
Mul$PARTES	

	

	

	

Par$$oning	
 Algorithm	
 	

for	
 Mixed	
 Cri$cality	
 Systems	
 	

Emilio	
 Salazar,	
 Alejandro	
 Alonso	
 (UPM)	
 HiRES,	
 21th	
 Januay	
 2015,	
 Amsterdam	

Contents

1.  Introduction

2.  Toolset architecture

3.  Partitioning algorithm

4.  Conclusions

2	
 HiRES	
 2015,	
 Amsterdam	

1. Introduction

§  Design of partitioned systems requires
additional development activities and roles:
–  Par55oning,	
 hypervisor	
 configura5on	

–  System	
 architect,	
 system	
 integrator	

§  A single tool: too complex and rigid,
for integrating all required functionality

§  Proposal:
–  Define	
 a	
 methodology	

–  Define	
 a	
 toolset	
 architecture	

–  with	
 means	
 for	
 integra5ng	
 addi5onal	
 components	

3	
 HiRES	
 2015,	
 Amsterdam	

2. Toolset Architecture: Requirements

§  Development of mixed-criticality systems.
§  Support for non-functional requirements (NFR)

–  Specifica5on,	
 valida5on,	
 and	
 transforma5ons	

–  Real-­‐5me,	
 safety,	
 security	

§  Support for partitioned systems
§  Support for multi-core architectures
§  System modelling

–  Support	
 legacy	
 applica5ons	

§  Support for system deployment
§  Design for extensibility

9	
 HiRES	
 2015,	
 Amsterdam	

Toolset Architecture

11	

System 
partitioning
 Partitioning

tool

Deployment model

Neutral model

Transformation to
neutral model

Source code

Transfor-
mation

XtratuM configuration
files

System building  
files

Validation

tool

Tool input model
 Transfor- 
mation

Tool output
model

Transfor- 
mation

Toolset 
result model

Validation

Final 
Artifacts

Generation

Applications model
Platform model

Partitioning
restrictions model

System model

Transfor- 
mation

Transfor-
mation

Transfor-
mation

Transfor-
mation

Documentation

HiRES	
 2015,	
 Amsterdam	

System Model

13	

Applications model
Platform model

Partitioning
restrictions model

System model

Transfor- 
mation

§  Information for partitioning, validation & generation
§  Platform & App. Models general and reusable
§  Applications Model: Based on UML

–  UML-­‐MARTE:	
 real-­‐5me	
 requirements	
 and	
 resource	
 needs	

–  Support	
 for	
 legacy	
 applica5ons:	

§  Platform model:
–  Hardware:	
 UML-­‐MARTE,	
 with	
 some	
 extensions	

–  Basic	
 informa5on	
 on	
 opera5ng	
 systems	
 and	
 hypervisors	

HiRES	
 2015,	
 Amsterdam	

System Partitioning

§  System definition:
–  Applica5ons	
 {a1,	
 a2...,	
 an}.	
 	

–  Restric5ons	
 {ω1,	
 ω2...,	
 ωn}.	
 	

§  Deployment model:
–  Allocate	
 applica5ons	
 to	
 par55ons	

–  Allocate	
 resources	
 to	
 par55ons	

§  A successful partitioning
–  All	
 applica5ons	
 allocated	
 to	
 par55ons	

–  Par55oning	
 restric5ons	
 are	
 met	
 (user	
 or	
 NFR	
 defined)	

–  Feasible	
 resources	
 assignment	
 to	
 par55ons	

–  Op5mal	
 par55oning?	

15	

Validation	

Generation of
final artifacts

System
model	

System 
partitioning	

Partitionin
g tool	

Deployment model	

HiRES	
 2015,	
 Amsterdam	

Partitioning Restriction Model

§  Sources of restrictions
–  Implicit:	
 Automa5cally	
 considered:	
 OS,	
 CPU,	
 cri5cality	

–  Explicit:	
 Generated	
 automa5cally	
 from	
 NFR	

–  System	
 integrator:	
 based	
 on	
 experience	
 or	
 requirements	

§  Must be fulfilled by the system partitioning
§  Types of restrictions:

–  App.	
 that	
 must	
 (not)	
 be	
 allocated	
 on	
 a	
 given	
 par55on	

–  App.	
 that	
 must	
 (not)	
 be	
 in	
 the	
 same	
 par55on	
 than	
 another	

AB.	
 Tools	
 and	
 Modeling	
 	
 16	

3. Partitioning algorithm

§  Algorithm based on coloured graphs
–  Par55ons/applica5ons	
 are	
 modelled	
 by	
 nodes	

–  Restric5ons	
 are	
 modelled	
 by	
 edges	
 and	
 forbidden	
 colours	

–  Proper	
 colouring:	
 adjacent	
 nodes	
 with	
 different	
 colour	

–  Colours	
 are	
 mapped	
 into	
 par55ons	

§  Phases
–  Building	
 graph:	
 merging	
 app.	
 that	
 go	
 together,	
 include	

edges	
 and	
 lists,	
 assign	
 colours	
 and	
 create	
 forbidden	
 lists	

–  Simplify	
 the	
 graph	

–  Colour	
 ver5ces	

19	
 HiRES	
 2015,	
 Amsterdam	

Use case

20	

4.2.2 Coloring Vertices

This step can be broken down into the following stages:

– Retrieving candidate colors of the vertex v. For each vertex v extracted
from the queue Q, a set of candidate colors is computed. To begin with,
all colors already created in the graph, C, are valid candidates. However,
colors used by the live adjacent vertices of v and colors forbidden for v

must be removed. If the resulting set is empty, a new color is created.

– Coloring the vertex v. Once the candidate color set is computed, only
one of these colors can be used to color v. For this purpose, the function
score(u, c) is defined. This function returns a score that indicates how
desirable the coloring of v is with a specific candidate color. The color
that receives the highest score is the one used to color v.

– Multiple candidate color. Only one color is used to color a vertex when
multiple candidate colors are available. However, all of the candidate
colors are valid colors. This means that the provided solution is only
one of the possible colorings of the graph. When the first vertex vfirst

with multiple candidate colors is found, the graph is saved before coloring
vfirst. Then, the vertex is colored with the highest-scored color, cfirst,
which is added to the vfirst’s forbidden colors list, as this color cannot be
used again in further solutions.

– Alternative colorings. When an alternative coloring is requested, the graph
is restored to the same state as in vfirst, the first vertex with multiple
candidate colors is found. However, when vfirst must be colored, the
color cfirst (used in the first coloring) is now in the forbidden color list
of vfirst. Therefore, cfirst is discarded from the valid candidate colors of
vfirst. As a result, vfirst is colored with the next highest-scored color.
This process ends when all nodes are colored.

5 Use Case

Three use cases in the MultiPARTES projects (wind power, aerospace, and video
surveillance) have relied on this partitioning algorithm for generating their sys-
tem partitioning. In this subsection, a more complex case is used for illustrat-
ing the algorithm behaviour. The system is composed of a set of applications
{a, b, c, d, e, f, g, h, i}. Application models include information, such as their
criticality level and operating system, as shown in table 1.

Application a b c d e f g h i

Criticality Level A C C C B A A A A

Operating System ORK Linux Linux Linux XAL XAL XAL ORK XAL

Table 1: Applications characteristics

§  Internal restrictions: OS, Criticality level
§  External restrictions:

–  b	
 must	
 go	
 with	
 d	
 	

–  f	
 must	
 go	
 with	
 i	

–  f	
 must	
 not	
 go	
 with	
 e	
 	

–  g,	
 f	
 in	
 par55on	
 1	

–  h	
 in	
 par55on	
 2	

V1{a}, -

V8{h}, 2

V2{b}, -

V4{d}, -

V5{e}, -

V7{f}, 1

V6{g}, 1

V3{c}, -

V9{i}, -

HiRES	
 2015,	
 Amsterdam	

Graph simplification

21	

§  Remove vertex to a queue,
accordig to their degree

§  Keep vertex that are coloured

HiRES	
 2015,	
 Amsterdam	

Graph simplification

22	

V1{a}, -

V8{h}, 2

V2{b}, -

V4{d}, -

V5{e}, -

V7{f}, 1

V6{g}, 1

V3{c}, -

V9{i}, -

Figure 1: Initial system

V3{c}, -

V1{a}, -

V7{h}, 2

V2{b}, -

V4{d}, -

V5{e}, -

V6{f,i,g}, 1

V7{h}, 2

V2{b}, -

V4{d}, -

V5{e}, -

V6{f,i,g}, 1

V1{a}, -
V3{c}, -

V7{h}, 2

V4{d}, -

V5{e}, -

V6{f,i,g}, 1
V1{a}, -
V2{b}, -

V3{c}, -

V7{h}, 2

V5{e}, -

V6{f,i,g}, 1

V4{d}, -

V1{a}, -
V2{b}, -

V3{c}, -

V7{h}, 2

V6{f,i,g}, 1

V5{e}, -
V4{d}, -

V1{a}, -
V2{b}, -

V3{c}, -

1 2

3 4

5

Figure 2: Simplify the graph

color is created (see figure 3.1, 3.2 and 3.3). It is possible that a vertex
has multiple valid colors available (see figure 3.5). In order to choose
the color, a scoring function evaluates all of the possible allocations. The
allocation with the highest score is chosen. In the case of Figure 3.5, vertex
vc is colored with color 4, which is added to the forbidden colors list of
vertex vc. If an alternative solution is requested, vc would be colored with
color 5.

HiRES	
 2015,	
 Amsterdam	

Graph colouring

§  Retrieve candidate from queue
§  Colour the vertex

–  Avoid	
 forbidden	
 colours	
 and	
 colours	
 of	
 adjacent	
 nodes	

–  All	
 rest	
 of	
 colours	
 are	
 possible	

–  If	
 there	
 are	
 no	
 colour	
 possible,	
 create	
 a	
 new	
 one	

–  If	
 several	
 colours	
 are	
 possible:	
 alterna5ves	

23	
 HiRES	
 2015,	
 Amsterdam	

Graph colouring

24	

V1{a}, 2

V7{h}, 2

V2{b}, 5

V4{d}, 4

V5{e}, 3

V6{f,i,g}, 1

V3{c}, [4,5]

5

V3{c}, -

V1{a}, 2

V7{h}, 2

V2{b}, 5

V4{d}, 4

V5{e}, 3

V6{f,i,g}, 1

4

V7{h}, 2

V2{b}, 5

V4{d}, 4

V5{e}, 3

V6{f,i,g}, 1

V1{a}, -
V3{c}, -

3

V7{h}, 2

V4{d}, 4

V5{e}, 3

V6{f,i,g}, 1

V2{b}, -
V1{a}, -
V3{c}, -

V7{h}, 2

V5{e}, 3

V6{f,i,g}, 1

V4{d}, -
V2{b}, -
V1{a}, -
V3{c}, -

1 2

Figure 3: Vertices’ coloring

As a result of the graph coloring, the initial partitioning schema is:
{f, i, g}, {a, h}, {e}, {d, c}, {b}

If an alternative schema is requested, the algorithm provides: As a result of
the graph coloring, the initial partitioning schema is:
{f, i, g}, {a, h}, {e}, {b, c}, {d}

In both schemata, all of the applications with di↵erent criticality levels are
allocated to a di↵erent partition. Applications f and i are both allocated to the
same partition(�(f) = i). Since it was requested f to be allocated to partition
1 (⇠(f) = 1), i is allocated to this partition, as well. Also, g has to be allocated
to partition 1 (⇠(g) = 1). Applications b and d cannot be allocated to the same
partition (�(b) = d).

6 Conclusions

This paper describes an algorithm for generating a system partitioning in a
mixed criticality embedded system. The inputs are the application models and
a set of restrictions, that define requirements on the partitioning. The aim is to

HiRES	
 2015,	
 Amsterdam	

System Partitioning

HiRES	
 2015,	
 Amsterdam	
 25	

§  Proposed partitioning
{f, i, g}, {a, h}, {e}, {d, c}, {b}

§  Alternative partitioning
{f, i, g}, {a, h}, {e}, {b, c}, {d}

6. Use cases: UPMSat2 Satellite

26	
 HiRES	
 2015,	
 Amsterdam	

Wind-Turbine

27	

!

Figure 6

§  Use case with Ikerlan & Alstom Wind
§  Input:

–  Application models: include criticality level, CPU, OS	

§  Restrictions: applications that must be alone
§  The tool generated this partitioning

HiRES	
 2015,	
 Amsterdam	

7. Conclusions

§  Toolset for mixed-criticality systems
§  Partitioning tool

–  Rely	
 on	
 restric5ons:	
 Improve	
 extensibility	

–  Based	
 on	
 coloured	
 graphs	

–  Able	
 to	
 generate	
 alterna5ve	
 solu5ons	

§  Future work
–  Demonstra5on	
 is	
 being	
 done	

–  Addi5onal	
 evalua5on	
 with	
 more	
 complex	
 systems	

–  Integra5on	
 of	
 op5mality	
 criteria	

28	
 HiRES	
 2015,	
 Amsterdam	

