CISTER - Research Center In
Real-Time & Embedded Computing Systems

ProgrammingiforWireless 'SensorNetworks

Shashank Gaur, Luca Mottola, Eduardo Tovar

-
Instituto Superior de
I‘S|e‘p Engenharia do Porto INESCTEC

Wireless Sensor Networks

Personal Health Care
Smart City/Home

Application -
8 Structural Health
Forrest Fire Detection

[Periodically

Sense,
Collect & Act

_ Event triggered

Many Physical Quantities
[Better Processing

Capabilities —

_Single Physical Quantities
Limited Processing

— CISTER - Research Center in
- Real-Time & Embedded Computing Systems

> |

4 Normal Habitat)
Check Presence
And

\ Maintain Heating /

(" Fire Alarm

Detect Presence
And

\. Open Doors

(" Fire Alarm
Monitor high
temp area &

_ Notify Firemen

CISTER - Research Center in
Real-Time & Embedded Computing Systems

Sensor Nodes

Hardware for'Sensor Networks

e Sensors or Actuators

* Processor unit (low power in mW)
— mostly microcontrollers with ADC/DAC, UART etc

* Wireless Communication (Range in meters)
— |[EEE 802.15.4 compliant

« RAM (2-10 KB)
e Memory/Flash (50-250 KB)

— CISTER - Research Center in
- Real-Time & Embedded Computing Systems

UART
connectors

8-bit AVR Microcontroller

External
battery connector

— CISTER - Research Center in
- Real-Time & Embedded Computing Systems

Software for Sensor Networks

* Qperating Systems (TinyOS, Contiki) Application
— Resource Management (motes/nodes)
— Protocols such as MAC, Routing 0S
* Programming Languages .
— Low Level for hardware nodes (C, nesC) Network

« Additional Services g
— Localization Processor
— Sync the Clocks (RBS) g
— Code deployment (Trickle, CITA) Sensor J{ Energy

— CISTER - Research Center in
- Real-Time & Embedded Computing Systems

Source code (C/nesC)

IMicrocontroIIer

flash
memory

Serial/USB

Machine code

— CISTER - Research Center in
- Real-Time & Embedded Computing Systems

lraditional’lProgramming

* Programming handles the gap between Application and OS
— Message Passing

— Handshaking Boot event handler
— Radio Cycles

. Sensor event handler
— Interrupts and Timers

— Polling Sensors Timer event handler

 Event Driven Execution
— |f this happens do that

 Exposes hardware controls Responsibility of the Programmer

 Node Centric approach

Radio event handler

— CISTER - Research Center in
- Real-Time & Embedded Computing Systems

Existing Examples Sense Human Concern

Auto Lights On / Off Room Activity Convenience

Personal Identity

File Systems Finding Info

& Time
Calendar Reminders Time Memory
Smoke Alarm Room Activity Safety
Barcode Scanners Object Identity Efficiency

/—)/ CISTER - Research Center in
- Real-Time & Embedded Computing Systems

int sense_protothread(struct pt *pt) {
PT_BEGIN(pt);
PT_WAIT_UNTIL(pt, conditionl);
if (something) {
Action();
PT_WAIT_UNTIL(pt,condition2);
}
PT_END(pt)
}

— CISTER - Research Center in
- Real-Time & Embedded Computing Systems

Identity Convenience
Time Finding Info
Location
Proximity Memory
Activity
History Safety
Efficiency

— CISTER - Research Center in
- Real-Time & Embedded Computing Systems

MacroProgramming Approach

* High level abstractions and flexibility
 Reusable Components
* Over the air programming

* Examples
— TinyDB, Regiment, Flask, T-Res, ConesC, etc.

— CISTER - Research Center in
- Real-Time & Embedded Computing Systems

MacroProgramming Approach

 Program System Behavior Application
— Not node centric

* Provides support for

Macroprogramming

— Scaling ! 05
— Separation Network
— Adaptability g

Processor

— Validation of behavior

Sensor J{ Energy

— CISTER - Research Center in
- Real-Time & Embedded Computing Systems

Adaptationiin'Macroprogramming

* Adaptation for Sensor Networks
— Network & Load dynamics
— Requirement changes
— Performance Scaling

 Ability to modify distributed system behavior

* Reprogrammable system-level services instead of node-
centric approach

— CISTER - Research Center in
- Real-Time & Embedded Computing Systems

/—)/ CISTER - Research Center in
- Real-Time & Embedded Computing Systems

Adaptation’Policies

e Simple tasks may require adaptation policies
— Scale to more nodes
— Survive minimum thresholds
— Respond to input changes

* Functions which react to the data behavior [online]
— Changes to other applications/functions
— Changes to the same application

* Can User express desired outcome in simple way?
— Use some templates to get the exact policies

— CISTER - Research Center in
- Real-Time & Embedded Computing Systems

Use Case #1

* Wildlife tracking devices on animal

For Speed(S) and BatterylLevel(B):
Poll GPS with Rate(R)

so that BatterylLevel(B)>Threshold(B;) after Time(T) or at pre-
defined location/distance

AND so that Maximize R

— CISTER - Research Center in
- Real-Time & Embedded Computing Systems

Use Case #1

* Wildlife tracking devices on animal

Constraint: B> By Adaptation at R,
— B,R,F,t R
Function: B=F(R) ~ ™ Orby Interesting
Objective: Max R events

— CISTER - Research Center in
- Real-Time & Embedded Computing Systems

UselCase #2

* Refrigeration/Storage

For Volume(V) and Time period(t):
Maintain Temperature(Tg)
so that Power Usage(P)<Threshold
AND so that minimize Cost(C)
t= Time of the day or life time of the item

— CISTER - Research Center in
- Real-Time & Embedded Computing Systems

UselCase #2

* Refrigeration/Storage

Functions:
TF = f(V,P)
C=g(P,t)

Constraint: Tg-6>Tp>Tg + 8

Objective: Min C

T = current temperature

— CISTER - Research Center in
- Real-Time & Embedded Computing Systems

V,t,8 T'.

Adaptation at R,

Or by Interesting
events

Components for/Adaptation Policies

* Functions
— Relationship between input variables

* Adaptation
— At a constant rate
— By a trigger in the system behavior

e Constraints
— Operational
— Behavioral

e Solution
— To provide the desired output

— CISTER - Research Center in
- Real-Time & Embedded Computing Systems

O 00~ O\ Wb

int Solve(Speed, BatteryLevelcurrent){
// Calculate R using the solution for optimization
Return R;

int Function(Rate){
BatteryLevel = alpha=Rate;
return BatterylLevel

}
void sensing_thread () {
while ()
{
timer = clock () ;
sleep (Rate) ;
GPS[time] = getGPS();
}
Return 0;
}
void timer_thread () {
while () {

timer_set (timer2, Ra):

if (timer_expired (timer2)){
adaptation_trigger = 1:

}

Timer_reset(timer2):

ﬁid adaptation_thread () {
While(){
If (adaptation_trigger == 1){
BatteryLevel = Function(Rate);
If (BatteryLevel < Batterythreshold){

Speed = haversine (GPS[time— 1:time])

Rate = Solve(Speed, BatteryLevel) ;
}

Timer_reset(timer2)// reset the timer
adaptation_trigger = 0

H}
Listing 1: Pseudo-C code for GPS Use Case.

Block

Block

Block

Block

Block

Trigger T {
//has the ability to consolidate different
triggers
// a fixed rate
Use consecutive_time 10s
// at fixed system time
Use time_stamp 00:00
// use different flags or events
Use flags

Solution §{
Use Function f
Use Function g
Use Constraint
Uses Variables a b ¢ d
// solve
return a

Constraint B{
//define the constraint
return true/ false

Function f{
Use variables b. ¢, d
//operation
return b

Function g{
Use variables a,c
//operation
return a

// Adaptation here

Block

Adaptation{
If Trigger = Active:
Solve a
return a

Abstractionfor’/Adaptation Policies

* Implementation in Python
— Provide middleware for each block for Contiki OS
— Support to scale each block to multiple instances

e Evaluation

— Variable, Function, and other declarations are minimized by at
least 50%

— To add a new to existing adaptation policies in abstraction
* Necessary to modify 5 lines with a fixed structure instead of several lines in

C/nesC

— Size of the compiled code remains approximately same

— CISTER - Research Center in
- Real-Time & Embedded Computing Systems

Ulnankk you

— CISTER - Research Center in
- Real-Time & Embedded Computing Systems

