in
terms of parallelism, when computing the schedulability test
of each task 7;. This can be achieved by assuming that all
the tasks sharing resources with 7; are mapped to different
servers. Under this scenario, two kinds of upper bounds on
the amount of parallelism for the access to the resource can
be considered: (i) the number of tasks that share resources
with 7;; (#) the maximum number of servers onto which the
tasks can be allocated.

The smallest of these two values can then be used as an
upper bound on |mapserv(G(r?))|. In this way the circular-
ity issue is broken. The allocation of the subsequent tasks
can be improved by taking into consideration the mapping
decisions already taken, and not the worst case any more.
However, we still have to consider the worst case scenario for
the tasks that have not been allocated to a server yet, but
that share resources with 7;. Note that, through the defi-
nition of the parameter é, local resources exhibit a similar
circular dependency between the mapping decisions and the
schedulability test. Again, this dependency could be broken
by considering the worst-case value for é, which can be com-
puted taking the maximum blocking time that 7; can suffer
from tasks already assigned to the same server S; and those
that are not yet assigned to any server.

40

S. CONCLUSIONS

In this paper we present a framework for scheduling real-
time tasks in multicore platforms with resources sharing.
The solution was based on an adaptation of MrsP resource
sharing protocol to work with the server-based semi-partitioned
scheduling algorithm NPS-F . The schedulability analysis of
tasks assigned to a server is provided, taking into account
the blocking time due to shared resources. The next foreseen
step is the mapping of the tasks to the servers, which has
circular dependencies with the schedulability test provided.
The method designed for NPS-F could then be extended to
any server based scheduling algorithm for multicore archi-
tectures and hence be used to design assignment techniques
ensuring the isolation of different applications sharing the
same computing platform.

Acknowledgements

This work was partially supported by National Funds through FCT
(Portuguese Foundation for Science and Technology) and by ERDF
(European Regional Development Fund) through COMPETE (Op-
erational Programme 'Thematic Factors of Competitiveness’), within
project FCOMP-01-0124-FEDER-037281 (CISTER), and by National
Funds through FCT and the EU ARTEMIS JU funding, within projects
ref. ARTEMIS/0003/2012, JU grant nr. 333053 (CONCERTO) and
and ref. ARTEMIS/0001/2013 (JU grant nr. 621429 - EMC2).

6. REFERENCES

[1] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J.
Wellings. Applying new scheduling theory to static priority
pre-emptive scheduling. Software Engineering Journal,
8(5):284-292, 1993.

[2] T. P. Baker. Stack-based scheduling of realtime processes.
Real-Time Syst., 3(1):67-99, 1991.

[3] S. K. Baruah. Resource sharing in edf-scheduled systems:
A closer look. In RTSS 2006, pages 379-387. IEEE, 2006.

[4] S. K. Baruah, A. K. Mok, and L. E. Rosier. Preemptively
scheduling hard-real-time sporadic tasks on one processor.
In RTSS 1990, pages 182-190. IEEE, 1990.

(5] K. Bletsas and B. Andersson. Preemption-light
multiprocessor scheduling of sporadic tasks with high
utilisation bound. Real-Time Syst., 47(4):319-355, 2011.

(6] A. Burns and A. Wellings. A schedulability compatible
multiprocessor resource sharing protocol-mrsp. In ECRTS
2013, pages 282-291. IEEE, 2013.

[7] R. 1. Davis and A. Burns. A survey of hard real-time

scheduling for multiprocessor systems. ACM Computing

Surveys, 43(4):35, 2011.

D. Faggioli, G. Lipari, and T. Cucinotta. The

multiprocessor bandwidth inheritance protocol. In ECRTS,

2010 22nd Euromicro Conference on, pages 90-99. IEEE,

2010.

[9] P. Gai, G. Lipari, and M. Di Natale. Minimizing memory
utilization of real-time task sets in single and
multi-processor systems-on-a-chip. In RTSS 2001, pages
73-83. IEEE, 2001.

[10] C. L. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment.
Journal of the ACM, 20(1):46-61, 1973.

[11] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority
inheritance protocols: An approach to real-time
synchronization. IEEE Transactions on computers,
39(9):1175-1185, 1990.

[12] I. Shin and I. Lee. Compositional real-time scheduling
framework. In RTSS 2004, pages 57-67. IEEE, 2004.

[13] P. Sousa, K. Bletsas, E. Tovar, P. Souto, and B. Akesson.
Unified overhead-aware schedulability analysis for
slot-based task-splitting. Real-Time Syst., pages 1-56, 2014.

8

Externalisation of Time-Triggered communication system
in BIP high level models

Hela Guesmi, Belgacem
Ben Hedia
CEA, LIST
firsthname.lastname@cea.fr

ABSTRACT

To target a wider spectrum of Time-Triggered(TT) imple-
mentations of hard real-time systems, we consider approaches
for building component-based systems that provide a phys-
ical model from a high-level model of the system and TT
specifications. The obtained physical model is thus suitable
for direct transformation into languages of specific TT plat-
forms. In addition, if these approaches provide correctness-
by-construction, they can help to avoid the monolithic a
posteriori validation.

In this paper, we focus on the T'T interface concept of the
TT paradigm. And we present a method that transforms
the interaction in classic BIP (Behavior, Interaction, Prior-
ity) Model into a TT interface by source-to-source transfor-
mations. The method is based on the successive application
of two types of source-to-source transformations; Transfer
functions internalisation and n + 1-ary connector to TT in-
terface transformation. The first simplifies the connector
transfer functions by modifying components automata. The
second transforms connector with simple transfer function
into TT interfaces.

Keywords

TT paradigm; correctness-by-construction; Source-to-source
transformation; BIP; interaction expressions; connectors;

1. INTRODUCTION

In hard real time computer systems, correctness of a re-
sult depends on both the time and the value domains.
With the increasing complexity of these systems, ensuring
their correctness using a posteriori verification becomes, at
best, a major factor in the development cost and, at worst,
simply impossible. An error in the specifications is not de-
tectable. We must, therefore, define a structured and simpli-
fied design process which allows the development of correct-
by-construction system. Thereby, monolithic a posteriori
verification can be avoided as much as possible.

Two fundamentally different paradigms for the design of
real-time systems are identified; Event-Triggered(ET) and
TT paradigms. In ET paradigm, all communication and
processing activities are initiated whenever a considerable
event, i.e., change of state in the observed variable, is no-
ticed. It doesn’t cope with demands for predictability and
determinism that must be met in hard real-time systems.
Activities in TT paradigm are initiated periodically at pre-
determined points in time. These statically defined activa-
tion instants enforce regularity and make T'T systems more
predictable than ET systems. This approach is well-suited
for hard real-time systems.

A system model of this paradigm is essential to speed-up
understanding and smooth design task. It requires explic-
itly manipulating not only the value domain specifications,

41

Simon Bliudze
EPFL
Simon.bliudze@epfl.ch

Saddek Bensalem
Verimag, UJF

Saddek.Bensalem@imag.fr

but also temporal constraints for which high abstraction
level primitives are not provided. Kopetz [7] presents a TT-
Model of computation, based on essential properties of the
TT paradigm: the global notion of time that must be
established by a periodic clock synchronization in order to
enable a T'T communication and computation, the tempo-
ral structure of each task, consisting of predefined start
and worst-case termination instants attributed statically to
each task and TT interfaces which is a memory element
shared between two interfacing subsystems. TT-Model sep-
arates the design of interactions between components from
the design of the components themselves.

To target a wider spectrum of TT implementations, we
consider approaches for building component-based systems
that provide a physical model from a high-level model of
the system and T'T specifications. In addition, if these ap-
proaches provide correctness-by-construction, they can avoid
the monolithic a posteriori validation. We focus in particu-
lar on the framework BIP [1]. It is a component framework
for constructing systems by the superposition of three lay-
ers: Behaviour, Interaction, and Priority. The Behaviour
layer consists of a set of atomic components represented by
transition systems. The second layer describes possible in-
teractions between atomic component. Interactions are set
of ports and are specified by a set of connectors. The third
layer includes priorities between interactions using mecha-
nisms for conflict resolution. In this paper, we consider Real-
Time BIP version [2] where atomic components are repre-
sented by timed automata. We limit ourselves to connectors
and leave priorities for future work.

From a high-level BIP system model, a physical model
containing all T'T concepts (such as TT interfaces, the global
notion of time and the temporal structure of each task) is
generated using a set of source-to-source transformations.
This physical model (called also BIP-TT model) is then
translated to the programming language specific to the par-
ticular TT platform. The program in this language is then
compiled using the associated compilation chain. Thus, BIP-
TT model is not dedicated to an exemplary architecture.

There have been a number of approaches exposing the rel-
evant features of the underlying architectures at high level
design tool. [8] presents a design framework based on UML
diagrams for applications running on Time Triggered Ar-
chitecture(TTA). This approach doesn’t support earlier ar-
chitectural design phase and needs a backward mechanisms
for the generated code verification. Since BIP design flow is
unique due to its single semantic framework used to support
application modelling and to generate correct-by-construction
code, many approaches tend to use it to translate high level
models into physical models including architectural features.
In [5], a distributed BIP model is generated from a high level

one. In [4], a method is presented for generating a mixed
hardware/software system model for many-core platforms
from an application software and a mapping. These two ap-
proaches take advantages from BIP framework but they do
not address the TT paradigm. To the best of our knowl-
edge, our approach is the first to address the problem of
generating T'T application from BIP high level models.

In this paper we address the issue of source-to-source
transformations that explicit TT communications in the phys-
ical model, in BIP framework. Other TT concepts (the
global synchronized time and task temporal structure) trans-
formations are beyond the scope of this paper.

The remainder of this paper is structured as follows: Sec-
tion 2 introduces BIP framework and explains the relevant
TT concepts. Section 3, presents a method using a set of
source-to-source transformations for generating a BIP model
expliciting T'T communication interfaces, from a high level
classic BIP model. In Section 4, we conclude the paper by
discussing advantages and downsides of our method.

2. RELATED CONCEPTS

In this section, we present first the basic semantic model
of BIP, and main TT concepts that must clearly appear in
the final BIP-TT model.

2.1 The BIP component framework

In the BIP framework, for each layer, a concrete model
is provided. Atomic components model the behaviour layer.
The interaction layer is modelled with connectors and finally
Priorities is a mechanism for scheduling interactions.

An atomic component consists of a timed automaton with
local data and an interface consisting of ports. Transitions
in the component automaton are labelled by ports and can
execute C code to transform local data. Let P be a set of
ports. We assume that every port p € P has an associated
data variable x,. This variable is used to exchange data
with other components, when interactions take place.

Definition 1. (atomic component):
An atomic component B is defined by B = (L,P,T,X,
{gT}TGTv {fT}T€T)7 where,

e (L,P,T) is a labelled transition system, that is:

— L is a set of control states
— P is a set of communication ports,
— T CLx2Y XL is a set of transitions
o X is a set of variables and for each transition T € T,
g- 15 a guard and fr is an update function that is state
transformer defined on X.

Interactions which are sets of ports allowing synchroniza-
tions between components, are defined and graphically rep-
resented by connectors. The execution of interactions may
involve transfer of data between the participating compo-
nents. For every interaction, data transfer functions of an
interaction a are specified by an Up and a Down actions.
The action Up is supposed to update the local variables of
the connector, using the values of variables associated with
the ports. Conversely, the action Down is supposed to up-
date the variables associated with the ports, using the values
of the connector variables.

Definition 2. (Connector) A connector v defines sets of
ports of atomic components B; which can be involved in an
interaction a. It is formalized by v = (P, a,q, g, Up, Down)
where:

e P is the support set of synchronized ports of vy with

P=a

42

e g is its exported port.

® g is the boolean guard expression.

e Up is the upward transfer function of the form x4 =
Up({p}pea)s-

e and Down is the downward transfer functions of the
form x, := Downy(x4) for each p € a.

The interaction presented by this connector is of the form:

(¢ a)[9({zp}pea) : g = Up({p}pea)//Tpea =
Downy,(z4)]

2.2 TT Paradigm [6, 7]
TT paradigm encompasses these 3 key concepts;

The global synchronized time: It allows definition of in-
stances when communication and computation of tasks
take place in a TT system. It is established by a pe-
riodic clock synchronization from which other clocks
can be derived.

The temporal control structure of the task sequence:
The TT paradigm is based on a set of static schedules.
These schedules have to provide an implicit synchro-
nization of the tasks at run time. This introduces a
fixed task activation rates during system design. Thus
to each task is allocated predefined start instant (73)
and the worst-case termination instant (7.). These in-
stants are triggered by the progression of the global
time.

Time-Triggered interface(Firewall): 1t is a data-sharing
boundary between two communicating subsystems. Ex-
changed messages are state messages, informing about
the state of the relevant variable at a particular point
in time. A new version of a state message overwrites
the previous version. State messages are not consumed
on reading and they are produced periodically at pre-
determined points in real-time. Thus TT interfaces
contain real-time data which is a valid image of the
observed variable.

These three notions should clearly appear in the final BIP-
TT model to facilitate its translation into the programming
language specific to the particular TT platform.

3. TIME-TRIGGERED ARCHITECTURES

IN BIP

The methodology that integrates TT concepts in BIP, is
based on the transformation of an arbitrary BIP model with
additional TT annotations (task, TT interfaces) into more
restricted models called BIP-TT, which are suitable for di-
rect transformation into languages of specific TT platforms.

In order to understand the transformation process of a
BIP model into BIP-TT one, we present first the original
BIP and final BIP-TT models and then we detail the trans-
formation rules that transform the former into the latter.

3.1 The original BIP Model

We assume that the considered original BIP model con-
sists only of atomic components and flat connectors, exam-
ple cf.Figurel. Indeed, these assumptions do not impose
restrictions on the components since we can use the compo-
nent flattening” transformation [5] to replace every compos-
ite component by its equivalent set of atomic components.

Figure 1 shows a BIP model, made up of five atomic com-
ponents executing four different tasks. We assume that a
task is a set of elementary actions. Thus two or more com-
ponents can execute separately elementary actions belong-
ing to the same task. Each component is annotated by the

o

==
ol
SN v
s 20
TP 2.2 Te-cps Te-cra Teces

Figure 1: High level BIP model

task it is executing and the component identifier. Take for
example the first component, annotated by "T1-CP1”, i.e.,
"CP1” is its identifier and "T1” is the executed task identi-
fier. Two different components may execute the same task,
e.g components "CP4” and "CP5”. The connector relating
such components is shown by dotted lines. To simplify the
presentation of figures’ automata in this paper, the temporal
aspect is not displayed.

3.2 BIP_TT Model

The final BIP-TT Model presents a hand-made transla-
tion of the T'T paradigm, introduced by Kopetz, into a BIP
model. It clearly includes TT three main concepts.

Figure 2b shows roughly how should be the BIP-TT model
of the BIP model of Figure 2a. Red components are BIP
components and presents TT concepts.

MH []W,H start

T1CP1 T2-CcP2 TI-CP1 T2-cP2

(a) Original BIP model (b) Final BIP-TT model
Figure 2: Modelling TT paradigm in BIP

As here we settle for studying source-to-source transfor-
mations to obtain TT interfaces from BIP connectors, we
model in Figure 3 the TT interface in BIP. It is an atomic
two-port component which behaviour is modelled by a la-
belled automaton with one state and two transitions, one
for reading action (labelled by the port Wirr) and one for
writing(labelled by the port Rrrr).

TTinterface

Figure 3: BIP model of the TT interface

3.3 Transformations from BIP classic model
to BIP-TT model: from the communica-
tion concept point of view

The high level BIP model refinement process is based on
the operational semantics of BIP [3] which allows to com-
pute the meaning of a BIP model with simple connectors
as a behaviourally equivalent BIP model that contains TT
interfaces cf.Figure 3. The transformation process follows
these two steps: 1) Transfer functions internalisation and

2) n + l-ary connector to TT interface transformation F,.

These two transformations are described in reverse, from
the most specific to the most general N —ary connector case.

We use the high level BIP model in Figure 1 as a running

example throughout the paper to illustrate these transfor-

mation rules.

3.3.1 n+ 1-ary connector to TT interface transfor-
mation (Fn)
This transformation is applied only on n + 1—ary connec-

tor with only one writer, n readers, and with simple assig-

43

nation transfer functions, i.e., we just copy the value of the
associated variable to the writer port in the local variable
of the connector (the Up function), and copy the latter in
readers’ ports’ variables(Down functions). Note that this
behaviour is similar to the T'T interface one which is used to
make and transfer copy from the producer to consumers. We
denote this transformation function by F,,, it transforms an
n 4+ 1—ary connector C' = (Pc,ac,qc, 9c,Upc, Downc), in
the source model, into the triplet; binary connector C1, TT
interface I77, and an n—ary connector C%', in the resulting
model. These are defined below in function of the initial
connector C'. Let Pc be the set of ports of the connector C
such as Pc = {pwe, {PRc; Yic[1.n] }-
Rule 1. C;

Cy is formalized by C1 = (P1,a1,q1, 91, Up1, Downy). The
interaction presented by this connector is then of the form:
(@1 < a1 = {pwe,Pwirr }) - [gc(xpwc) :

Zq, :=Up (xpwc) = ZTpwe //Zpea, = Downi(zq,) = 2q,]

Rule 2. ITT

The atomic component It = (L, P,T,X,{g-}- € T,{f+}+ €
T) where L={l} , P ={pw;pr:PRirr} ,» T is a set of the
two possible transitions, each labeled by one of the two ports.

Rule 3. C3
C3 is formalized by C3 = (P3',az2,q2, g2, Upa, Downs).
The interaction presented by this connector is of the form:
(q2 a2 = {pRITT7 {pRcf‘,}iE[L«”]}) .
[gC({waCi Yielt.n)) : Tqz = Up2 TpRrirr
ToRipr //®peay = Downa(zg,) = Tq,

Example 1. If we suppose that there exists only one writer
among the first three components in the example of Figure
1 (for example CP1), then this transformation will trans-
form connectors Conni (using Fz2) and Conna (using Fi1)
as shown in Figure 4.

TTinterface

“(B& =

=)

T1-CP1 T2-CP2 T3-CP3 T4-CP4 T4-CP5

Figure 4: Conn; and Connz connectors to T'T interfaces
transformation

3.3.2 Transfer functions internalisation

This transformation takes an arbitrary N —ary connector
with transfer functions different from the simple assignation
and produces a connector with simple assignations transfer
functions. Then the transformation function F, can be ap-
plied on the obtained connector. Up and Down functions
are internalised by modifying components’ automata. In this
transformation readers and writers are detected. Suppose
that there are m writers, m > 1 and n readers, N < n+m,
i.e., a component can be both reader and writer. One com-
ponent writer is randomly chosen to be "the maestro” (in the
rest of the paper the maestro is the m*" writer). It is then
connected to all the rest of writers via m — 1 binary connec-
tors, so that to aggregate all their data, and to readers via
an n—ary connector.

Automata of Writers W jei1,m—1] and readers R; ic[1,n],
are modified so that to internalize their concerned Down
functions. The maestro M component and automaton are
modified by adding ports, variables, states and transitions.

We denote their refined models respectively by W ey m_1)

R} e, mand M. Thus the initial connector C' = (Pc, ac, qc,
gc,Upc, Downc) is split into m — 1 binary connectors
C?,iE[l,mfll if m > 1, and an n—ary connector C".

We denote the sets of ports and interactions of the initial

connector C respectively by Po = {{pw; }ie[1..m] U{pR]. Yien.n}

and ac. Ports par and pr, are respectively ports of the mae-
stro and the component R; involved in the interaction ac.
The derived connectors after transformation and the refined
components are defined below.

Rule 4. Connector Cit:ie[l,m—l]

C? is formalized by C? = (P?,al,q%, g, Up?, Down?).

The interaction presented by this connector is then of the
form: (gt ab = {pw,,pan}) - l90(@py,) :

Tab = Up?(xibwi) = xpwz//xpzwz = Downzb(xqf) = xqf]

C™ connector, relating the maestro writer component to
the n reader components is defined below;

Rule 5. Connector C*

C" is formalized by C™ = (P",a",q",g",Up", Down™),
where:

The interaction presented by this connector is then of the
form: (¢" < a"™ = {pam, {Pr, }jenn.m}) - lgc({Pr;}jen.n) :
Tgn = Up™(Tp,,) = IPM//J:PRJ = Down™(zqn) = 47|

We now present how we transform a writer component M
in original BIP model, into a maestro component M" that is
capable to aggregate all other writers data, to internalize Up
transfer function of the initial connector and then to send
the result of this function to readers. The maestro compo-
nent M", has m — 1 ports py, allowing its connection with
the rest of writers and a port pas relating the maestro to
readers. Old exported variable x is kept as a local variable,
and a new variable z is associated with the port pas. To be
able to internalize the Up function of the initial connector,
m— 1 states and transitions are added before each transition
labelled by the port pas. Each new transition is labelled by
a port Pp,. Then Up function is executed in the last new
transition. Then, after executing the interaction involving
P port, we copy z variable to x variable. Figure 5 shows
an example of the maestro transformation, in case of a con-
nector with 2 writers m = 2, and which transfer functions
are Up and Down.

Figure 5: Example of a writer to a maestro transformation
with m =2

Example 2. Based on the example model of figurel, we
suppose that the connector Conni have the following trans-
fer functions. The transfer functions of the connector Ca
are simple assignations; Up : Tconn, = U(xp,) and
Down : xp, = D1(Tconn,), Tps = D2(Tconn,) and xp, =
Dli(xC‘onnl)-

By applying the transformation to this connector, we ob-
tain the model of Figure 6. Since the initial model con-
tains just one writer, the connector topology remains in-
tact, only its transfer functions and component behaviours
are modified in that example. Functions U and D1 will
be integrated to CP1 component. Da (resp. Ds) function
will be internalized in CP2 (resp. CP3). In each compo-
nent, we export a new variable z (instead of x) in ports p;,
i € [1,3]. For down functions (D1, D2 and D3), we add

44

a C function in every transition labelled by port p;. This
function is of the form x = D;(z), i € [1,3]. Concern-
ing Up function, a state and a transition are added before
each transition labelled by the writing port p1 in the com-
ponent T1 — CP1. The new transition executes a C func-
tion of the form z = U(x). The new connector Conn! have
the following transfer functions: Up : TConny = Zpy and
Down : zp, = zpy = Zpy = TConn -

Connj

o v: |
x (2] x [Ea] -]
Dby - Daw 2 s —~(02) Cone
start — Hes
@ ol ® ®

Figure 6: Conn, transfer functions internalisation

4. DISCUSSION & CONCLUSION

BIP connectors, can be transformed into TT interfaces
by successive application of two types of source-to-source
transformations; Transfer functions internalisation and
n + l-ary connector to TT interface transformation.
The first simplifies the connector transfer functions by mod-
ifying components automata while keeping the same general
behaviour of the model. The second transforms connector
with simple transfer functions to T'T interfaces.

The major asset of these source-to-source transformations,
is that we don’t add new components requiring adding new
tasks, a part from TT interfaces. These transformations
focus on transforming atomic components by adding new
ports, new variables and extending automata with new states
and transitions. The number of added states strongly de-
pends on the number of writers in the model and the number
of transitions labeled by the port involved in the interaction.

For that we propose in our future work to study differ-
ent cases and to decide whether to modify components au-
tomata or add a task that orchestrates all interactions with-
out altering components’ automata. Then, based on system
constraints, a trade-off can be defined.

5. REFERENCES
[1] BIP2 Documentation, July 2012.
]

[2] T. Abdellatif, J. Combaz, and J. Sifakis. Model-based
implementation of real-time applications. pages
229-238, May 2010.

[3] A. Basu, P. Bidinger, M. Bozga, and J. Sifakis.
Distributed semantics and implementation for systems
with interaction and priority. In Formal Techniques for
Networked and Distributed Systems—-FORTE 2008,
pages 116-133. Springer, 2008.

[4] P. Bourgos. Rigorous design flow for program-ming
manycore platforms.

[5] M. Bozga, M. Jaber, and J. Sifakis. Source-to-source
architecture transformation for performance
optimization in bip. Industrial Informatics, IEEE
Transactions on, 6(4):708-718, 2010.

[6] H. Kopetz. The time-triggered approach to real-time
system design. Predictably Dependable Computing
Systems. Springer, 1995.

[7] H. Kopetz. The time-triggered model of computation.
In Real-Time Systems Symposium, 1998. Proceedings.,
The 19th IEEE, pages 168-177. IEEE, 1998.

[8] K. D. Nguyen, P. Thiagarajan, and W.-F. Wong. A
uml-based design framework for time-triggered
applications. In Real-Time Systems Symposium, 2007.
RTSS 2007. 28th IEEE International, pages 39-48.
IEEE, 2007.

Towards Exploiting Limited Preemptive Scheduling for
Partitioned Multicore Systems:

Abhilash Thekkilakattil, Radu Dobrin and Sasikumar Punnekkat

{ abhilash.thekkilakattil, radu.dobrin, sasikumar.punnekkat} @mdh.se

Mailardalen University, Visteras, Sweden

ABSTRACT

Limited-preemptive scheduling has gained popularity due to
its ability to guarantee predictable behaviors with respect to
preemption overheads on uniprocessors, e.g., minimize cache
related preemption delays. However, only few techniques
exist that extend limited-preemptive scheduling to multicore
systems where the challenge of predictably sharing the cache
is further exacerbated.

In this paper, we propose a cache aware partitioning strat-
egy for limited-preemptive real-time tasks. We use the con-
cept of feasibility windows that are specified by a period, rel-
ative offset and deadline, and a processor core, to ensure
the behavior of the schedule that minimizes cache effects, as
well as achieve efficient partitioning. Optimization is used
to derive the feasibility windows for non-preemptive regions
of the tasks. The feasibility windows can be instantiated to
the context of table driven, earliest deadline first or fized
priority based schedulers.

1. INTRODUCTION

The multicore revolution has lead to a revived interest
in multiprocessor real-time scheduling. The deployment of
multiprocessors in real-time systems is beneficial due to the
increased processing capacity that these platforms provide.
Many multiprocessor scheduling algorithms have been pro-
posed in the literature that can be broadly classified into
global and partitioned multiprocessor scheduling paradigms.
Under the global scheduling paradigm, the real-time tasks
are dispatched from a global queue based on some rule, e.g.,
global preemptive Earliest Deadline First. Under the par-
titioned scheduling paradigm, the real-time tasks are first
partitioned onto the available processors, and each processor
locally schedules the tasks according to some rule, e.g, parti-
tioned EDF. However, both global and partitioned schedul-
ing paradigms have disadvantages that prevent the total
utilization of the processing capacity that multiprocessing
platforms provide. For example, global scheduling suffers
from the Dhall effect [2] in which deadline misses cannot be
avoided even though the taskset utilization is orders of mag-
nitude less than the available processing capacity. Similarly,
under partitioned scheduling on an m-processor platform,
there exist tasksets that can only use half the available pro-
cessing capacity (e.g., m tasks each with utilization over
50%) [3]. Such a problem arises because partitioning (bin
packing) becomes less efficient when there are high utiliza-

*This work was supported by the Swedish Research Council
project CONTESSE (2010-4276).

45

tion tasks. Several semi-partitioned scheduling algorithms
were proposed that build on the best of global and parti-
tioned paradigms by permitting restricted migrations across
the processors. However, many of the associated schedu-
lability analyses assume negligible runtime overheads such
as preemption related delays, or require over-provisioning of
resources.

Multicore processors offer a cheap and flexible multipro-
cessing platform, that reduces the Size, Weight and Power
(SWaP) constraints. The deployment of multicore proces-
sors in real-time applications is complicated by various hard-
ware features whose worst-case performance diverges signifi-
cantly from the average case. For example, the use of shared
caches speed-up data access times and in turn the processing
speed. However it can significantly increase the overhead in
case of a cache miss. Multi-core systems consist of a num-
ber of groups of cores that typically share caches at different

levels.

| L1 cache | | L1 cache |
| cpPU | | cpPU |
core 1 core 2

Figure 1: Example of a multicore system.

An example of a multicore system is given in Figure 1, in
which cores 1 and 2 share the L2 cache. As a consequence of
such an architecture, the worst-case execution time (WCET)
of a task allocated to a particular core will depend on the
allocation of tasks on the other core. For example, in the
above figure, if a task A is allocated on core 1, since it is
sharing a cache with core 2, task A’s WCET may depend on
the tasks allocated on core 2. This is because the tasks exe-
cuting on core 2 can evict the L2 cache lines used by task A
introducing temporal overheads in the schedule, e.g., Cache
Related Preemption Delays (CRPDs), potentially leading
to deadline misses. Note that in this case, non-preemptively
scheduling task A on any of the core has no particular ben-
efit since a task that is executing in parallel on the other
core can invalidate the L2 cache for task A. One solution
is to ‘schedule’ the cache preemptively or non-preemptively,

such as done by Ward et al. [13]. Such an approach implies
blocking on some tasks (when using non-preemptive locks on
caches) or increased overheads (when preemptively schedul-
ing caches), which can be avoided by slicing the task into
subtasks. However, this approach requires modification of
the Operating System (OS) to support cache management
techniques. Additionally, since tasks are assumed to be al-
ready partitioned, the method is less flexible with respect
to controlling blocking that occurs when tasks on a partic-
ular core have to wait for tasks on another core to unlock
the shared cache lines. This is because partitioning tasks
makes it difficult to move around the execution windows of
the corresponding jobs to minimize blocking. Another ap-
proach is to partition the cache among the competing tasks
such that each task may use only the cache lines allocated
to it [10]. However, such an approach requires compiler sup-
port which complicates the system development. Finding
alternate methods that do not require extra support, such
as modifications to the OS or specialized tools, to make the
shared caches more predictable is interesting in cases where
the development platforms cannot be modified.

Limited-preemptive scheduling has gained popularity due
to the combined benefit of preemptive and non-preemptive
scheduling offered by such schedulers [5]. Under fixed pre-
emption point scheduling, the preemptions are restricted to
certain locations in the code in order to improve predictabil-
ity with respect to cache behavior. It may be possible to
identify data intensive regions of code that requires the use
of L2 cache by looking at the code characteristics. Whereas,
some regions of code may require only the L1 cache. There-
fore preemption points can be placed at locations where pre-
emption related overheads are negligible, or to demarcate
regions of code accessing the L2 cache (e.g., using meth-
ods similar to [11]) and consequently enable co-scheduling
of non-preemptive regions of all the tasks that access the
L2 cache. If it is not possible to demarcate such regions,
the entire task is tagged as non-preemptive. As noted by
Anderson et al. [1], the overheads due to L1 cache misses
are not significant compared to L2 misses. Scheduling non-
preemptive regions that access L2 cache on the same pro-
cessor can increase efficiency while decreasing preemption
related overheads since they can potentially make use of
the L1 cache instead. If they cannot make use of the L1
cache, temporal partitioning can be enforced so that such
non-preemptive regions do not execute in parallel. To sum-
marize, co-scheduling non-preemptive regions has the ad-
vantage that it can satisfy the following constraints: a) it
can potentially improve allocation and scheduling efficiency
since smaller objects enable efficient bin packing b) temporal
separation can be enforced for the non-preemptable blocks
that access the same L2 cache lines without any modifica-
tions to the OS c¢) the non-preemptive regions can poten-
tially share the L1 cache instead of the L2 cache minimizing
L2 cache accesses by allocating them to the same processor.
Marinho et al. [9] and Davis et al. [6] proposed schedu-
lability analyses for global limited-preemptive FPS. Later,
we [12] proposed a schedulability analysis for global limited-
preemptive EDF.

In this paper, we propose a methodology to partition non-
preemptive regions of a task onto a multicore platform such
that the effects of the shared cache (L2 in this case) on
the execution times are minimized, thereby making the sys-
tem more predictable. Mathematical optimization is used

46

to minimize the number of processors required to schedule
the non-preemptive regions.

2. SYSTEM MODEL

In this paper, we consider a set of n periodic real-time
tasks I' = {71, 72,...7n} to be scheduled on identical mul-
tiprocessors. Each 7; is characterized by an inter-arrival
time T3, and a relative deadline D; < T;, and consists of
pi non-preemptive blocks that have to be executed sequen-
tially. The Worst Case Execution Time (WCET) of the k'"
non-preemptive block of 7;, k € [1,p;s], is denoted by ik,
and > %L | B; x = C;. This can be calculated using currently
available uniprocessor WCET tools [8]. The preemption oc-
curring at the end of a non-preemptive block is assumed to
incur negligible preemption overhead or is accounted for in
the WCET of the following block. The notation f; also
denotes the k" non-preemptive block of 7;. Although the
blocks need to execute sequentially, different blocks may ex-
ecute on different cores. The overhead due to these "migra-
tions” can be controlled (minimized) by appropriately plac-
ing preemption points (using methods similar to [11]).

3. PROPOSED METHODOLOGY

We build on our previous works [7] to derive feasibility
windows for the non-preemptive blocks of every task, that
guarantee a specified behavior of the schedule, e.g., timeli-
ness and temporal separation, to achieve a predictable cache
behavior. We first present the methodology applied at a task
level, and later extend it to job level to finely control parti-
tioning.

DEFINITION 1. The feastbility window of a non-preempt-
we block B; 1. of a task T; is defined by a time period, relative
offset and deadline, and a processor core on which the non-
preemptive block i, must execute in order to guarantee a
specified temporal isolation from the non-preemptive blocks
that access the same cache lines scheduled on other cores.

The execution of the non-preemptive blocks within the asso-
ciated feasibility windows guarantees their non-preemptive
execution, efficient partitioning, as well as temporal separa-
tion from non-preemptive blocks that access the same cache
lines, while requiring no modification to the OS. Since fea-
sibility windows are derived per non-preemptive block, the
non-preemptive blocks are converted to artifact tasks. These
artifact tasks have task parameters specified by the associ-
ated feasibility window, and are scheduled just like normal
tasks. The period of an artifact tasks is an integer multi-
ple of the original task.The non-preemptive blocks can be
scheduled using the deadlines that specify the associated
feasibility window, or fixed priorities can be derived using
the method presented in [7].

3.1 Motivating Example

Consider three tasks 71, 72 and 73 as shown in table 1.
In order to partition these tasks on a multicore system, 3
processors are required since all the three tasks have uti-
lization greater than 50%. It is now possible to use cache
management technique proposed earlier e.g., by [13] to tem-
porally separate the executions of those regions of code that
create cache conflicts if executed in parallel. The resulting
schedule is given in Figure 2, in which the regions of code
that generate cache conflicts when executed in parallel are

Task C7, Dl = TZ Bi,k
T1 3 5 Bi11=3
T2 6 10 B11=3,B12=3
T3 6 10 P11 =3, Bi2=3

Table 1: Example task set

Processor 1 T | |

Processor 2 T, -
- L >

Processor 3 Ty -
- r >
|:| regions of code that does not share cache . regions of code that shares cache

Figure 2: Schedule under Ward et al’s [13] method.

highlighted using the darker color. These regions can be
temporally seperated as shown in the figure e.g., by using
resource sharing protocols [13] or cache partitioning. Such
a methodology requires the OS to have control of the cache
management.

Instead, our methodology exploits real-time scheduling to
guarantee temporal separation by deriving appropriate task
parameters such as priorities, release times and deadlines
such that the regions of code that accesses the same cache
blocks are separated in time.

Consider the partitioning of the example taskset given in
table 1. In this case, 72 can be split into two artifact tasks
each with a period 10, release times 0 and 6 respectively,
and deadlines 6 and 10 respectively. These artifacts can be
allocated to different processors as shown in Figure 3 The
artifact tasks can now be allocated to 2 different processors,
instead of 3, to achieve an efficient packing. The resulting
tasksets can now be scheduled using standard uniprocessor
scheduling algorithms, e.g., EDF, by converting the feasibil-
ity windows to job level or task level priorities. This method
achieves a predictable cache behavior without the need to
modify the OS, e.g., to incorporate support for cache man-
agement such as done by [13].

3.2 Methodology Overview

In this section, we present the methodology to derive the
feasibility windows for the non-preemptive blocks of every
task. We use mathematical optimization to derive the feasi-
bility windows that guarantees the required execution pat-
tern that minimizes cache effects while achieving efficient
partitioning of the non-preemptive blocks.

Constraints on the feasibility windows: We first present
constraints on the release times and deadlines of §;x, de-
noted by v;,r and J; k.

Calculating release times: Every task 7; has p; non-preemptive

blocks denoted by Bk, k € [1,p;]. The latest start-time
(Ist) of the last non-preemptive block of 7; denoted by i p,

3 5
Feasibility window
Processor 1 /—/%

T, I—

3 10

T2

Processor 2 Feasibility window

i

3 10

D regions of code that does not share cache . regions of code that shares cache

Figure 3: Schedule under our methodology.

is given by:
lSt(BivPi) =D — Bip,

Only then can the pt* non-preemptive block complete before
the deadline D;,— a deadline miss occurs if it starts later.
The pt" block can immediately start its execution once all
the p; — 1 blocks complete their execution, and hence its
earliest start-time (est) is given by,

pi—1

est(Bip;) = Z Bi,s
=1

Similarly, the latest start-time and earliest start-time of any
k'™ such non-preemptive block of 7; is given by:

Pi
Ist(Bik) = Di = > Bi;
=k

and

E

—1

est(Bik) = Y PBij

j=1

Therefore, the actual release time ;1 of f; 1 is defined by
the following inequality:

est(Bik) < vie < Ust(Bix) (1)

Calculating deadlines: The k*® non-preemptive block of 7
should finish before the release time of the k + 1* block of
7;. Therefore, the deadline J; 1 of 5; x is given by:

Oik < Vijkt1 (2)

In the above equation when k = p;, vik+1 = D; to en-
sure that the deadline of the last non-preemptive block is no
greater than the original task 7; deadline.

Size of feasibility windows: Additionally the feasibility win-
dow specified by v;x and d;, should be large enough to
execute the k" block, i.e.,

Oik — Yik = Bik (3)

Temporal separation guarantees: In order to guarantee tem-
poral separation of blocks f; and 3;;, we need to ensure

: | =

Processor 1

=

Processor 2

K [T

3 10

|:| regions of code that does not share cache - regions of code that shares cache

Figure 4: An alternate schedule using job level anal-
ysis.

that the release time of either one of the block is later than
the deadline of the other, i.e.,

(4)

Optimization: We can now use mathematical optimiza-
tion along with the constraints on the feasibility windows
derived above to partition the non-preemptive regions and
derive associated values for all v; , and §; x of all the tasks.
In case sufficient computing power is not available, heuristics
can be used to find an appropriate partitioning scheme, and
associated feasibility windows specified by the constraints
presented above. We do not go into the details of the opti-
mization formulation as it can be formulated using existing
techniques (such as done by Baruah and Bini [4]).

VYik > 050 or Vil 2> Oik

3.3 Job level analysis

In this following, we give some insights into adapting the
above method to job level, thereby enabling better control
on the partitioning. For example, if the system designer
wants to avoid splitting of task 72 in Table 1, an alternative
schedule can be obtained. An example is given in Figure 4
where the jobs of task 77 is split into two artifact tasks each
with a period 10 and release times 0 and 5 respectively, and
deadlines 5 and 10 respectively. By guiding the optimization
using additional constraints on the different jobs, many such
partitioning schemes can be obtained allowing a system de-
signer to achieve various trade-offs. However, a downside of
using a job level analysis is the increase in complexity due
to the increased number of constraints. For example, the
constraints 1 to 4 should be further broken down into a set
of job level constraints, and additional constraints should be
added to ensure that all non-preemptive blocks of all jobs
of the same task execute on the same processor (e.g., using
binary variables that indicate whether they need to be on
the same processor).

4. CONCLUDING REMARKS

In this paper, we present a methodology to exploit limited-
preemptive scheduling in multicore systems to achieve pre-
dictable cache behavior while ensuring efficient partitioning
of non-preemptive regions on the cores. Our method can be
adapted to a wide range of contexts by defining suitable con-
straints on the feasibility windows for the non-preemptive re-
gions. Additionally, the task partitioning and scheduling can

48

be finely controlled by breaking down the task level analysis
into a job level analysis and specifying additional constraints
on the non-preemptive blocks of the different jobs.

The proposed method enables trade-offs between efficiency
and complexity.

5. REFERENCES

[1] J. Anderson, J. Calandrino, and U. Devi. Real-time
scheduling on multicore platforms. In The Real-Time
and Embedded Technology and Applications
Symposium, 2006.

B. Andersson and J. Jonsson. Fixed-priority
preemptive multiprocessor scheduling: to partition or
not to partition. In The7 th International Conference
on Real-Time Computing Systems and Applications,
2000.

B. Andersson and J. Jonsson. The utilization bounds
of partitioned and pfair static-priority scheduling on
multiprocessors are 50In The 15th Furomicro
Conference on Real-Time Systems, July 2003.

S. Baruah and E. Bini. Partitioned scheduling of
sporadic task systems: an ilp-based approach. In The
International Conference on Design and Architectures
for Signal and Image Processing, 2008.

R. Davis and M. Bertogna. Optimal fixed priority
scheduling with deferred pre-emption. In The
Real-Time Systems Symposium, 2012.

R. Davis, A. Burns, J. Marinho, V. Nelis, S. Petters,
and M. Bertogna. Global fixed priority scheduling
with deferred pre-emption. In The International
Conference on Embedded and Real-Time Computing
Systems and Applications, 2013.

R. Dobrin, S. Punnekkat, and H. Aysan. Maximizing
the fault tolerance capability of fixed priority
schedules. In The International Conference on
Embedded and Real-Time Computing Systems and
Applications, 2008.

B. Lisper. Sweet aAs a tool for wcet flow analysis. In
The 6th International Symposium On Leveraging
Applications of Formal Methods, Verification and
Validation, 2014.

J. Marinho, V. Nelis, S. Petters, M. Bertogna, and
R. Davis. Limited pre-emptive global fixed task
priority. In The International Real-time Systems
Symposium, 2013.

F. Mueller. Compiler support for software-based cache
partitioning. In In Workshop on Language, Compiler,
and Tool Support for Real-Time Systems, 1995.

B. Peng, N. Fisher, and M. Bertogna. Explicit
preemption placement for real-timeconditional code.
In The Euromicro Conference on Real-Time Systems,
July 2014.

A. Thekkilakattil, S. Baruah, R. Dobrin, and

S. Punnekkat. The global limited preemptive earliest
deadline first feasibility of sporadic real-time tasks. In
The Euromicro Conference on Real-Time Systems,
July 2014.

B. Ward, J. Herman, C. Kenna, and J. Anderson.
Making shared caches more predictable on multicore
platforms. In The Euromicro Conference on
Real-Time Systems, 2013.

(10]

(11]

(12]

(13]

Multi-Criteria Optimization of Hard Real-Time Systems’

Nicolas Roeser, Arno Luppold and Heiko Falk
Institute of Embedded Systems / Real-Time Systems
Ulm University

{nicolas.roeser|arno.luppold|heiko.falk}@uni-ulm.de

ABSTRACT

Modern embedded hard real-time systems often have to com-
ply with several design constraints. On the one hand, the
system’s execution time has to be provably less than or equal
to a given deadline. On the other hand, further constraints
may be given with regard to maximum code size and en-
ergy consumption due to limited resources. We propose an
idea for a compiler-based approach to automatically opti-
mize embedded hard real-time systems with regard to mul-
tiple optimization criteria.

1. INTRODUCTION

In hard real-time systems, a task’s Worst-Case Execution
Time (WCET) must be lower than or equal to its deadline.
However, many embedded systems have to comply with ad-
ditional requirements. Minimizing energy consumption is
an issue on mobile systems in order to save battery and al-
low for longer operation of devices. Additionally, embedded
devices commonly have to cope with limited memory and
therefore have to adhere to code and data size constraints.

Current optimizing compilers like GCC or LLVM mostly
base their optimization techniques on heuristics. They can-
not guarantee that the compiled and linked binary will ad-
here to all constraints. Therefore, the system developer
manually has to analyze the resulting binary for compliance
with the requirements. If one or more requirements are vi-
olated, the developer manually has to modify the compiler
input and analyze the system’s behaviour iteratively until all
requirements are fulfilled. This may be a tedious approach,
especially in cases with tight requirements on a given hard-
ware architecture.

In order to ease system development, we provide a con-
cept for an automated compiler-based multi-criteria opti-
mization framework. If the compiler is unable to generate a
sufficient solution, it will provide direct feedback, allowing
the developer to remove functionality or upgrade hardware
capabilities.

Although our approach is flexible enough to be adapted to
different constraints, at least those which can be expressed
by linear functions, we currently focus on WCET, code size
and energy consumption, as we have identified them to be
both academically challenging and practically relevant.

The key contributions of this paper are:

e We propose an idea on a compiler-based approach for
a multi-criteria optimization framework.

*This work was partially supported by Deutsche Forschungs-
gesellschaft (DFG) under grant FA 1017/1-2.

49

o We illustrate our approach using existing compiler op-
timization techniques.

e We demonstrate its capabilities by applying it to a
synthetic example.

This paper is organized as follows: section 2 gives a brief
overview of related projects. Section 3 explains our underly-
ing approach. Section 4 shows an example to illustrate this
approach. This paper closes with a conclusion and a view
on future challenges.

2. RELATED WORK

An optimization method trying to reduce the execution
time and size of the code generated by a standard compiler
is suggested in [9]: NSGA-II, a genetic algorithm for multi-
criteria optimization, chooses which of GCC’s optimizations
should be enabled. Embedded systems are not targeted, so
energy is not a criterion. The proposed iterative method
needs several compilations; in contrast, non-heuristic algo-
rithms can provide results in one optimization run.

Li and Malik [4] propose an ILP-based method for the
estimation of a program’s WCET. Their implicit path enu-
meration technique (IPET) uses flow constraints to model
the program’s control flow. The ILP objective function is
then set to maximize the execution time while adhering to
the flow constraints. While this approach is able to calcu-
late tight and safe approximations for the WCET, the maax-
imization objective prevents it from being used as basis for
optimizations which try to minimize the WCET. Suhendra
et al. [8] have solved this issue by implicitly summing up the
execution times of basic blocks. Branches are modeled us-
ing multiple constraints, and the WCET can be calculated
by trying to minimize one ILP variable which holds the ex-
ecution time of the whole program. This approach will be
further described in section 3.

Many embedded platforms feature a scratchpad memory
(SPM), which is a relatively small but very fast and energy
efficient memory. Steinke et al. [7] show in an example that
with a scratchpad of 128 bytes, the total energy consumption
of a system (CPU, main memory and scratchpad) can be
reduced by two thirds.

Function specialization [6] (also known as function cloning
or procedure cloning), as it is used in this paper, is a common
basic compiler optimization. If a function is called with one
or more known arguments, the compiler can add specialized
versions of this function to the program text and replace the
corresponding calls to them, which usually helps to reduce
the program runtime, because some overhead at call time
and inside the specialized functions can be saved.

3. APPROACH

Our approach combines and extends WCET-aware func-
tion specialization [5] and SPM allocation [3] to a multi-
criteria optimization which optimizes for WCET, energy
consumption and code size. SPM allocation affects both
energy consumption and WCET with very small influence
on the total code size. Function specialization increases code
size and may decrease the WCET, but has a negligible effect
on energy consumption. These properties are taken into ac-
count by the integer linear programming formulas described
in the following sections. The ILP program decides which
functions should be specialized and which ones are to be put
into SPM in order to

e meet the system’s timing deadline,

e fit the program into the available memory, and

e minimize the average-case energy consumption of the
program.

At the current stage of our work, we only consider single-
tasking systems running on memory without any caches.
Functions specialized in more than one way are not consid-
ered, although adding support for that case to our formu-
las should be possible by interpreting such specializations
as additional functions. We restrict the SPM allocation to
function level. Therefore, each function may either be com-
pletely located in SPM or in Flash.

Prior to performing our optimization, safe approximations
for WCET and average-case energy consumption have to be
obtained for each function, both specialized and not, and
whether it is located in SPM or in Flash memory. Ad-
ditionally, the code size must be determined for both the
specialized and the original version of each function. This
analysis may be performed using tools like AbsInt aiT [1]
for the system’s WCET or by measurements for the energy
consumption. The analysis itself is not part of our approach
and will not be discussed any further.

An integer linear programming (ILP) problem is used to
model the challenge and calculate an ideal solution. Energy
consumption is usually a soft constraint, because hard upper
bounds on a system’s operational time cannot be easily pre-
dicted, so minimization of the average energy consumption
is usually chosen as the multi-criteria optimization goal.

Throughout this paper, we use the notational conventions
shown in table 1. Capital letters are used for constants in
the ILP formulas, while small letters depict ILP variables.

3.1 ILP Description of the System

Suhendra et al. [8] introduce an ILP-based method for
optimizing hard real-time systems. In order to model a pro-
gram’s control flow as set of integer linear constraints, the
task is split into its basic blocks. A basic block is defined
as a set of instructions that must be traversed from top to
bottom without any jumps or branches. The control flow is
then modeled by calculating the accumulated WCET wg of
a basic block B as the sum of the net execution time cp of
B and the accumulated execution time of its successor. This
implicit summation stops at function borders. Therefore, for
a block B that calls a function, wp = c¢g+wy +wr (U being
the succeeding block within B’s surrounding function and 7'
being the called function’s entry block). Multiple successors
can be modeled by using multiple constraints. The ILP’s ob-
jective function is then defined to minimize the accumulated
execution time of the task’s entry basic block.

50

F | set of all functions in the program after function
specialization (F of course always includes the
entry point, function main),
f | a function,
fo | a specialized form of function f,
Ny 4 | number of times function f calls function g,
Sy | code size of function f,
SFlash | amount of non-SPM main memory (like flash
EEPROM) needed by the program code,
sspm | amount of SPM needed by the program code,
Ey | energy consumption of function f,
D | deadline of the task,
Wy | accumulated WCET of function f,
r¢ | binary decision variable for SPM usage of f,
ps | binary decision variable for specialization of f.

Table 1: Notational conventions

For an illustration of how the control flow graph is trans-
formed to enable this ILP-based analysis of the WCET, re-
fer to our bench example program in section 4: the original
control flow graph is shown in figure 1. Figure 2 depicts the
final step of the graph transformation. The resulting graph
is of course no longer suitable for generation of the program
binary, it is solely used for WCET analysis.

3.2 WCET Optimization

ILP-based optimizations like [3] assign individual basic
blocks to the SPM. Due to the linearity inherent to ILP and
to reduce overall complexity, effects of platform-dependent
details like timing costs for jump instructions to and from
blocks on the SPM are highly overapproximated. The opti-
mizations usually aim at leading the ILP solver in the right
direction to minimize the overall WCET, but due to the
overestimated timing penalties, the ILP program’s estima-
tion of the system’s WCET will be a huge overapproxima-
tion. When optimizing for one single criterion, this problem
is easily handled by trying to minimize the WCET, and af-
terwards performing a static WCET analysis to calculate
tight WCET estimates. With multi-criteria optimizations,
however, we may be using the WCET as a design constraint,
and not as the primary optimization goal. As stated above,
our approach focuses on minimizing the average-case energy
consumption, while still meeting the system’s timing con-
straints. Therefore, instead of minimizing for the WCET,
we add an additional constraint to the ILP rules to define
an upper bound for the system’s maximum execution time:

wx:ain S D (1)

Wiysn denotes the system’s accumulated WCET in the ILP
formulation, D is defined as the system’s deadline. To avoid
the aforementioned overestimation of the system’s WCET,
we limit the SPM optimization to whole functions. We de-
fine a binary decision variable r; which is set to 1 if function
f is located on SPM, and 0 else. We use aiT to calculate
each function’s WCET Wy spy if the function is located in
SPM, and Wy plash if the function is located in flash mem-
ory. These costs contain the execution time of the function
f without the costs of any functions which are called by f.
This way, we mostly avoid overestimations of the WCET
in the ILP formulations and are not bound to the WCET
minimization as the ILP’s objective function.

Function specialization is handled by introducing another
binary decision variable into the ILP problem. We define py
to be 1 if the function is to be specialized, and 0 else. With
this in mind, the accumulated execution time of function f
may be written as

wf >Ny 5 [Wrspm -7 + Weplash - (1 —75)] +

> Npg-w; (2)

9€Cy
for all calls to the unspecialized, original function f, and as
Wi, >Ny.p [Wesenm -7y (1= pg) +
Wi ptasn - (1 —7¢) (1 —pg) +
Wio,spm - 7¢pf + Wio Flasn - (1 — 1) pr] +

> Npg-w; (3)

gECf

for calls to a potentially specialized version fy. In both cases,
Cy is defined as the set of functions which are called by f,
and is determined by the compiler. If a function g is called
in its unspecialized and in a potentially specialized version,
g and go are added to Cy. Ny ¢ is 1 for non-recursive func-
tions, otherwise it denotes the maximum recursion depth, as
determined by the writer of the task, and e.g. annotated in
the source code. If the control flow of a function is split into
several branches which call different functions, we use several
inequations, one for each possible path. Though equation (3)
seems to be of quadratic complexity, the multiplication of bi-
nary ILP variables equals a logical AND operation and can
easily be linearized, as shown in [2]. wj,:, can be used as
safe overapproximation of the WCET of the whole task.

3.3 Energy Optimization

To calculate and minimize the average energy consump-
tion of the system, we need detailed knowledge about the
execution count of each function. These information may be
obtained from simulation or measurements. The maximum
energy savings are not necessarily achieved by optimizing
the functions which need most energy. Instead, the product
of a function’s energy consumption E; and the function’s
estimated execution count over the operation time of the
system needs to be taken into account.

The energy consumption of a function heavily depends on
whether the function is located in SPM or not. We assume
that energy profiling data is available for both cases. Just
as for the WCET formulation, E; does not include the en-
ergy consumed by functions which f calls. The total energy
consumption by function f, including all called functions,
is given by a formula along the lines of the one presented
as equation (3). Again, we directly include the distinction
whether a specialized function is called or not.

ey >Ny Ef
+ Z Nyg-eq
geEF
N————
if the call to g can not use a specialized form
+ D Npgo (e potes(1-p) (4)
geF

if the call to g can use the specialized form gg

With this formula, ej,;, is an overapproximation of the sys-
tem’s typical energy consumption.

51

3.4 Code Size

Choosing to specialize a function increases the overall code
size of the program. For each function, we a priori determine
the effect on the code size if this function is chosen to be
specialized.

In order to make our integer linear program aware of how
much SPM and main memory the code takes, we add ILP
constraints to model the code size:

SFlash = Zsf'(l_rf)+sfu'pf'(l_rfo) (5)
fer

ssem > Y Sperp+Sp prery, (6)
feF

Again, linearization of the ILP formulas has to be performed,
cf. equation (3).

Additional constraints can be added to limit the maximum
amount of memory that may be used by the program:

SFlash < MFlash (7)
sspm < Mspm (8)

With My.sh and Mspym being the physically available SPM
and Flash memory.

Finally, the ILP’s objective function may be chosen. As
stated above, usually the energy consumption is chosen to
be minimized:

min (€ain) 9)

4. EXAMPLE

We will illustrate our approach with a hypothetical bench-
mark bench which is to be run on an embedded micropro-
cessor equipped with 200 bytes of scratchpad memory. Ex-
ecution of the bench task starts with function main. This
function either calls function f twice, or function g twice;
which function is actually called depends on some external
data. If functions are specialized, one call of the two calls to
f, or g, respectively, can use the specialized function. Fig-
ure 1 shows the control flow with the basic blocks of the
unmodified function main in the example program.

Analysis of the bench task as described in section 3.2 re-
sults in the data given in table 2 as input for our algorithm.

[f [min | £ | g [f0 [g0 |
[& [100 | 5 [100 | 5 [100 |
For function in main memory:
w 50 50 40 30 9
E 50 50 60 50 50
For function in scratchpad memory:
w 10 10 9 5 5
E 20 20 30 20 20

Table 2: Net WCET and energy values and sizes per
function

We assume that collecting profile data over several thou-
sand executions of the task reveals that the two branches
in function main have very different execution probabilities:
the branch calling £ is executed in 10 out of 1010 cases, the
path over the calls to function g is executed 1000 out of 1010
times. The probability distribution non-specialized:speciali-
zed for which form of the function is used is 10:10 for £ and

main: main:
IF . IF ...
RETURN
Bl: B3: f g
CALL f CALL g (from B1) (from B3)
Y Y
B2: B4: f g
CALL f CALL g (from B2) (from B4)
BS:
RETURN
Figure 1: Control Figure 2: WCET
flow graph showing analysis graph for

the main function of main, i.e., the entire
the bench task and its task, generated from
basic blocks. the original CFG.

200:1800 for g. The collected profiling data has no impact
on the WCET of the task, which is 150 cycles if no opti-
mizations are applied.

An optimization which solely targets minimization of the
WCET will specialize g and put main and £, but not g or go
(the specialized version of function g), into the SPM, which
results in a WCET of 59 cycles.

The best solution when optimizing only for energy is to
specialize g and £ and put functions main and g0 into SPM.
The WCET for the example program optimized in this way
is 90 cycles. For comparison, the best WCET we could get
if the system had no SPM at all would be 130 cycles.

When applying our multi-criteria optimization algorithm
explained in section 3 to the example program, we will now
assume the deadline of 70 cycles, until which the task must
have completed its work. Table 3 shows the optimization
results which are achieved by applying single optimizations
or the multi-criteria algorithm with the policy to minimize
overall energy consumption. In the case of more than one
possible solution which is considered equal by the relevant
optimization, the figures in this table have been chosen to
show the solution which is also better in terms of the other
possible optimization criteria.

| Target | WCET | SSPM | SFlash | Energy |
unoptimized 150 0 250 | 85,750
WCET 59 150 200 | 61,300
Energy 90 200 200 | 34,600
Multi-criteria 70 150 100 | 55,450

Table 3: Results of optimizing the bench program
for different optimization targets (WCET in cycles;
energy consumption averaged over 505 executions)

As can be seen, if the WCET is selected as the only opti-
mization target, optimization will produce a program binary
that satisfies the deadline, but wastes a lot of energy.

If the system’s energy consumption is selected as opti-
mization objective, the execution path which is taken most

52

of the time is optimized, and code size is increased, but the
compilation result is still worthless, as it cannot be guaran-
teed to adhere to the deadline.

If bench is not optimized for execution time, code size, and
energy consumption at the same time, we get unsatisfying
results. Only a multi-criteria optimization like the algorithm
presented by us above allows us to create a program which
stays within all our optimization constraints.

5. CONCLUSION

We have provided a concept for multi-criteria oriented
compiler optimizations which respect both multiple hard
constraints and an additional optimization target without
any hard upper bound. By means of a synthetical example,
we have illustrated the potential benefits of our concept.

In the future, we are going to implement our approach into
an existing compiler framework and evaluate its capabili-
ties using real-world benchmarks. We aim at constructing a
generic interface for multi-criteria compiler optimizations in
the long run which can make use of arbitrary code optimiza-
tions. A further challenge is the extension of multi-criteria
optimization to multi-tasking systems.

6. REFERENCES

[1] AbsInt Angewandte Informatik GmbH. aiT Worst-Case

Execution Time Analyzers. Available online at

http://www.absint.com/ait/, Aug 2014.

J. Bisschop. AIMMS. Optimization Modeling. Paragon

Decision Technology, Haarlem, The Netherlands,

AIMMS 3 edition, June 2009.

H. Falk and J. C. Kleinsorge. Optimal Static

WCET-aware Scratchpad Allocation of Program Code.

In Proceedings of the 46th Design Automation

Conference, DAC 09, pages 732-737, New York, NY,

USA, 2009. ACM.

[4] Y.-T. S. Li and S. Malik. Performance Analysis of
Embedded Software Using Implicit Path Enumeration.
In Proceedings of the 32nd Design Automation
Conference, DAC 95, pages 456-461, New York, NY,
USA, 1995. ACM.

[5] P. Lokuciejewski, H. Falk, M. Schwarzer, P. Marwedel,
and H. Theiling. Influence of Procedure Cloning on
WCET Prediction. In Proceedings of the 5th
International Conference on Hardware/Software
Codesign and System Synthesis, CODES+ISSS ’07,
pages 137-142, New York, NY, USA, 2007. ACM.

[6] S. S. Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann Publishers, 2011.

[7] S. Steinke, L. Wehmeyer, B.-S. Lee, and P. Marwedel.
Assigning Program and Data Objects to Scratchpad for
Energy Reduction. In Proceedings of the Design,
Automation and Test in Furope Conference and
Exzhibition, DATE 2002, pages 409-415, 2002.

[8] V. Suhendra, T. Mitra, A. Roychoudhury, and T. Chen.
WCET Centric Data Allocation to Scratchpad
Memory. In Proceedings of the 26th Real-Time Systems
Symposium, RTSS 2005, pages 223232, 2005.

[9] Y.-Q. Zhou and N.-W. Lin. A Study on Optimizing
Execution Time and Code Size in Iterative
Compilation. In Proceedings of the 3rd International
Conference on Innovations in Bio-Inspired Computing
and Applications, IBICA 2012, pages 104-109, 2012.

[2

3

	Message from the Workshop Chairs
	Table of Contents
	Paper
	A Framework for the Optimization of the WCET of Programs on Multi-Core Processors
	Statically Resolving Computed Calls via DWARF Debug Information
	Schedulability-Oriented WCET-Optimization of Hard Real-Time Multitasking Systems
	Accounting for Cache Related Pre-emption Delays in Hierarchical Scheduling with Local EDF Scheduler
	Alignment of Memory Transfers of a Time-Predictable Stack Cache
	The WCET Analysis using Counters - A Preliminary Assessment
	Adaptation of RUN to Mixed-Criticality Systems
	Study of Temporal Constraints for Data Management in Wireless Sensor Networks
	An Approach for Verifying Concurrent C Programs
	Resource Sharing Under a Server-based Semi-partitioned Scheduling Approach
	Externalisation of Time-Triggered communication system in BIP high level models
	Towards Exploiting Limited Preemptive Scheduling for Partitioned Multicore Systems
	Multi-Criteria Optimization of Hard Real-Time Systems

