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Vehicular Networking

1. Propagation Modelling in Device-to-Device Links

\¥

2. Bicycle-to-X Networking
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personal device
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1. D2D Channel Modelling & GPS Errors

* Channel modelling characterizes the Received Signal Strength (RSSI) versus distance

* Channels between moving nodes are often described with empirical models — e.g., the Log-distance Path Loss model

p(d) = po — 10 - a - log(d) p(d) = po — 10 - & - log(dcps(d))

True model Erroneous model

What is the impact of the GPS error in estimating the parameters of the channel model?

P.M. Santos, T.E. Abrudan, A. Aguiar, J. Barros. Impact of Position Errors on Path Loss Model Estimation for Device-to-Device Channels. IEEE Transactions on Wireless Communications, Vol.13, No.5, pp.2353-2361, May 2014.
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D2D Channel Modelling & GPS Errors
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D2D Channel Modelling & GPS Errors

* We model the GPS error with a systematic and stochastic components (the later as Gaussian).

(XA= yA) = (0’ 0) (XB, yB) = (O: d) Distribution of GPS Distances for Given Reference Distances (6,5 = 7m)
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* The distribution of the distances computed from GPS estimates follows a Rice distribution.
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D2D Channel Modelling & GPS Errors

* Guideline: Measurements taken farther than 3v2ogps are less affected by position uncertainty.

* Correction: We proposed a Monte Carlo method to estimate the true parameters.

p(d)\= po — 10 - « - log(d) (True model)
p(d) = po — 10 - & - log(dgps(d)) (Erroneous model)
Monte Carlo method
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D2D Channel Modelling & GPS Errors
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2. Propagation Modelling in Bike-to-X Scenarios

What is the impact of the bicycle body on the signal propagation?

Antenna —= @ ‘
\

n-r
-~ ’\ v

\ \ g Free-space

Prx [dBm] = ID’rx + Lfree-quce (d) T <EB-A(’rx)(p'OL) T GB-A(rx)(p'a)
\

/

\
(e.g., Log-distance Path Loss)

* Impact of the bicycle can be characterized empirically and incorporated in a path loss model

* Open questions: behaviour w.r.t. antenna position; impact of frame material.

P. M. Santos, L. Pinto, L. Almeida, A. Aguiar: Characterization and Modeling of the Bicycle-Antenna System for the 2.4GHz ISM Band. In Proceedings of the 2018 IEEE Vehicular Networking Conference, December 5-7 2018, Taipei, Taiwan.
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Propagation Modelling in Bi2Bi Scenarios
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Propagation Modelling in Bi2Bi Scenarios

\ 30°

/3300
2700
Handlebar
1\{‘300
o
/3300

Chain stay (chain side)

Tuesday, 12 March 2019

\ 30°
\‘ a8

' 3300

150/ B0 = e 300
\‘ 0°

180°

210°"

2400 300°

Chain stay (no chain)

Bridging the Vehicular and Urban loT

Frame Diamond

'\ 30°

\‘ -




Propagation Modelling in Bi2Bi Scenarios

Prx [dBm] « PI’X [dBm] :l Ptx - quthloss (d) J+ GB-A(TX)(p’a) + GB-A(I’X)(p’a) + LHS(a)
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Bi2Bi Networking — Technology Comparison

We compared the performance of IEEE 802.15.4 Bluetooth
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P.M. Santos, L. Pinto, A. Aguiar, L. AlImeida. A Glimpse at Bicycle-to-Bicycle Link Performance in the 2.4GHz ISM Band. In Proceedings of the 29th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 2018), September 9-12
2018, Bologna, ltaly..5-8.
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loT for Smart Cities

1. Urban sensor platforms

* Portolivinglab and UrbanSense
* Study on Solar Powered Autonomy

2. Where Ends Meet: Infrastructure-to-Vehicle
* Characterizing and estimating 12V service

* Supporting urban sensor deployment

\ -~

. Protecting the P trian Internet |
3. Protecting the Pedestria © Urban sensors

Experience from Vehicular Hotspots
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BusNet

A set of 400+ vehicular nodes &

50 road-side units using DSRC

On-board Units
(OBUs)

Road-Side Units
(RSU)

V o=y A M
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1. PortolivingLab

UrbanSense

A set of 20+ nodes to monitor 10

environmental parameters

Solar
Radiation
sensor

o et
>

WiFi interfaces

Weather
Station

Processing, storage
and control

Airquality, RH,
temperature
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SenseMyCity

An platform to collect user and context

data from Android smartphones

SenseMyFEUP c Survey

My mode of travel How happy do you feel?

= My travels ® FEUP's average

& .
. & aff& ¢ o o &

BO%

60%

40%

0% I

HI - - = _
-



PortolivingLab
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P. M. Santos, J. G. P. Rodrigues, S. B. Cruz, T. Lourengo, P. M. d’Orey, Y. Luis, C.Rocha, S.Sousa, S.Criséstomo, C.Queirés, S. Sargento, A. Aguiar, J. Barros, [non-acknowledged: D.Moura, T.Calcada, A.Cardote, T.Condeixa]. PortolivingLab: an loT-based Sensing
Platform for Smart Cities. |IEEE Internet-of-Things Journal, January 2018.
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UrbanSense

20 Data Collection Units (DCUs) equipped with 10 environmental sensors and WiFi interface

Sensors

03, NO2, CO, Wind direction and speed

particles, sensors
~ temperature and
humidity sensors -
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[ Solar radiation sensor

L Processing,
storage and

\ ..
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R control
 Noise sensor | = S
Communications
DCU 400+ buses with OBUs Backend
Raspberry . NDSRC (R;SU)S) Server
Pi ® ()
<

Server

wiFi asunus]

Public access infrastructural APs
o) | = (D)
" Fib
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Y. Luis, P.M. Santos, T. Lourenco, C. Pérez-Penichet, T. Calcada, A. Aguiar. UrbanSense: An Urban-scale Sensing Platform for the Internet of Things. In Proceedings of the 2nd IEEE International Smart Cities Conference (ISC2 2016), September 12-15, 2016, Trento,
Italy, pp.1-6. Recipient of the Best Student Paper Award.
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UrbanSense

* Key Performance indicators (KPls) Uptime per sensor time Data Availability Maps

* Uptime per site and sensor =] ﬁ DEE T ¢ 7 7
* Data availability over time - ~ = | 3
* From a network perspective: delay . o ;
5 | : |
* Technical Problems I
e T
* Low-cost platform (the SDCard problem) £ §§ 838 & &3 & £ &
2 = z = £ 2
ag_ 2 E 8 g 5 _% § Months
5] = = e £ .
* Wear from the elements (e.g., salt water) . s ° s = = = .
* Third-party dependence (e.g., comms., power) Operational time per site %fé? o N Dela
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- ol o 60 -
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UrbanSense

Wear by salt water Dependence on third party
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Study on Solar-Powered Autonomy

* We evaluated if a DCU could be paired with a solar power Greedy algorithm
Power Peak installed

generator for energy autonomy. | N @ - starting point
150 W |-

. - selected option
* We developed an iterative greedy algorithm to identify

0, 0, 0,
100 W | - 12.6% 181% 0.05% . - discarded option
[) . ) ‘ ' ...GA = perC days W!
the best equipment configuration. sow |- @72 38% | emply battery
: : Battery
= C .
~up 180 Wh 456 Wh 900 Wh apacity
Performance of off-grid PV: battery performance Performance of off-grid PV: battery performance
(C) PVGIS, 2017 (C pvg|s 2017
100 100
X 75 SRE
g 50 g 5 -
& 25 I g 25
0 0 o E)
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A. Nguyen, P. M. Santos, M. Rosa, A. Aguiar: Poster. Study on Solar-powered loT Node Autonomy. In Proceedings of the 4th IEEE International Smart Cities Conference, September 16-19 2018, Kansas City, MO, USA.
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2. Where Ends Meet: Infrastructure-to-Vehicle

Data volume transferred daily

Total number of contacts
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* Using the UrbanSense infrastructure, we evaluate the quality of
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P.M. Santos, T. Calgada, S. Sargento, A. Aguiar, Jodo Barros. Experimental Characterization of 12V Wi-Fi Connections in an Urban Testbed. In Proceedings of the 10th ACM MobiCom Workshop on Challenged Networks (CHANTS '15), September 7-11, 2015,
Paris, France. ACM, New York, NY, USA, pp.5-8.
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|2V Service Estimation

*  We extended the measurements to 4 more sites (this time, with garbage disposal trucks).

* Using an empirical throughput-distance model and GPS traces, we estimate transferrable data volume at traffic lights.

GPS traces of fleets

Evaluation at 4 sites

Data_ Volume (average of daily totals)
o Mv pred. at actual sites

P
o

A Measured at actual sites
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]
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: =
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Relating 12V Service

*  We explore whether mobility and task-related Points-
of-Interest (e.g., traffic lights, garbage bins) could

inform about measured data volumes.

* The end-goal was to have a qualitative mechanism to

estimate 12V service (thus requiring less datasets).

Suribact
{bio sho|
& restaura

Geographical density mom:

of throughput samples

Escolay
EB1 do
Campo®

24 de Agosto

Tuesday, 12 March 2019

& Site Features

82.6% 7.5% 9.9%
m 100% 0 0
] 6.8% 0 03.20,)

Site A A Intersection center Site C Garbage bln
\\ ¥ S A ’

’ Q Garbage bins §
1Q Traffic lights |

AETX g 2\ W R

L. M. Sousq, P. M. Santos, A. Aguiar: An Exploratory Study of Relations between Site Features and 12V Link Performance.ln Proceedings of the 2018 EAIl Urb-loT Conference, November 21-23 2018, Guimardes, Portugal.
I —

Bridging the Vehicular and Urban loT



A Delay-Tolerant Networking Proof-of-Concept

* On a network level, we explored Delay-Tolerant Networking.

* The DCU data was transferred to OBUs and ferried to RSUs

in a data muling strategy (no Epidemic, Max-Prop protocols).

e Existing implementations (IBR-DTN) showed too much memory

consumption, so a in-house alternative was developed.

DCU OBU RSU Server
Local database UrbanSense database
“Data Sender” module “Data Receiver” module
\
VeniamDTN VeniamDTN VeniamDTN VeniamDTN
IEEE 802.11b/g/n IEEE 802.11p |EEE 802.3 Server
| |1 |1

P. M. Santos, T. Calcada, D. Guimardes, T. Condeixa, S. Sargento, A. Aguiar, J. Barros. Demo: Platform for Collecting Data From Urban Sensors Using Vehicular Networking. In Proceedings of the 21st Annual International Conference on Mobile Computing and
Networking (MobiCom). 2015. September 7-11, 2015, Paris, France. ACM, New York, NY, USA, pp.167-169.
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Temperatu rel.




A new reality on the streets as vehicular backhauls become standard:
1. User on the street using cellular connection.

2. Bus passes by; smartphone attempts connection to on-board AP.

3. User gets experience of Internet access disrupted.

Can the on-board AP detect whether the user is inside or outside the bus?2

We applied a machine learning approach: 7 18 | L |
Y I o |
*  We collected a dataset of RSSI (from user devices) and GPS from 7 E 1 : : :
3 10 | | |
on-board APs, for a week. S | | |

% 6 % ! + 4+ 4

.ge . . oce 4 ' + | + | +

* A classifier training tool identified the most relevant features and é 5 ——él— ————— : é : :

produced a decision-tree classifier. -0 <250m >250m :<500m >500m :<7§)m >750m :<10Wm >1000m

Distance travelled by bus

- P. M. Santos, L. Kholkine, A. Cardote, A. Aguiar: Context Classifier for Position-based User Access Control to Vehicular Hotspots. Elsevier Computer Communications, March 2018.
- L. Kholkine, P.M. Santos, A. Cardote, A. Aguiar. Detecting Relative Position of User Devices and Mobile Access Points. In Proceedings of the XXth IEEE Vehicular Networking Conference (VNC 2016), December 8-10 2016, Columbus, OH, USA, pp.1-8.
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Mobile Users & On-board APs

* The produced decision tree classifier was incorporated in an on-board AP, at the DHCP assignment stage

Bus Speed l <inside>
Mean . Atstartof the After Allow Connection
| Connection 10 Seconds
V\ﬁi | a=3500  a=3.850
_ | b=7.500  b=13.500 From _ _ _ -
l Inside | sefgﬁsg g;fg,-e : network )@onnectlon request
connection } ;:\;tesr d gg]tesr d -— -
S zegon S ECONCS | | o o o = Deny ConnectioD
>b <b | 2—2-0 5 a=2150 | <outside>
| Inside | | Outside | i [Features]

* To test the classifier, we installed the on-board AP in a private car advertising the STCP SSID name

(Ground truth is easy: everyone is outside!)

Classifier output Classification Prior Speed Up to timeout
Accepted 109 114
Gatekeeper decision
Denied 71 66
Classifier performance Ratio correct 40% 37%
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Thank you for your attention
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