Towards Run-Time Verification for
Real-Time Safety-Critical Systems

Systems Do not Get Simpler

* Every day, computing platforms become more and
more complex

— Unicore = Multicore 2 Manycore
— Apparitionof buses, then NoCs

— Shared memory and shared caches
— Complex cache replacement policies

* Software becomes more complex too
— Paralleland/or distributed tasks
— Execution affinities (= migrations)

=>» Difficult to model, analyse and verify

Systems Do not Get Simpler

* Yet, safety critical systems would like to adopt
those new architectures
— For their performances
— To reduce costs
— For availability reasons

=» One must prove that all the system
requirements are respected

Two Types of Properties to Verify

* Functional properties
e Extra-functional properties

Two Types of Properties to Verify

* Functional properties

* Everything that relate to the result produced or
the order of execution

— Examples:
* A must execute before B
* |f A executes than B must eventually execute
e Ccannot execute between A and B
* The result returned by A must be positive
* The sensor readings cannot be smaller than 3

e Extra-functional properties

Two Types of Properties to Verify

* Functional properties
e Extra-functional properties

Two Types of Properties to Verify

* Functional properties

e Extra-functional properties

— Everything that does not relate to the result produced
or the order of execution

— Examples:

* A mustcomplete within 10ms

* A cannotexecute for more than 5ms

* B must execute at last 10ms after A

* Coretemperature mustremain under 60°C
* Power consumption mustremainunder 5W

— In this work, we limit ourselves to timing properties

Static Verification is Usually Impractical

* For functional properties
— Time and complexity to actually prove something
— Explosion of possible states
— Theoretical limitations of the models

* For extra-functional properties

— most data are available only at run-time

Modeling and Analysis are Based on
Assumptions

* Forinstance, in real-time scheduling theory:
— Execution time never exceeds the WCET
— The minimum inter-arrival time is lower bounded by T,
— Thejitteris upper bounded by J.

=2 Nothing proves that they are actually respected
at run-time

=» Testing is used to increase the confidence
but does not cover all cases

RUN-TIME VERIFICATION:
BASIC CONCEPTS

Run-time verification

System

Run-time verification

Specifications

|
{Implement
v
e ™
\ Monitors
o J

System

12

Instrumentation

Run-time verification

-~

(U

System

~

Observe

Specifications

)

>

|
{Implement
v
-~ D\
Monitors
N)
lVerdict

13

Run-time verification

Instrumentation

-~

(U

System

~

)

€

Specifications

Observe

>

Feedback

ilmplement
-~ 4 R
Monitors
NS _J
lVerdict
' R
Handlers
o J

14

Instrumentation

Run-time verification

-~

NS

System

~

)

jImplement

15

EXAMPLES

Verification of a Functional Property

-

Tasks

Tasks

o

~

J

Running
on

Run-Time Environment (RTOS)

17

Verification of a Functional Property

-

Tasks
inti=0;
File f = open(ff.txt);
while(true) {

i++;

f.write(i);

N\

Tasks

WaitNextPeriod();
}

o

Running
on

Run-Time Environment (RTOS)

Verification of a Functional Property

-

Tasks

Tasks

o

N\

J

Running
on

Specification 1

Before to write in
inti=0; a file, you must

File f = open(ff.txt); h .
\' n IT.
while(true) { Susopeneg

i++;

fwrite(i);

WaitNextPeriod();

Run-Time Environment (RTOS)

19

Verification of a Functional Property

4 D

Tasks

inti=0;
File f = open(ff.txt);

\/‘“\ while(true) {

i++;
fwrite(i);

Tasks

WaitNextPeriod();
}

o

fileClose

Monitor 1

fileWrite

Running
on

Run-Time Environment (RTOS)

20

Verification of a Functional Property

-

o

~

—\

Tasks

Tasks

_

Running
on

inti=0;

Call_Mon](fileOpen);
while(true) {

i++;

Call_Mon1(
fileWrite);

fwrite(i);

File f = open(ff.txt); fileClose

WaitNextPeriod();

Monitor 1

fileWrite

Run-Time Environment (RTOS)

21

Verification of a Functional Property

4 I
Tasks
\/\
Tasks

-

Running
on

inti=0;

File f = open(ff.txt);

Call_Mon](fileOpen);

while(true) {
i++;
Call_Mon1(

fileWrite);
fwrite(i); &

WaitNextPeriod();

Monitor 1

fileClose

fileWrite

Run-Time Environment (RTOS)

22

Verification of a Functional Property

4 I
Tasks
f\
Tasks

\

Running
on

while(true) {
i++;
Call_Mon1(
fileWrite);
fwrite(i);

inti=0; fileClose

WaitNextPeriod();
}

Monitor 1

fileWrite

Run-Time Environment (RTOS)

23

Verification of a Functional Property

-

o

~

—\

Tasks

Tasks

_
Running
n

(0]

while(true) {
i++;
Call_Mon1(

inti=0; fileClose

fileWri
f. i);

WaitNextPeriod();
}

Monitor 1

fileWrite

Run-Time Environment (RTOS)

24

Verification of an Extra-Functional
Property

Tasks
inti=0;
File f = open(ff.txt);
while(true) {
i++;
fwrite(i);

N\

Tasks

WaitNextPeriod();
}

- /

Running
on

Run-Time Environment (RTOS)

Verification of an Extra-Functional

o

Tasks

Tasks

N\

J

Running

!

Propert

inti=0;
File f = open(ff.txt);
while(true) {

i++;

Specification 2

The response time
of a job must be
smallerthan its
deadline.

fwrite(i);

WaitNextPeriod();

Run-Time Environment (RTOS)

26

Verification of an Extra-Functional

Propert

Tasks
inti=0;
File f = open(ff.txt);

_I////’“ while(true) {
i++;
\\\ fwrite(i);
Tasks
WaitNextPeriod();
}
-

Running
on

JobCor

and
Clock <
Deadli

Monitor 2

Run-Time Environment (RTOS)

27

Verification of an Extra-Functional

Tasks

Tasks

N

Running
on

Propert

Call_Mon2(jobStart);

inti=0;
File f = open(ff.txt);
while(true) {
i++;
fwrite(i);

Call_Mon2(jobComp

WaitNextPeriod();
Call_Mon2(jobStart);

JobCor

and

Clock <

Deadli

Monitor 2

JobStart
Clock:=0

Clock >
Deadline

Run-Time Environment (RTOS)

28

LIMITATIONS OF CURRENT
ARCHITECTURES

Change Timing Properties of the
Monitored Application

Tasks
inti=0;
File f = open(ff.txt);
while(true) {
i++;
fwrite(i);

N\

Tasks

WaitNextPeriod();
}

- /

Running
on

Run-Time Environment (RTOS)

Change Timing Properties of the

4 I
Tasks
\/\
Tasks

\

Running
on

Monitored Application

inti=0;
File f = open(ff.txt);
Call_Mon](fileOpen);
while(true) {

i++;

Call_Mon1(
fileWrite);

fwrite(i);

WaitNextPeriod();

fileClose

Monitor 1

Lol

fileWrite

Run-Time Environment (RTOS)

31

Change Timing Propertie

s of the

Monitored Application
/ \ Monior 1
inti=0;
Tasks File f = open(ff.txt); fileClose
whi@(true) {
f\ i+4; fileWrite
Call_Mon1(
Tasks Extra-code executed ‘ \
i};/aitNextPeriod();
K _ j } fileWrite

Running
on

Run-Time Environment (RTOS)

32

Change Timing Properties of the
Monitored Application

e \//l Monior 1
Tasks \ fileClose

Modification of the
\/ ° . . .
tasks execution fileWrite

times

NG) *-OJU

WaitNextPeriod();

o

—] j } fileWrite
Running

Run-Time Environment (RTOS)

33

/ (’2
Tasks
)<

Tasks \

No Time Partitioning

T\

Running
on

T1
while(true) Specifications
bufferl.write(x); Some properties are
i}\./aitNextPeriod(); respeCted Ul
} order of reads and
writes of data
T2 shared between T1,
while(true) { T2 and T3.
.l;ufferz.write(y);
i}\./aitNextPeriod();
}
T3
while(true) {
B;Jfferl.read(x);
B;Jfferz.read(y);
i}\./aitNextPeriod(); I|t (RTOS)
}

34

Tasks

Tasks

No Time Partitioning

;/.\;hile(true) {

bufferl.write(x);
Call_Mon1(writeBuf1);

WaitNextPeriod();
}

;\;hile(true) {

buffer2.write(y);
Call_Mon1(writeBuf2);

WaitNextPeriod();
}

T\

Running
on

;/.\;hile(true) {

Call_Mon1(readBuf1);
bufferl.read(x);

Call_Mon1(readBuf2);
buffer2.read(y);

WaitNextPeriod();

T1
Monitor 1
—_—
T2
T3
It (RTOS)

35

No Time Partitioning

;/.\;hile(true) {

Monitor 1

bufferl.write(x);
Call_Mon1(writeBufl);

Tasks
Monitor becomesa

shared resource

\/

buffer2.write(y);
Call_Mon1(writeBuf2);

Tasks

WaitNextPeriod();
}

\\/\) ;/.\;hile(true){
Running ! I \ EaII_Monl(readBufl);/

on bufferl.read(x);

Call_Mon1(readBuf2);
buffer2.read(y);

WaitNextPeriod();

36

No Time Partitioning

while(true) {
bufferl.write(x); g@\
Call_Mon1(writeBufl); h/

\ Monitor becomes a shared
|_ resource

> =>» Causes blocking times
between the tasks

Bt el § 2 74

Monitor 1

Tasks

Call_Mon1(writeBuf2);

Tasks

WaitNextPeriod();
}

\\/\) ;/.\;hile(true){
Running ! I \ EaII_Monl(readBufl);/

on bufferl.read(x);

Call_Mon1(readBuf2);
buffer2.read(y);

WaitNextPeriod();

37

Tasks

T\

Running
on

No Time Partitioning

/[~ N/

;/.\;hile(true) {

bufferl.write(x);

Timing properties of
each task depends
on the other tasks

;/.\;hile(true) {

Call_Mon1(readBuf1); /
bufferl.read(x);

Monitor 1

Call_Mon1(readBuf2);
buffer2.read(y);

WaitNextPeriod();

38

No Space Partitioning

Tasks

Tasks

vs;hile(true) {

bufferl.write(x);

Call_Mon1(writeBuf1l);

WaitNextPeriod();
}

;\;hile(true) {

buffer2.write(y);
Call_Mon1(writeBuf2);

WaitNextPeriod();
}

T\

Running
on

;/.\;hile(true) {

Call_Mon1(readBuf1);
bufferl.read(x);

Call_Mon1(readBuf2);
buffer2.read(y);

WaitNextPeriod();

T1
Monitor 1
—_—
T2
T3
It (RTOS)

39

No Space Partitioning

Tasks

Tasks

Same mern

;/.\;hile(true) {

bufferl.write(x);
Call_Mon1(writeBufl);

WaitNextPeriod();
}

nory p

;\;hile(true) {

buffer2.write(y);
Call_Mon1(writeBuf2);

WaitNextPeriod();
}

T\

Running
on

;/.\;hile(true) {

Call_Mon1(readBuf1);
bufferl.read(x);

12

T3

Monitor 1

Call_Mon1(readBuf2);
buffer2.read(y);

WaitNextPeriod();

it (RTOS)

No Space Partitioning

Tasks

Tasks

vs;hile(true) {

bufferl.write(x);
Call_Mon1(writeBufl);

WaitNextPeriod();
}

;\;hile(true) {

\Fault: Stack overflow

WaitNextPeriod();
}

T\

Running
on

;/.\;hile(true) {

Call_Mon1(readBuf1);
bufferl.read(x);

Call_Mon1(readBuf2);
buffer2.read(y);

WaitNextPeriod();

T1
Monitor 1
—_—
T2
T3
It (RTOS)

41

No Space Partitioning

Tasks

Tasks

T\

Running
on

- T1
while(true) { Monitor 1
bufferl.write(x);
Call_Mon1(writeBufl);
i};/aitNextPeriod();
}
;,-\;h”e(true){ T2 7 Fault: State is corrupted
-
L~ Q’&%a
\Fault:Stack overflow [of©
;}\-/aitNextPeriod();
}
;/.\;hile(true) { T3
EalII_Monl(readBufl);
bufferl.read(x);
gaII_Monl(readBuf2);
buffer2.read(y);
puferz.readiy) It (RTOS)
WaitNextPeriod();
}

42

No Space Partitioning

Tasks

Tasks

vs;hile(true) {

bufferl.write(x);
Call_Mon1(writeBufl);

WaitNextPeriod();
}

;\;hile(true) {

\Fault: Stack overflow =

WaitNextPeriod();
}

T\

Running
on

;/.\;hile(true) {

Call_Mon1(readBuf1);
bufferl.read(x);

Call_Mon1(readBuf2);
buffer2.read(y);

WaitNextPeriod();

T1 :
Monitor 1
T2 Fault: State is corrupted
7
/’ 3\.6
e ” 00% Consequences:
Q(
Error state is never reached
It (RTOS)

43

No Space Partitioning

Tasks

Tasks

while(true) { T
bufferl.write(x);
Call_Mon1(writeBufl);
WaitNextPeriod();

}

while(true) { T2 7

”
\Fault: Stack overflow = '@093

WaitNextPeriod();

T\

Running
on

Monitor 1

P

Fault: State is corrupted

Consequences:

Error state is never reached
OR

Wrong feedback method is
activated

=>» May worsen situation

}
;/.\;hile(true) { T3
EalII_Monl(readBufl);
bufferl.read(x);
gaII_Monl(readBuf2);
buffer2.read(y); Ilt (RTOS)

WaitNextPeriod();

a7

No Space Partitioning

" T1
- Wh"e(ti‘fe){ Monitor 1
bufferl.write(x);
Tasks \ \ I_’
/ [J [J
\/"‘ Fault in the monitored = Fault: State is corrupted
application may corrupt ,;;;e) .
the monitor decision 0 onsequences:
Task Error state is never reached
asks N OR
\ Wrong feedback method is
3 Activated
K \/\j while(true) { =>» May worsen situation

Running Call_Mon1(readBuf1);
on bufferl.read(x);

Call_Mon1(readBuf2);

[buffer2.read(y); It (RTOS)

WaitNextPeriod();

45

No Independence between Monitors
and Monitored Application

Monitor 2

4 I
Tasks
/\
Tasks

-

Running
on

Call_Mon2(jobStart);

inti=0;
File f = open(ff.txt);
while(true) {
i++;
fwrite(i);

Call_Mon2(jobComp

WaitNextPeriod();
Call_Mon2(jobStart);

JobCor

and
Clock <
Deadli

Run-Time Environment (RTOS)

16

No Independence between Monitors
and Monitored Application

Call_Mon2(jobStart);

4) —

—

Tasks)r —

State of the monitor

called by the task

-

~

/\ updated only when

Tasks Call_Mon2(jobComp

);
WaitNextPeriod();
_ - CaII_MonZ(jobStart);'

’7’

Running }
on

JobCor

and
Clock <
Deadli

Monitor 2

Run-Time Environment (RTOS)

47

No Independence between Monitors
and Monitored Application

e ~ Call_Mon2(jobStart); Monitor 2
eee \\
Tasks o ™
State of the monitor JobComp
" updated only when and JobStart
called by the task Clock < Clock:=0
K / Deadline -
Tasks . / s
Call_Mon2(jobC
y all_Mon2(jo omp | o
WaitNextPeriod(); | dI|ne
_ j Call_Mon2(jobStart); -|
Running }
on Deadline miss detected only

when thejob completes.
Not when the deadline

Run-Time Environment (RTOS) | s reached

48

No Independence between Monitors
and Monitored Application

Call_Mon2(jobStart); Monitor 2
/ \ a _Mon2(jobStar)\\) onitor
Tasks \
JobComp
o - and JobStart
— Limited Clock < Clock := 0
responsiveness Deadlihe -
Tasks 7 s
Clock >
/ Deadline
! p)
_ - - Call_Mon2(jobStart); -‘|
Running

on Deadline miss detected only

when thejob completes.
Not when the deadline

Run-Time Environment (RTOS) | s reached

49

No Independence between Monitors
and Monitored Application

Monitor 2

4 I
Tasks
/\
Tasks

-

Running
on

Call_Mon2(jobStart);

—

inti=0;
File f = open(ff.txt);
while(true) {
i++;
fwrite(i);

Call_Mon2(jobComp

WaitNextPeriod();
CaII_MonZ(jobStart);'

>

7’

JobComp

and JobStart
Clock < Clock:=0
Deadline

Clock >
Deadline
' Error

Deadline miss detected only

Run-Time Environment (RTOS)

when thejob completes.
Not when the deadline
is reached

50

No Independence between Monitors
and Monitored Application

e ~ Call_Mon2(jobStart); Monitor 2
Tasks inti=0;
File f = open(ff.txt);
while(true) { JobComp
L i++; and JobStart
fwrite(i); Clock < Clock:=0
Deadline
Task \ Failure: Task stops working -
asks : —
Call_Mon2(jobC /
); all_Mon2{jo L Clock >
WaitNextPeriod();) Deadline
_ J Call_Mon2(jobStart); h
Running }
on Deadline miss detected only

when thejob completes.
Not when the deadline

Run-Time Environment (RTOS) | s reached

51

No Independence between Monitors
and Monitored Application

4 I
Tasks
/\
Tasks

-

Running
on

Call_Mon2(jobStart);

—

inti=0;
File f = open(ff.txt);
while(true) {
i++;
fwrite(i);

—

\ Failure: Task stops working
=» The deadline miss is

) never detected

WaitNextPeriod();
Call_Mon2(jobStart);

/’

Monitor 2
JobComp
and JobStart
Clock < Clock:=0
Deadline

Clock >
Deadline
' Error

Deadline miss detected only

when thejob completes.
Not when the deadline

Run-Time Environment (RTOS) | s reached

52

No Independence between Monitors
and Monitored Application

Call_Mon2(jobStart);

Failure of the monitored

application

=>» Failure of the
monitor

4 I
Tasks
\/\
Tasks

\

Running
on

Call_Mon2(jobStart);
}

JobCor
and
Clock <

Deadli

Monitor 2

JobStart

Run-Time Environment (RTOS)

53

Limitations Summary

Impact task execution times

No time partitioning

— Response time of one task is influenced by other tasks
No space partitioning

— Possible corruption of the monitor by a task and/or
other monitors

No independence between monitors and
monitored application

— Failure of the monitored task =» failure of the monitor
Limited responsiveness

ALTERNATIVES IN THE
STATE-OF-THE-ART

Framework Architecture

4 N

Tasks

Tasks

- /

Running
on

Run-Time Environment (RTOS)

One Shared Buffer

4 I
Tasks Write
E"e\tsA
> Buffer
Tasks /
Nt

Running
on

Run-Time Environment (RTOS)

57

One Shared Buffer

Eve\tSA

\, Reads
' Buffer pr—

—

N

Running
on

Run-Time Environment (RTOS)

58

One Shared Buffer

/ \ Monitor 1
Events
kﬁ' Reads Monitor 2
» Buffer —_—>
Tasks /

Monitor 3

Running [']

on

Run-Time Environment (RTOS)

59

One Shared Buffer

Monitor 1
4 I
Events C
- 9 Monitor 2
\' B Jr-U, r
18
wn
Tasks —
Monitor 3
Nt

Running
on

Run-Time Environment (RTOS)

60

One Shared Buffer

4 N\ Monitor 1
Tasks Write
eads Monitor 2
Buffer _ Sends
Tasks Shared resource
=» Causes blocking times

Monitor 3

Running [']

on

Run-Time Environment (RTOS)

61

One Shared Buffer

Monitor 1
4)
Tasks Write (
E ~
%\\, Reads Monitor 2
> Buffer —>
z;
o1
Tasks /@ _
Bottleneck Monitor 3
N D = limits
—T parallelism
Running ! !
on

Run-Time Environment (RTOS)

62

One Buffer per Monitor

4 N

Tasks

Tasks

- /

Running
on

Run-Time Environment (RTOS)

One Buffer per Monitor

/ \ Monitor 1
Write Reads
Tasks |
Monitor 2
Reads
Buffer >
Tasks /
Monitor 3
\ Reads
_) | Buffer >
Running
on

Run-Time Environment (RTOS)

64

One Buffer per Monitor

/ Parallelism possible Monitor 1\
4 A Write Reads
Tasks o
Monitor 2
N Reads
Buffer >
>
Tasks /
Monitor 3
\ Reads
_) > Buffer >
Running K
on

Run-Time Environment (RTOS)

65

Tasks

Tasks

o

~

)

Running
on

One Buffer per Monitor

Monitor 1
Write Reads
y E r ')
C Isolation
@) Monitor 2
)
Reads
E (‘_U r >
/ O
0))]
H -
Isolation
Monitor 3
\ Reads
‘ E r =)

Run-Time Environment (RTOS)

66

One Buffer per Monitor

/ \ Monitor 1
Wri [\ Reads
Even ? BUffer I >
Tasks %
Shared resources
=» Cause blocking times
Monitor 2
S Reads
s Buffer >
=
Tasks /®/
Monitor 3
% Reads
_) > Buffer >
Running k)
on

Run-Time Environment (RTOS)

Tasks

Tasks

o

~

Write

Event/

)

Running
on

[AX

Buffer

Buffer

Buffer

~

One Buffer per Monitor

Monitor 1
Reads
>
Same event potentially
saved multiple times
=» Increased memory
footprint Monitor 2
Reads
>
Monitor 3
Reads
>

~/

Run-Time Environment (RTOS)

68

A NOVEL RUN-TIME MONITORING
ARCHITECTURE

One Buffer per Event Type

4 N

Tasks

Tasks

- /

Running
on

Run-Time Environment (RTOS)

One Buffer per Event Type

/ \ Write
| Events .| Queue of Events of
Tasks Type_1
5 Queue of Events of
Type_2
Tasks
\ B / 5 Queue of Events of
Running l l Type_4
on

Run-Time Environment (RTOS)

One Buffer per Event Type

/ \ Write
Events . Queue of Events of Read ;
Tasks Type_1 Monitors
5 Queue of Events of
Type_2
Tasks ||
o _ / 5 Queue of Events of
Running l l Type_4
on

Run-Time Environment (RTOS)

72

One Buffer per Event Type

/ \ Write

Events

5 Queue of Events of Read

Tasks Type_l Monitors

5 Queue of Events of
Type_2

> Queue of Events of

Type_3
Tasks Monitors
|
o B / 5 Queue of Events of
Running l l Type_4
on

Run-Time Environment (RTOS)

One Buffer per Event Type

Tasks

Tasks

o

~

Write
Events

5 Queue of Events of Read

Type_1

5 Queue of Events of

Type_2

%

Running
on

> Queue of Events of
Type_3

-

~

Monitors
Implemented
as periodic tasks
Monitors
i

5, Queue of Events of /

Type_4

=

Running
on

Run-Time Environment (RTOS)

74

One Buffer per Event Type

Only one buffer per event
=>» An eventis never
4 I saved multiple times

5 Queue of Events of

Ta SkS Type_1 Monitors
5 Queue of Events of
\/ Type_2
> Queue of Events of |~
Type_3
Tasks Monitors

o . / ., Queue of Events of /L/
Running \ Type_4
on J L -

Run-Time Environment (RTOS)

One Buffer per Event Type

One writer per buffer
/_-)_N_gblocking time
) Write "\
N —

Events

Queue of Events of Read

Tasks > Type 1 Monitors
5 |Queue of Events of
\/ Type_2
> Queue of Events of
Type_3
Tasks Monitors

- ——— / . |Queue of Events of /)‘\/
Running L Type_4
on U J

Run-Time Environment (RTOS)

One Buffer per Event Type

o

Tasks Type_1

Tasks

/ Parallelism possible
\ Writg

Eventp .| Queue of Events of Read

Monitors

5 Queue of Events of
Type_2

> Queue of Events of
Type_3
Monitors

~

Running
on

Type_4

ll / \ . Queue of Events of /)‘\/

/

Run-Time Environment (RTOS)

77

One Buffer per Event Type

/ \ Write
Events , Queued Vents of Read ,
Tasks Ty 1 Monitors
5 Queue g Cyvents of
Ty_C_)_2
i) .
Ty O3
Tasks ﬂ Monitors

- B / ., Queued Vents of /)‘\/
Running l l Ty |4
on

Run-Time Environment (RTOS)

One Buffer per Event Type

* Events of different types used by a same
monhnitor are not ordered
=» The monitor must reorder them

=» Does not require more reads than when there is
only one buffer per monitor

79

One Buffer per Event Type

* If T.is the period of the monitor,
any error is detected in strictly less than

Ri=2xT||

=>»The responsiveness can be configured

 Assumingthe systemis schedulable

A RUN-TIME VERIFICATION
FRAMEWORK FOR REAL-TIME SYSTEMS

How to Generate Monitors?

* Programming them by hand?

How to Generate Monitors?

* Programming them by hand?
=21t may be complex to capture all possible cases
=» Possibility to introduce bugs in the monitor
=>» Difficult to prove their correctness
=»Hardly ease the certification process

83

How to Generate Monitors?

* Programming them by hand?
=21t may be complex to capture all possible cases
=» Possibility to introduce bugs in the monitor
=>» Difficult to prove their correctness
=>» Hardly ease the certification process

* Solution: Rely on
— high level formal specification languages
— Correct-by-construction monitor generation

84

High-Level Formal Specification
Language

* Several existing tools
— Mac: extended version of regular expressions
— Eagle, Hawk: temporal logic
— RuleR: formal rule based system

— Java-MOP: multi-language - regular expressions,
temporal logic, rule based, finite state machines

85

An Example with Java-MOP using
Regular Expressions

package mop;
import java.io.*;
import java.util.*;

SafeFileWriter(FileWriter f) {
static int counter = 0;
int writes =0;

event open after() returning(FileWriter f) :
call(FileWriter.new(..)) { ere : (open write* close)*
this.writes = 0;
} @fail {
System.out.printin("write after close");
event write before(FileWriter f) : __RESET;
call(* write(..)) && target(f) { }
this.writes ++; @match {
} System.out.printin((++(counter))
+":" + writes);
event close after(FileWriter f) : }
call(* close(..)) && target(f) {} }

An Example with Java-MOP using
Regular Expressions

package mop;
import java.io.*;
import java.util.*;

SafeFileWriter(FileWriter f) { Name of the moritor
Static int counter = U;

int writes =0;

event open after() returning(FileWriter f) :
call(FileWriter.new(..)) { ere : (open write* close)*
this.writes = 0;
} @fail {
System.out.printin("write after close");
event write before(FileWriter f) : __RESET;
call(* write(..)) && target(f) { }
this.writes ++; @match {
} System.out.printin((++(counter))
+":" + writes);
event close after(FileWriter f) : }
call(* close(..)) && target(f) {} } .

An Example with Java-MOP using
Regular Expressions

package mop;
import java.io.*;
import java.util.*;

SafeFileWriter(FileWriter f) {
[static int counter = O;] Declaration of

int writes =0; internal variables

event open after() returning(FileWriter f) :
call(FileWriter.new(..)) { ere : (open write* close)*
this.writes = 0;
} @fail {
System.out.printin("write after close");
event write before(FileWriter f) : __RESET;
call(* write(..)) && target(f) { }
this.writes ++; @match {
} System.out.printin((++(counter))
+":" + writes);
event close after(FileWriter f) : }
call(* close(..)) && target(f) {} } .

An Example with Java-MOP using
Regular Expressions

package mop;
import java.io.*;
import java.util.*;

SafeFileWriter(FileWriter f) {
static int counter = 0;
int writes =0;

Declaration of the
events used by the
monitor

this.writes = 0;

}

event write before(FileWriter f) :
call(* write(..)) && target(f) {
this.writes ++;

}

ﬂvent open after() returning(FiIeWritem
call(FileWriter.new(..)) {

event close after(FileWriter f) :
k call(* close(..)) && target(f) {} /

ere : (open write* close)*

@fail {
System.out.printin("write after close");
__RESET;

}
@match {

System.out.printin((++(counter))
+":" + writes);

89

An Example with Java-MOP using
Regular Expressions

package mop;
import java.io.*;
import java.util.*;

SafeFileWriter(FileWriter f) {
static int counter = 0;
int writes =0;

event open retuping(FileWriter f) :
call(FileWriter.new(.. '

this.writes = 0, |

event open generat
after acall to
FileWriter.new(..)

}

event write before(FileWriter f) :
call(* write(..)) && target(f) {
this.writes ++;

}

event close after(FileWriter f) :
call(* close(..)) && target(f) {}

ere : (open write* close)*

@fail {
System.out.printin("write after close");
__RESET;

}
@match {

System.out.printin((++(counter))
+":" + writes);

90

An Example with Java-MOP using
Regular Expressions

package mop;
import java.io.*;
import java.util.*;

SafeFileWriter(FileWriter f) {
static int counter = 0;
int writes =0;

event open after() returning(FileWriter f) :

call(FileWriter.new(..)) {
this.writes = 0;

}

event write before(FileWriter f) :
call(* write(..)) && target(f) {
this.writes ++;

}

event close after(FileWriter f) :
call(* close(..)) && target(f) {}

Specification

[ere : (open write* close)*]
@fail {
System.out.printin("write after close");
__RESET;
}
@match {

System.out.printin((++(counter))
+":" + writes);

91

An Example with Java-MOP using
Regular Expressions

package mop;
import java.io.*;
import java.util.*;

SafeFileWriter(FileWriter f) {
static int counter = 0;
int writes =0;

event open after() returning(FileWriter f) :

call(FileWriter.new(..)) {
this.writes = 0;

}

event write before(FileWriter f) :
call(* write(..)) && target(f) {
this.writes ++;

}

event close after(FileWriter f) :
call(* close(..)) && target(f) {}

What mustbe donein case
of respect orfailure of the
specification

N

ere : (open write* cloge)*

@ail{

__RESET;

}
@match {

System.out.printin((++(counter))
+":" + writes);

N

~

System.out.printin("write after close");

J

92

An Example with Java-MOP using
Regular Expressions

package mop;
import java.io.*;
import java.util.*;

SafeFileWriter(FileWriter f) {
static int counter = 0;
int writes =0;

/event open after() returning(FileWrite
call(FileWriter.new(..)) {

this.writes = 0;

}

event write before(FileWriter f) :
call(* write(..)) && target(f) {
this.writes ++;

}

event close after(FileWriter f) :
\ call(* close(..)) && target(f) {}

Can be used by existing tools
(based on Aspect Oriented
Programming) to automatically
instrument the application code

N

/

/

ere : (open write* close)*

@fail {
System.out.printin("write after close");
__RESET;

}
@match {

System.out.printin((++(counter))
+":" + writes);

93

An Example with Java-MOP using
Regular Expressions

package mop;
import java.io.*;
import java.util.*;

SafeFileWriter(FileWriter f) {
static int counter = 0;
int writes =0;

event open after() returning(FileWriter f) :

call(FileWriter.new(..)) {
this.writes = 0;

}

event write before(FileWriter f) :
call(* write(..)) && target(f) {
this.writes ++;

}

event close after(FileWriter f) :
call(* close(..)) && target(f) {}

Can automatically be translated in
a finite state machine.

And thanin codeimplementing
the monitor

N
ere : (open write* close)* \
@fail {
System.out.printin("write after close");
__RESET;
}
@match {

System.out.printin((++(counter))

+":" + writes);

_ /

94

Limitations of Existing Tools

e Limited notion of time

— E.g., impossible for MOP to check the execution time
of a job, or the jitter on a release period

* Most expressivetools are extremely complex

— E.g., possible to express exec. time and jitter with
RuleR at the cost of multiple recursive rules

* Do not generate code for a monitoring
architecture suited for safety-critical systems

=» Unsuited to real-time safety critical systems

95

WORK IN PROGRESS

Work in Progress

Design of a new specification language (Sangeeth)
— Suited to real-time safety critical systems
— Easy to use for engineers

Automatic generation of complex automata that
describe the monitor behaviour based on the
specifications (Sangeeth)

Automatic code-generation for monitors from the
generated automata (Sonia and Vedanshi in [lIT-D)

Integration of the monitoring architecture as a service
in an RTOS which is ARINC compliant (Humberto)

97

