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Motivation LN G

= Multicore CPUs in embedded systems

=  Challenging to develop parallel code
— High implementation effort
— Timing predictability
- Need for facilitation in scope of HRT systems

Skeletons applicable for implementing parallelism

=  Advantages
— Abstraction simplifies programming
— Timing predictability asured for each parallel execution

Library of Algorithmic Skeletons
for Parallelization
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Supported Parallelism

= Structured parallelism
— Commonly used patterns
— facilitates time predictability

=  Pattern based solutions
— Task parallelism
— Data parallelism

— Pipeline parallelism
c0O cl c2 «c3

= Nested parallelism possible Skeletonl{ - sketeton
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Implementation

Underlying implementation layer

=  Starting phase: initialize worker threads
=  Working phase:

— Main thread: execute user application

— Worker threads:
—> idle Ny 5| Skeleton assigned
N
Vv Vv
end work
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Application of Skeletons

Task Parallelism

Global declarations:

//Functions to be called

tas runnable t tp runnables[] = {
(tas runnable t) runnableO,
(tas runnable t) runnablel};

//Pointer to arguments for functions (NULL because not needed)
void * tp args(4];

//Task Parallelism: list of
tas taskparallel t task parallelism = ({

tp runnables, //... functions to be called
tp args, // ... arguments of functions
2}; //... and the number of functions
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Application of Skeletons

Task Parallelism
Invocation within function:

tas taskparallel init (&task parallelism, THREAD LIST);
tas taskparallel execute (&task parallelism);
tas taskparallel finalize(&task parallelism);
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Application of Skeletons

Data Parallelism

Global declarations:

//Definition of data type for argument array
typedef struct {

int input data[SIZE];
} dp args t;

//Array of arguments for workers
dp args t dp args array[NUM WORKERS];

//Pointer to arguments for workers
void * dp args[NUM WORKERS];

//Data Parallelism:
tas dataparallel t data parallel = {

(tas_runnable t) runnable, //...the function to be called
dp args, //...1list of arguments of functions
NUM WORKERS }; //...and the number of workers
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Application of Skeletons

Data Parallelism

Invocation within function:

//Assign argument arrays to pointers
for(i = 0; 1 < NUM WORKERS; i++) |

dp args[i] = &(dp_args arrayl[il]);
}

//Invocation

tas dataparallel init (&data parallel,
THREAD LIST);

tas dataparallel execute (&data parallel);
tas dataparallel finalize (&data parallel);
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Evaluation

o
Universitit
w k Augsburg
University

Benchmark application

= Streaming signal processing application:
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= 2 evaluated input sets:
— small(16x16x4) / large(32x32x8) size for each matrix set
=  3versions:
— Sequential implementation
— Pipeline parallelism (5 stages)
— Pipeline parallelism (5 stages) + data parallelism (4 threads)
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Simulator Setup

= parMERASA multicore with one cluster
=  Applied up to 8 cores

= Shared memory (latency 40 cycles)

= Instruction scratchpad

=  Data cache with LRU

= Details: see paper/parMERASA project
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Evaluation

Results
. Speedup — Execution Time of Sequential Version
p p Execution Time of Parallel Version
. ROS * Execution Time of Overhead
Execution Time of Sequential Version
Speedup ROS
6 4
5 3’2
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62_3 § 2 = small input set
02 Qo l’i ® large input set
17 05 -
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pipeline (5 cores) pipeline + data pipeline (5 cores) pipeline + data
parallel (8 cores) parallel (8 cores)

*Relative execution time Overhead based on Sequential

21/01/2015 Algorithmic Skeletons for Parallelization 13




Conclusion and Future Work
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Algorithmic Skeleton library developed:
- Applicable in hard real-time systems

- Facilitates implementation of structured parallelism
" Task Parallelism, Data Parallelism and Pipelinie Parallelism
- Moderate parallelization overhead

Future work:
" Timing-analysis with OTAWA
- Optimizations to tighten WCET estimation
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