WCET Analysis of Parallel Benchmarks using
On-Demand Coherent Cache

Arthur Pyka*, Lillian Tadros*, Sascha Uhrig*
Hugues Cassé**, Haluk Ozaktas**, Christine Rochange**

{arthur.pyka, lillian.tadros, sascha.uhrig}@tu-dortmund.de
{hugues.casse, haluk.ozaktas, christine.rochange}Qirit.fr

*Technical University of Dortmund, Germany
**Université Paul Sabatier, Toulouse

Abstract. The rise of multi-core architectures has reached the embedded
hard real-time domain, in which predictable timing behaviour is the key
factor. Although cache memory and even cache coherence mechanisms are
provided in most of these systems, when it comes to the execution of tim-
ing critical applications, caches are typically disregarded and accesses to
shared data are performed uncached. There is a strong demand for time
predictable cache coherence solutions in the hard-real time domain to over-
come the performance loss entailed by the bypassing of cache memory.

In this paper, we illustrate how todays cache coherence protocols negatively
affect the timing behaviour of a cache and thereby impede a reasonable
static worst-case execution time (WCET) analysis. Using the OTAWA tool-
box, we then perform static WCET estimations applying the On-Demand
Coherent Cache (ODC?). The elimination of unpredictable inter-cache com-
munication with ODC? leads to a reasonable static cache analysis and a
tight WCET estimation. We present WCET results of parallelised bench-
marks using the ODC? on a multi-core platform and compare them with
other time predictable approaches to access shared data.

1 Introduction

The trend towards multi-core architectures is increasingly visible in the hard real-
time (HRT) domain. Concerning time analysability, the issues of a multi-core en-
vironment like task scheduling, network topology and of course memory hierarchy
pose novel challenges. In hard real-time systems, the need for time predictability
dominates performance considerations. In particular, the impact of cache memory
is crucial on time predictability. Predicting the behaviour of caches (content and
access latency) is a complex issue where the usage of caches generally increases
the overestimation of a static WCET analysis. Therefore, a single level of cache
memory is the maximum used, if any.

In case of multi-core systems where parallelised applications may share the
same data, a cache coherence mechanism is required to guarantee a correct system
behaviour. Research on cache coherence techniques has been going on for several
decades. Generally, two classes of common hardware coherence protocols can be

distinguished, snooping-based and directory-based approaches [20]. All these ap-
proaches rely to some extent on the MESI paradigm [8], in which a cache line is
extended by a state information that indicates if the corresponding data is locally
Modified, Exclusively available in the local cache, unmodified Shared with other
caches, or Inwvalid. The aim of these protocols is to achieve a high average-case
execution time. Time predictability is not considered.

The way state-of-the-art cache coherence techniques are designed greatly im-
pedes the predictability of cache content and access latencies (as described in Sec-
tion 3). Computing a tight WCET estimation is nearly impossible. To meet the
demands for high performance as well as real-time demands, todays multi/many-
core architectures provide a bilateral approach to handle shared data accesses.
Beside cache coherence techniques based on the MESI paradigm, uncached ac-
cess to shared data can be performed. Some many-core architectures rely on a
directory-based coherence protocol like Tilera’s TILEPro/Gx or CaviumOpteron.
Others implement snooping-based techniques as in LEON 3/4 and Freescale P4080.
These systems regularly allow accesses to bypass the cache to fulfil the needs for
time predictability. Multi-core architectures specified for hard real-time applica-
tions like Infineon’s Aurix or the Kalray MPPA completely abstain from a hard-
ware cache coherence solution. Accordingly, in hard real-time domains like avionics
and automotive, the use of caches is not an option for parallelised applications.
The potential performance gain that comes along with caches is wasted because
of the missing time predictability.

The real-time capable On-Demand Coherent cache (ODC?) presented by Pyka
et al. [14] offers time analysable coherence operations and an average-case per-
formance similar to standard MESI based protocols. In this paper, we apply the
OTAWA toolbox to perform static WCET estimations of several parallel bench-
marks using ODC? to demonstrate that the mechanism allows the estimation of
tight WCET bounds on real-time multi-core systems.

The rest of the paper is organised as follows: Section 2 discusses related work,
followed by a timing analysis of common cache coherence techniques in Section 3.
After a short summary of the ODC? mechanism in Section 4 the static analysis of
the ODC? is illustrated in Section 5. Section 6 presents the evaluation followed by
the results in Section 7. This work is concluded with Section 8.

2 Related Work

Multicore architectures and parallelised execution are challenging to static timing
analysis. Depending on the hardware and software under analysis, overestimated
execution time bounds have to be tolerated, if the execution time can be bound at
all [7][17]. Research on the time predictability of caches with the aim of supporting
WCET estimation mainly focuses on instruction caches and single core data caches.
Applications share parts of the instruction cache, with the result that unforeseen
evictions corrupt the prediction of cache hits. To decrease the cache miss rate
and consequently the worst-case execution time, several techniques were proposed
based on the partitioning and locking of instruction caches [1][11].

For data caches, research on improving the WCET estimation has been con-
ducted for different cache configurations [19][15], cache replacement policies [16]
or the stack distance [10]. Furthermore, WCET-driven code allocation techniques
can support the predictability of cache accesses [5].

Since time predictability is gaining importance in future embedded systems,
the development of comprehensively time analysable architectures [18][9] is pushed
forward. Scratchpad memories are often used in such architectures and a lot of re-
search has been done in this area. A key aspect here is the WCET-aware allocation
of code [4][12] as well as data [21][3] for scratchpads to allow reliable prediction of
access latencies. Local scratchpads clearly do not permit coherent access to shared
data.

3 Time analysability of cache coherence techniques

A tight worst-case execution time estimation demands a predictable behaviour of
all relevant system components [23]. In case of the cache memory, the prediction
of cache hits as well as bounded cache access latencies are crucial for a reasonable
access time estimation. A static cache analysis benefits from an extensive know-
ledge of the cache content, which allows some of the cache accesses to be treated
as cache hits with a low access latency. If a cache miss has to be assumed, the
access latency increases by the time needed to transfer the data from the main
memory to the cache. Applying a cache coherence protocol introduces additional
delays for coherence transactions.

Common cache coherence techniques are either based on snooping-based proto-
cols following the MESI paradigm or directory-based protocols, combining MESI
with the Globally Owned - Locally Shared principle. All applied techniques, regard-
less of specific implementation details, rely on coherence transactions between the
caches. This inter-cache communication negatively affects the time analysability
of cache accesses in multiple ways and makes a tight WCET estimation generally
impossible. Prediction of a cache content in a static cache analysis is based on the
assumption that solely internal accesses can change a cache’s state and content.
The mechanism of common cache coherence protocols violates that assumption.
In the following, selected unpredictable interferences are illustrated:

1. External Invalidations:

Coherence protocols which belong to the class of write-invalidate protocols rely
on external invalidation of shared cache lines to avoid outdated copies of shared
data. The possibility of invalidating a cache line via a coherence message, as
given in many architectures like Tilera’s TilePro/TileGx, Cavium Opteron,
LEON 3/4 and Freescale P4080, harms the predictability of the content of a
cache line. A static cache analysis performs a must-/may-analysis to estimate if
a cache line is located in a cache [6]. A cache access can be regarded as a cache
hit only if the analysis guarantees the existence of the given cache line in the
cache. From the perspective of a static cache analysis, an external invalidation
can not be predicted, neither the arrival time, nor the specific cache block that
becomes invalid is known. In a worst-case analysis, this results in two serious
consequences:

Assuming that the analysis cannot predict possible invalidations of the pro-
grams running in parallel, it has to assume that any of the existing cache lines
may become invalid. Hence, subsequent cache accesses cannot be predicted as
a cache hit. Second, since the arrival time is not known, an external invali-
dation must be assumed at any possible point in time. This forces the cache
analysis to expect a cache miss as the worst-case on every single cache access
to shared data. The result is a strongly increased worst-case execution time
estimation that makes caching of shared data useless.

2. Cache misses with write-back caches:
In architectures using the write-back policy for write accesses to cached data,
the requested data can be outdated in the main memory with a modified copy
of the data present in another core’s cache. In that case, when a cache access
to that data generates a cache miss, the core holding the updated copy has
to interrupt the loading of the cache line and write back the modified data to
the shared memory first. For the latter core, this intervention causes a serious
increase in access latency. In a worst-case analysis the maximum possible value
of this increased latency will be assumed for any cache miss and hence, strongly
increase the complete WCET.

3. Write accesses in directory-based write-invalidate protocols:
In caches applying a write-back strategy combined with a directory-based
write-invalidate protocol, a write access to a shared cache line generates an
invalidation message. To complete this operation (switching the written cache
line to an exclusive state), the accessing cache has to wait for all cores to ac-
knowledge the invalidation. Otherwise it could happen that two caches switch
the same cache line into an exclusive state, which is a forbidden situation in
a write-invalidate protocol. Thus, instead of assuming a minimal latency for
a cache write hit to shared data, a latency similar to a cache miss must be
assumed.

The mentioned examples of interferences and interdependencies of cache ac-
cesses that come along with common cache coherence protocols hinder the pre-
diction of cache access latencies required for hard real time systems. For this
reason, current multi-core systems typically allow accesses to bypass the cache, so
that hard real-time applications can be executed. Alternatively, they delegate the
handling of coherent accesses to shared data to the user or to the system software.
These approaches allow time predictability but induce a serious overhead to the
execution time. An efficient cache coherence technique suitable for hard real-time
systems has to be free of unpredictable interferences between caches and has to
permit caching of shared data as efficiently as possible.

4 Summary of the ODC? mechanism

The On-Demand Coherent Cache specifies a cache coherence protocol based on
an extended cache module and a minimal software code extension. Hence it im-
plements a hardware/software co-approach. The mechanism completely abstains
from coherence interactions between the cores and external modifications to a

E’?ngé‘z Available in any standard cache without coherence support

Shared bit Ctrl Fop: Tag Data

inform.

L Replacement information, if required
———— Control flags, including Valid and Modified, if required
» Indication of possible carrier of shared data

Fig. 1. Block frame with ODC? status bits.

cache. Operations to maintain the cache coherence are triggered by special control
instructions which are attached to synchronisation points in the program.

These two control instructions encapsulate a specific code region in which
shared data is accessed, e.g. a critical section. The commands are used to acti-
vate and deactivate a special handling of cache accesses in the ODC?. Doing so,
accesses to shared data are kept coherent inside the code region. The mechanism
is not restricted to a special synchronisation technique. Common techniques like
mutexes, semaphores, barriers etc. can be applied. In general, the synchronisation
must guarantee that multiple cores do not access/modify the same shared variable
at the same time; simultaneous read-only accesses are allowed.

By default, the ODC? operates in private mode, acting as a normal incoherent
cache without any additional functionality. Thus, in private mode, only accesses
to private data are allowed. When the control instruction switches the cache into
shared mode, all newly loaded cache lines will be marked as shared. Using an
additional shared bit information inside the block frame (see Figure 1), the content
is treated as possibly shared. To prevent private data from being marked as well,
the ODC? can check the target address of cache accesses and restrict marking to
a specific memory section that contains shared data only. Write accesses to shared
data while in shared mode are performed in write-through policy to prevent false
sharing (unintentional loading of foreign data together with requested data). When
the critical section is left the control instruction switches the cache back to private
mode and the restore procedure starts. All cache lines marked with the shared bit
become invalid. At the end of the procedure, no shared data remains in the cache
and the shared data in the main memory is up to date.

With the ODC? mechanism, cache coherence is only maintained when it is
needed, when shared data is accessed, and accesses to private data are performed
uninterrupted without coherence overhead. Due to the frequent invalidation of all
cache lines containing shared data, an increase of the cache miss rate must be
assumed. But the absence of inter-cache communication still allows a tight static
WCET analysis and makes the technique suitable for hard-real time systems.

5 Time analysability of the ODC?

Although the On-Demand Coherent Cache does not rely on unpredictable interfer-
ences between the caches, the mechanism applies coherence operations that affect
the timing of the cache and, consequently, the estimated worst-case latencies. This

section analyses the influence of the ODC? mechanism on time predictability in
detail. As described in Section 4, the ODC? maintains coherent accesses only when
shared data is accessed. When the ODC? remains in private mode no special hand-
ling occurs. In private mode, it acts as a standard incoherent cache with the same
level of time predictability provided by its architectural characteristics, such as
associativity or replacement strategy. This can be seen as an upper bound for the
possible analysability. In other words, the level of predictability of the timing be-
haviour the ODC? is limited by the underlying cache architecture. Therefore, it
is advisable to use a cache that encourages static analysability, for example using
LRU as the replacement strategy [16].

Based on this, although the coherence operations performed in shared mode
may affect the timing behaviour in certain ways, they do not constrain its pre-
dictability. The different influences are illustrated in detail below:

— ODC? control instructions
The commands to enter and exit the shared mode can be implemented as
standard accesses to cache control registers. Regardless of the functionality
that these instructions perform, the execution time of these instructions is
static and does not affect predictability.

— Marking of shared cache lines
Once the shared mode is entered, newly loaded cache lines will be marked with
the shared bit. This is done by modifying a status bit in the block frame of
the cache line (see Figure 1) and does not increase the latency of the access.

— Restore procedure
The only operation that has an influence on the timing behaviour is the restore
procedure, triggered on leaving the shared mode. As a first step, cache lines
which are marked with the shared bit become invalid. This operation can be
implemented as a global clearing of the valid bit hooked on the shared bit,
and can be done in parallel for all shared cache lines. Doing so, the latency
of the operation is independent of the number of marked cache lines. The
additional required time is fixed and thus does not harm predictability. Of
course, the invalidation of cache lines indirectly increases the execution time,
since it results in future cache misses. These will, however, be accounted in
the remaining cache analysis.

6 WCET estimation

We evaluate different parallel benchmarks using the ODC? to estimate the influ-
ences on the worst-case timing behaviour, as analysed in the prior section. Since
extensive performance evaluation has been performed before [14][13], we focus on
estimations of the worst-case execution time. During the evaluation, upper bounds
on the WCET, as executed on a multi/many-core platform applying the ODC?,
are estimated. Furthermore, we examine the number of different access types to
the cache and shared memory.

Three parallel benchmarks, representing different shared data access patterns
are employed in this evaluation: in Matrix Multiplication (Matrix), two ma-
trices of 40x76 cells are multiplied in parallel by the available cores. Each core

computes several complete rows of the target matrix and the synchronisation is
done via mutexes. The Fast Fourier Transform (FFT) is applied to an array
of 512 complex numbers. The calculation of the Fourier algorithm of the array is
done in parallel on disjunct parts of the array, synchronized via mutexes and barri-
ers. Dijkstra (Dijkstra) computes the shortest path between two nodes in a set
of 100 nodes using the Dijkstra algorithm. Barriers are used to organize parallel
accesses to the graph and other shared data structures.

6.1 Evaluation platform

The WCET estimations are calculated using the OTAWA (Open Tool for Adaptive
WCET Analyses) [2] toolbox developed by the Institut de Recherche en Informa-
tique (IRIT) in Toulouse. In the context of the FP7 parMERASA project [22],
a model of the real-time capable parMERASA many-core architecture has been
integrated into OTAWA. The architecture is composed of PowerPC-based cores
and a shared on-chip memory, linked through a tree-type on-chip interconnect.
The shared memory contains private and shared application data. Moreover, each
processor core uses a local data cache and a perfect instruction scratchpad, allow-
ing one cycle delays for all instruction fetches. Hence, we eliminate the memory
interference caused by instruction cache misses. The size of the local data caches
is 16 kB, organised in 512 2-way associative sets.

Four different platforms are examined in this evaluation, implementing dif-
ferent methods to access shared data in a coherent way. The predictable ODC?
mechanism is implemented inside the ODC? platform. With the uncached plat-
form, all accesses to shared data bypass the cache and result in an access to the
shared memory. The data cache is used for private data only. This is a common
state-of-the-art approach in many HRT systems. The cache flush platform imple-
ments a software-based coherence approach. While shared as well as private data
is cached with this platform, the complete cache is invalidated at synchronisation
points (critical sections, barriers). Note that the synchronisation variables shall
not be kept in the local caches. To avoid incoherent memory situations caused by
false sharing, the cache must operate in write-through mode. Lastly, the theoreti-
cal Magic platform represents a reference for the maximum possible performance
where coherent accesses are performed at no overhead.

6.2 OTAWA ODC? model

A model of the ODC? is included in the OTAWA toolbox. It models the behaviour
of the cache including the specific coherence operation, as described in Section 4.
Applying the ODC? in a static analysis requires special handling.

Data cache support in WCET computation relies on several static analyses
that attempt to model as precisely as possible the behaviour of the cache. As
usual, static analyses cannot cope with all possible program behaviours and, to
maintain safety, may fall back to overestimation. To handle this variability, the
involved analyses are doubled with a MUST analysis and a MAY analysis that
determine a property, respectively, for all execution paths or only for some paths.

This allows deriving upper and lower bounds on the property in question, in this
case, the number of cache misses.
The following analyses are applied for a classic data cache:

1. Reference Analysis — defines the pattern of accessed cache blocks for each
memory access instruction in the program,

2. Data Cache State Analysis — determines for each program point an abstrac-
tion of the cache state,

3. Miss Count Analysis — counts the number of misses from the abstract states
of the cache for each memory access instruction,

4. Dirty Analysis — only used for write-back caches, it determines if a block
has been modified and therefore requires a write-back operation before its
replacement.

The two latter analyses compute the time spent in a memory access: the number
of times write-backs are performed (when a block has been modified), the number
of times a memory access is performed (misses).

Adaptation to ODC? caches requires modifing analyses 2 to 4: the Reference
Analysis only depends on semantics of the program and not on the structure of the
hardware. The main changes come from the dual behaviour of the ODC? cache:
inside a shared area, the cache handles memory stores in write-through mode; in
a non-shared (private) area, depending on the base policy of the cache, a write-
through or write-back policy is applied. Hence, an analysis of cache mode for each
memory access instruction is needed. This so-called Shared Analysis is relatively
easy to perform: a shared area starts with a specific enter instruction and ends
with another dedicated exit instruction. Although enter and exit should be paired
to discriminate shared and private areas, it is easy to imagine Control Flow Graphs
(CFG) containing areas that are sometimes private and sometimes shared.

For the sake of completeness, the Shared Analysis is performed in both MUST
and MAY contexts and, consequently, an instruction may be classified as Always
Shared (AS), Never Shared (NS) or Sometimes Shared (SS). These categories are
then used in analyses 2 to 4. It is clear that categories AS and NS are precise
and do not alter the efficiency of the data cache analysis. In contrast, SS causes
an approximation because each subsequent analysis needs to revert to the worst-
case of shared and private modes. As such cases should be rare and may even
denote suspicious code, the Shared Analysis required by ODC? should not induce
overestimation.

Once the shared areas have been identified, it is straightforward to adapt analy-
ses 2 to 4. Data Cache State Analysis has only to compose existing write-through
and private policy cache analyses: they work on the same abstract state of the
cache, the load operation is the same between two modes and only the store oper-
ation may choose one of the two possible write behaviours of the cache. The only
trick concerns the flushing of shared blocks when an ezit instruction is reached: in
fact, OTAWA already supports this operation to implement cache flush instruc-
tions found in some instruction sets. Only the Miss Count Analysis and Dirty
Analysis, handle stores in shared areas either as always causing a miss or ignoring
them, respectively.

Matrix Diikstra

1,20 1,20

1,00
0 = 1'00-\/.
'-'-' W
9 080 O 080
9 o
E 0,60 S 060
5 @2
E 040 £ 040
5 IS
z 2

0.20 0.20

0.00 0,00

2 cores 4 cores 8 cores 2 cores 4 cores 8 cores

FFT

5,00
400
]
O —- Uncached
= 3,00
o —o— Flush
wn
T 2.00 obce
% —i— Magic
Z 100 ———%

— |
0,00

2 cores 4 cores 8 cores

Fig. 2. Estimated WCET of benchmarks executed with 2 - 8 cores, normalised to a single
core execution.

A second important feature of ODC? is the protected memory region that is
never shared. As soon as the Reference Analysis provides precise results, it is quite
simple to know whether the accessed data is in the protected region. In the former
case, the shared property is ignored and the private write policy of the cache
applies. From the point of view of static analyses, ODC? caches cause very little
overestimation. In the rare case where shared analysis causes approximation, it is
usually due to a fault in the program. Any remaining imprecision is mainly due
to the data cache analysis itself and not from the ODC2.

7 Evaluation results

The evaluation results confirm the theoretical analysis of the ODC? mechanism.
Compared to the Uncached platform, as well as the Cache Flush platform, a sig-
nificantly reduced WCET estimation can be observed with ODC?, as illustrated
in Figure 2. A decrease of the execution time estimation using ODC? compared to
Uncached varies from 16,5% to 53,0%, depending on the benchmark and number
of participating cores. An even larger reduction of up to 75,0% (FFT with 8 cores)
is observed compared to Cache Flush. The Magic platform predictably achieves
the best performance in all cases. Compared to the Magic platform, the overhead
of coherence operations with ODC? results in minor WCET increase of 0,3% -

Matrix
100000 100000

FFT
10000 10000
mn l |
| I
1 I 1

=
=1
=3

=
=3

Number of accesses
5]

Number of accesses

=
=

Uncached Flush oDec? Magic Uncached Flush oDece Magic
Dijkstra
100000
10000
8
&
&
g " m Complete
5 m Uncached
@« 100 .
E Cache Miss
Z = Write-Through
.
Uncached Flush oDc? Magic

Fig. 3. Estimated worst-case access numbers on execution with 4 cores.

1,4% for the Matrix benchmark. On the other hand, an increase of 35,0% - 99,8%
is stated for the FFT benchmark.

The evident discrepancy between the three benchmarks is caused by their dis-
tinct memory access patterns. This distinction reveals the advantages and disad-
vantages of the different approaches to access shared memory. The Matrix bench-
mark is an example of an algorithm that can be parallelised in a highly efficient
manner. Accesses to shared data are dominated by read accesses, while write ac-
cesses are relatively rare. Thus, the ODC? can perform a large part of shared
data accesses locally in the cache. In Figure 3 different access type numbers are
presented for the parallel execution of Matrix (and other benchmarks) using 4
cores. To be able to illustrate high and low numbers at once, a logarithmic scale is
used. The number of Write- Through accesses with ODC? is notably low compared
to the execution with Cache Flush, in which all write accesses result in Write-
Through accesses. For all cache-based platforms (ODC?, Cache Flush and Magic),
the amount of Cache Misses is similar. Here, expected variation is covered by a
pessimism in the estimation of cache hits, caused by complex array addressing.

In contrast to Matrix, the FFT benchmark is characterised by frequent write
accesses to private and shared data. None of the platforms scale adequately with
an increased core number because the FFT implementation allows parallelisation
in a less efficient manner. While the Cache Flush suffers from the large number
of Write-Through accesses again, it benefits from its non-write-allocate strategy

which significantly decreases the cache miss rate (see Figure 3). ODC? mechanism
induces the highest number of cache misses, which shows the overhead of the in-
validation. Nevertheless, the reduced amount of accesses to the shared memory
(Complete) is the key ingredient to a low WCET. Executing Dijkstra benchmark
with the Cache Flush platform, the additional overhead in memory accesses com-
pared to ODC? is less significant but still sufficient to create an increase in the
WCET estimation of 8,9% - 21,6%.

The results show that the ODC? mechanism achieves a significant performance
gain compared to the other platform . Even compared to a theoretical ”‘best-case”’
solution (Magic platform), the ODC? entails little overhead and thus allows a tight
WCET estimation.

8 Conclusion

Cache coherence mechanisms implemented in today’s multicore architectures in-
clude operations to achieve coherent accesses to shared data. Relying on frequent
interaction between the caches, these operations impede a feasible worst-case ex-
ecution time estimation. Common time predictable approaches induce significant
overhead by increasing the rate of memory accesses. Our study demonstrates that
compared to common approaches, a feasible performance gain can be achieved
when using the On-Demand Coherent Cache for parallelised applications.

Acknowledgment:The research leading to these results has received funding from
the European Union Seventh Framework Programme under grant agreement no. 287519
(parMERASA).

References

1. A. Asaduzzaman, N. Limbachiya, I. Mahgoub, and F. Sibai, “Evaluation of i-cache
locking technique for real-time embedded systems,” in Innovations in Information
Technology, 2007. IIT 07. 4th International Conference on, nov. 2007, pp. 342 —346.

2. C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat, “Otawa: An open toolbox for
adaptive WCET analysis,” in Software Technologies for Embedded and Ubiquitous
Systems. Springer Berlin Heidelberg, 2011, pp. 35—46.

3. J.-F. Deverge and 1. Puaut, “WCET-directed dynamic scratchpad memory allocation
of data,” in Real-Time Systems, 2007. ECRTS 07. 19th Euromicro Conference on,
July 2007, pp. 179-190.

4. H. Falk and J. C. Kleinsorge, “Optimal static WCET-aware scratchpad allocation of
program code,” in The 46th Design Automation Conference (DAC), San Francisco /
USA, jul 2009, pp. 732-737.

5. H. Falk and H. Kotthaus, “WCET-driven cache-aware code positioning,” in Proceed-
ings of the International Conference on Compilers, Architectures and Synthesis for
Embedded Systems (CASES), Taipei, Taiwan, oct 2011, pp. 145-154.

6. C. Ferdinand, D. Kastner, M. Langenbach, F. Martin, M. Schmidt, J. Schneider,
H. Theiling, S. Thesing, and R. Wilhelm, “Run-time guarantees for real-time systems
— the USES approach,” in GI Jahrestagung, 1999, pp. 410-419.

7. R. Heckmann, M. Langenbach, S. Thesing, and R. Wilhelm, “The influence of pro-
cessor architecture on the design and the results of WCET tools,” in IFEE, vol. 91,
no. 7, 2003, pp. 1038-1054.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

. J. L. Hennessy and D. A. Patterson, Computer Architecture, Fourth Edition: A Quan-

titative Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
2006.

. L. Liu, J. Reineke, and E. Lee, “A PRET architecture supporting concurrent programs

with composable timing properties,” in Signals, Systems and Computers (ASILO-
MAR), 2010 Conference Record of the Forty Fourth Asilomar Conference on, nov.
2010, pp. 2111 —2115.

Y. Liu and W. Zhang, “Exploiting stack distance to estimate worst-case data cache
performance,” in Proceedings of the 2009 ACM Symposium on Applied Computing
(SAC), Honolulu, Hawaii, USA, March 9-12, 2009, S. Y. Shin and S. Ossowski, Eds.
ACM, 2009, pp. 1979-1983.

S. Plazar, J. Kleinsorge, H. Falk, and P. Marwedel, “WCET-aware static locking of
instruction caches,” in Proceedings of the International Symposium on Code Gener-
ation and Optimization (CGO), San Jose, CA, USA, apr 2012, pp. 44-52.

A. Prakash and H. Patel, “An instruction scratchpad memory allocation for the preci-
sion timed architecture,” Computer-Aided Design of Integrated Circuits and Systems,
IEEFE Transactions on, vol. 32, no. 11, pp. 1819-1823, Nov 2013.

A. Pyka, M. Rohde, and S. Uhrig, “Performance evaluation of the time analysable
on-demand coherent cache,” in Trust, Security and Privacy in Computing and Com-
munications (TrustCom), 2018 12th IEEE International Conference on, July 2013,
pp- 1887-1892.

——, “A real-time capable coherent data cache for multicores,” Concurrency and
Computation: Practice and Ezxperience, vol. 26, no. 6, pp. 1342-1354, 2014.

H. Ramaprasad and F. Mueller, “Bounding worst-case data cache behavior by analyt-
ically deriving cache reference patterns,” in Proceedings of the 11th IEEE Real Time
on Embedded Technology and Applications Symposium, ser. RTAS ’05. Washington,
DC, USA: IEEE Computer Society, 2005, pp. 148—157.

J. Reineke, D. Grund, C. Berg, and R. Wilhelm, “Timing predictability of cache
replacement policies,” Real-Time Syst., vol. 37, no. 2, pp. 99-122, Nov. 2007.

C. Rochange, “An Overview of Approaches Towards the Timing Analysability of
Parallel Architecture,” in Bringing Theory to Practice: Predictability and Perfor-
mance in Embedded Systems, ser. OpenAccess Series in Informatics (OASIcs), vol. 18,
Dagstuhl, Germany, 2011, pp. 32—41.

M. Schoeberl, “Time-predictable chip-multiprocessor design,” in Signals, Systems
and Computers (ASILOMAR), 2010 Conference Record of the Forty Fourth Asilomar
Conference on, Nov 2010, pp. 2116-2120.

R. Sen and Y. N. Srikant, “Wcet estimation for executables in the presence of data
caches,” in EMSOFT °07: Proceedings of the 7th ACM & IEEFE international con-
ference on Embedded software. New York, NY, USA: ACM, 2007, pp. 203-212.

P. Stenstrom, “A survey of cache coherence schemes for multiprocessors,” Computer,
vol. 23, no. 6, pp. 12-24, Jun. 1990.

V. Suhendra, T. Mitra, A. Roychoudhury, and T. Chen, “WCET centric data alloca-
tion to scratchpad memory,” in Real-Time Systems Symposium, 2005. RTSS 2005.
26th IEEE International, Dec 2005, pp. 10 pp.—232.

T. Ungerer et al., “Experiences and results of parallelisation of industrial hard real-
time applications for the parmerasa multi-core,” in Submitted to the 3nd Workshop
on High-performance and Real-time Embedded Systems (HiRES 2015), Amsterdam,
the Netherlands, jan 2015.

R. Wilhelm et al., “The worst-case execution-time problem—overview of methods
and survey of tools,” ACM Trans. Embed. Comput. Syst., vol. 7, no. 3, pp. 1-53,
2008.

