o
Universitit
w k Augsburg
University

Algorithmic Skeletons for
Parallelization of Embedded
Real-Time Systems

Alexander Stegmeier, Martin Frieb, Ralf Jahr,
Theo Ungerer

University of Augsburg, Germany

HIiRES 2015
(High-performance and Real-time Embedded Systems)

Motivation LN G

= Multicore CPUs in embedded systems

= Challenging to develop parallel code
— High implementation effort
— Timing predictability
- Need for facilitation in scope of HRT systems

Skeletons applicable for implementing parallelism

= Advantages
— Abstraction simplifies programming
— Timing predictability asured for each parallel execution

Library of Algorithmic Skeletons
for Parallelization

21/01/2015 Algorithmic Skeletons for Parallelization 2

Outline

= Motivation

= Supported Parallelism

= Implementation

= Application of Skeletons

= Evaluation

= Conclusion and Future Work

21/01/2015 Algorithmic Skeletons for Parallelization 3

L
Universitit
UND
University

Supported Parallelism

= Structured parallelism
— Commonly used patterns
— facilitates time predictability

= Pattern based solutions
— Task parallelism
— Data parallelism

— Pipeline parallelism
c0O cl c2 «c3

= Nested parallelism possible Skeletonl{ - sketeton

21/01/2015 Algorithmic Skeletons for Parallelization 4

L
Universitit
UND
University

Implementation

Underlying implementation layer

= Starting phase: initialize worker threads
= Working phase:

— Main thread: execute user application

— Worker threads:
—> idle Ny 5| Skeleton assigned
N
Vv Vv
end work

21/01/2015 Algorithmic Skeletons for Parallelization 5

. Universitit
Implementation UND e
Thread O Thread 1
Program initialization Start worker
State of Thread 1.
> Sequential Code idle idle
- o - 7 7/}
e N e A A4
Skeleton initialization get workload Skeleton assigned
() (N v
Skeleton execution Skeleton execution work

Skeleton finalization

- J

—[Sequential Code 1

21/01/2015 Algorithmic Skeletons for Parallelization 6

Application of Skeletons

Task Parallelism

Global declarations:

//Functions to be called

tas runnable t tp runnables[] = {
(tas runnable t) runnableO,
(tas runnable t) runnablel};

//Pointer to arguments for functions (NULL because not needed)
void * tp args(4];

//Task Parallelism: list of
tas taskparallel t task parallelism = ({

tp runnables, //... functions to be called
tp args, // ... arguments of functions
2}; //... and the number of functions

21/01/2015 Algorithmic Skeletons for Parallelization 7

Application of Skeletons

Task Parallelism
Invocation within function:

tas taskparallel init (&task parallelism, THREAD LIST);
tas taskparallel execute (&task parallelism);
tas taskparallel finalize(&task parallelism);

21/01/2015 Algorithmic Skeletons for Parallelization 8

Application of Skeletons

Data Parallelism

Global declarations:

//Definition of data type for argument array
typedef struct {

int input data[SIZE];
} dp args t;

//Array of arguments for workers
dp args t dp args array[NUM WORKERS];

//Pointer to arguments for workers
void * dp args[NUM WORKERS];

//Data Parallelism:
tas dataparallel t data parallel = {

(tas_runnable t) runnable, //...the function to be called
dp args, //...1list of arguments of functions
NUM WORKERS }; //...and the number of workers

21/01/2015 Algorithmic Skeletons for Parallelization 9

Application of Skeletons

Data Parallelism

Invocation within function:

//Assign argument arrays to pointers
for(i = 0; 1 < NUM WORKERS; i++) |

dp args[i] = &(dp_args arrayl[il]);
}

//Invocation

tas dataparallel init (&data parallel,
THREAD LIST);

tas dataparallel execute (&data parallel);
tas dataparallel finalize (&data parallel);

21/01/2015 Algorithmic Skeletons for Parallelization 10

Evaluation

o
Universitit
w k Augsburg
University

Benchmark application

= Streaming signal processing application:

Inpu'i A=FFT(a) Inﬁp::jtm*m:w

e SEEEEEE It R Ee e LI § @

| A Seisstsstnttnt :EEEEE ;;gé;é A N
i i

N g N e N >
i | v At Output

v £ Lv LS M*)\bv PR v

< M > < M > \ﬁ_CiB______—V < M > < M > < M >

= 2 evaluated input sets:
— small(16x16x4) / large(32x32x8) size for each matrix set
= 3versions:
— Sequential implementation
— Pipeline parallelism (5 stages)
— Pipeline parallelism (5 stages) + data parallelism (4 threads)

21/01/2015 Algorithmic Skeletons for Parallelization 11

o
Evaluation lN b\ E“Zg”t;

Simulator Setup

= parMERASA multicore with one cluster
= Applied up to 8 cores

= Shared memory (latency 40 cycles)

= Instruction scratchpad

= Data cache with LRU

= Details: see paper/parMERASA project

21/01/2015 Algorithmic Skeletons for Parallelization 12

Evaluation

Results
. Speedup — Execution Time of Sequential Version
p p Execution Time of Parallel Version
. ROS * Execution Time of Overhead
Execution Time of Sequential Version
Speedup ROS
6 4
5 3’2
(O]
o4 225
-c b
62_3 § 2 = small input set
02 Qo l’i ® large input set
17 05 -
0 - 0 -
pipeline (5 cores) pipeline + data pipeline (5 cores) pipeline + data
parallel (8 cores) parallel (8 cores)

*Relative execution time Overhead based on Sequential

21/01/2015 Algorithmic Skeletons for Parallelization 13

Conclusion and Future Work

L
Universitit
LN i
University

Algorithmic Skeleton library developed:
- Applicable in hard real-time systems

- Facilitates implementation of structured parallelism
" Task Parallelism, Data Parallelism and Pipelinie Parallelism
- Moderate parallelization overhead

Future work:
" Timing-analysis with OTAWA
- Optimizations to tighten WCET estimation

21/01/2015 Algorithmic Skeletons for Parallelization 14

Thank You!

