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Motivation I

Why is dynamic property verification and enforcement required for
real-time systems?

I Real-time systems have a high dependence of temporal and
timed constraints.

I Techniques for runtime verification have been growing
progressively along the past years as a complement of static
approaches such as deductive verification and model checking.

I The demand of reliable and safe development of
programs for embedded applications where time is
crucial.

* AND THEY ARE MISSING *

A lack of timed approaches for hard real-time properties of
embedded system controllers. Not just a matter of functional
properties.
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Motivation II

What is dynamic property verification and enforcement of real-time
systems?

I an approach for schedulability analysis of hard real-time
systems and detection of anomalies;

I an approach to ensure durations of the past executions;
I a complementary approach of the common static analysis

relaxing coverage but increasing the type of properties to be
checked;

* AND IT IS *
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Motivation III

A lightweight method that can reduce the burden for software
programmers as well as intensive test cases. Maintainability and
integration is also cover. Monitors run indeterminately awaiting
the best stamp.
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Warm up

I Language for specification of timed and resource constraints
for real-time systems.

I Sound and reliable automatic monitor generation algorithm
(synthesis).

I Reliable Runtime Embedded Monitoring Library (RTEML) for
ARM architecture.
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Duration aware specification

RMTL-
∫
3 is formed by

I Terms:

η ::= α | x | min
x∈I

ϕ | max
x∈I

ϕ | η1 ◦ η2 |
∫ η

ϕ

I Formulas:

ϕ ::= p | η1 < η2 | ϕ1∨ϕ2 | ¬ϕ | ϕ1 U∼γ ϕ2 | ϕ1 S∼γ ϕ2 | ∃x ϕ,

with α ∈ R, x ∈ V, ◦ a function {+,×},
∫ η
ϕ the duration of the

formula ϕ in an interval, p ∈ P, ∼∈ {<,=}, γ ∈ R≥0, and < a
relation.

Common Abbreviations
Eventually : �∼γφ ≡ true U∼γ φ

Always : �∼γφ ≡ ¬( �∼γ¬φ)



Intuition for duration terms

ρ
εα εβ εα εidle εβ εα εidle εα εβ εα εβ εα εβ

∫ x
φ

Undef .x

εα∨εβ

εidle

εα

εβ

I ρ is a path; εβ , εα, and εidle are events;
I φ = εβ ( ), φ = εα ( ), and φ = εβ ∨ εα ( )
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Monitoring Synthesis of RMTL-
∫

3

Intuition behind monitor generation

1. Quantifiers are discarded prior the execution. Any monitoring
formula is quantifier free.

∃x A→ (B ∧ (x < 10)),

which is trivially simplified to A→ B .

2. Temporal operators such as until (U) and since (S) are
encoded using higher order functions.

A U<20 B is true for t = 0

A U<21 B is false for t = 0

εM is released at each 20
time units, and the trace ρ
begins at t = 0.

B

A

εM εM εM
ρ
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Simplification of RMTL-
∫

3 formulas I

Definition (Inequality Abstraction Constraint)
Let φ3 be a formula in RMTL-

∫
3. φ3 is a formula in first order logic

of real numbers (FOLR) if it is free of duration terms,
minimum/maximum terms, temporal operators, and propositions.

Step by step example of the proposed simplification algorithm

1. x <
∫ x+1

(P ∧ x < 10)
{replace duration term by y}

2. x < y ∧ 0 ≤ y ≤ x + 1
{apply weaker inequality for P ∧ x < 10 }

3. x < y ∧ 0 ≤ y ≤ x + 1∧(
(x < 10)→

(
0 ≤

∫ x+1
P ≤ x + 1

))
∧

¬(x < 10)→ ff
{replace new duration term by z}
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Simplification of RMTL-
∫

3 formulas II

4. x < y ∧ 0 ≤ y ≤ x + 1∧
((x < 10)→ (0 ≤ z ≤ x + 1))∧
¬(x < 10)→ ff
{apply CAD }

5. y = 0 ∧ (z = 0 ∨ (0 ≤ z ≤ x + 1)))∨
(0 < y ≤ x + 1 ∧ 0 ≤ z ≤ x + 1) for x ∈ [−1, 0[, and
(x < y ≤ x + 1 ∧ 0 ≤ z ≤ x + 1) for x ∈ [0, 10[
{replace y and z by

∫ x+1
P }

6.
∫ x+1

P = 0 ∨ 0 <
∫ x+1

P ≤ x + 1 for x ∈ [−1, 0[,
x <

∫ x+1
P ≤ x + 1 for x ∈ [0, 10[, and

ff otherwise

Now, we have that ∀x , x <
∫ x+1

(P ∧ x < 10) is false, and
∃x , x <

∫ x+1
(P ∧ x < 10) is true.
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Simplification of RMTL-
∫

3 formulas III

After simplifying ∀x , (0 ≤ x < 10)→ x <
∫ x+1

(P ∧ x < 10), we
have ∀x , (0 ≤ x < 10)→ 0 <

∫ x+1
P − x ≤ x + 1.

The proposition P is now isolated and we have two options,

1. replace x with a set of unique values – formula size highly
increases (unpractical for real numbers search space)

2. increasingly compute duration terms for different intervals
(uncovered in this paper) – may have a low monitoring
overhead
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Synthesis of duration term:
∫ a

φ

1ϕ(κ,υ) :: (K×Υ)→ R≥0 → Φ3 → {0, 1}

1ϕ(κ,υ) (κ, υ) t φ ,

{
1 if Computeϕ (κ, υ, t) φ = tt
0 otherwise

evηal :: (K×Υ)→ Φ3 → K→ R≥0

evηal (κ, υ) φ κ , fold
(
λs, (p, (i , t′))→ t′ ·

(
1ϕ(κ,υ) (κ, υ) t′ φ

)
+ s
)
0 κ

Compute(
∫

) (κ, υ) t a φ ,

{
evηal (κ, υ) φ (subK (κ, υ, t) a) if a ≥ 0
⊥R otherwise
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Synthesis of Until operator: φ1 U<γ φ2

evi
al :: B3 → B3 → B4

evi
al b1 b2 ,


mapB4 b2 if b2 6= ff
mapB4 b1 if b1 6= tt and b2 = ff
r otherwise

evb
al ::

(
K×Υ×R≥0

)
→ Φ3 → Φ3 → B4 → B4

evb
al m φ1 φ2 v ,

{
evi

al
(
Computeϕ m φ1

) (
Computeϕ m φ2

)
if v = r

v otherwise

evfold
al :: (K×Υ×R≥0)→ Φ3 → Φ3 → K→ B4

evfold
al (κ, υ, t) φ1 φ2 κ , fold

(
λv (p, (i , t′))→ evb

al (κ, υ, t′ − ε) φ1 φ2 v
)
r κ

evC
al :: (K×Υ×R≥0)→ R≥0 → Φ3 → Φ3 → K→ (B× B4)

evC
al (κ, υ, t) γ φ1 φ2 κ ,

(
d (κ) ≤ t + γ, evfold

al (κ, υ, t) φ1 φ2 κ
)

Compute(U<) m γ φ1 φ2 ,

{
mapB3

(
evC

al m γ φ1 φ2 (subK m γ)
)

if γ ≥ 0
ff otherwise
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Settling decisions about our synthesis mechanism

Lets introduce other available and common mechanisms.

What we get by using automata ?
A lot of theory and fundamental properties. But, could such
approach help us on runtime verification of duration
formulas? Maybe not.

What we gain using automata with stop-watches?
We know that the reachability problem is undecidable when
more than one clock is used.

I Since we are dealing with explicit time, automata based
synthesization is irrelevant when compared with the
exploration of inductive structures. Well, a very strong and
unproved sentence.

* AND NOW SIMULATIONS *
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Simulated results of the RMTL-
∫

evaluation algorithm
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Figure: Experimental validation of the complexity results provided in [6]
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Unstable conditions for monitors
Pre-defined conditions in RML4Ada framework

1. step-bounded condition – the execution of the monitor ends
when n iterations have been processed or when events have
not arrived (dynamic time execution);

2. time-bounded condition – the execution of the monitor is
bounded by t time units, exiting if no events occur (dynamic
time execution);

3. symbol-based condition – the execution ends when one or
more symbols of the path are consumed, and the monitor
sleeps until a new symbol arrival (dynamic time execution);

(3)

(1)

εM εM εM εM εM
ρ



Stable conditions for monitors

Unstable monitors are not enough to ensure safe monitoring.
For that we require an hierarchy of well-behaved monitors and
well-dependent monitors. Correctness by construction.

But, what this means?
We need to make the assumption that the monitor is time
constant. Each branch of a control flow graph of a monitor has to
run exactly the same instructions or at least the same number of
instructions (note that the latter is more weak).
Based on that we can trust over the verdicts of such monitor, and
employ unstable monitors to perform more dynamic tasks.
We need to assume that monitors are always interfering as a
constant measure of time. Can we could call it stationary ?
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PixHawk platform

I Applicability of the developed tools for a real application using
a real embedded ARM Cortex-M4 processor.

I Lightweight Drones are currently unsafe in terms of time-space
isolation. Our purpose is to apply the runtime verification to
increase dependability of such well spread air vehicles.
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RTEML is for embedded systems I

RTEML is a modification of the current in house multi-purpose
approach and library [7] that is purely imperative programming
oriented.

Issues that we identify for embedded systems

I assigning a buffer for each type of event is memory consuming.
A buffer of 100 elements is not the same as a set of ten buffers
of size 10 (related to the approach);

I event overwrite is not safe since can be unrecoverable at some
point (related to the approach);

I only works if monitors have less priority (related to the library
level);

I lock-free mechanism is supported by Boost library (related to
the library level);

I wait-free is not provided (related to the library level);



RTEML is for embedded systems II

RTEML usage regards

I is lock- and wait-free;
I does not overwrite events by default;
I due to the synthesis tool it manages the buffers of monitors by

clusters when synthesis of RMTL-
∫
3 is used;

I only works for ARM architectures but can be further extended;



Modes of execution for RTEML

Modes of operation

I Time-Triggered mode – executes as a periodic task;

P
εM εM εM εM

I Event-Based mode – executes as a sporadic task (each
inter-arrival time shall be supplied before the execution and
statically checked);

P
εM εM εM

I Hybrid mode – mixture both previous modes;



Talk Outline

Motivation

Background
Specification Language RMTL-

∫
3

Synthesis of RMTL-
∫
3

Simplification of Quantified Formulas
Temporal operators and duration terms as higher order functions

Stable and non-stable Conditions for Monitoring

Ongoing Case Study based on PixHawk autopilot
Platform
RunTime Embedded Monitoring Library – RTEML
Languages and Synthesizer



From RMTL-
∫

3 to C++11

Thanks to C++11 lambda functions.
Thanks to Ocaml programming language. Lets see the
rmtld3synthcpp tool in more detail...

DEMO



The End...

Thank you for watching our presentation.
Please send any comment to anmap@isep.ipp.pt.
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