

Outline

Motivation Contribution Background System model Proposed analyses Evaluation Conclusions and future work

Motivation

- Many real-time embedded domains favor mixed-criticality systems.
- Static and adaptive variant of Vestal's improves the processor use efficiency.
- Pessimistic when the WCET of successive instances vary greatly.
- Leverage the known variability in execution time for even more efficiency.

Main contributions

Multiframe Vestal model

Schedulability analyses for multiframe mixed-criticality systems

Extensive experiments and comparison with frame-agnostic analysis

Background: Static mixed-criticality model

- Multiple WCET estimates per task with corresponding degree of confidence.
- The WCET of all the tasks is monitored using Watchdog timers.
- Calculate WCRT of each task using WCETs with confidence level commensurate of analyzed task's criticality.

Background: Adaptive mixed-criticality model

Background: Multiframe task model

Independent multiframe sporadic tasks

Mixed-criticality multiframe task model

Static multiframe MC

High Criticality Task: $oldsymbol{ au}_2$ and $oldsymbol{ au}_3$ Low Criticality Task: $oldsymbol{ au}_1$

Schedulability Analysis No L-task misses its deadline as long as all the tasks execute up to $C_{i,j}^L$ No H-task misses its deadline as long as all the tasks execute up to $C_{i,j}^{k_l}$

Adaptive multiframe MC

Interference by a multiframe task

Maximum cumulative execution requirement (Baruah's approach)

Interference by a multiframe task

For two frames = Max (a, b, c, d)

Interference by a multiframe task

Response time analysis (SMMC)

$$R_i = C_i^H + \sum_{\tau_j \in hpL(i)} IL_j(R_i) + \sum_{\tau_k \in hpH(i)} IH_k(R_i)$$

- C_i = WCET of task under analysis
- IL_i = Interference from L-tasks
- IH_k = Interference from H-tasks

$$R_i = g^H(\tau_i, 1) + \sum_{\tau_j \in hpL(i)} G^L(\tau_j, R_i) + \sum_{\tau_k \in hpH(i)} G^H(\tau_k, R_i)$$

- WCET of task under analysis
- Interference from L-tasks
- Interference from H-tasks

Response time analysis(AMMC-rtb)

- All higher-priority L-tasks interfere over $[0, R_i^L)$ only; L-WCETs used.
- For higher-priority H-tasks, their H-WCETs are used.

$$R_{i}^{*} = C_{i} + \sum_{\tau_{j} \in hpL(i)} IL_{j}(R_{i}^{L}) + \sum_{\tau_{k} \in hpH(i)} IH_{k}(R_{i}^{*})$$

$$R_{i,j}^{*} = g^{H}(\tau_{i}, 1) + \sum_{\tau_{j} \in hpL(i)} G^{L}(\tau_{j}, R_{i,j}^{L}) + \sum_{\tau_{k} \in hpH(i)} G^{H}(\tau_{k}, R_{i,j}^{*})$$

Response time analysis (AMMC-max)

- Pessimism in A(M)MC-rtb is reduced by explicitly considering the mode change instant s.
 - L-WCETs can then be used for jobs completed in [0, s).
 - Conservatively overestimating number of jobs in H-mode.
- Eliminating another source of pessimism.
 - The frame sequences before/after the mode change should "match".
 - After frame k comes frame (k+1) mod F.

July 9, 2020

Experimental setup

- > Inter-arrival time: Log-uniform distribution (10ms 1s)
- > Implicit deadlines (though algorithm works for constrained deadlines)
- > L-Utilization: UUnifast-discard algorithm
- > L-WCET of first frame = inter-arrival time × L-Utilization
- > Number of frames: Selected randomly
- > L-WCET of other frames
 - > Randomly selected with log-uniform distribution
 - > Between user defined value and L-WCET of first frame
- > H-WCET estimates are derived by linearly scaling up L-WCET
- > 1000 random task-sets per set point
- > Audsley for priority assignment

Experimental evaluation

Experimental evaluation

Conclusion and Future Work

> Conclusion

- > We have presented multiframe mixed criticality model.
- Schedulability analyses for Multiframe mixed criticality systems dominates the single frame counter part.
- > Multiframe analysis are less pessimistic but are always slower compared to single frame analysis.

> Future Work

Incorporate the effect of memory stalls under memory access regulation into schedulability Analysis.

