Security in Embedded Systems

The Wireless Sensor Network case

Walter Tiberti

University of L' Aquila (Italy)
Centre of Excellence DEWS
DISIM dept.

23 April 2019

Q Introduction

Q Security
e Embedded Systems Security

Q@ security in WSN
@ Cryptography

e Our Works
@ TAKS
@ Infrusion Detfection

@ Ssecuring IEEE 802.15.4e

Introduction
000000000

Agenda

Q Introduction

Introduction
[e] Jelelelele]e]e)

Who am i

@ Walter Tiberti
@ MoS in Computer and System Engineering

@ PhD student @ University of L' Aquila
(supervisor: L. Pomante)
@ Github/Gitlab: wtiberti

Embedded Systems

Low-level software (e.g. firmware, drivers,
OSes etfc.)

Reverse-Engineering, Malware Analysis,
Penetration Testing

Cryptography, Intrusion Detection and
Countermeasures

Digital Electronics Design and
Implementation

Introduction
[e]e] lelelelelele)

L' Aquila (ltaly)

Introduction
[e]e]e] lelelelele)

Spanish Fort, Fontana Luminosa

Introduction
[e]e]e]e] Telelele)

Basilica di Collemaggio, P del Duomo

Introduction
[e]e]e]ele] lelele)

L"Aquila: University

Nucleo Industri

Manz

Polo di Coppito™,

(22 (24)
it geral
IBRR | -1z : I
Satore @ Voci
e 3 -
PILE Amiternum Hotel"
K x ‘ Parco Ei
L] ; = ‘ufom.cm ¥
Em
=a
Lz

il] Viale Croce®>" G

() Polo del Centro
a ‘4, Fontana ifflitosa @

m
- . Fontana delle 99 Cannelle
i Abbigliamerto s
Aquila
ETm
AQuILIO

Ex

Polo di Roio
Pineta di Roio

Introduction
000000800

L'Aquila: view from Monteluco di Roio

Introduction
000000080

DEWS

¢ Center of Excellence DEWS

= Design methodologies for Ew

Embedded controllers CENTER OF EXCELLENCE

http:/idews.univagq.it

Wireless interconnect and

System-on-chip

Q‘WE"S’T EECI NCS Member of
Start i Laboratory Artemis-IA

2001 2003 2005 2007 2009

2000 2002 2004 2006 2008 2010 Memberof HIPEAC

2016
WEUR cal [2o |

Introduction
00000000e

Embedded Systems Workgroup: Core members

@ Coordinator: Luigi Pomante
@ Senior Researchers:
@ Tania Di Mascio (Human-Machine interf., coordination)
@ Marco Santic (WSN, Localization)
@ PhD Researchers:
e Giacomo Valente (Digital Design, Monitoability)
e Paolo di Gianmatteo (Machine Learning)
@ PhD Students:
o Vittoriano Muttillo (HW/SW Co-design)
o Walter Tiberti
e Gabriella D’Andrea (Reconf. Platforms)
o Federica Caruso (Human-Machine in‘rerfoc.)(

Security
00000

Agenda

@ Security

Security

0O@0000

Un-security

@ No system is secure

A CRYPTO NERD'S
i | MAGINATION ¢

HIS LAPTOP's ENCRYPTED.
LETS BUILD A MILLION-DOULAR,
CLUSTER To CRACK \T-

NO GOOD! IT'S
1096 -BIT RSN

E\”L PLHN
15 FOILED! ™~

WHAT WoULD
1 ACTUALLY HAPPEN:

HIS LAPTOP'S ENCRYPTED.
DRUG HIM AND HIT HM WITH
THIS $5 WRENCH UNTIL
HE TELlS LS THE. PASSWORD.

GOT IT,

7Q

Figure: xkcd.com

Security

[e]e] le]ele}

Un-security

@ No system is secure

/ISECURITYILEVEL?

Security
[e]e]e] lele]

Un-security: assumptions to make

@ Basic assumption: no system is secure
@ Basic assumption: attackers have infinite resources
(e.g. money, fime, tries etc.)

https://www.exploit-db.com/

Security
[e]e]e] lele]

Un-security: assumptions to make

@ Basic assumption: no system is secure

@ Basic assumption: attackers have infinite resources
(e.g. money, fime, tries etc.)

@ Basic assumption: compilers can fail, hardware can
fail (e.g. SPECTRE, MELTDOWN, ROWHAMMER)

https://www.exploit-db.com/

Security
[e]e]e] lele]

Un-security: assumptions to make

@ Basic assumption: no system is secure

@ Basic assumption: attackers have infinite resources
(e.g. money, fime, tries etc.)

@ Basic assumption: compilers can fail, hardware can
fail (e.g. SPECTRE, MELTDOWN, ROWHAMMER)

@ Basic assemption: People can fail too!

https://www.exploit-db.com/

Security

[e]e]e] Tele}

Un-security: assumptions to make

@ Basic assumption: no system is secure

@ Basic assumption: attackers have infinite resources
(e.g. money, fime, tries etc.)

@ Basic assumption: compilers can fail, hardware can
fail (e.g. SPECTRE, MELTDOWN, ROWHAMMER)

@ Basic assemption: People can fail too!

@ While we are talking, vulnerabilities are exploited,
found, reported etc.

Windows.

wwwwwwwww

Example: ExploitDB welbsite
https://www.exploit—db.com/

https://www.exploit-db.com/

Security
000080

Cryptography?

@ Cryptography not necessarily means Security

e A system using cryptography can be still vulnerable to
other (often subtle) aftack vectors
@ Once the keys are known, cryptography is useful no
more
e While cryptographic schemes, on paper, are
super-secure, very often their implementation isn’t so.
@ Examples: PODDLE, CRIME, Heartbleed
@ https://www.acunetix.com/blog/articles/
tls-vulnerabilities—-attacks—-final-part/
e Nonces generated by weak PRNG can be learned
and replicated
e Each cryptographic scheme has its issues (e.g. smoll
exponents, backdoor curves)

@ Rule Thumb: “Don‘t roll your own cryptography: .

https://www.acunetix.com/blog/articles/tls-vulnerabilities-attacks-final-part/
https://www.acunetix.com/blog/articles/tls-vulnerabilities-attacks-final-part/

Security
O0000e

How to approach security?

@ The aftack is the best defence & The defence is the
best attack

@ Assess your system by attacking it (Penetration Testing)

http://overthewire.org/wargames/
https://www.hackthebox.eu/
https://exploit.education/

Security
O0000e

How to approach security?

@ The aftack is the best defence & The defence is the
best attack

@ Assess your system by attacking it (Penetration Testing)

Learning Platforms

e OverTheWire: http://overthewire.org/wargames/
@ HackTheBox: https://www.hackthebox.eu/

o ExploitEducation: https://exploit.education/

http://overthewire.org/wargames/
https://www.hackthebox.eu/
https://exploit.education/

Embedded Systems Security
9000000

Agenda

e Embedded Systems Security

Embedded Systems Security
0@00000

Security in Embedded Systems

@ Let’s now focus on Embedded Systems (in general)

Embedded Systems Security
0@00000

Security in Embedded Systems

@ Let’s now focus on Embedded Systems (in general)

@ First: too often, the security aspects are left aside
during the design phase.

Embedded Systems Security
0@00000

Security in Embedded Systems

@ Let’s now focus on Embedded Systems (in general)

@ First: too often, the security aspects are left aside
during the design phase.
@ Embedded Systems are even more vulnerable, since

they are often designed to work in constrained
application-specific contexts.

@ Simpler protocols

Embedded Systems Security
0@00000

Security in Embedded Systems

@ Let’s now focus on Embedded Systems (in general)

@ First: too often, the security aspects are left aside
during the design phase.
@ Embedded Systems are even more vulnerable, since

they are often designed to work in constrained
application-specific contexts.

@ Simpler protocols
o Simpler HW designs

Embedded Systems Security
0@00000

Security in Embedded Systems

@ Let’s now focus on Embedded Systems (in general)

@ First: too often, the security aspects are left aside
during the design phase.

@ Embedded Systems are even more vulnerable, since
they are often designed to work in constrained
application-specific contexts.

e Simpler protocols

o Simpler HW designs

e Lighter SW: simpler or no OS, applications deal directly
with the HW (and malicious code can access HW
easilly)

Embedded Systems Security
0@00000

Security in Embedded Systems

@ Let’s now focus on Embedded Systems (in general)

@ First: too often, the security aspects are left aside
during the design phase.

@ Embedded Systems are even more vulnerable, since
they are often designed to work in constrained
application-specific contexts.

e Simpler protocols

o Simpler HW designs

e Lighter SW: simpler or no OS, applications deal directly
with the HW (and malicious code can access HW
easilly)

e Light or no memory management (e.g. no virtu
memory, No access controls etc.): memory qg@k
often unrestricted

Embedded Systems Security
[e]e] lelele]e]

Embedded Systems: Security failures (1)

Embedded Systems Security
[e]e]e] Jelele]

Embedded Systems: Security failures (1)

@ Philips Hue lightbulibs
@ https://youtu.be/Ed10jAuRARU

https://youtu.be/Ed1OjAuRARU

Embedded Systems Security
[e]e]ele] lele]

Embedded System Security: Future

@ More powerful?

Embedded Systems Security
[e]e]ele] lele]

Embedded System Security: Future

@ More powerful? Embedded Systems will start
performing like modern bigger platforms, with all the
common security issues

Embedded Systems Security
[e]e]ele] lele]

Embedded System Security: Future

@ More powerful? Embedded Systems will start
performing like modern bigger platforms, with all the
common security issues

Example: Raspberry Pl

@ Quad-core ARM CPU,
GBs of RAM

@ BT, 802.11, HDMI,
Ethernet

@ Can run normal OS

Embedded Systems Security
0000080

Embedded System Security: Future

@ More powerful? Embedded Systems will start
performing like modern bigger platforms, with all the
common security issues

@ Smaller?

Embedded Systems Security

[e]e]ele]e] o)

Embedded System Security: Future

@ More powerful? Embedded Systems will start
performing like modern bigger platforms, with all the
common security issues

@ Smaller? Less memory, less performance, smaller
CPU/MCU, harder to implement security-related
functionalities

@ MSP430-based board (16
bit)

o 10 KB or RAM, 48 KB of
Flash storage

Embedded Systems Security
000000

Learning Plaftforms

MSP430 security
Microcorruption: https://microcorruption.com

https://microcorruption.com

Security in WSN
[eJe]e]

Q@ security in WSN
@ Cryptography

Security in WSN
[e] Te]e]

Wireless Sensor Networks

@ Wireless Sensor Network (WSN)
@ Quick recap
@ Small, energy-constrained (battery-powered) nodes
(called motes)
@ Motes are equipped with a radio transceiver for
wireless inferconnection
@ A set of sensors are embedded in the mote (directly
or by means of sensorboards
@ Small storage, small performance, small costs
©@ Flexible platforms: motes can be densely distributed
and/or organized to cover big areas

Security in WSN
[e]e] o]

|EEE 802.15.4

@ Nowadays, the term WSN is becoming more vague

@ In this presentation, we will discuss about IEEE
802.15.4-based WSN

. user button
b reset button

_6 pin expansion

%
USB-serial \

_10 pin expansion
reset support —NJ B B

TI MSP430 F1611
ST M25P80 flash |
serial ID

CC2420
IEEE 802.15.4 radio

Security in WSN
[e]e]e]]

Security Overview

In general, in WSNSs:

@ Mote hardware side: often no security (i.e. attackers
can access the 10 pins with no effort.

@ Some mote MCU have hardware primitives for
symmetric/public-key cryptography (e.g. the Tl
CC3825)

@ The radio channels used are (mostly) in theunlicensed
ISM 2.4GHz bands (i.e. everybody can listen and
fransmit over the channel)

@ The SoA OS for WSN (TinyOS, ContikiOS, RIOT) have
only few security features. External software can
provide other features with limitations (e.g. TinyECC)

@ iltis easy to perform different jamming attacks
constant jamming to dynamic self-adapting | = (\‘i’/
jomming)

° Some of the 2.4GHz ohonnels of IEEE 802 15 4 collides

1. O™NT . LI oA T e

Security in WSN
000000

WSN: Using Symmetric Ciphers?

@ Using Symmetric Cryptography schemes (e.g. block
ciphers such as AES or stream ciphers e.g.
Salsa/Chacha20) are generally fast and lightweight,
but they requires the secret key to be available (e.g.
preprogrammed) before any transmission

@ — Key Distribution Problem

Security in WSN
(o] lelele]e]e]

WSN: Using Public-Key Cryptography? (1)

@ Using Public-Key Cryptography schemes solves the
key distribution problem (e.g. Diffie-Helman) but is
expensive in terms of performance and storage.

Security in WSN
[e]e] lelelele]

WSN: Using Public-Key Cryptography? (2)

Example: RSA

With a maximum of ~100 bytes available as MAC
payload and using a SoA key size e.g. 2048 bit = 256
bytes, every tfransmission which requires a key exchange
has to be splitfed.

| A

Example: ECC

Even though ECC keys require less space (e.g. 192bits)
the computation involved (e.g. Point
Addition/Multiplication) are possible but they can be very
expensive.

Security in WSN
[e]e]e] Jelele]

From the |EEE 802.15.4 standard

@ Section 9 “Security”

@ AES 128bit CCM as (authenticated) symmetric
encryption

@ Not enough information to implement a complete
solution:

e 128bit AES is not super-secure

o CCM mode (CTR+HMAC) have problems is the
nonces are not carefully “choosen”

o No mechanism for key distribution or storage

Security in WSN
[e]e]e]e] Tele]

Key storage?

Consider the following C
source code

#include <stdint.h>
#define KEYLENGTH 128

1
2
3
4 uint8_t supersecretkey[KEYLENGTH/8] = {

5 @x1l, 0x22, ©x33, 0x44, 0x55, 0x66, 0x77, 0x88,
6 Ox11, 0x22, 0x33, Ox44, 0x55, 0x66, 0x77, 0x88
7}

8

9

int main()
{

11 // .. application code ...
12 while(1);

13

14 return 0;

Security in WSN
[e]e]e]e] Tele]

Key storage?

Compiling into IHEX format
for mote programming:

:10010000214601360121470136007EFEO9D2190140

Consider -I-he following C :100110002146017E17C20001FF5F16002148011928
:10012000194E79234623965778239EDA3FO1B2CAAT

source COde :100130003F0156702B5E712B722B732146013421C7
:00000601FF

1 #include <stdint.h>
2 #define KEYLENGTH 128
3

D Start code D Byte count D Address

4 uint8_t supersecretkey[KEYLENGTH/8] = {

5 0x11, 0x22, Ox33, 0x44, 0x55, 0x66, 0x77, 0x88,

g }_0x11, 0x22, 0x33, Ox44, 055, 0x66, 0x77, 088 I:‘Record type D DataDChecksum

8

9 int main()

10 {

11 // .. application code ...

12 while(1);

S return 0: :104000005542200135D0085A8245101131400039FF
15 } ’ :104010003F4010000F9308249242101120012F837B

:104020009F4F50400011F8233F4000000F9307249A
:104030009242101120011F83CF431011F923044134
:104040002453FF3F32D0OF000FD3F30404E4000137C
1104050001122334455667788112233445566778898
:10FFE0004A404A404A404A404A404A404A404A40C1
: 10FFF0004A404A404A404A404A404A404A400040FB
:0400000300004000B9

Security in WSN
00000e0

Key storage...failure

Dumping data from Flash/EEPROM chips:

©Trade EIGIF

|EEE 802.15.9 standard

Security in WSN
000000

@ |[EEE 802.15.9

@ Recent standard, it
addresses the Key
Transport mechanisms

@ Overview:

e Additional layer on
top of MAC (MPX)

e Fragmentation and
Multiplexing

e Additional (verfical)
layer for Key
management (KMP)

Upper layers

KPM

wio
security

MPX

MAC

PHY

Our Works
[]

e Our Works
@ TAKS
@ Infrusion Detfection

Our Works
@®00000000000

@ Ad-hoc cryptographic cryptography techniques
@ Topology Authenticated-key Scheme (TAKS)

@ Hybrid Cryptogrphy: TAKS use both public-key and
symmetric cryptography features
@ Lightweight: designed to run on top of WSN platforms

Our Works
O@0000000000

Features:

@ Objective: creating a shared secret with public-key
like mechanisms to be used as symmetric key for
encrypting/decrypting and to generate a signature
for authentication.

@ How? Vector algebra over finite fields (usually GF(2")

@ Two mode of operation: Point-to-Point (star
topologies) and Cluster-wise (for cluster-wise
topologies)

Our Works
00®000000000

TAKS: idea

@ A WSN topology is planned (Planned Network
Topology - PNT)
@ A set of Key components is generated offline for each
node in the PNT (Local Configuration Data - LCD)
@ a node-local, private component (Local Key
Component, LKC) is pre-programmed in the mote
e aset of public components (Transmit Key Component
-TKC)
e aset of restricted components (Topology Vector - TV)
known only to the motes enabled to communicate
with target node

TAKS: block diagram

Our Works
000e00000000

Public. Key Comp. Py (tkcy) ‘

|

Private. Key Comp. p, (Ik_cA)|

TAK(lke,, tke,)

LCD, | LCD,

| Public. Key Comp. P, (tkc,)

‘Private. Key Comp. pg (lkeg

L | ss=TAK(Ik,, d,)

Auth(MAC(c,,SS),T)=0|

OK
Decgs(cy) I—" m ‘

Ng

&7

Our Works
0O000e0000000

TAKS: block diagram

@ The TAK() function combines the nonce and two
components into the shared secret SS
@ Multiple definitions of TAK() are possible. An example
is!:
TAKi_,j = a % LKC x TV_,; = KRI x TKC;_,;

[
kriy krip kris
tkey tkey, tk C3

ik
lkey ke, lkes
7LV] fV2 fV3

= (*

Our Works
0O0000e000000

TAKS: Sending..

@ Alice wants to transmit to Bob a message

@ Alice has LKC4 and Bob’s TKCy. She uses the TAK()
function to combine the two key components

@ Alice generate a nonce («) and mulfiplies it with the
result of the component combination to obtain a
shared secret SS

@ She uses SS as symmetric key to encrypt the data
and to generate a message authentication code
from the cipher text

@ Alice creates also the key reconstruction information
Aa
@ Finally, Alice sends ciphertext|dqa| MAC to Bo

Our Works
000000800000

TAKS: ..Receiving

@ Bob receives ciphertext|dqa|MAC from Alice

@ Due the construction of TAK(),
TAK = LKCq - TKCp, = —LKCy, - TKC4, Bob uses
dg - LKCp = (—a - TKCg) - LKCy, = SS to derive the SS
@ Bob checks the MAC and, if valid, decrypts the
message with SS

Our Works
0000000 e0000

Practical Example

Demo

Our Works
000000008000

ECTAKS: Prologue

@ Elliptic Curve Cryptography (ECC)

@ Old concept, but recently re-discovered

@ Public-Key scheme (ECIES, ECDSA, ECDH, ECQV)
@ Curve, Point, PointAdd, PointMul, ECDLP

@ PubKey = Point, PrivKey = Scalar

@ Standard Curves

Our Works
0O00000000e00

ECTAKS

@ Work-in-Progress

@ Elliptic Curve-based TAKS (ECTAKS-ECIES,
ECTAKS-ECDSA)

@ Idea: add TAKS mechanism to EC Points:
TAKS Key Components = Points

@ TAK function combines points into a private (scalar)
key, which can be used to generate the ECC Public
Key

@ Target platforms: TinyOS, Contiki-OS, RIOT-OS

Our Works
000000000080

ECHARP-WSN

@ Work-in-Progress

@ ECC HW Accelerator on Reconfigurable Platform for
WSN motes

@ |dea: Faster processing — Less Time — Less Energy

@ We are developing a ECC HW Accelerator to be
embedded and controlled by WSN motes and
activated on-demand (default: power off)

@ Full RTL design to improve area occupation,
performances and energy impact

@ Flexible: no assumption is faken, e.g. any curve can
be used and changed at runtime

@ Very good inifial results (PointAdd, PointDoub =
PointMul)

Our Works
00000000000 e

Example: block diagram for ECIES

e ECC HW Accelerator -
ECIES

Mode.

Pseudo-Random
Number Generator

Pointhuliply Input Symmetric
Plaintext/Ciphertext Dec/Encryption EEEERAALGER

Mul (mod n)

T Transmitted
Ciphertext
Tansmitted R Sel
Generation
PointMultply
PUBLICKEY 7
el Computed MAC Comparator Result
Is_Zero?
Zresult
Transmitted MAG

Our Works

WSN: Detect anomalies and attacks

@ Intrusion Detection Systems for WSN

@ Scenario: an attacker targets the WSN and tries to
change the behavior of motes remotely in order to
manipulate the data exchanged or to leak
information (e.g. cryptographic keys)

Our Works

@ WSN Intfrusion Detection System (WIDS)

@ Design of a WSN IDS based on Weak Process
Models(WPM

@ Attacks are modeled info WPM represented as a
graph in which the nodes are the states in which the
mote could be at any time and the edges are the
possible transitions from and to states

@ WIDS tries to perform a state estimation based on
events (observables)

Our Works

WIDS example

Observables: State traces: (onlylast state is shown)

to -> 1 te -> {1}
t1 -> 3 t1 -> {1,2,3}

L s 10 t2 -> 4 t2 -> {1,2,3,5,4}

B - £3 -> 2 t3 -> {2,5,4}

@ . t4 -> 5 t4 -> {5}

/1;« (o2 j

15 10

IDENTIFIED

Our Works

WIDS implementation: TinyWIDS

@ Implementation of WIDS on top of TinyOS

@ Acquisition of data from the hardware and lower
software-layer of the motes in the form of Metrics

@ Metrics are checked against thresholds. If the checks
fails, observables are created

@ Observables are collected at runtime and the WPM
attack models are updated

@ If any aftack model has an estimated state
considered dangerous, a notification is sent

Our Works

TinyWIDS architecture

’ Application |

e e o o e
1 1
| WIDS 1
1, -~ L
1 Attacks AttackModels 1

1
1 ‘ Al ‘ | A2 ‘ Az ‘ ‘AMl | |AM2 ‘ ‘ AMn 1
[IS /L J
1 1TinyWIDS
1 ObservableNotifier 1
1 1
1 Observables Metrics 1

1
Lo oz] = [or [[| [we] -~ [w]]y
1
B == = = E o O EE EE O EE O O EE EE O EE EE EE EE Ew EE -I

TinyOS layer (drivers)
o
Y

’ Hardware (MCU & RF Chip) ‘

Our Works

WIDS: Countermeasures to attacks

@ Work-in-Progress

@ Question: When an attack is detected, what can we
do?

@ We are studing different techniques to both contain
the attacks and retrieving information of it upon
detection

Securing IEEE 802.15.4e
00000

@ Ssecuring IEEE 802.15.4e

Securing IEEE 802.15.4e
0e0000

TAKS in IEEE 802.15.4e

@ Done here at CISTER!

@ TAKS has been adapted and implemented in the
Omnet++ based DSME MAC Behavior of the IEEE
802.15.4e (OpenDSME)

@ OpenDSME has been enhanced by adding support
to:

o IEEE 802.15.4-2015 MAC layer Information Elements (IE)
e Specific TAKS IE (Header IE)
e Generic packet content (GenericPayload)

@ The code is on Github: https://github.com/

wtiberti/openDSME/tree/Security

https://github.com/wtiberti/openDSME/tree/Security
https://github.com/wtiberti/openDSME/tree/Security

Securing IEEE 802.15.4e
[e]e] lele]e]

TAKS in IEEE 802.15.4e

DSMEMessageElement

«interface»
IDSMEMessage

1
DSMEMessage H GenericPayload ‘ IEEE502154eMACHeaderH AuxiliarySecurityHeader

?0.1 ?|

‘ Packet ‘
«interface» /"
IE
AN TaksComponent
PayloadIE O openDSME-secure

Legend
openDSME

Securing IEEE 802.15.4e
[e]e]e] le]e]

TAKS in IEEE 802.15.4e

Before:

> @ 4] (BytesChunk) : BytesChunk, length = 10 B, bytes = {9, 54, 69, 143, 142, 209, 145, 7,15, 150}

mutable = False (bool)
complete = true (bool)
correct = true (bool)
properlyRepresented = true (bool)
chunkLength = 80 (inet:b)

b bits[3] (string)

¥ bytes[1] (string)

[0] 09 36 45 8F BE D1 91 07 OF 96

After:
plainbuffer <Hex> £ |plainbuffer : 0x33A7130 <ASCII> £ . g» New Renderings...]

Address (<] 1 2 3 4 5 6 7 8 9 A B C D E F
00000000033A7120

00000000033A7140
00000000033A7150
00000000033A7160
00000000033A7170
00000000033A7180

References

Securing IEEE 802.15.4e
0000e0

TAKS / WIDS / TinyWIDS:

https:

//ieeexplore.

https:

//ieeexplore.

https:

//ieeexplore.

https:

//ieeexplore.

https:

//ieeexplore.ieee.org/document /4660137,

ieee.

ieee

ieee.

ieee.

3178291.3178293

org/document /5345623

.org/document /6583643

org/document /6775056

org/document /5703728

https://ieeexplore.ieee.org/document/5345623
https://ieeexplore.ieee.org/document/5345623
https://ieeexplore.ieee.org/document/6583643
https://ieeexplore.ieee.org/document/6583643
https://ieeexplore.ieee.org/document/6775056
https://ieeexplore.ieee.org/document/6775056
https://ieeexplore.ieee.org/document/5703728
https://ieeexplore.ieee.org/document/5703728
https://ieeexplore.ieee.org/document/4660137
https://ieeexplore.ieee.org/document/4660137
https://dl.acm.org/citation.cfm?doid=3178291.3178293
https://dl.acm.org/citation.cfm?doid=3178291.3178293

Securing IEEE 802.15.4e
00000e

Thank youl!

	Introduction
	Security
	Embedded Systems Security
	Security in WSN
	Cryptography

	Our Works
	TAKS
	Intrusion Detection

	Securing IEEE 802.15.4e

