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• Sensors or Actuators

• Processor unit (low power in mW) 

– mostly microcontrollers with ADC/DAC, UART etc

• Wireless Communication (Range in meters)

– IEEE 802.15.4 compliant

• RAM (2-10 KB)

• Memory/Flash (50-250 KB)
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• Operating Systems (TinyOS, Contiki)

– Resource Management (motes/nodes)

– Protocols such as MAC, Routing

• Programming Languages

– Low Level for hardware nodes (C, nesC)

• Additional Services

– Localization 

– Sync the Clocks (RBS)

– Code deployment (Trickle, CITA)
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• Programming handles the gap between Application and OS

– Message Passing

– Handshaking

– Radio Cycles

– Interrupts and Timers

– Polling Sensors

• Event Driven Execution

– If this happens do that

• Exposes hardware controls

• Node Centric approach

Radio event handler

Sensor event handler

Timer event handler

Boot event handler

Responsibility of the Programmer
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int sense_protothread(struct pt *pt) {

PT_BEGIN(pt);

PT_WAIT_UNTIL(pt, condition1);

if (something) {

Action();

PT_WAIT_UNTIL(pt,condition2);

}

PT_END(pt)

}
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• High level abstractions and flexibility

• Reusable Components

• Over the air programming

• Examples

– TinyDB, Regiment, Flask, T-Res, ConesC, etc.



• Program System Behavior

– Not node centric

• Provides support for

– Scaling

– Separation 

– Adaptability

– Validation of behavior
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• Adaptation for Sensor Networks

– Network & Load dynamics

– Requirement changes

– Performance Scaling

• Ability to modify distributed system behavior

• Reprogrammable system-level services instead of node-

centric approach





• Simple tasks may require adaptation policies

– Scale to more nodes

– Survive minimum thresholds

– Respond to input changes

• Functions which react to the data behavior [online]

– Changes to other applications/functions

– Changes to the same application

• Can User express desired outcome in simple way?

– Use some templates to get the exact policies



• Wildlife tracking devices on animal

For Speed(S) and BatteryLevel(B):

Poll GPS with Rate(R)

so that BatteryLevel(B)>Threshold(BT) after Time(T) or at pre-
defined location/distance

AND  so that Maximize R 



• Wildlife tracking devices on animal



• Refrigeration/Storage

For Volume(V) and Time period(t):

Maintain Temperature(TF)

so that Power Usage(P)<Threshold

AND so that minimize Cost(C)

t= Time of the day or life time of the item



• Refrigeration/Storage

T’ = current temperature



• Functions

– Relationship between input variables

• Adaptation

– At a constant rate

– By a trigger in the system behavior

• Constraints

– Operational

– Behavioral

• Solution

– To provide the desired output





• Implementation in Python

– Provide middleware for each block for Contiki OS

– Support to scale each block to multiple instances

• Evaluation

– Variable, Function, and other declarations are minimized by at 
least 50%

– To add a new to existing adaptation policies in abstraction

• Necessary to modify 5 lines with a fixed structure instead of several lines in 
C/nesC

– Size of the compiled code remains approximately same




