
José Fonseca, Geoffrey Nelissen

and Vincent Nélis

10/4/2017

Parallel task models

Exploit powerful multicore architectures
 Through task parallelism

Target modern applications
 Real-time and high-performance requirements

1. Fork-join 2. Synchronous parallel

3. DAG 4. Conditional DAG

Most analysis overlook such rich internal structures

System Model

 Set of DAG tasks

 Sporadic arrivals

 Constrained deadlines

 Task-level fixed priorities

 Global scheduling

 Platform composed of m identifical cores

Overall Problem

Schedulability analysis for DAG tasks on a multiprocessor

system under G-FP scheduling

State-of-the-art Analysis

Performance in terms of schedulable task sets

Utilization, m = 8 Cores, U = 70%

[Melani’15] A. Melanie, M. Bertogna, V. Bonifaci, A. Marchetti-Spaccamela and G. C. Buttazzo,

“Response Time Analysis of Conditional DAG Tasksin Multiprocessor Systems”, ECRTS’15

Not scaling!

~30% schedulability ratio

~70% U

Understanding
State-of-the-art

Analysis
[Melani’15]

[Melani’15] - RTA





ki

kikk I
m

LR ,

1

Response time computation of a DAG task

k

Interfering workload

Work-conserving property

Interference is spread

over all m cores Length of the

interfered path

Two types of interference

 Self interference

 Inter-task interference

[Melani’15] - Self Interference

It is the delay exerted on the RT of interfered path by the own DAG

 Who interferes?

 Every node that does not belong to

the selected critical path

Who is interfered?

 Any critical path

2

1

1

3

2

1

1

2

1v

2v

3v

4v 7v

6v

5v

8v

2

1

1

3

2

1

1

2

1v

2v

3v

4v 7v

6v

5v

8v

kL
m

kkkk LWI ,

m

[Melani’15]: Inter-Task Interference

Accounts for the maximum interfering workload generated by the

jobs of the HP tasks

mWi /

iR

ir

m

iT iT

kr kr

mWi /

problem window

mWi /

mWi /
 Inter-task interference

depends on the length of the

interval

 Based on the concept of

problem window

carry-in body jobs carry-out

HP Task i

Lost all information

about the DAG’s

internal structure!

iW

m CI Body CO Body

What Can
We Do?

Problem Definition

Proposed worst-case scenario

 Explores the internal structure of each DAG to derive more accurate

carry-in and carry-out contributions

iR

ir

m

iT
iT

kr kr

CI

i
CO

i
problem window

Challenges

 Upper-bound the carry-in workload

 Upper-bound the carry-out workload

 Position the window such that interference is maximized

A New Notion

Workload Distribution (WD)

 A workload distribution describes a

schedule S of a DAG task as a

sequence of blocks (w,h)

The height denotes the number of

executing nodes

The width determines the duration of

such execution batch

 Total workload in function of a

certain length is given by the areas

 It is not required for S to be valid

1

3
2 2

1

1 2 1 3 1

iL

WD of a typical schedule

m

mWi /

WD according to

[Melani’15]

Carry-in Workload

How to model the carry-in job

such that the interfering workload

is maximized?

2

1

1

3

2

1

1

2

1v

2v

3v

4v 7v

6v

5v

8v

1 1 1

3 3

2 2 1 1 1

14iR

1

2

Intuitive approach

 Nodes execute as late as possible

Our approach

 Nodes execute as soon as possible

m

5)(CI

iW

1 1 1

3 3

2 1 2 1 1

14iR

1

2

3)(CI

iW

Interference

Carry-in Workload
What happens to the actual WCRT when we check the inter-task

interference?

1 1 1

3 3

2 2 1 1 1

12/  mHPRi

1

2

m

1)(CI

iW

1 1 1

3 3

2 1 2 1 1

14iR

1

2

3)(CI

iW

1 1 1

3 3

2 2 1 1 1

14iR

1

2

m

5)(CI

iW

1 1 1

3 3

2 1 2 1 1

14iR

1

2

3)(CI

iW

Carry-in Workload

And now also the self interference…

2 2 1 1 1

11/)( mSIHPRi

2

m

0)(CI

iW

1 1 1

3 3

2 1 2 1 1

14iR

1

2

3)(CI

iW

The makespan WD upper-bounds the interfering workload

generated by the carry-in job when
 The WD is aligned with the WCRT

 The WCRT is computed according to the pessimistic method described

 Any other WD generates less workload due to the discrepancy between its

actual RT and the WCRT

Carry-out Workload

How to model the carry-out job such

that the interfering workload is

maximized?
 Execute as much workload as possible, as

soon as possible

 Maximum cumulative parallelism

Can we construct such schedule for any value of the CO length?

2

1

1

3

2

1

1

2

1v

2v

3v

4v 7v

6v

5v

8v

node

exec time 0 1 1 0 1 1

1v 2v
3v 4v 6v

7v node

exec time 0 1 1 1 1 1 1

1v 2v
3v 4v 6v

7v

if

5v

4

1

3 3

1 1

4)(CO

iW 6)(CO

iW
4

2

1 1

Our

Goal

1CO

i
if 2CO

i

Carry-out Workload

We solve the problem by transforming

the DAG into a nested fork-join DAG
 Well-structured parallelism

 More general than SP model

 More concurrency

 Transformation
Identify conflicting edges

 Remove minimum number of

such edges to resolve the issue

NFJ-DAG construction

2

1

1

3

2

1

1

2
1v

2v

3v

4v 7v

6v

5v

8v

2

1

1

3

2

1

1

2
1v

2v

3v

4v 7v

6v

5v

8v

remove

edge (v4, v5)

DAG

NFJ-DAG a)

series composition
parallel composition

NFJ-DAG b)

NFJ-DAG

Carry-out Workload

Constructing WD
 Find the set yielding maximum parallelism in

the NFJ-DAG (uses a binary tree)

The height is the number of elements in the set

The width is the minimum (remaining) WCET

among the elements

 Subtract this value from the selected nodes;

remove exhausted nodes

Repeat until NFJ-DAG is empty

1
2

4

1

2 1 1

WD

2

1

2

2

1

1

3

2

1

1

2

1v 3v

4v 7v

6v 8v
2

3

2

2

1v

4v

8v

2v
5v 5v

2 3 2

1v
4v

8v

max cumulative becomes

max at each step

Response Time Analysis

The problem can be formulated as

max

s.t.

)2()1(xCOxCI ii 

C

ixx  21

The solution to this optimization problem is

the desired upper-bound

 The values of x1 and x2 correspond to the

length of the carry-in and carry-out windows

We proposed an algorithm to solve this sliding window problem

with complexity linear to the number of blocks in the WDs

iR

m



iL iL

  iii TTL  /)(

How to align the problem window

in order to upper-bound the

interfering workload of both carry-

in and carry-out jobs?

Experimental Results
Comparison with the state-of-the-art G-FP analysis [Melani’15]

We assessed the schedulability of 500 task sets per configuration

as a function of:

  System utilization U

 Number of tasks n

 Number of cores m

m = 8

~35% gap

Experimental Results

m = 8, U = 70%

Substantial schedulability improvements

~4 times better

Experimental Results

U = 70%, n = 1.5m

Robust to systems with increased number of cores

huge

improvement

Summary

Addressed DAG tasks under G-FP scheduling

Introduced the notion of workload distribution
 Models the shapes of different schedules

Proposed two techniques to more accurately characterize the

worst-case carry-in and carry-out workload
 DAG’s internal structure is explored

Experimental results reported significant gains in terms of

schedulabity and effectiveness for large multiprocessor systems

Future work

 Address the pessimism in the self interference

Thank you!

jcnfo@isep.ipp.pt

mailto:nelis@isep.ipp.pt

