Panel Discussions

Engineering

Towards **Bespoke Graceful Degradation** in Mixed-Criticality Systems (Panel Presentation)

6th International Workshop on Mixed-Criticality Systems (WMC) at the 39th IEEE Real-Time Systems Symposium, Nashville, TN, USA Tuesday, December 11th, 2018

Chris Gill

Department of Computer Science and Engineering Washington University in St. Louis, MO, USA cdgill@wustl.edu

Engineering

Can We Manage *Utilization* Gain/Loss Gracefully?

GIII							
$\frac{D_i[j]}{D_i[j]}$	$U_i[j] = \frac{T_i}{D_i}$	m _i [2]	m _i [1]	m _i [0]	Zi	Ei	Task
$[C_i[j] - L_i[j]$		<u>4</u>	<u>6</u>	8	0	5	T_1
$= \frac{101}{D_{i}[i] - L_{i}[i]}$	$m_i[j] =$	<u>2</u>	<u>4</u>	6	0	4	T ₂
legraded	degi	<u>2</u> ←	6	4	1	3	T ₃
verload	over	<u>2</u>	6	4	1	2	T 4
nominal	nor	6 🖌	2 ĸ	2	2	1	T 5
	J						

Nominal, overload, degraded ranges of utilization

- » (increasing?) nominal utilization below criticality level Z_i
- » (maximum?) overload utilization at task's designated level Z_i
- » (decreasing?) degraded utilizations at even higher levels

Cut (Utilization) to Fit: One Size Doesn't Fit All

- Can run same amount of work less frequently
 » Orr et al. RTNS '18 (linear FEM component of RTHS)
 » Su et al., DATE '13, RTCSA '14 (alternative periods)
- Can run less work in same amount of time
 » Liu et al. RTSS 2016; Huang et al. RTNS '18 (mprcs cmptng)
 » Anytime algorithms more generally (declare victory and retreat)
- Exploiting both forms of tailoring at once?
 - » Need to define carefully $\underline{\textit{how much}}$ to modify work vs. rate
 - » E.g., run an ϵ -less-precise calculation λ -slower (tune ϵ vs. λ)

Say What You Mean, Mean What You Say

Specify utilization at every criticality level for each task
 » Highest-criticality tasks already will do this under Vestal model
 » <u>All</u> lower-criticality tasks <u>must</u> do this if they can't be dropped

- Co-design parameters, constraints, objectives carefully
 » If (and only if) platform allows, remove unnecessary pessimism
 » Design to minimize each task's footprint at each criticality level
 - Minimum should still *meet the task's constraints*
 - Higher should *improve optimization objectives* monotonically

Engineering

!! !? ?! ??

Feedback is Welcome

Mixed-Criticality Scheduling with Varying Processor Supply in Compositional Real-Time Systems

Kecheng Yang, Department of Computer Science, Texas State University

Uncertainties may trigger a criticality mode switch (e.g., LO to HI) in MCS

WCETs [*e.g.*, Vestal *RTSS* '07] Periods, Deadlines [*e.g.*, Baruah, *RTSS* '16] Processor Speed [*e.g.*, Baruah and Guo, *RTSS* '13] **Processor Supply**? from partially available processor(s)

When?

How are the uncertainties monitored?
Signal the reduction of supply
1) before the replenishment period
2) after the replenishment period
3) during the replenishment period

Potential avenues:

In additional to **bounding and shaping** the **demand** from the tasks [Ekberg and Yi, *ECRTS* '12], it might need to **bound and shape** the **supply** from the processor(s) as well.

Other resource model? Multiple Π in addition to Θ ? Multiprocessor?

Challenges of MCS

Iain Bate

University of York

Future Embedded Systems

- Common themes based on discussions with avionics, automotive and other manufacturers
- System consists of platform plus other hardware, e.g. sensors and actuators
- Platform can mean
 - Processing platform Processor + software
 - Whole system platform, e.g. the car or aircraft
- Environment is the context the system operates and includes the users

Key Challenges

- Realities throws up lots of research and implementation challenges!!
- For example, shock and horror!!
 - Real systems don't have independent tasks
 - Dependencies:
 - Explicit, e.g. transactions
 - Implicit, e.g. caches etc
 - Real systems have a RTOS which analysis needs to allow for
 - The magic C_i figure is not as simple as it seems

• Systems will feature more un-certainties

- These should be welcomed and embraced rather than avoided

Key Challenges

Need to build confidence → digital twinning

- Start off with simulation
- Move to rig testing
- Progress to pre-deployment testing
- Continue into service
- Validate and refine at each stage
- As confidence grows, then trust and capability can be extended
- (Whole system) platform will have greater connectivity
- Maintenance cycles need to be shorter
 - Need more data to support maintenance
 - Cloud-based analytics

Processing Platform

- <u>Multi-core task allocation needs understanding of shared resource usage</u>
- Mixed-criticality versus Resilient Scheduling
 - Need an effective balance between efficient use of resources and achieving certification
 - Mixed-criticality doesn't deliver this both in "name" and the model
 - Functional hazard-related criticality and ability to skip some jobs not directly linked
 - Systems should meet their requirements
 - It is rarely acceptable to say 5% service is lost
 - Loss of service (duration and arrival rate) needs to be understood and specified

Processing Platform

Reduce RTOS overheads

- Reduce the number of tasks
- Reduce the number of context switches

• Where does C_{Lo} and C_{Hi} come from?

- We have lots of data but decisions are needed
- Need to give right balance between flexibility and how often mode changes happen
- Being able to use the distribution might be better

Task allocation

- Needs to support the previous points
- For example, try to segregate a task sensitive to shared resource usage X from a task using <u>varying</u> amount of X

System

- An appropriate model is needed from which code can be generated
- Models have to allow for the real behaviours of the platform
- Code from a number of models need to be integrated
- Resultant code needs to be efficient on targeted platform
- Review and change of the models is an issue
- Models have to be shown to be valid

Environment

- System and platform models should result in appropriate response
- Balance between efficient and effective system, and the need for dependability including safety

Resource-efficient timing isolation for adaptive mixed-criticality systems with multiple types of shared resources.

- Vestal's adaptive mode-based model promotes resource efficiency.
 - At mode change, processor resources are taken away from lower-criticality (or lower-importance) tasks and given to the higher-criticality (importance) tasks.
 - The same approach could be applied to other resources
 - Memory bandwidth, caches etc.
- Single-Core Equivalence framework (SCE)
 - Partitions access to shared resources or regulates access to them (Memguard, cachepartitioning, Palloc etc).
 - Meant to facilitate the portability of applications to multicores.
 - It can also make mixed-criticality applications more timing-predictable.
- Challenge: readjust tasks' resource access budgets at mode-change AND do this for multiple resource types.
 - Memory access budgets, cache partitions, amount of memory pages locked etc...