
Partitioning Algorithm for

Mixed Criticality Systems ∗

Emilio Salazar and Alejandro Alonso

Universidad Politécnica de Madrid
{esalazar, aalonso}@dit.upm.es

Abstract

Mixed criticality systems are composed of a set of applications with
different criticality levels. The interest relies on the possibility of running
these applications on a single processor, with advantages on cost, size,
weight and energy consumption. The use of partitioning for developing
these kinds of systems is a suitable approach. A related issue is how to
partition a system. This paper describes an automatic partitioning al-
gorithm. It relies on restrictions to state requirements that the system
partitioning must meet. They provide great flexibility for meeting require-
ments derived from the user or from specific functional and non-functional
requirements

1 Introduction

Mixed criticality systems are composed of a set of applications with different
criticality level. Current processors power allows for integrating them in a single
computer. This approach reduces costs, volume, weight, and power consump-
tion. Certification procedures for safety-critical systems require the system to
be certified as a whole. This implies the certification of non-critical applications
in a mixed criticality system, which is very costly. Moreover, if any of these
components are modified, the new system has to be certified again. System
partitioning is a way of dealing with these issues. A hypervisor provides tem-
porally and spatially isolated partitions. Applications with different criticality
levels are allocated on different partitions. In this way, it is possible to certify
partitions in an independent way.

The development of partitioned systems requires additional development
activities, such as system partitioning. Its purpose is to define a set of partitions
or virtual machines, which are characterised by the core where they are executed,

∗This work has been partially funded by the Spanish Government, project HI-PARTES
(TIN2011-28567-C03-01), and by the European Commission FP7 programme project Multi-
PARTES (IST 287702).

1



the assigned resources (memory, CPU share, etc.), its operating system, and the
allocated applications. This process is done by a system integrator engineer.
There is a lack of tools to assist in this process, which makes it error-prone, due
to the amount of parameters and design considerations that are involved.

MultiPARTES [1] is a FP7 project aimed at developing tools and solutions
for building trusted embedded systems with mixed criticality components on
multicore platforms. The approach is based on an innovative open-source mul-
ticore platform virtualization layer based on the XtratuM hypervisor [2]. A
software development methodology and its associated toolset [3] [4] is being de-
veloped in order to enable trusted real-time embedded systems to be built as
partitioned applications, in a timely and cost-effective way.

In this toolset, the generation of the partitioning is done in three stages:
generation of the system partitions, allocation of resources to partitions, and
validation. The motivation for this approach is to ease the integration of sup-
port for additional non-functional requirements. This paper describes an algo-
rithm for automatically generating a system partitioning. It takes as inputs the
system models, that include applications, hardware, operating systems, and the
hypervisor. It relies on restrictions, which defines requirements that the result-
ing partitioning must meet. They allow a great level of flexibility to the tool.
Restrictions can be defined by the system integrator or automatically generated
from applications requirements. There is no need to modify the partitioning for
considering the restrictions.

The structure of this paper includes a review of relevant related works, the
description of the underlying system model and the partitioning constraints.
Then, it is described an automatic partitioning algorithm. Finally, an use case
illustrates the behaviour of the algorithm.

2 Related work

This paper focuses on the generation of system partitions. This stage takes
the system model and the partitioning restrictions as input, and as a result, it
generates the allocation of the applications to the partitions. It is important to
note that in this stage the partitions are created but not scheduled.

There is a large effort of research on scheduling partitioned systems (e.g.
[5, 6, 7, 8, 9, 10, 11, 12, 13] However, in all of this research the starting point is a
system where the applications are already allocated to their partitions. The aim
of this paper is to automatize the step before the scheduling, i.e. the process
of creating and allocating applications to partitions. The toolset also schedules
the resulting partitioning schema, although this stage is out of the scope of this
paper.

The allocation of applications to partitions can be reduced to a resource
allocation problem which is commonly addressed with graph coloring techniques.
The coloring of a graph is a well-known problem and there is a large amount of
work done [14,15,16].

Often, resources are associated with the colors used for coloring graphs.



Therefore, minimizing the number of colors is minimizing the number of re-
sources used. Nonetheless, finding the smallest number of colors that are needed
to color all of the vertices of a graph is a known NP-Complete problem [17] and
for this reason greedy algorithms have to be used.

The algorithm that is described in this paper is based on a greedy algorithm
used in the compiler register allocation, which can be also reduced to a resources
allocation problem. A lot of research has been done on the register allocation
problem [18, 19, 20, 21, 22]. The proposed partitioning algorithm adapts the
algorithm proposed by [20] and then improved by [22] by exchanging registers
with partitions and temporal variables with applications.

As stated before, the partitioning schema and the execution plan are gen-
erated in different stages. This approach makes it possible to deal with these
problems (i.e the partitioning and the scheduling) with more specific and op-
timized algorithms. Additionally, this approach keeps the scheduling and the
partitioning algorithms isolated, which provides an easier way of improving each
of them independently. Another important advantage of this approach is the in-
tegration of new non-functional properties. This approach has been successfully
proven in the integration of the MultiPARTES’ tools.

The opposite approach is taken by [23], who proposes a Tabu Search-based
algorithm that, at the time, creates a partitioning schema where the develop-
ment costs are minimized and the tasks are schedulable. Based on the criticality
of each task, the algorithm proposed by [23] determines whether a task can or
cannot be allocated to the same partition as another task. It provides a separa-
tion graph for capturing additional separation requirements. By means of this
graph, it makes it possible to define which tasks are not allowed to share the
same partition.

However, the approach suggested by [23] omits other parameters that may
force two tasks to be allocated on different partitions (e.g. operating system,
core affinity, processor family, etc.). It also lacks support for partitioning re-
strictions; for example, it cannot force two tasks to share the same partition,
nor can it pre-allocate tasks to predefined partitions.

3 Problem statement

System Model

In the context of this paper, the system is composed of a set of applications that
run on an execution platform. An application is considered to be a software
entity that provides a closed set of functionalities. It can interact with other
applications to perform its duties. The application is defined by a model, that
allows adding annotations for describing non-functional requirements.

The execution platform is composed of the hardware platform, a hypervisor,
and the set of operating systems that can be run on top of the hypervisor.
The hardware platform comprises all computational devices needed by the final
system. The hypervisor provides a set of partitions or virtual machines, where



applications are run in isolation. A partition is characterized by the assigned
resources, the operating system and a set of applications. The resources assigned
should be sufficient for running the applications with the expected performance
and meeting time requirements.

Partitioning restrictions

Partitioning restrictions are a set of statements that defines requirements to be
met by the system partitioning. As such, the corresponding algorithm must con-
sider them in order to generate a valid partitioning. The sources of restrictions
are:

– Implicit : The implicit restrictions are related to information that appli-
cation models must include for any system, such as the criticality level,
resource needs, operating system, and processor type. The toolset auto-
matically analyzes these properties and extracts a set of restrictions. For
instance, it is not possible to allocate two partitions with different criti-
cality level or requiring different operating system in the same partition.

– Explicit : This type of restrictions is the basis for considering additional
non-functional requirements (NFR) in the partitioning. If the toolset has
to support one additional NFR, the first step is to provide means for
annotating this information in the application model. Then, it is possible
to use a transformation to generate automatically partitioning restrictions.
For instance, if the toolset is going to support security requirements, it
is needed to ensure that applications with sensitive information are not
allocated in the same partition.

– System integrator : He can provide additional restrictions based on his
experience or on particular requirements of a given system.

The analysis of the types of constrains required for a number of systems, has
concluded with the identification of a minimum set of general statements. They
are sufficient for stating application concerns with respect to partitioning:

– Application a must go with applications v = {b1, b2..., bn}. This restriction
forces to allocate application a into the same partition as applications in
the list v. Let γ(a) = {b1, b2..., bn} denote the function that, given an
application, returns the set of applications v that must execute in the
same partition than a.

– Application a must not go with applications v = {b1, b2..., bn}. This re-
striction forces to allocate application a into a different partition than the
applications from list v. Let δ(a) = {b1, b2..., bn} denote the function that
given an application, returns the set of applications v that must execute
in a different partition than a.



– Application a must be allocated to partition p. This restriction forces to
allocate the application a into the partition named p. Let ξ(a) = p denote
the function that, given the application a, returns the partition p where
it must be allocated.

– Application a must not be allocated to partition p. This restriction forces
to allocate the application a into a different partition than p. Let φ(a) = p
denote the function that, given the application a, returns the partition p
where a must not be allocated.

It is important to note that the source of the restrictions is not meaningful
for the partitioning algorithm. They are used for constructing the initial graph.
Then, this graph is the only information used by the algorithm.

Problem statement

The aim of the partitioning algorithm is to generate an allocation of applications
into partitions, which is valid if it meets the following criteria:

– All applications must be allocated to partitions

– All partitioning restrictions are met.

It is difficult to define what is an optimal solution to this problem. From
the point of view of graph theory, it is when the minimum number of colors
is used. In an embedded system, there are other factors to consider, such as
time behavior, power consumption or performance. The approach in this work
is to generate an initial solution meeting the previous criteria, and to generate
alternative solutions if needed. The toolset components that allocate resources
or validate the partitioning may request additional valid allocations, in order to
decide which is the best one in a particular system.

4 Partitioning Algorithm

The proposed algorithm is based on colored graphs. Colored graphs are a special
type of graphs in which the vertices are labeled (or colored) according to certain
restrictions. When the colored elements are the vertices, it is called vertex
coloring. The most typical vertex coloring is called proper vertex coloring. In a
proper vertex-colored graph no two adjacent vertices share the same color.

More precisely, the algorithm is based on an important property of a colored
graph: the chromatic number. The chromatic number is the smallest number of
colors that are needed to (proper) color all of the vertices of a graph. Finding
the chromatic number is a known NP-Complete problem [17]. For this reason,
a modified version of the greedy algorithm proposed by [20] and later improved
by [22] is used.

A system is defined as:

– A set of applications {a1, a2..., an}.



– A set of partitioning restrictions {ω1, ω2..., ωn}.

LetG be a colored graph unequivocally defined by the tuple (V,E,C, L,M,N):

– V is the set of vertices.

– E is the set of edges (u, v) where u is linked to v. Given that the graph is
not directed, the order of the vertices denoting an edge is not significant,
(u, v) = (v, u).

– C is the set of colors.

– L is the set of allocations where an allocation (u, c) means that the vertex
u is colored with the color c.

– M is the set of forbidden allocations where an allocation (u, c) means that
the vertex u is cannot be colored with the color c.

– N is the set of vertices that have not been colored yet.

In addition, the following functions are defined:

– Let adjacents(u) = {v1, v2...vn} denote a function that returns the set of
adjacent vertices of the vertex u.

– Let colors(u) = {c1, c2...cn} denote a function that returns the set of
colors of the vertex u.

– Let adjacentsColors(u) = {c1, c2...cn} denote a function that returns the
set of colors used by the adjacents(u).

– Let forbiddenColors(u) = {c1, c2...cn} denote a function that returns the
set of colors that cannot be used to color u.

– Let score(u, c) = suc denote a function that scores the coloring of the
vertex u with the color c. The higher is the score, the more desirable is
the coloring of u with c.

4.1 Building the Graph

The graph construction process can be broken down into the following stages:

– Vertices population. The graph is initialized with a vertex for each appli-
cation of the system.

– Vertices merging. Given a restriction application a must go with set of
applications v, a merge of a with each of the applications of v is carried
out. Each merge operation is basically:

– Creation of a new vertex vab.

– Elimination from the graph of the two merged vertices va and vb.



– Merging in vab all the colors defined for va and vb.

– Merging in vab all the forbidden colors defined for va and vb.

– Adjacent vertices. For each restriction application a must not go with ap-
plications of the set v, all applications of v are defined as adjacent vertices
of a.

– Pre-coloring vertices. For each restriction application a must be allocated
to partition p, the vertex created for a is pre-colored with the color created
for p:

– A new color cp is created for p. The same partition always gets the
same color. Therefore, if other application was already allocated on
partition p, the color retrieved for p must be the same cp.

– The vertex va is colored with cp

– Forbidding colors. For each restriction application a must not be allocated
to partition p, the color created for p, cp, is forbidden to the application
a:

– A new color cp is created for p. The same partition always gets the
same color. Therefore, if other application was already allocated on
partition p, the color retrieved for p must be the same cp.

– TThe color cp is added to the forbidden color list of va.

4.2 Coloring the Graph

This subsection summarises the graph coloring process, which is splited in two
main steps. The first step is in charge of simplifying the graph and creating a
queue with all non-colored vertices, sorted by their degree. A second step pops
the vertices from the queue and assigns them a color.

4.2.1 Simplifying the graph

The aim of this step is to reduce the graph by removing its vertices in inverse
order of degree and pushing them into a queue. The simplification of the graph
is actually carried out on a copy of the G, G′, in order to avoid losing informa-
tion. Only non-colored vertices are extracted from the graph. Therefore, those
vertices that were pre-colored remain in the graph. The process is as follows:

– The lowest degree vertex vn of G is selected.

– vn is removed from G.

– vn is pushed in Q.

– If G contains non-colored vertices go to step 1. Otherwise, start the ver-
tices coloring.



4.2.2 Coloring Vertices

This step can be broken down into the following stages:

– Retrieving candidate colors of the vertex v. For each vertex v extracted
from the queue Q, a set of candidate colors is computed. To begin with,
all colors already created in the graph, C, are valid candidates. However,
colors used by the live adjacent vertices of v and colors forbidden for v
must be removed. If the resulting set is empty, a new color is created.

– Coloring the vertex v. Once the candidate color set is computed, only
one of these colors can be used to color v. For this purpose, the function
score(u, c) is defined. This function returns a score that indicates how
desirable the coloring of v is with a specific candidate color. The color
that receives the highest score is the one used to color v.

– Multiple candidate color. Only one color is used to color a vertex when
multiple candidate colors are available. However, all of the candidate
colors are valid colors. This means that the provided solution is only
one of the possible colorings of the graph. When the first vertex vfirst
with multiple candidate colors is found, the graph is saved before coloring
vfirst. Then, the vertex is colored with the highest-scored color, cfirst,
which is added to the vfirst’s forbidden colors list, as this color cannot be
used again in further solutions.

– Alternative colorings. When an alternative coloring is requested, the graph
is restored to the same state as in vfirst, the first vertex with multiple
candidate colors is found. However, when vfirst must be colored, the
color cfirst (used in the first coloring) is now in the forbidden color list
of vfirst. Therefore, cfirst is discarded from the valid candidate colors of
vfirst. As a result, vfirst is colored with the next highest-scored color.
This process ends when all nodes are colored.

5 Use Case

Three use cases in the MultiPARTES projects (wind power, aerospace, and video
surveillance) have relied on this partitioning algorithm for generating their sys-
tem partitioning. In this subsection, a more complex case is used for illustrat-
ing the algorithm behaviour. The system is composed of a set of applications
{a, b, c, d, e, f, g, h, i}. Application models include information, such as their
criticality level and operating system, as shown in table 1.

Application a b c d e f g h i

Criticality Level A C C C A A A A A

Operating System ORK Linux Linux Linux XAL XAL XAL ORK XAL

Table 1: Applications characteristics



The initial phase of the algorithm automatically generates a set of implicit
restrictions, for ensuring that applications with different operating system or
with different criticality level are not allocated in the same partition. The
initial graph takes into account these restrictions.

In this use case, the application models also include annotations about se-
curity requirements, which may imply their allocation to different partitions,
in order to prevent information leakage between them. A transformation could
generate the related explicit restrictions from the application models, which are
the following:
{δ(b) = d, δ(f) = i}

Finally, the system integrator can add restrictions for enforcing a given allo-
cation for particular applications, in order to meet requirements based on their
experience or on certification standards. In this case, the restrictions below are
supposed to be defined in this way:
{γ(f) = e, ξ(f) = 1, ξ(g) = 1, ξ(h) = 2}

The first step of the algorithm is building the graph:

– Vertex creation. Since there are nine applications, it is necessary to create
9 vertices.

– Pre-coloring vertices. ξ(f) = 1, ξ(g) = 1, ξ(h) = 2 state that applications
f and g must be allocated to partition 1, whereas application h must be
allocated to partition 2.

– Vertex merging. γ(f) = i implies that applications f and i must be
allocated to the same partition, so vertices vf and vi must be merged into
a new vertex vfi. When two vertices are merged, the new vertex inherits
all of the pre-colors that the original vertices had. In this case, vfi inherits
the pre-coloring 1 from vf .

– Adjacent vertices. δ(b) = d implies that application b and d must not be
allocated to the same partition. δ(f) = e states that applications f and e
must be allocated to different partitions.

Figure 1 is the resulting graph from the first step. Dotted lines represent γ
constraints. Bold black lines show δ explicit constraints, and regular black lines
show implicit δ constraints. In rest of figures, the type of restriction, and hence
the type of arch, is not meaningful for the algorithm. Vertex are labelled with a
triplet: vertex identifier, associated applications, and a number that represents
a color.

Once the graph is built, the second step is the graph coloring. This step is,
in turn, broken down into two stages:

– Simplify the graph. In this stage, a queue is made by removing the lowest
degree non-colored vertex from the graph, as shown in figure 2.

– Vertices’ coloring (see figure 3). Vertices are extracted from the queue
in LIFO order and then colored. When no colors are available, a new



V1{a}, -

V8{h}, 2

V2{b}, -

V4{d}, -

V5{e}, -

V7{f}, 1

V6{g}, 1

V3{c}, -

V9{i}, -

Figure 1: Initial system

V3{c}, -

V1{a}, -

V7{h}, 2

V2{b}, -

V4{d}, -

V5{e}, -

V6{f,i,g}, 1

V7{h}, 2

V2{b}, -

V4{d}, -

V5{e}, -

V6{f,i,g}, 1

V1{a}, -
V3{c}, -

V7{h}, 2

V4{d}, -

V5{e}, -

V6{f,i,g}, 1
V1{a}, -
V2{b}, -

V3{c}, -

V7{h}, 2

V5{e}, -

V6{f,i,g}, 1

V4{d}, -

V1{a}, -
V2{b}, -

V3{c}, -

V7{h}, 2

V6{f,i,g}, 1

V5{e}, -
V4{d}, -

V1{a}, -
V2{b}, -

V3{c}, -

1 2

3 4

5

Figure 2: Simplify the graph

color is created (see figure 3.1, 3.2 and 3.3). It is possible that a vertex
has multiple valid colors available (see figure 3.5). In order to choose
the color, a scoring function evaluates all of the possible allocations. The
allocation with the highest score is chosen. In the case of Figure 3.5, vertex
vc is colored with color 4, which is added to the forbidden colors list of
vertex vc. If an alternative solution is requested, vc would be colored with
color 5.



V1{a}, 2

V7{h}, 2

V2{b}, 5

V4{d}, 4

V5{e}, 3

V6{f,i,g}, 1

V3{c}, [4,5]

5

V3{c}, -

V1{a}, 2

V7{h}, 2

V2{b}, 5

V4{d}, 4

V5{e}, 3

V6{f,i,g}, 1

4

V7{h}, 2

V2{b}, 5

V4{d}, 4

V5{e}, 3

V6{f,i,g}, 1

V1{a}, -
V3{c}, -

3

V7{h}, 2

V4{d}, 4

V5{e}, 3

V6{f,i,g}, 1

V2{b}, -
V1{a}, -
V3{c}, -

V7{h}, 2

V5{e}, 3

V6{f,i,g}, 1

V4{d}, -
V2{b}, -
V1{a}, -
V3{c}, -

1 2

Figure 3: Vertices’ coloring

As a result of the graph coloring, the initial partitioning schema is:
{f, i, g}, {a, h}, {e}, {d, c}, {b}

If an alternative schema is requested, the algorithm provides: As a result of
the graph coloring, the initial partitioning schema is:
{f, i, g}, {a, h}, {e}, {b, c}, {d}

In both schemata, all of the applications with different criticality levels are
allocated to a different partition. Applications f and i are both allocated to the
same partition(γ(f) = i). Since it was requested f to be allocated to partition
1 (ξ(f) = 1), i is allocated to this partition, as well. Also, g has to be allocated
to partition 1 (ξ(g) = 1). Applications b and d cannot be allocated to the same
partition (δ(b) = d).

6 Conclusions

This paper describes an algorithm for generating a system partitioning in a
mixed criticality embedded system. The inputs are the application models and
a set of restrictions, that define requirements on the partitioning. The aim is to



provide an allocation of the applications to partitions, in such a way that the
set of restrictions is met. The use of restrictions is an important contribution of
the paper. The aim is to ensure that partitioning requirements can be modified,
without the need to change the partitioning algorithm. This is a basic mean
for easing the extension of the support to non-functional requirements by the
MultiPARTES toolset, where restrictions are automatically generated from their
specification. This toolset includes additional tools for assigning computational
resources to the partitions and for validating the resulting system design.

A set of complex scenarios has been used for validating the outcomes of
the algorithm. In addition, it has been served to generate the partitioning
on three industrial use cases. The results so far have been successful. The
formal demonstration of the algorithm is under development. An algorithm
for assigning resources to partitions and for generating an scheduling plan is
currently under test.

References

[1] MultiPARTES: Multi-cores Partitioning for Trusted Embedded Systems,
Available: www.multipartes.eu

[2] Masmano M., Ripoll I., Crespo A., Peiro S.: XtratuM for LEON3: an Open-
Source Hypervisor for High-Integrity Systems. Embedded Real Time Soft-
ware and Systems (ERTS2 2010), May 2010.

[3] A. Alonso, E. Salazar, and M.A. de Miguel, A Toolset for the Development of
Mixed-Criticality Partitioned Systems, 2nd Workshop on High-performance
and Real-time Embedded Systems (HiRES 2014) Vienna, Austria

[4] Salazar E., Alonso A., de Miguel M.A., de la Puente, J.A. ”A Model-Based
Framework for Developing Real-Time Safety Ada Systems”. In H.B. Keller,
et al (eds.), Reliable Software Technologies — Ada-Europe, LNCS 7896, pp.
126–141. Springer-Verlag, 2013.

[5] Brocal, Vicent, et al. ”Xoncrete: a scheduling tool for partitioned real-time
systems.” Embedded Real-Time Software and Systems (2010).

[6] Biondi, Alessandro, G. Buttazzo, and Marko Bertogna. ”Schedulability anal-
ysis of hierarchical real-time systems under shared resources.” RETIS Lab,
Scuola Superiore Sant’Anna, Italy, Technical Report TR-13-01 (2013).

[7] Easwaran, Arvind, et al. ”A compositional scheduling framework for digital
avionics systems.” Embedded and Real-Time Computing Systems and Ap-
plications, 2009. RTCSA’09. 15th IEEE International Conference on. IEEE,
2009.

[8] Easwaran, Arvind, Madhukar Anand, and Insup Lee. ”Compositional analy-
sis framework using EDP resource models.” Real-Time Systems Symposium,
2007. RTSS 2007. 28th IEEE International. IEEE, 2007.



[9] Lackorzynski, Adam, et al. ”Flattening hierarchical scheduling.” Proceed-
ings of the tenth ACM international conference on Embedded software.
ACM, 2012.

[10] Kuo, Tei-Wei, and Ching-Hui Li. ”A fixed-priority-driven open environment
for real-time applications.” Real-Time Systems Symposium, 1999. Proceed-
ings. The 20th IEEE. IEEE, 1999.

[11] Feng, Xiang, and Aloysius K. Mok. ”A model of hierarchical real-time
virtual resources.” Real-Time Systems Symposium, 2002. RTSS 2002. 23rd
IEEE. IEEE, 2002.

[12] Deng, Zhong, J. W. S. Liu, and J. Sun. ”A scheme for scheduling hard real-
time applications in open system environment.” Real-Time Systems, 1997.
Proceedings., Ninth Euromicro Workshop on. IEEE, 1997.

[13] Jin, Hyun-Wook, and Sanghyun Han. Temporal partitioning for mixed-
criticality systems. Emerging Technologies and Factory Automation
(ETFA), 2011 IEEE 16th Conference on. IEEE, 2011.

[14] Brélaz, Daniel. ”New methods to color the vertices of a graph.” Communi-
cations of the ACM 22.4 (1979): 251-256.

[15] Johnson, David S. ”Worst case behavior of graph coloring algorithms.”
Proc. 5th SE Conf. on Combinatorics, Graph Theory and Computing. 1974.

[16] Maffray, Frédéric. ”On the coloration of perfect graphs.” Recent Advances
in Algorithms and Combinatorics. Springer New York, 2003. 65-84.

[17] Garey and Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness. 1979. ISBN: 0-7167-1044-7.

[18] Appel, Andrew W., and Lal George. ”Optimal spilling for CISC machines
with few registers.” ACM SIGPLAN Notices. Vol. 36. No. 5. ACM, 2001.

[19] Chaitin, Gregory J., et al. ”Register allocation via coloring.” Computer
languages 6.1 (1981): 47-57.

[20] Chaitin, Gregory J. “Register allocation and spilling via graph coloring.”
ACM Sigplan Notices. Vol. 17. No. 6. ACM, 1982.

[21] Briggs, Preston, Keith D. Cooper, and Linda Torczon. ”Improvements to
graph coloring register allocation.” ACM Transactions on Programming Lan-
guages and Systems (TOPLAS) 16.3 (1994): 428-455.

[22] George L., Appel A.W.: Iterated register coalescing. TOPLAS 18(3),
300–324 (1996).

[23] Tamas-Selicean, Domitian, and Paul Pop. Design optimization of mixed-
criticality real-time applications on cost-constrained partitioned architec-
tures. Real-Time Systems Symposium (RTSS), 2011 IEEE 32nd. IEEE, 2011.


