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Abstract. Since parallel code is difficult to understand, it is a challenging
job to develop it. It is even harder for code applied in embedded real-time
systems. To facilitate parallelization of code running on these systems,
we introduce a new algorithmic skeleton library. It is characterized by
a deterministic execution behavior and is built in a timing-analyzable
way. Our library offers algorithmic skeletons for parallel execution of
tasks, parallel data processing and pipelined processing of data. When
parallelizing a legacy single-core application, e.g. by applying a pattern-
supported parallelization approach, it may be employed to implement
parallelization on code level. Furthermore, it can be utilized for enabling
structured parallelism at development of a new real-time application for
an embedded system.

Keywords: Algorithmic Skeletons, Parallelization, Parallel Design Pat-
terns, Embedded Systems, Real-Time, Static WCET Analysis

1 Introduction

The multicore revolution [23] does not stop at embedded real-time systems. As
in high-performance computing, parallelizing sequential legacy code is desired
for embedded real-time systems, too. This can be achieved e. g. by applying the
parallelization approach developed by Jahr et al. [I514]. However, developing
parallel code remains challenging since it is difficult to understand [2I]. It is
even harder when the resulting code has to be timing predictable for analysing
it with a static WCET analysis tool like e.g. OTAWA [2]. Hence, parallelism
should only be implemented in a structured way [16]. A comfortable way for
this is to encapsulate all issues of parallelism in an algorithmic skeleton library.
The concept of algorithmic skeletons was introduced by Murray Cole [7/6]. If a
skeleton library is built in an analysable way, its parallelism introduced to an
originally sequential program will not break its timing analysability.

This paper introduces a predictable skeleton library which can be utilized to
parallelize legacy embedded real-time applications. Furthermore, it is applicable
to introduce structured parallelism during development of applications from


http://www.informatik.uni-augsburg.de/en/chairs/sik/

2 A. Stegmeier, M. Frieb, R. Jahr, T. Ungerer

scratch. In both scopes, our library leads to a timing-analysable parallel program.
It has been developed and applied in the parMERASA project [24125]. Our
algorithmic skeleton library is open source and can be downloaded on GitHuHﬂ

An overview on existing algorithmic skeleton libraries is given in Section 2} Our
algorithmic skeleton library is described in Section [3] and evaluated in Section [
Finally, the paper is concluded accompanied by an outlook on future work in
Section [l

2 Related Work

There are already a lot of existing skeleton libraries. A detailed overview can
be found in [I2]. Many skeleton libraries have been developed for high-level
programming languages, e.g. Muesli [5] for C++ or Skandium [I8] for Java.

For embedded systems, we only consider algorithmic skeleton libraries for
the execution language C. To our knowledge, there are around eight popular
algorithmic skeleton frameworks to use with C: Eden [19] and HDC (Higher-order
Divide and Conquer) [I3] use variations of Haskell as coordination language
to generate C code. Both allow nested skeletons. P3L [I] utilizes a custom
coordination language and nesting is limited to two levels. A subset of C with
functional features to implement skeletons is applied by Skil [4]. The resulting
code is transformed into regular C code; nesting is not possible.

Since the resulting code has to be checked each time after generation, the
concept to generate code is difficult for timing-analysis. With a high effort it might
be possible to do a generic analysis over all code which can be generated. However,
it seems to be less challenging to build a new skeleton library which is timing
predictable. Our skeleton library is built in a static way with no dynamically
generated code. Hence, it is possible to do a single analysis to obtain its timing
behavior. If our skeleton library is applied to parallelize a previously analysable
sequential program, it will stay analysable afterwards.

SKELib [§] is provided as a library in C without dynamic generation of code.
It is built for workstation cluster architectures. However, communication takes
place over plain TCP/IP sockets, which is clearly not timing-analysable.

Another promising approach is eSkel [3], which is used in a static way. But,
timing-analysis is complicated since there is a lot of dynamic memory allocation.

There are two algorithmic skeleton libraries which try to address real-time
requirements: QUAFF [9] and SkiPPER [22]. However, they only focus on
soft real-time requirements just like image processing, not on hard real-time
requirements for embedded systems. Furthermore, SKiPPER is domain-specific
and only provides limited nesting capabilities.

Almost all presented algorithmic skeleton libraries use MPI as distribution
library. To our knowledge, there is no timing-analysable implementation of MPI.
For our skeleton library, we assume communication over shared memory. It has
been developed for the timing-analyzable parMERASA multi-core [24], where

! Website: https://www.github.com/parmerasa-uau/tas/| Licence: GNU LGPL v3
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several cores belong to a cluster and share the clusters’” memory. The cores
and clusters are connected over a network on chip (NoC) which works in the
background.

3 Architectural Design

We designed our skeleton library for embedded real-time systems. Therefore,
it does not use any code generation, but is coded as static library in C. The
utilization of the skeletons is done by calling functions provided by the library.

In this section, we first (Section give an overview about the types of
parallelism which are supported by our skeleton library. Afterwards, we describe
design decisions and implementation details in Section |3.2

3.1 Supported types of parallelism

It is possible to describe structured parallelism with Parallel Design Patterns
(PDPs), which are a textual description of best practice solutions [20]. We see
PDPs as an abstract concept for skeletons. They describe in natural language how
parallelism could work. Algorithmic skeletons are an implementation fulfilling
the behavior described in the PDP.

Our goal is to build a time-predictable skeleton library for parallelization
issues. Therefore, it is based on the parMERASA pattern catalogue [I1] which
contains timing-predictable PDPs. It contains patterns which have been found
by analysing applications from automotive, avionics and construction machinery
domains. The types of parallelism realized in our algorithmic skeleton library are
described in the following:

1. Task Parallelism, which is also known as farm skeleton: A number of
tasks is executed concurrently and the further execution of the program is
suspended until they are all completed. The WCET is mainly defined by the
longest WCET of each subtask. To be timing-analysable, the tasks have to
be scheduled and mapped statically.

2. Data Parallelism is mostly referred as map skeleton or SPMD (Single
Program Multiple Data): This skeleton performs computations on a data
structure, which can be decomposed into concurrently computable chunks.
Therefore, the same algorithm can be applied simultaneously to several parts
of the data structure. Since the same computations take place for different
data, the WCET should be similar for all computed chunks.

3. Pipeline, or shortly named pipe skeleton: The executed computations on
input data can be divided into several stages. After data has been processed
in one stage, it is handed over to the next one. Afterwards, the finished stage
can process the next set of data. Hence, the data is processed in a chain of
producers and consumers. Ideally, the stages are load-balanced, i.e. their
workloads obtain similar WCETSs. To achieve this, stages might be joined
or split or further skeletons may be applied within single stages. For the
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Fig. 1. State machine of worker threads

WCET analysis, each stage and the data exchange between stages have to
be analyzed.

In combination with a systematic parallelization approach, the parMERASA
pattern catalogue and our skeleton library may be used to parallelize a sequential
program [I5], which also works for hard real-time applications [14].

3.2 Design Decisions and Implementation Details

In the following, we assume a processor with several cores and shared memory as
the platform utilized for running the skeletons. We further number the cores in
an ascending order to facilitate the distinction between them. Thereby, we denote
core0 as main core which invokes the skeletons for executing code in parallel.

Underlying implementation layer and state machine Our Skeletons base
on an underlying implementation layer which is characterized by three different
phases of execution. At first, the initialization of the skeletons takes place, followed
by the phase responsible for executing user applications applying the skeletons.
At last, finalization is needed to correctly shutdown the skeleton library. While
initialization and finalization have to be done only by core0, in the execution
phase all applied cores are involved.

During the first phase the synchronization idioms (e. g. several barriers) and
threads for the skeleton instance are initialized and created. Therefore, the
number of applied worker cores has to be determined and one thread is created
and moved to a thread pool for each of them. All utilized synchronization idioms
have to be implemented in a timing predictable way. How this can be done can
be seen in [I0].

In the second phase of the underlying implementation coreQ executes the
user application with integrated invocations of skeletons, while the threads of
the workers run a state machine which determines their behavior. This state
machine is displayed in figure [1] the transitions between the states are realized
with barriers. The states are listed below:

no pattern After initialization, all threads are in this state. It represents a stand-
by mode where the threads are waiting to get a specific skeleton assigned.
As described in section [3.1} each kind of skeleton implements one particular
pattern. By assigning a skeleton to a thread, it changes its state to pattern
assigneaﬂ There is also a transition to state end for finalization purposes.

2 The assignment of a skeleton’s workload takes place at runtime, but it has been
statically defined at design time which worker threads get which workload assigned.
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pattern assigned A thread in this state is assigned to a particular skeleton. It
obtains its work to execute and waits for all other threads involved in this
skeleton to get their work, too. Once all threads are ready, they move to
state work. If the thread is released from the skeleton, it changes to state no
pattern.

work Here, a thread executes its assigned work and afterwards waits for all
other participating threads to finish their work. After the last thread has
finished, all threads move back to state pattern assigned.

end In this state the thread shuts down the execution of the state machine. Thus,
the execution of the thread is finished and it is ready for its termination.

The distinction of the states pattern assigned and work separates the assign-
ment of workload (done by main thread) from the execution of this workload
(done by workers). This design decision facilitates the timing analysis, because
execution of the workload starts for all workers at the same time.

In the phase of finalization of the skeleton instance all threads are forced
to move to the state end immediately after joining state no pattern the next
time. Once all threads of the thread pool are in this state, they are terminated.
Afterwards, the execution of the skeleton instance is finished.

Invocation of a skeleton The invocation of a skeleton is done by the main
core (core0) of the implementation. It executes the user application and invokes
the skeletons for the parallel parts of the execution. As the whole implementation,
the invocation of a single skeleton is divided into three segments, where each
is executed by a single function call of the skeleton library. These steps are
initialization, execution and finalization and are illustrated in code example

Code example 1 Initialization, execution and finalization call for a task paral-
lelism skeleton with two workers.

tas_taskparallel_init(&task_parallelism , 2);
tas_taskparallel_execute(&task_parallelism );
tas_taskparallel_finalize(&task_parallelism );

During initialization, the main core notifies the threads it needs for execution
of the particular skeleton. Thus, these threads move to state pattern assigned.
Afterwards, the execution is started by handing over the work to the worker
threads. Then, the execution of the workload takes place. Therefore, all partici-
pating threads (excluding the main core) move from pattern assigned to work
and back to pattern assigned. If the overall work of the skeleton is split into
more parallel parts than threads are available, the workers execute the workload
in multiple rounds. Therefore, they change between pattern assigned and work
several times. At the end of execution all workers are in state pattern assigned.
The finalization step is responsible for releasing the applied threads. Therefore, it
forces the workers to move to state no pattern. A manual for using the skeletons
containing lots of examples is [17].
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Implementation details Synchronization idioms are needed for the implemen-
tation of the skeletons. Namely, these are barriers and ticket locks. They have to
be provided by the execution platform to enable the application of our skeleton
library. While the barriers are mainly utilized for transitions between the states
of the state machine, the locks are used to keep the metadata for the thread
pool consistent. In each state (excluding end) a thread has to wait for a kind of
synchronization event before changing to another state.

Code example 2 Declaration of data structures in global shared memory for a
task parallelism skeleton.

//Functions to be called

SHARED_VARIABLE (memory0) tas_runnable_t tp_runnables|[] = {
(tas_runnable_t) runnable0,
(tas_runnable_t) runnablel}

//Pointer to arguments for functions (NULL because not needed)
SHARED_VARIABLE (memory0) void * tp_args[4];

//Task Parallelism: list of .

SHARED_VARIABLE (memory0) tas_taskparallel_t task_parallel = {
tp_runnables, //... functions to be called
tp_args , // ... arguments of functions
2} // ... and the number of functions

At an invocation of a particular skeleton the work executed by the related
threads must be handed over. This is done by providing a list of function names,
each representing the work for one thread (runnable0 and runnablel in code
example . It is statically determined by the programmer which thread is assigned
to a skeleton. This is done by defining a list including the ids of the participating
threads. Thereby, the particular assigned work for each of these threads can also
be figured out. The elements of the function list including the work are assigned
to the specified threads by mapping the element order of the function list to an
ascending order of the thread ids. This guarantees a deterministic behavior of
the parallel execution and preserves its timing analysability.

The execution of assigned work is realized by invoking a function pointer
which executes the function associated to the according thread. The concrete
executed function for each thread can be obtained by observing the defined
function and thread lists. Hence, the estimated WCET of the correct function
can be inserted at the corresponding places of the analysis.

To enable the execution of a particular skeleton, the data structures describing
the functions to be executed and their parameters must be located in shared
memory. This includes the data which has to be handed over to the applied
threads and the code to be executed in parallel. Therefore, specific data structures
are provided which have to be initialized in shared memory and referenced by
pointers. These pointers are timing-analyzable as they always point to the same
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memory location of the data structures. The data structures always have valid
values (function names and parameters).

4 Evaluation

In this section we show that employing the skeletons for parallelization is ap-
plicable to gain a speedup. Therefore, we focus on performance tests based on
observed execution times (ETs). The results of a WCET analysis and the obtained
overestimation for the skeletons will be presented in future work. The evaluation
here mainly concentrates on analyzing the achieved parallelization overhead. We
aim to investigate if the obtained overhead provides moderate length in time
compared to the executed workload. A further objective is to show the scalability
for large input sets.

4.1 Experimental setup

In the experiments we run a signal processing application from the scope of
avionics. Algorithms like this can often be found in embedded real-time systems
for processing data which has been captured with sensors. The structure of
the application is displayed in figure [2] It takes two sets of matrices as input
(subsequently named a and B). They are characterized by the same size and
number of included matrices and used for calculation of one output matrix. The
program is executed iteratively, processing ongoing input sets. The first step of
the computation is a Fast Fourier Transformation of each matrix of a. The result
(named A) is multiplied with B element by element. Afterwards, the calculated
set of matrices C is summarized to one matrix D by computing the sum of
element by element. At last the output matrix d is generated by calculating the
inverse Fast Fourier Transformation.

Inputl m Input+

—
Output

Fig. 2. Implemented application for the evaluation

Since the complete calculation is divided into several computation steps, the
pipeline skeleton fits best. The pipeline consists of five stages. The first one is
utilized for generating input values. Thus, it does not belong to the application
itself, but is needed for simulation purposes. The other four stages implement
the calculation of the output matrix and are listed below.
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1. Fast Fourier Transformation (FFT) of a (result: A)

2. Multiplication of A and B (result: C)

3. Summarize all matrices of C' (result: D)

4. Inverse Fast Fourier Transformation (IFFT) of D (result: d)

However, the single stages of the pipeline are not balanced. Calculating the
FFT for a set of matrices takes a lot more time than the other calculation steps.
Thus, we further parallelize this particular step by utilizing the data parallelism
skeleton. The set of matrices a is split into a number of smaller sets. Their sizes
are dependent on the number of cores applied for calculating this stage. After all
cores calculated their subset of A, the next pipeline stage can be executed using
this particular matrix set A.

Three different implementations of the application are run for evaluation:

— a sequential version without skeletons
— a parallel version only employing the pipeline skeleton
— a version which utilizes pipeline parallelism and data parallelism

The tests are run on the parMERASA simulator, which was developed in the
parMERASA project [24125]. As mentioned in section [2} this simulator provides
a predictable many-core platform. The cores are divided into clusters, which are
connected by a NoC. In addition to the cores, each cluster comprises a memory
which is shared by the cores of the clusterﬂ This memory contains a private area
for each core and an area utilized as global memory space for all cores of the
cluster. The emulated cores support the PowerPC 750 ISA with little variations.
In this paper, we have configured the simulator to provide eight cores in one
cluster. Hence, all cores are connected to the same shared memory with a latency
of 40 cycles. Memory accesses are organized hierarchically by utilizing a private
first level cache for each core. Thereby, we assume a perfect instruction cache
and a data cache with LRU replacement policy.

We apply two input sets of different size to investigate the influence of differing
workloads, where each one consists of two sets of matrices. Each matrix set of
the small input set consists of four matrices. Each of them has 16 rows and 16
columns. The large input set consists of 8 matrices of 32 elements in rows and
columns per set. A complete input set is generated for each new execution step
of the pipeline, which is done for 25 iterations. Hence, in the experiments the
pipeline runs for 29 iterations and for 21 iterations all stages execute workload.
This behavior is caused by the starting and finalization delays of the pipeline,
where only some of the five stages have work.

4.2 Performance Evaluation

Results of the execution on the parMERASA simulator can be seen in table [T}
The columns show the three different versions and the numbers for the small
(16x16x4) and the large (32x32x8) input sets.

3 For details see parMERASA Deliverable 5.3 on [www.parmerasa.eu.
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Table 1. Evaluation results
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small large small large small large
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Fig. 3. The results of the obtained from measured ETs of the experiments utilizing the
parMERASA simulator

Independently from the applied input sets the investigation of the ETs shows a
small speedup for the implementation only utilizing the pipeline and a significant
higher one for additionally applying the data parallelism (see figure . The
small speedup of the first implementation is (in addition to a lower number of
employed threads) mainly caused by an unbalanced pipeline. With the large
(small) input set, the stage executing the FFT needs 72.52% (67.34%) of the
overall time to execute its workload for each iteration. At the same run, the
percentages of the other stages reach from 8.45% (7.16%) to 11.46% (17.58%).
This disparate distribution of workload can be overcome by further parallelizing
the unbalanced stage, which is done in the implementation additionally utilizing
the data parallelism. In this implementation the pipeline obtains an improved
balance with proportions of 38.25% (34.67%) to 16.94% (14.32%) for the large
(small) input set. As can be seen in figures and a considerably higher
speedup and efficiency (gained speedup per utilized core) is reached in this
implementation.



10 A. Stegmeier, M. Frieb, R. Jahr, T. Ungerer

In table [1] the obtained parallelization overheads are illustrated. Although one
parallel implementation employs an additional data parallelism skeleton, both
parallel executed versions exhibit nearly no difference in measured parallelization
overheads. The reason for producing only low additional overhead for the data
parallelization is, among other things, the starting and finalization delay of the
pipeline.

The relative ET overhead based on parallel (ROP) is the overhead ET of a
particular parallel version divided through the overall ET of the same version
(compare table . In figure it can be seen that the implementation with the
additional data parallelization exhibits a higher ROP than the application only
utilizing the pipeline. As the workload stays the same, this is caused by a smaller
overall ET of the application. The relative ET overhead based on sequential (ROS)
is the overhead ET divided through the overall ET of the sequential version
(compare table [1)). Since the ROS is similar for both parallel implementations
(compare figure :3 (d)]), it confirms that the workload stays the same. As the ROS
does not exceed 4%, the parallelization overhead for applying the skeletons does
not influence the execution time of the parallel execution drastically.

A closer look at the executions with different sized input sets exhibits an
enormous difference in the overall ET of the implementations. The ET's are about
ten times higher for the large input set than for the small one. Furthermore,
it seems that there is an inconsistency in the calculated speedups. While the
speedup of the pure pipeline implementation decreases for a larger input set, it
increases for the pipeline and data parallel implementation. This behavior can
be explained by the different workloads of the pipeline stages for the various
input sets. The execution time of the large pipeline stage in the pure pipeline
implementation increases faster than the ETs of the other stages for a larger
input set. Thus, the pipeline obtains a worse balance for larger input sets. In
contrary, the ETs for the pipeline applying data parallelism increase similar
for all stages. Hence, the pipeline stays balanced (respectively gets even more
balanced) and the speedup stays the same or increases.

A further reason for increased speedup when applying a larger input set
is the reduction of ROS and ROP. Though, the absolute execution time for
parallelization overhead increases with an enlarged input set, the ROS and ROP
decrease. This loss in proportion in execution time is caused by a faster increase
of ETs for calculation than for ETs of raised overhead.

5 Conclusion and Outlook

We presented the design and implementation principles of a new algorithmic
skeleton library which can be utilized for the parallelization of legacy software
running on embedded real-time systems. Moreover, it is applicable to enable
structured parallelism at the development of new applications for an embedded
real-time system. Our focus was to keep the skeleton library simple and timing-
analyzable. The skeletons are designed for multi-core platforms providing shared
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memory for all cores. The supported types of parallelism are Task Parallelism,
Data Parallelism and Pipelining.

The evaluation shows that our skeleton library is applicable for parallelization
of sequential code to gain speedup. The analysis of time needed for execution of
parallelization overhead obtains a moderate proportion of the overall execution
time of the application. Furthermore, the percentage of overhead execution
remains stable for increased input sets.

As future work we propose to make a detailed timing analysis of our algorith-
mic skeleton library. We want to determine static WCETs with OTAWA [2]. With
the results of the analysis, it should be possible to optimize the implementation
of the skeletons. Thereby, we hope to reduce the obtained overestimation of the
WCETs. Therefore, our algorithmic skeleton library could also be utilized to
meet tight timing constraints.
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