
Shashank Gaur, Luca Mottola, Eduardo Tovar

Wireless Sensor Networks

Limited
Capabilities

Sense and
Collect

Single
Application

Specific Structural Health
Forrest Fire Detection

Periodically

Single Physical Quantities
Limited Processing

Capabilities

Sense,
Collect & Act

Application

Personal Health Care
Smart City/Home

Event triggered

Many Physical Quantities
Better Processing

Normal Habitat
Check Presence

And
Maintain Heating

Fire Alarm
Detect Presence

And
Open Doors

Fire Alarm
Monitor high
temp area &

Notify Firemen

• Sensors or Actuators

• Processor unit (low power in mW)

– mostly microcontrollers with ADC/DAC, UART etc

• Wireless Communication (Range in meters)

– IEEE 802.15.4 compliant

• RAM (2-10 KB)

• Memory/Flash (50-250 KB)

Radio
transceiver

8-bit AVR Microcontroller

USB Connector
(for reprogramming

and power)

Analog/Digital sensor
connectors

External
battery connector

UART
connectors

• Operating Systems (TinyOS, Contiki)

– Resource Management (motes/nodes)

– Protocols such as MAC, Routing

• Programming Languages

– Low Level for hardware nodes (C, nesC)

• Additional Services

– Localization

– Sync the Clocks (RBS)

– Code deployment (Trickle, CITA)

Application

OS

Network

Processor

Sensor Energy

Microcontroller

Source code (C/nesC)

OS (Compiler/Assembler)

Machine code
Serial/USB

flash

memory

• Programming handles the gap between Application and OS

– Message Passing

– Handshaking

– Radio Cycles

– Interrupts and Timers

– Polling Sensors

• Event Driven Execution

– If this happens do that

• Exposes hardware controls

• Node Centric approach

Radio event handler

Sensor event handler

Timer event handler

Boot event handler

Responsibility of the Programmer

SenseExisting Examples Human Concern

Room ActivitySmoke Alarm Safety

Room ActivityAuto Lights On / Off Convenience

Object IdentityBarcode Scanners Efficiency

Personal Identity
& Time

File Systems Finding Info

TimeCalendar Reminders Memory

int sense_protothread(struct pt *pt) {

PT_BEGIN(pt);

PT_WAIT_UNTIL(pt, condition1);

if (something) {

Action();

PT_WAIT_UNTIL(pt,condition2);

}

PT_END(pt)

}

Existing Examples SensePotential Examples Human Concern

Activity Convenience

Activity Finding Info

Identity Memory

Identity & Time Safety

Time Efficiency

Identity

Time

Location

Proximity

Activity

History

…

Smoke Alarm

Auto Lights On / Off

Barcode Scanners

File Systems

Calendar Reminders

Health Alert

Auto Cell Phone
Off In Meetings

Service Fleet
Dispatching

Tag Photos

Proximal Reminders

• High level abstractions and flexibility

• Reusable Components

• Over the air programming

• Examples

– TinyDB, Regiment, Flask, T-Res, ConesC, etc.

• Program System Behavior

– Not node centric

• Provides support for

– Scaling

– Separation

– Adaptability

– Validation of behavior

Application

Macroprogramming

OS

Network

Processor

Sensor Energy

• Adaptation for Sensor Networks

– Network & Load dynamics

– Requirement changes

– Performance Scaling

• Ability to modify distributed system behavior

• Reprogrammable system-level services instead of node-

centric approach

• Simple tasks may require adaptation policies

– Scale to more nodes

– Survive minimum thresholds

– Respond to input changes

• Functions which react to the data behavior [online]

– Changes to other applications/functions

– Changes to the same application

• Can User express desired outcome in simple way?

– Use some templates to get the exact policies

• Wildlife tracking devices on animal

For Speed(S) and BatteryLevel(B):

Poll GPS with Rate(R)

so that BatteryLevel(B)>Threshold(BT) after Time(T) or at pre-
defined location/distance

AND so that Maximize R

• Wildlife tracking devices on animal

• Refrigeration/Storage

For Volume(V) and Time period(t):

Maintain Temperature(TF)

so that Power Usage(P)<Threshold

AND so that minimize Cost(C)

t= Time of the day or life time of the item

• Refrigeration/Storage

T’ = current temperature

• Functions

– Relationship between input variables

• Adaptation

– At a constant rate

– By a trigger in the system behavior

• Constraints

– Operational

– Behavioral

• Solution

– To provide the desired output

• Implementation in Python

– Provide middleware for each block for Contiki OS

– Support to scale each block to multiple instances

• Evaluation

– Variable, Function, and other declarations are minimized by at
least 50%

– To add a new to existing adaptation policies in abstraction

• Necessary to modify 5 lines with a fixed structure instead of several lines in
C/nesC

– Size of the compiled code remains approximately same

