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Abstract—We aim to build a programming framework for
IoT-based WSN, where we try to free the programmer from
responsibilities of resource management, application distribution,
and code deployment. As a foundation of this framework, we
propose a modular programming model which lets programmer
describe the application functionality with minimum knowledge
of resources available in the WSN. We propose that using
such programming model, the application code can facilitate
the automatic deployment and management of IoT-based WSN
applications.

I. INTRODUCTION

Today, the Internet of Things (IoT) plays an important
role in the research and development of Wireless Sensor
Network(s). IoT has already provided standards such as
6LoWPAN[1] and COAP[2], which has enabled interoperable
WSNs. Using these new standards, IoT-based WSNs are able
to interact with different kind of systems quite easily, and in
such cases, the programmer has access to multiple resources
other than just sensor nodes, such as cloud infrastructures, and
mobile devices.

To use such systems effectively, the programmer should
be freed from many of the details of managing resources
(communication, processing, sensing, power) and focus on the
functionality. However, the abstraction between programmer
and these resources still remains largely unresolved. For any
changes in the application or WSN itself, intervention from
the programmer or user is required. If a node fails, either
the programmer needs to resolve the situation explicitly while
writing the application, or the user needs to intervene to
resolve the issue on the spot. The situation occurs when it
comes to adding new nodes into the network, or deciding
how the resources needed by an application (such as sensors,
actuators, processing capabilities) can be used. This kind of
scenarios requires the programmer to have knowledge about
complete WSN and its nodes. There exists some related work
in macroprogramming abstractions for WSN. Flask[3] is an
example of similar kind where node level code is generated
from meta language, but targeted to ensure the space and time
behavior in WSN.

In order to extend WSN into a larger user base, it is
essential to provide programmer with opportunity to write
simple code for a task without worrying about each and
every detail of the system. Drawing from works that enable
reconfigurable in-network processing in IoT-based WSN such
as T-Res[4], we aim to build an easy to program system
which can manage the resources on behalf of the user, detect
changes in the application according to rules defined by the

user, and automatically deploy code accordingly. CITA[5] is
an interesting example in such direction, which triggers an
application only when necessary conditions are met. But it
still doesn’t provide a programming approach which let user
write simple functionalities without worrying about the system
details.

II. PROGRAMMING MODEL

Consider the following motivating example depicted in
Figure 1. Assume a simple application that activates the A/C
in a room if the temperature is above a given temperature, only
if someone is present in the room. One way to achieve this
would be to collect the output from all the temperature sensors
to calculate mean. In case of the mean being high enough, the
motion sensor output will be checked before activating the
actuator. Let us also assume there is more than one motion
sensor in the room. While writing such program in existing
systems, a programmer has to define which temperature and
motion sensors to use. Additionally, the programmer would
have to define what is the behaviour in case of a failure.
This simple scenario introduces the need for a programming
framework which can alleviate the programmer from such
issues.

Fig. 1. WSN Motivating example: A programmer has to consider the usage
of resources (sensors, processing, ...), and deal with sensor failures

We propose a block-based declarative programming model
for IoT-based WSNs. In the proposed programming model, an
application is combination of one or more block(s) of code
and each block of code defines some functional part of the
application. We name these blocks Jewels.

Jewel is a modular piece of code, and one or many Jewels
combined together can be represented as a single application.
Jewel can be defined as standalone program, which has some
essential and optional attributes. These attributes are Input,
Output, Code, and Local Variables as shown in Figure 2.
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Fig. 2. Jewels Architecture

The functionality part of Jewel is represented by the Code
attribute. Any simple task can be programmed inside this
attribute irrespective of the device(s) connected as input and/or
output. Because of this the programmer can be detached from
the device details. Also if there are any changes in devices
associated with the Jewel, it remains hidden for the code
attribute. In order to help execute the code inside jewel, there
might be need of some extra information to be provided by
programmer. This can be represented using the Local Variables
attribute.

A Jewel can have more than one input from or output to
Devices and/or Jewels. However it is not necessary to execute
the Jewel itself on one of the input or output devices associated
with it. Since the code attribute of Jewel is isolated from the
device details, a Jewel can be deployed or moved to anywhere
in the WSN. This enables the programmer to write complex
applications in simple ways without worrying about details of
device, where the code will actually be executed.

Let us reconsider the example mentioned in the beginning
of this section. The code for such example can be easily
divided into two functions, one to keep the track of mean
temperature and according to that second function will follow
up change in Motion to provide actuation instructions.The two
functions are shown below:

Listing 1. ’Task A’ Listing 2. ’Task B’

f u n c t i o n Taks A : f u n c t i o n Task B :

{ {
v a r i a b l e x = 30 C i f HighTemp = True and

HighTemp = F a l s e Motion = True

Mean = ( Temp1+Temp2 ) / 2 A c t u a t e = True

i f Mean > x e l s e

HighTemp = True A c t u a t e = F a l s e

e l s e r e t u r n A c t u a t e

HighTemp = F a l s e }
r e t u r n HighTemp

}

These two function can be represented as jewels as shown
in Figure 3 below.

(a) Task A Jewel (b) Task B Jewel

Fig. 3. Jewels for the example

The complete example can be represented as a flow graph
of Jewels connected to all the devices involved, as shown in
Figure 4. The code inside Jewel A and B are not concerned
with the details of input and output resources. The Jewel B can
have any motion sensor as input and that will not affect the
code or whole application. Hence if one motion sensor fails,
the framework can easily replace it with another, without any
intervention from the programmer. The only constraint with
Jewels is that the input should fall under conditions provided
by programmer, if any. Due to the modular approach, it is also
easy to replace one or many jewels in a flow graph without
making changes in complete application.

Fig. 4. Jewels and Devices

III. FUTURE OF JEWELS

The Jewels are the basic building block for the earlier
proposed programming framework. When combined together
multiple jewels can represent a single application, and change
in one jewel in the combination can change the application.
Hence we envision a repository of jewels, where programmer
can use existing jewels to build desired application instead of
writing same code again and again.

With the modular architecture of the Jewel based program-
ming framework, it should be quite efficient to design a smart
resource manager for IoT based WSNs. With such program-
ming model and resource manager in place, smarter WSNs
can be achieved which can manage changes in application or
resources without intervention from the programmer.
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Abstract—Heterogeneous wireless sensor networks offer a
pragmatic solution for environmental monitoring. Static sensors
provide a reliable infrastructure and mobile unmanned aerial or
ground vehicles allow on demand sensing or act as a platform
for automatic sensor deployment. However, this heterogeneity of
devices immersed in the monitored environment increases the
system complexity. Deployment, reconfiguration and adaptation
of the services to the dynamics of the environment and of
the system itself is challenging, jeopardising reliability. In this
work, we present DREAMS, a framework that combines both
offline and online planning of stationary and mobile resources to
continuously sustain application reliability in dynamic scenarios.

I. INTRODUCTION

Sensor networks are getting deployed in an increasing

number of scenarios, including applications for environmental

awareness, e.g., pollution monitoring [1]. At the same time,

actuation and control of embedded systems have reached a

stage in which unmanned aerial or ground vehicles (UAVs,

UGVs) are considered more and more reliable solutions for

mobile sensing and automatic deployment of sensors. While

this heterogeneity provides a new degree of freedom for data

collection and environmental monitoring, the planning of such

systems becomes more and more difficult. Furthermore, both

the system and the environment evolve over time threatening

the achieved reliability. Incorrect or suboptimal configurations

and adaptations, e.g., positioning of static nodes or trajectories

of mobile nodes, can endanger the ability of a system to meet

application requirements, e.g., throughput, latency or lifetime.

The traditional approach followed to identify an optimal

configuration requires monitoring the system behaviour, de-

tecting configuration flaws or bottlenecks, identifying an al-

ternative configuration and applying such new configuration.

In doing this, system developers typically rely on simula-

tion environments, e.g., COOJA [2] or Avrora [3], or on

real testbeds in controlled environments, e.g., TWIST[4] or

TrainSense [5]. However, the environment dynamics and the

system characteristics intertwine with each other resulting in

the final application performance. Gathering information about

the current environment and system state becomes then crucial.

Such information could be used as input for analytic, e.g.,

pTunes [6], or simulation-based, e.g., DrySim [7], frameworks

that exhaustively explore in a single step the complete recon-

figuration space to optimise a running stationary system.

A mobile system, instead, is subject to continuous changes,

both in the system characteristics and in the impact of the

environment on them. Such a scenario requires a continuous

process that examines the system and environment dynamics

to learn the employed models and analysis techniques online

and suggests localised reconfiguration actions. In DREAMS,

we aim at addressing such challenges in a comprehensive

framework that combines both offline and online planning

of stationary and mobile resources to continuously sustain

application reliability in highly dynamic scenarios.

II. APPROACH

Figure 1 depicts the DREAMS framework for deployment,

reconfiguration and adaptation. We base the implementation

of this framework on COOJA[2] and IRIS [8], open source

tools that we adapt to the needs of DREAMS. On the one

hand, COOJA allows to accurately simulate large numbers

of WSN applications and to evaluate the performance of

system configurations prior deployment. IRIS, on the other

hand, is a flexible tool for data processing and interaction

with deployed systems. For DREAMS, we modified COOJA

to allow a flexible remote interaction with the simulator.

For example, we enable to remotely configure and start a

simulation, change the state of a running simulation instance

online and retrieve information, such as performance results,

from a running or finished simulation instance. We exploit

such extensions to interface COOJA with IRIS, in order to

start a new simulation or interact with an existing one. In

this way, IRIS can interact with deployed systems to monitor

and control the current resources. The gathered data can then

provide information to generate different models, e.g., radio

models, with which configure the simulation environment and

analyse the system behaviour to identify new reconfiguration

plans. These adaptations have been integrated into the main

IRIS distribution and made available online [9], so that the

research community can benefit from our efforts.

The aforementioned modifications allow the interaction

between heterogeneous deployed systems, flexible data pro-

cessing components, and simulation services in a unified

framework. We combine the different modules in a workflow,



Fig. 1. DREAMS framework and its use for deployment and reconfiguration planning.

depicted in Figure 1, that satisfies the needs of deployment

and reconfiguration planning when the system and environ-

ment characteristics change during operation. In particular, we

follow three phases as described next.

A. Deployment Monitoring and Data Analysis

In the first phase, DREAMS monitors the systems perfor-

mance and the environmental characteristics 1 . This infor-

mation includes the position of the nodes and their mobility,

link quality measurements, e.g., PRR, SNR and LQI, as well as

system performance metrics. This information is then analysed

to evaluate the achieved performance of the running system

and build system and environment models of the observed

deployment. In particular, these measurements allow to build

a graph based radio model as input for the system simulator.

By continuously monitoring the changes in the link qualities

and in the system performance, DREAMS allows to analyse

temporal effects on the link quality caused by, e.g., daily

variations or weather changes, and gather knowledge about the

specific impact of the environment on the operational network.

B. Offline Reconfiguration Planning

In a second phase, DREAMS uses the gathered data to

detect configuration flaws, e.g., high number of hops between

source and sink, over-utilised links or nodes 2 . The informa-

tion about detected configuration flaws is then used to generate

a set reconfiguration plans that consider the deployment of

additional static or mobile nodes, or removal of existing ones.

These reconfiguration plans are evaluated within a simulator

3 , which uses the models generated in the previous phase.

The outcome of this step is a set of evaluated reconfiguration

plans, where each plan is associated with its expected perfor-

mance metrics, e.g., lifetime, response delay, throughput, and

its estimated costs. Finally, the user can evaluate the trade-

offs between achievable quality and costs to decide on the

final reconfiguration plan for the running system.

C. Online Reconfiguration Adjustment

In the last phase, a chosen reconfiguration plan is applied

to the running system 4 . Hereby, DREAMS allows to adjust

the reconfiguration plan online if the monitored performance

of the intended reconfiguration deviates from the expectations.

This might happen in the case of unpredictable environmental

effects, e.g., short- or medium-scale fading. To find an opti-

mal configuration, DREAMS maintains a synchronised virtual

copy of the deployed system in simulation, together with the

information about the reconfiguration plans and the estimated

system performance. During reconfiguration, the monitoring

of the system and the environment 1 continues, providing

data useful to update the system and environment models.

This information can be used to re-synchronise the virtual

copy of the deployed system, by adjusting, e.g., the position

of the nodes or the properties of the wireless links 5 . If the

resulting system performance deviates from the target goals,

adjustments to the reconfiguration plan can be evaluated and

applied 4 . At the same time, the identified deviations provide

valuable information to refine the environment and system

models 6 and gather factual knowledge about the unexpected

interplay between the system and its surrounding environment.

III. CONCLUSION

Simulation-aided planning based on observations from the

operational system provides a simple yet effective solution

for deployment reconfiguration, in particular in scenarios with

dynamic system and environment characteristics. Our current

goals involve the analysis of reconfiguration plans where

application requirements are met by adjusting the position of

stationary nodes or the trajectory of mobile devices. The same

approach can also be used to reconfigure software parameters.
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Abstract—Data and information processing on constrained
devices poses new challenges to the accomplishment of a robust
cyber-physical system. Advancements in the context of Wireless
Sensor Networks (WSN) and the new Internet of Things (IoT)
technologies are paving ways for novel applications following the
machine-to-machine (M2M) communication paradigm. However,
due to the limited resources available on a typical sensor device,
and in order to achieve lower energy consumption on the nodes,
it is important to reduce the amount of the exchanged data.

In this paper we conduct an analysis of two foremost data
serialization methods viz., JSON and EXI, recommended by the
ETSI M2M Technical Specification. To reach our goal, we eval-
uate the portability of the ETSI M2M data serialization formats
on wireless sensor nodes and we measure their performance in
terms of execution time, channel usage, and energy consumption.
The results from our experiments show that on average EXI,
when compared with JSON, is able to achieve an improvement
with respect to energy consumption and channel usage, while
maintaining a low memory foot-print.

I. INTRODUCTION

In order for WSN deployments to achieve the IoT vision,
sensor nodes would be required to communicate on the internet
and to be interoperable with other IoT systems. This necessi-
tates that nodes would send large amount of data packets on
the network, thus leading to huge burden on bandwidth and
the network channel. In addition, transmitting several packets
due to fragmentation by the OSI higher layers would mean
energy limited nodes would die out quickly hence drastically
limiting the lifetime of an IoT-enabled sensor node. A number
of solutions have been proposed to address this problem. A
particular strong candidate is the ETSI M2M protocol [3],
defining different data serialization formats specified for M2M
applications of which WSN could be part. These data serializa-
tion formats specify data compression methods on a network
to achieve few fragmentation thus reducing the overall packet
retransmission especially on a lossy media.

In today’s Internet, Extensible Markup Language (XML)
has become the de facto standard for data representation due to
its flexibility. However, due to the verbosity and the processing
overhead associated with XML, new data formats need to
be adopted to achieve efficient communication in the world
of constrained devices. The ETSI M2M recommends three
data serialization formats: 1) Extensible Markup Language
(XML) 2) JavaScript Object Notation (JSON) and 3) Efficient
XML Interchange (EXI). The EXI format is a light-weight
and compact representation of the XML that is targeted for
use on constrained devices such as sensor nodes. EXI is
designed to meet the requirements of high performance XML
applications, significantly reducing the bandwidth overhead
and enhancing the encoding and decoding performance. Some
studies [1] concentrated on testing the applicability of EXI
serialization method on embedded systems. However they
do not provide insight on the performance of EXI in the

realistic use case of M2M communication. A comprehensive
performance evaluation of EXI is still missing in the literature.

We present a comparative study of the data serialization
formats recommended by the ESTI M2M working group. In
particular, we focus on the comparison of EXI1 and JSON.
To align our work with the ETSI standard, we conduct
performance measurements for a declared set of messages
deduced from the ETSI CoAP M2M Interoperability Test [2].

II. IMPLEMENTATION AND PERFORMANCE EVALUATION

We provide performance evaluation of these data formats to
better understand the tradeoffs on wireless sensor nodes. To
conduct the performance evaluation, we ported the EXIp [5]
on Wismote sensor nodes2, while using the ETSI M2M
messages as a payload benchmark. On the software side, we
developed several test libraries3, written in C, implementing
the ETSI M2M interoperability test [2]. In addition, in order
to perform the evaluations in a controlled environment, we
used Cooja, a well-known simulator for WSNs. The choice
of using Cooja will allow other researchers to easily replicate
our measurements on the platforms supported by the simulator
before proceeding to real hardware testing. We based our
software implementation on the Contiki Operating System,
which provides a full-fledged IoT network stack. Contiki is
designed to support severely resource-constrained classes of
hardware. Moreover, Contiki OS provides low-power Internet
communication by fully supporting IPv4/IPv6 and low-power
wireless standards such as the 6LoWPAN, RPL and CoAP.

The experimental setup consists of Wismote wireless sensor
nodes, emulated in Cooja. The sensor nodes represent the
communication endpoints of a generic M2M scenario. The
setup configuration consists of three sensor nodes, acting as
client, server, and 6LoWPAN border router. The client and the
server are programmed to execute an M2M interaction using
the test library we developed implementing the ETSI M2M test
suite. The application is realized using the Erbium [4] CoAP
library. CoAP endpoints exchange messages using our port of
the EXIp library to encode and decode the data payload. The
performance of the two ETSI M2M data serialization formats
viz., JSON and EXI are compared according to the following
criteria:

1) Performance over ETSI M2M CoAP Interoperability
Tests: This measurement focuses on the execution time,
channel usage and energy consumption of several M2M
operations.

1EXI is a light-weight realization of the XML, thus we omit the comparison
of XML

2http://www.aragosystems.com/en/wisnet-item/wisnet-wismote-item.html
3Available upon request to the authors



Fig. 1: ApplicationCreate: Energy consumption.

2) Serialization complexity: This measures the complexity
with respect to the memory usage, serialization and
deserialization times.

For evaluating the EXI format two configurations are con-
sidered, corresponding to Schema-Enabled (SE) and Schema-
Less (SL) serialization. The “Schema-Enabled” compression
mode (also known as “schema-informed”) can achieve bet-
ter compression performance compared to the Schema-Less
mode, but requires both the encoder and the decoder to
share an XML schema. In addition, the EXI SE uses schema
information to improve compactness and efficiency.

III. RESULTS AND EVALUATION

The ETSI M2M CoAP Interoperability Tests: These Tests
consist of the execution of a set of operations (create, retrieve,
update) on ETSI M2M resources (application, subscription,
contentInstance). For instance in our tests we perform an
update operation on sensor nodes to manipulate the sensor
readings (e.g., temperature and humidity) mapped over ETSI
M2M resources. In our setup, we configured one CoAP
endpoint to simulate a M2M Device Application and the other
endpoint as the M2M Gateway. The ETSI M2M standard
defines different profiles for message instances. We tested
different message instances sent between the CoAP endpoints,
which differ in terms of length and complexity. We categorized
the message instances according to Profiles 1 to 4, where
Profile 1 is shorter with less complexity and Profile 4 is longer
with more complexity.

In Fig. 1 we show the energy consumption of an applica-
tionCreate operation with respect to transmission, reception
and CPU energy consumptions. From this figure, we can
observe that EXI SE performs better compared with EXI SL
and JSON. This is due to the fact that a smaller payload
(packet) implies fewer transmission hence lower radio usage,
which has a higher impact on power consumption than the
one deriving from the CPU usage. Table I shows that EXI
SL reduces channel usage on average by 15% with respect to
JSON, while EXI SE reaches an average of 50%.

TABLE I: applicationCreate channel usage

Profile JSON
EXI

Schema-Less Schema-Enabled
bytes bytes bytes

1. 245 232 (-5%) 155 (-36%)
2. 640 469 (-27%) 181 (-72%)
3. 1135 953 (-16%) 471 (-58%)
4. 1679 1448 (-14%) 870 (-48%)

To sum up, EXI SE outperforms both JSON and EXI SL
configurations in terms of energy consumption, channel usage
and the execution times. However EXI has significantly higher
memory requirements. For completeness, we summarize in
Table II the results obtained from our experiments for all
the ETSI M2M resources i.e., application, subscription and
contentInstance. We rank the performance from 1 to 3, where

TABLE II: Summary of Results

Criteria JSON
EXI Schema EXI Schema

Less Enabled
memory occupation

ROM 1 2 3
RAM 1 2 3

applicationCreate
Execution Time 2 3 1

Energy Consumption 3 2 1
Channel Usage 3 2 1

applicationRetrieve
Execution Time Sc. 1 3 2 1
Execution Time Sc. 2 2 3 1
Energy Consumption 3 2 1

Channel Usage 3 2 1

Criteria JSON
EXI Schema EXI Schema

Less Enabled
applicationUpdate

Execution Time - - 1
Energy Consumption 3 2 1

Channel Usage 3 2 1

subscriptionCreate
Execution Time 2 3 1

Energy Consumption - - 1
Channel Usage 3 2 1

contentInstanceRetrieve
Execution Time Sc. 1 3 2 1
Execution Time Sc. 2 - 3 -
Energy Consumption - - 1

Channel Usage - - 1

1 ranks as the best performance and 3 ranks as the worst. The
data serialization methods considered are placed in relative
order whenever possible. The dash (“-”) signifies situations
where, according to the chosen benchmark, evaluation of the
results is not needed. From our results, we made the following
observations:

1) EXI SE performs better in terms of energy consumption,
compared with JSON and EXI SL. Similarly, with
respect to the execution time, EXI SE performs better
in the majority of cases. This is however achieved at the
cost of a higher memory occupancy, which can still be
accommodated on a sensor node.

2) The average performance of EXI SL is comparable with
JSON; in some cases it performs better than JSON with
respect to energy consumption. In our implementation,
EXI SL execution time is better to an equal extent
compared with JSON especially when the serialization
time is negligible.

3) With respect to channel usage, in all scenarios consid-
ered EXI performs better compared with JSON, espe-
cially when EXI SE is used.

IV. CONCLUSIONS

In this paper we conducted a comparative study of data
serialization formats that are recommended by the ETSI M2M
Technical Specification, namely JSON and EXI (Schema-Less
and Schema-Enabled). Utilizing a light-weight data serial-
ization format is particularly useful for constrained devices
such as wireless sensor nodes. Lots of data would be gener-
ated among heterogeneous devices, hence it is necessary to
understand the tradeoff between the different recommended
data formats. Based on our results, EXI Schema-Enabled
outperforms other comparable data formats with respect to
energy consumption on the nodes, execution times and channel
usage on the network. However JSON has significantly lower
memory requirements, and is the recommended solution when
working with heavily constrained sensor nodes with low
memory. The result of this work will be adopted for the
implementation of the ITS architecture designed within the
ICSI Project approved by the European Commission.
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Abstract—In this paper, we present a overview of our Markov
chain based generalized modeling framework that takes into ac-
count real world characteristics and predicts the performance of
data dissemination for a given environment. Our modeling frame-
work allows multiple simultaneous pair-wise contacts among
people under heterogeneous mobility, multiple data sources and
different dissemination strategies. Our framework can be used
to predict the performance of data dissemination process and
provide bounds for different evaluation metrics: data dissemina-
tion time, optimal number of people required to maximize the
spread of information and best relays. We also present initial
results obtained from our modeling framework under broadcast
data dissemination strategy and predict the upper bound of
data dissemination time. Our simulation results show that, our
modeling framework can provide tighter upper bound of data
dissemination time within 5-10% error.

I. INTRODUCTION

In recent years, proliferation of mobile devices enable
people to gather and share information from their neighbor-
hood without the help of a centralized system. With the help
of different communication interfaces (like Bluetooth, WiFi),
people can collect context based up-to-date information from
their neighbors and also further spread it to other geographical
regions. The success of any encounter-based data dissemina-
tion application critically depends how data gets disseminates
in a given region. Therefore, to predict the performance of
these applications, there is a need to predict the performance of
data dissemination process. Some of the key evaluation metrics
to measure the performance are: maximum time taken to
spread information i.e data dissemination time; optimal number
of people required to maximize the spread of information etc.

There is a need for a generalized model that can mimic and
capture real world characteristics like heterogeneous contacts,
temporal movements of people, multiple simultaneous contacts
and different data dissemination strategies. Existing works do
not consider all these aspects thus, fail to provide a realistic
evaluation of data dissemination process [1]. In this paper, we
propose a generalized modeling framework that collectively
considers all real world characteristics of data dissemination
process. We summarize our contribution as follows:

• Our Markov chain based modeling framework capture
and predict the performance of data dissemination
under real world characteristics. To the best of our
knowledge, the proposed framework is the first one
that collectively considers all real world aspects of
data dissemination process.

• As opposed to existing works, the evaluation metrics
obtained from our modeling framework is not only
limited to data dissemination time. It can be used to
predict the data dissemination performance in multiple
dimensions like optimal number of people required

Fig. 1. Basic components for our generalized modeling framework.

to maximize the spread of information, finding the
best relays to maximize information spread and/or to
minimize data dissemination time.

Our modeling framework is work in progress and to show
the applicability of our framework, we present initial results
obtained for data dissemination time using real world traces.

II. PROPOSED MODELING FRAMEWORK

Figure 1 outlines the different components of our modeling
framework. It utilizes the real world traces to generate contact
traces and interests profile of users. Contact traces present the
mobility pattern of people and, interests profiles determine
the likelihood to exchange data (in case of interest-driven
data dissemination strategy). Further from contact traces, we
generate the pair-wise time-varying contact probability for all
users. In real world heterogeneity lies in contact patterns of
people along with temporal variation. Therefore, the inclusion
of pair-wise time-varying contact probability will enable our
modeling framework to mimic the real world contact patterns
of people. Currently our modeling framework is designed to
support two data dissemination strategy: broadcast and interest-
driven. In case of broadcast data dissemination strategy, it only
utilizes pair-wise time-varying contact probability to evaluate
the performance of data dissemination process. While, in case
of interest-driven strategy both pair-wise time-varying contact
probability and interests profile of users will be used.

Markov model is an integral part of our modeling frame-
work. It takes pair-wise time-varying contact probability as an
input and models data dissemination under synchronous model
(allows multiple simultaneous contacts among people at each
time slot). We consider each environment as a network of N
mobile users and M data sources. We assume that every data
source has a distinct data message and each mobile user is
interested to gather messages from all data sources. In the end



Fig. 2. One realization of our Markov model starting from S(0) to
S(MN) with their respective Data matrices D and transition probabilities.
This realization also shows the jump from S(2) to S(6) due to simultaneous
contact between two mobile nodes and mobile node and data sources.

there will be a total of MN (or M ×N ) data messages stored
in the network (each one of the N users will have M data
messages). Each state of our model represents the total number
of messages in the network (starting from 0 to MN ) where
S(0) and S(MN) represents states with no message and MN
messages respectively. Figure 2 represents one realization of
the Markov chain where each state S(x), x ∈ [0,MN ] can be
viewed as data matrix D of size N × M , where number of
non zero elements represent the number of messages present in
network. The probability of transition can be calculated using
our pair-wise contact probability distribution. Once we reach
the final state S(MN), the transition probability to remain in
the same state will be 1.

Utilizing the Markov model, we can predict the bounds
for data dissemination process in multiple dimensions and not
only restricted to data dissemination time. The other evaluation
metrics are to find the optimal number of people to maximize
the data dissemination and to find the best relays in the
network to accelerate the information spread in the network.
For all evaluation metrics, we can use different algorithms for
different data dissemination strategies.

III. PREMILINARY RESULTS: UPPER BOUND OF DATA

DISSEMINATION TIME UNDER BROADCAST STRATEGY

To show the validity and accuracy of our modeling frame-
work, we present the initial results obtained for data dissemi-
nation time under broadcast strategy.

Definition 1 (Data Dissemination Time Tdss): We define
it as the time until all mobile users receive data from all
data sources. The time t at which all N mobile users receive
data and all elements of D become 1 is defined as data
dissemination time Tdss.

A. Estimation of upper bound of Tdss from our Markov model

The total time spent in each state before reaching the final
state S(MN) will be equivalent to the data dissemination time
Tdss in a network. Let Tx be the time spent in each state S(x)
before transition to any other state. Tdss can be calculated as
follows:

Tdss =

MN−1∑

x=0

Tx (1)

Due to simultaneous multiple contacts and multiple data mes-
sages, our Markov chain is not always a 1-step transition
chain (refer Figure 2). To provide tighter upper bound of

Infocom MIT
0

1

2

3

4

5

6

7
x 105

Traces

Da
ta 

Di
ss

em
ina

tio
n T

im
e (

in 
Se

cs
)

Tdss
meas

Tdss

Fig. 3. Comparison of measured Data dissemination time Tmeas

dss
against

Tdss obtained from our model for INFOCOM and MIT traces.

Tdss, we utilize the impact of long tail cutoff property of
inter contact time on data gathering process [2]. We believe
that the consideration of this long tail cut-off can provide a
much tighter bound of Tdss because it closely articulates the
real world data gathering process. For this reason we calculate
a cut-off point α beyond which the rate of data collection
becomes very slow and exhibits a long tail over time. We first
replicate the fast rate of data gathering till cut-off point and
calculate the total time required to directly reach till α state
i.e. from S(0) to S(α×MN). Further, to mimic the long tail,
we calculate the time spend in each state from S(α × MN)
to S(MN). Finally the data dissemination time Tdss can be
calculated from summation of all times.
B. Results

To capture the impact of diverse environments and to
investigate the accuracy of our model, we use two real-world
contact traces: (i) Infocom 2005 trace (INFOCOM) [3], (ii)
Reality Mining trace (MIT) [4]. In Figure 3, we present the
bounds of Tdss obtained from our model under broadcast data
dissemination strategy and show that our model is able to
mimic the real data dissemination time Tmeas

dss
(measured from

real traces) within 5-10% error.

IV. NEXT STEPS

Currently our modeling framework predicts the perfor-
mance of data dissemination time under real world charac-
teristics for broadcast data dissemination strategy. Our next
step is to extend our model to predict upper bound of data
dissemination time for interest-driven strategy. Further, we also
plan to implement algorithms for other evaluation metrics i.e.
to find best relays and optimal number of people required
to maximize the data dissemination under both dissemination
strategies. ACKNOWLEDGMENT

This work was supported by the EU FP7 ERANET pro-
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Abstract—As we consider a new generation of Internet of
Things and Humans (IoTH) applications that place humans at
the epicenter of the control system the need to gather information
from the immediate vicinity, in addition to global clues, is gaining
importance. The loosely coupled Bluetooth Low Energy (BLE)
data collection framework enables a new way of architecting
IoTH systems where resource constrained BLE advertisers broad-
cast events, and devices inevitably carried by humans (such as
smartphones) implicitly gather such notifications. While such a
mechanism significantly alleviates data scavenging, it introduces
serious limitations in terms of operational security. In this work,
we show the applicability of BLE broadcast advertisements
for indoor location sensing (as part of an IoTH application)
and demonstrate an attack on the same system. Based on this
preliminary case study, we discuss other security implications on
BLE broadcasting.

I. INTRODUCTION

Location sensing is highly desirable in distributed systems,
including many applications in the Internet of Things and
Humans (IoTH). It binds humans and ‘Things’ to a common
scope by providing valuable context (‘where?’) for interpreta-
tion (‘what?’). For IoTH, Bluetooth Low Energy (BLE) [1]
- a subset of the recent Bluetooth v4.0 stack - provides a
low-power and loosely coupled mechanism for sensor data
collection with ubiquitous units (e.g., smartphones and tablets)
carried by humans. This fundamental design paradigm of
BLE is enabled by a range of broadcast advertising modes.
These new modes offer unidirectional communication between
two or more LE devices using advertising events, thereby
achieving a communication solution without entering into a
bonded connection (as required by Classic Bluetooth devices).
Such a loosely coupled manner of data transfer is undoubtedly
more energy efficient but it also unearths other limitations. For
example, BLE broadcast mechanisms are highly vulnerable to
a range of security threats.

To ground this discussion, we first show the applicability
of BLE broadcast advertisements for an IoTH application -
indoor location sensing (Section II). Based on this system
architecture, we demonstrate the feasibility of launching a
packet injection attack (Section III) and discuss other possible
security implications (Section IV).

II. INDOOR LOCATION SENSING: SYSTEM OVERVIEW

Our system is composed of three units: proximity beacon,
controller and coordinator. The proximity beacon unit consists
of a resource constrained sensing tag that is deployed in the
region-of-interest. It is responsible for engaging in undirected

BLE broadcasts, and measurement of simple physical parame-
ters (if necessary). The controller unit consists of a resourceful
device that is capable of listening and receiving broadcast
data contained in BLE advertisements. The coordinator unit
is a private Cloud service that aggregates high-level location
details. For our indoor location sensing study, the beacon
unit is a custom designed CC2540Cheep BLE platform, the
controller unit is an Android v4.4.4 smartphone that uses
Bluedroid, and the coordinator unit is a Amazon EC2 cloud
computing service.

The custom designed beacon platform, CC2540Cheep,
consists of a TI CC2540 [2] system-on-chip (SoC), a RF balun
filter, a chip antenna, and a CR2032 battery holder. It has a
dimension of [28× 25× 8] mm. The SoC comprises an 8051
microcontroller core, a Bluetooth v4.0 compliant 2.4GHz RF
transceiver, 8 kB RAM, 256 kB programmable flash, and a
12 bit ADC.

BlueDroid is the default Bluetooth stack of Android. It
consists of two layers: the Bluetooth Embedded System (BTE)
layer holds the core Bluetooth functionality and the android
application code (at the framework level) that utilizes the
APIs of android.bluetooth to interact with the bluetooth
hardware that internally, through the Binder IPC mechanism,
calls the Bluetooth process (both the Bluetooth service and
profiles). The packaged android app uses JNI to call into the
hardware abstraction layer (HAL) and to receive callbacks.

The basic ranging mechanism uses the broadcaster mode
of BLE to transmit unsolicited advertisement packets from the
beacon units. Broadcast packet transmissions are kept short
(10 bytes). They contain only the necessary fields such as
the preamble, header, medium access control (MAC) address
and checksum, but no application payload. As part of the
advertisement event, beacons broadcast advertisement packets
on each advertisement channel within a specified time period
and transmit power level. Passively listening (mobile) con-
troller units are able to receive such broadcasts when they
are in the proximity range of the beacons. If the beacons are
placed at regions-of-interest (for contextual tagging), then the
proxemic cue helps to correlate the presence of mobile units to
the contextual vicinity. Here, context binds ‘people’ (carrying
the mobile units) and ‘Things’ (beacon units) to a common
scope, and hence, eases mining of relevant location informa-
tion. The beacon-(mobile)controller proximity information is
pushed into the coordinator unit for generating a location heat
map over a configurable time duration.

In the following section, we demonstrate the effect of a
packet injection attack on our indoor location system.



(a) System under normal conditions (b) System under attack conditions

Fig. 1: Heat map of the movement of people in the indoor environment. (a) shows the ground truth results, while (b) shows
the impact of a packet injection attack on the location results.

III. SYSTEM UNDER PACKET INJECTION ATTACK

The experimentation space was the third floor of our office
building. It was instrumented with a set of 26 beacon units. The
beacons were configured to broadcast advertisement packets
at an interval of 750ms and at their lowest transmit power
of -23 dB. For our evaluation, 10 people carried Android
smartphone running the location service for about 6 hours.
Proximity events were streamed to the Cloud service that
aggregated the data from all 10 mobile units and generated
a real-time location heat map of people in the office space.

During the experimentation period, a packet injection at-
tack was launched on the location sensing system by imper-
sonating a benign beacon with a malicious one. The malicious
beacon was placed in the same zone as the benign beacon so as
to tag it with the same context, but was configured to broadcast
BLE packet at an interval of 100ms and at a higher transmit
power of -6 dB. However, for the purpose of identifying rogue
packets, we added an additional identifier in the advertisement
message that could be subsequently filtered with a simple rule.

Fig. 1 shows the raw heat map, and represents the density
of user presence at each location over the entire duration, with
the color going from light yellow (low density) to deep red
(high density). Fig. 1(b) shows the impact of the attack on the
location results; while Fig. 1(a) reports the same once all rogue
information are filtered. While under a normal situation (as
expected), the regions of high interest to people were observed
to be the oval meeting room, the office front desk and entrance,
and one of the closed cabin spaces; the situation gets entirely
flipped under the attack scenario where it appears that people
are mostly interested in gathering at one office corner.

IV. SECURITY IMPLICATIONS OF BLE BROADCASTING

Though BLE broadcasts can effectively distribute data (as
shown in previous sections), it is subjected to packet injection
attacks. Such an attack state can be mitigated by Source-
Specific Multicast (SSM) [3], but is not provisioned in the
unsolicited broadcast mode of BLE.

When a malicious device impersonates the public device
address or static address of a legitimate device, the centralized
module of the localization service can filter out the injected
packets as different locations are reported from the same source

address. Though it helps in eliminating the wrong location
information, the valid information from the legitimate source
with corresponding address is also excluded. An adversary
can implant multiple malicious nodes to disrupt the entire
system; but then it is a question of cost-benefit analysis.
If a service uses the BLE non-resolvable private address
or privacy aware resolvable private address, it is hard to
distinguish between fake and legitimate sources. Malicious
devices can also launch simple, yet effective attacks to confuse
the localization algorithm such as rapid variation in transmit
power levels to make the device appear/disappear.

A BLE-enabled application (such as an Android app that
is purely based on the broadcast mode1) can develop custom
designed security solutions at the application layer but this
has implications on the interoperability with other applica-
tions. The restricted packet size (31 bytes) of BLE broadcast
messages further limits the use of a sophisticated broadcast
authentication protocol such as Tesla [4].

V. CONCLUSION

Using a location sensing system as a case study for IoTH
applications, we have demonstrated the severity of a packet
injection attack on the broadcast mode of BLE communica-
tion2. Currently, we are working towards understanding and
evaluating other such security attacks and designing algorithms
for their mitigation.
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Abstract—In wireless sensor networks (WSNs), as in every
other discipline, people willing to evaluate the performance of an
application or a protocol rely on modeling, simulation or experi-
mentation. Simulations and models produce results for large-scale
networks in a reasonable time, but trade representation accuracy
for speed and hence ignore many physical and system effects,
such as interference from the outside world or race conditions
inside the nodes. Experimentation provides more representative
and precise results, but is limited to small networks. Besides,
they require more effort to be deployed and to collect results.
These approaches are therefore complementary and should all
be involved in the evaluation, which is seldom true, as it requires
duplicating the deployment and data collection processes.

In this demonstration, we present MakeSense, a framework
that simplifies these tasks for both simulation and real experi-
ments environments by creating a whole experimentation chain
from a single JSON description file. By using MakeSense, it is
possible to organize the compilation, to orchestrate the firmware
deployment, to efficiently collect results and to plot statistics. We
illustrate the ease of use and efficiency of the complete MakeSense
workflow over a simple RPL-UDP deployment scenario evaluated
with the Cooja simulator and the FIT IoT-Lab open testbed.

I. INTRODUCTION

Internet of Things (IoT) is growing interest from both
industrial and scientific communities. Potentially, 50 billions
of smart objects will be connected in 2020. This means that a
significant effort of design thinking must be carried out while
developing solutions for constrained Wireless Sensor Networks
(WSNs). In particular, one of the major concerns of nowadays
applications is how existing protocols scale for large networks.

The design and the validation of efficient protocols can be
achieved via both simulators and realistic testbeds. However,
both approaches present drawbacks. With simulators it is
possible to carry out performance evaluation for a very large
number of nodes in a reasonable time frame. On the other side,
simulators like Cooja or Tossim, designed for constrained IoT
networks, make several assumptions on physical and system
aspects for tractability. Real testbeds such as FIT IoT-Lab2

allow very accurate performance analysis. However, scaling
experiments to a large number of devices often require a great
effort for firmware deployment and statistic collection.

MakeSense1 unveils the problems of validating IoT applica-
tions by offering a whole chain of experimentation. Through a
single JSON configuration file, it is possible to compile, deploy,
and run an experiment in FIT IoT-Lab or in Cooja. MakeSense
also allows analyzing results by collecting and parsing the log

files, to plot the results, and to generate HTML reports. Each
of these steps can be executed separately or take part in a batch
sequence.

This demonstration illustrates the ease of use and capacity of
MakeSense over a simple application. The whole description
of the experimental setup fits in a single JSON file. We
present the syntax of this file and apply slight modification
to use alternatively the Cooja simulator and the FIT IoT-
Lab open experimental platform. The JSON file also contains
directives on which parameters to measure, such as the energy
consumption or routing overhead, on how to collect data and
on how to present results.

II. MAKESENSE

MakeSense was introduced in a short paper [1] as a tool
to easily organize, run and share WSN simulations. It is
distributed under the Apache license through GitHub1. The
version demonstrated here adds features and supports execu-
tion of the experiment using ContikiOS on the FIT IoT-Lab 2.

In MakeSense, the experimenter defines his workflow by
specifying a sequence of steps, as illustrated on Figure 1. A
single JSON configuration file orchestrates the whole chain,
from scenario specification to graphs generation. The exper-
imenter usually first invokes the make step to produce the
binary files from his source code by typing the command
fab make:dummy which compiles the source code for an
experiment called dummy. It can then deploy these binaries
on the remote platform using fab push_iotlab:dummy
or in the Cooja simulator. The remote deployment details are
configured within the JSON file that should contain a nodes
directive that specifies how binaries are named and where they
shall be uploaded.

Binaries names and destinations can be specified explicitly
or by defining a function, whose syntax use variables and
loops, as illustrated in listing 1. This example tells Make-
Sense to write in the iotlab.json JSON file lines to
produce 43 firmware binaries named dummy_1.iotlab-m3,
etc. from a template names dummy_iotlab.json and to
store these binary files in a directory specified in the path
variable. These binaries go on the Grenoble IoT Lab plat-
form named m3-1.grenoble.iot-lab.info, etc. This
function is then invoked in the MakeSense workflow by fab
push_iotlab:dummy. Using templates ease firmwares
management while improving its safety and transparency.

1http://github.com/sieben/makesense
2https://www.iot-lab.info
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Listing 1: Configuration file excerpt

def FUNCTION(name):
[...]
# Location of a JSON file template to include
config_template =

TEMPLATE_ENV.get_template("dummy_iotlab.json")

# Creation of the array that specifies and associates
# nodes names and with firmware binaries paths
res = [

{"nodes": ["m3-%d.grenoble.iot-lab.info" % num],
"firmware_path": pj(path, "dummy_%d.iotlab-m3" % num)
} for num in range(1, 43)]

# Dump the array in the JSON file
with open(pj(path, "iotlab.json"), "w") as f:

f.write(json.dumps(res))
[...]

The experimenter can then execute the experiment with the
run_exp step. Once the execution is finished, traces and
log files are retrieved and analyzed with the analyze step,
producing CSV files containing the desired metrics. The plot
step creates graphs that can be inserted automatically in an
HTML report with the report step.

III. DEMONSTRATION SCENARIO OVERVIEW

The demonstration consists in configuring, building and
running an UDP application over a network running the RPL
routing protocol. N nodes, (N ∈ [10; 40]) send UDP packets
to a single destination, root of the RPL tree during 1 hour. We
collect trace files that log the messages that nodes exchange
and the RPL periodical control messages.

We show how to run the experiment on the Cooja simulator
and on the ARM M3 node made available in the FIT IoT-lab
Grenoble testbed. This platform allows monitoring the nodes
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Fig. 2: RPL overhead as a function of the number of nodes.

real energy consumption with an embedded solution whose
output can be collected by MakeSense. During experiments
execution, different messages are aggregated and analyzed
using a MakeSense step.

To illustrate the output of MakeSense, we measure the
overhead due to the routing protocol, with the same syntax
that was utilized in [1]. Once results are collected they are
parsed and analyzed automatically, producing the graph shown
in Figure 2, where the network-aggregated RPL overhead is
shown as a function of the number of nodes in the network.
The step generating the figure is exactly the same as the one
used to parse and plot the results of a simulation run.

The last step, report, produces an HTML file that presents
the results and the JSON configuration file, which can easily
be shared. Visitors or collaborators have all the necessary
information to re-run the experiment and compare results.

IV. CONCLUSION

This demonstration shows how to use MakeSense for au-
tomating the experimental process, not only in simulation with
Cooja, but also using an open remote experimental platform.
The heart of the demonstration consists in examining the
configuration file and modifying it to change the simulation
setup and its output, evaluating a simple RPL-UDP application
deployed over FIT-IoT Lab.

MakeSense is currently configured to interact with Cooja
and FIT IoT Lab but can easily adapt to other experimental
platforms, depending on the existence of certain functionalities
such as remote upload of the firmware binaries, remote access
and data collection capabilities.

MakeSense was built using Python and uses a few libraries.
It can easily be extended and future works will investigate, li-
braries such as iPython to provide dynamic interaction. iPython
allows also the embedding of images, text and functions inside
a single notebook along the variables to ease the sharing of an
experiment.
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Abstract—Security has arisen as an important issue for
the Internet of Things (IoT). Efficient ways to provide
secure communication between devices and sensors is
crucial for the IoT devices, which are becoming more and
more used and spread in a variety of fields. In this context,
Elliptic Curve Cryptography (ECC) is considered as a
strong candidate to provide security while being able to
be functional in an environment with strong requirements
and limitations such as wireless sensor networks (WSN).
Furthermore, it is a valid candidate to be used in industry
solutions.

In this demo we show a real use case of Elliptic Curve
Cryptography for key establishment in combination with
symmetric AES encryption. The demo will show the use of
a BSD-licensed ECC library for the Contiki OS running
on Yanzi Networks Contiki-based nodes that will securely
communicate with a Yanzi Gateway.

I. INTRODUCTION

Communication protocols have been twisted to adapt

to the constraints that Wireless Sensor Networks (WSN)

present and to improve the efficiency of devices in this

kind of networks [1] [2]. Even special OS, such as the

Contiki OS [3], have been designed especially to adapt

to this paradigm [4]. Security is a big issue in this new

environment. Privacy, identity management, security and

access control are an important challenge [5] and also the

issue of how to assign credentials to distinguish access

to certain information by the different machines arises.

Protocols to establish security in the communications

between devices such as those belonging to WSN have

been implemented focusing on power efficiency and

enabling communication with other devices over the

Internet [1]. In this paradigm, public-key cryptography

has been shown to be a viable alternative [6]. For many

applications in this area, energy is considered the main

restriction but public key cryptography has proven to

fulfil these requirements and to perform well in such

restrained environments.

The protocols and applications used to provide secure

communication between devices nowadays are imple-

Fig. 1. Yanzi Networks system. The nodes use a STM32W108
system-on-chip and run the Contiki OS.

mented for machines that are not limited by their power

or memory in a drastic way. On the other hand, the Inter-

net of Things is mainly composed of devices that have

important power restrictions. Therefore, power-efficient,

lightweight protocols need to be designed. Since security

is such an important issue the security protocols need

to be also adapted to this paradigm. Nowadays public

key cryptography with TLS and RSA are the de-facto

standards in secure communications but they do not fit

the aforementioned need. Protocols such as Datagram

Transport Layer Security (DTLS) have been adapted

to approach this problem, but on the application level

security, Elliptic Curve Cryptography (ECC) shows up

as an alternative to RSA. Elliptic curves achieve the same

level of security as RSA algorithms with less number of

bits, implying faster, and less power-consuming schemes

that provide the same security [7].

We implement the first BSD license ECC implemen-

tation for the Contiki OS, with the objective of making

this cryptography scheme available for use in research

and industry and take advantage of the benefits that

ECC offers in the context of a versatile implementation

that allows the use of different Elliptic Curves and an

easily configurable security-level thanks to the parameter

configuration such as the key size.



Fig. 2. Demonstration setup consisting of a Yanzi Gateway and a
Yanzi LED that run a key exchange using ECDH and communicate
using symmetric encryption using the derived secret. To visualise the
demonstration a live Wireshark capture of the communication will
be performed

II. DEMONSTRATION DESCRIPTION

The purpose of the demonstration is to show a func-

tional system using Elliptic Curve Cryptography for key

establishment in a low-power Wireless Sensor Network

using a lightweight ECC implementation for the Contiki

OS.

The setup consists of nodes from Yanzi Networks

AB using STM32W108 system-on-chip based on a 32-

bits ARM R©CortexTM-M3 processor with 16 kb of RAM

and 256 kb of embedded Flash memory runing Contiki

OS. The nodes establish a secure communication using

ECC with a Yanzi Gateway based on Linux and then

communicate using 128 bits AES symmetric encryption.

The demonstration scenario is the following. First,

when the gateway is discovered by a new node, in this

case a Yanzi LED, the gateway and the device exchange

their public 256-bits ECC public keys following a El-

liptic Curve Diffie-Hellman (ECDH) [8] key exchange

scheme. From the combination of the other party’s public

key and their own private key and, as a result of the

ECDH exchange, a shared secret is obtained by both

parties. From that shared secret both parties derive a

session key to feed the AES ciphers and start a secure

communication using symmetric encryption.

To visualise the explained procedures, a live Wireshark

capture of the process will be shown. This will allow to

observe the public exchange of keys corresponding to

the ECDH exchange and the subsequent communication

using the key derived from the exchange for the com-

munication between the gateway and the lamp secured

using 128-bits AES symmetric encryption.

III. CONCLUSION AND FUTURE WORK

Elliptic Curve Cryptography is a noteworthy alterna-

tive as a public-key cryptography scheme for the WSN.

We show that it is feasible to use this scheme in sensor

networks and that it provides a strong security scheme

for establishing secure communications between devices.

Furthermore, we present with this demonstration that our

solution is already in industry as a fully working solution

for key establishment.

To add flexibility and usability of the ECC, out-of-

the-box integration with established security standards

such as the Internet Key Exchange protocol (IKE) or

Datagram Transport Layer Security (DTLS) are a pos-

sible next step. These implementations, provided with

BSD licenses such as the implemented ECC library,

would help to increase the use of this security scheme

with all its benefits. We also plan to compare our ECC

implementation with other ECC implementations for

constrained devices such as TinyECC and MoTE-ECC.
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Email: {pedro.salgueiro,tcalcada,ee12256,ee10158}@fe.up.pt,

tcondeixa@veniamworks.com,cpp@fe.up.pt,susana@ua.pt,{anaa,jbarros}@fe.up.pt

Abstract—In the UrbanSense platform developed in the Future
Cities Project, sensing devices based on the open-source Rasp-
berry Pi platform were sparsely distributed across the city to
measure environmental parameters. The data gathered by the
sensors needs to be transferred to the cloud, preferably taking
advantage of the existent local infrastructures. This work presents
a proof-of-concept of a system that will use Porto’s vehicular
network, composed by over 600 vehicles, to transfer sensor
samples from the sensing devices of the UrbanSense platform to
a cloud server, in a Delay Tolerant Networking (DTN) fashion.
During the demo, we will show data being collected by a moving
vehicle and later delivered to a server in the cloud.

I. INTRODUCTION

In recent years, pervasive monitoring became possible by

the development of small sensing devices with communication

capabilities. One of the major challenges in such large-scale

sensing platforms is to perform low-cost aggregation of the

collected data at a central database. Solutions such as cellular

networks or physical wiring to all sensors may be impractical

or costly when compared with data benefits. A purposely-

built M2M solution ([1], [2]) would require considerable

investment, whereas our implementation takes advantage of

an already-deployed, cost-free platform.

An low-cost alternative is provided by vehicular networks.

With the Future Cities project [3], the vehicles of Porto’s

public transportation and municipal services systems have

become equipped with wireless communication technologies,

creating an operational vehicular network. This set of vehicles

covers a significant area of the city on a daily basis, creating

numerous opportunities to collect the data acquired by sensors

and deliver it to a cloud server. Such strategy is known as Data
muling, a case of Delay Tolerant Networking (DTN) [4].

The UrbanSense platform proposes to bring together these

two realities, pervasive urban sensing and data muling, in

order to support large scale data gathering from fixed urban

sensors and aggregation at a cloud-based server. A number

of processing devices equipped with environmental sensors

and WiFi interface are being deployed at several strategic

This work was partially funded by three research projects: SenseBusNet
(PEst-OE/EEI/LA0008/2013), I-City for Future Mobility (NORTE-07-0124-
FEDER-000064), and FP7 - Future Cities (FP7-REGPOT-2012-2013-1). The
authors would like to thank the Municipality of Porto for the logistic support,
and Porto Digital for providing fiber connection to the RSU.

Fig. 1. Sensing device deployed in R. Damião de Góis, Porto, Portugal.
UrbanSense sensing devices are processing devices (Raspberry Pi) equipped
with environmental sensors (wind direction and speed, rain, solar radiation,
luminosity, humidity, temperature, noise) and a IEEE 802.11b/g/n interface.

locations of the city of Porto. Their data is collected at a

cloud-based database server. Fig. 1 shows one of such units

that was deployed at the margin of an important artery of the

city where buses of the vehicular network pass by regularly.

This demo shows a proof-of-concept scenario that includes one

sensor, one mule and one infra-structured node that collects

data from the mule and delivers it to the cloud database.

II. DATA COLLECTION ARCHITECTURE

There are three main elements in this sensing and com-

munication system: (i) the sensing devices, (ii) the vehicular

network, and (iii) the cloud-based server. Fig. 2 presents the

elements of the architecture, and the data and control messages

exchanged between them.

The sensing devices are processing devices (Raspberry Pi)

equipped with environmental sensors and a IEEE 802.11b/g/n

Vehicular Network UrbanSense
Cloud

UrbanSense
Sense Unit

Road Side
Unit

Local 
Database

DTN

Hotspot

FutureCities 
Database

Sensors Data 

Application Ack

DTN

OnBoardUnit

OnBoardUnit

Fig. 2. Global perspective of the architecture. Data is gathered and locally
stored by the sensing devices, transmitted through the vehicular network, and
delivered to a server in the cloud. The acknowledgements are generated by the
server and transmitted through the vehicular network to the sensing devices,
so they can delete the local data already received in the server.



Sense Unit Road Side Unit

On-Board Unit

Fig. 3. Path travelled for measurements.

interface, which are encapsulated in hermetic casing and

deployed at the sites of interest. They have a local database

that stores the data collected by the sensors.

The vehicular network is composed of two types of ele-

ments: mobile and static nodes. The mobile nodes, in the

form of buses and garbage-collection trucks, are equipped

with a communicating device called On-Board Unit (OBU)

that has IEEE 802.11b/g/n and 802.11p interfaces [5], provid-

ing the vehicles with wireless networking capabilities. These

mobile units communicate with the sensing devices via IEEE

802.11b/g/n interface (WiFi). The static nodes of the vehicular

network are infrastructure devices called Road Side Units

(RSU). These equipments have high-speed connection to the

Internet and communicate with the mobile nodes via the IEEE

802.11p interface. They bridge the communication between the

vehicular network and the cloud-based UrbanSense server.

The cloud UrbanSense database server receives, acknowl-

edges and stores the data collected by all sensing devices.

III. PROOF-OF-CONCEPT

A. Implementation

This architecture was tested in a real-world scenario. For

this purpose, we had to create software modules at the end-

points (the sensing devices and the cloud-based server) to

manage the end-to-end communication, and integrate it with

a software implementation that provides support for DTN

communication over all elements of the architecture.

Regarding the DTN requirements of this architecture, we

chose the bundle protocol specified in RFC 5050 [6]. The

bundle protocol defines a number of services and primitives

tailored specifically to handle the opportunistic nature and

long delays that are inherent to Delay Tolerant Networks. The

protocol was designed as a layer in the network stack that sits

between the network and application layer, the bundle layer.
The datagrams exchanged at this layer are named bundles. We

used a specific implementation of the bundle protocol, the open

source implementation IBR-DTN [7]. The IBR-DTN software

package was installed in all elements of the architecture:

sensing devices, OBUs, RSUs and server.

The communication module at the sensing device constantly

searches for opportunistic connections to passing OBUs. If de-

tected, it fetches sensor data from the local database and stores

it into a bundle, which then delivers to the bundle layer. The

information about which data was sent is locally stored. Upon

reception of an acknowledgement of the previously sent data,

0 1000 2000 3000 4000 5000 6000
0

50

100

150

200

250

300

Bundle sending time (seconds since experiment start)

D
el

ay
 (s

)

Fig. 4. End-to-end delay measurements.

the sensing device deletes that data from the local database.

The communication module at the cloud-based server is in

charge of receiving and processing the bundles received from

the bundle layer, storing them in the global database, and sends

acknowledgements to the sensing device that originated the

data via the bundle layer.

B. Tests

The proof-of-concept tests were conducted using a sensing

device installed at Rua Damião de Góis and a personal vehicle,

that was fitted with one OBU. The vehicle performed an

itinerary that involved passing by the sensing device, giving

the opportunity to establish a connection to the OBU, and

continued to a nearby RSU, located at Praça do Marquês de

Pombal. This path is depicted in Fig. 3.

This itinerary was made multiple times, over a period of

time of 5565 seconds (apr. 93 minutes). There were 11 contacts

between the sensing device and the OBU. In total, 250 bundles

were transferred, corresponding to 145.85 kilobytes of sensor

data. All data bundles successfully arrived to the cloud server.

Fig. 4 shows the delay experienced while transmitting the

bundles during the test. The minimum, mean and maximum

bundle delays were 27 s, 140 s and 257 s, respectively. This

shows that the roads traffic conditions are determinant to

bundles delay. All data samples created during the tests were

transmitted at the first transmission attempt.

IV. CONCLUSIONS

This work presents an architecture to use vehicles as mules

for data gathered by environmental sensors deployed in the

city. Our proof-of-concept has shown the reliability of the

system and how delay is dependent on road traffic.
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Abstract—In this demo abstract we present ProFuN TG (Task
Graph), a tool for sensor network application development using
the data-�ow programming paradigm. The tool has support for
the whole lifecycle of WSN application: from the initial design
of its task graph, task placement on network nodes, execution
in a simulated environment, deployment on real hardware, to
its automated maintenance through task remapping. ProFuN TG
allows to program applications that incorporate quality-of-service
requirements, expressed through constraints on task-to-task data
�ows.

I. INTRODUCTION

Programming wireless sensor network applications is dif�-

cult, especially if certain reliability and data quality properties

are desired together with energy ef�ciency.

We take an existing WSN programming methodology, the

Abstract Task Graph [1], and implement it in ProFuN Task

Graph 1 , a tool that facilitates the development of such appli-

cations. ProFuN TG not only allows the user to describe the

functionality of an application with a task graph, but also to

incorporate non-functional requirements [2] in that description.

The requirements are expressed in form of probabilistic con-

straints on minimal packet delivery rate (PDR) and delivery

delay, and set on data �ows between tasks. The tool allows

users both to use prede�ned tasks from a palette and to write

their own tasks in C or SEAL programming languages.

The tool includes support for mapping these task graphs

on network nodes, for macrocompilation of their code, and

for their deployment both in simulated and real networks.

The supporting run-time middleware gathers application per-

formance statistics and determines whether the conditions of

the constraints hold, enabling maintenance alert noti�cations,

as well as automated maintenance through task remapping.

II. ARCHITECTURE

Under the hood, ProFuN TG uses a number of well-known

software tools and libraries: Contiki for system-level func-

tionality, Cooja for network simulation, Gecode for constraint

solving (used in the task allocation algorithm). For the visual

frontend, an adapted version of Node-RED is employed.

ProFuN TG joins these components in a distributed mi-

croservice architecture (Fig. 1). The components communicate

1http://parapluu.github.io/profun/
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Fig. 1: Architectural overview

by passing JSON messages through HTTP, with the exception

of WSN middleware, which uses an ef�cient binary format.

The tool provides an HTTP interface for data export in

JSON format. Through it, custom or third-party tools can

access the data, provide feedback for ProFuN TG , and impose

dynamic constraints on the task mapping algorithm. In our

demo setup we are going to use a custom principal component

analysis (PCA) tool that detects sensor faults by learning

acceptable sensor covariance bounds from past datasets.

ProFuN TG task sheet view (Fig. 2a) shows the task graph

of a sample application. Network view (Fig. 2b) shows node

placement in the network and tasks mapped on the nodes.

III. APPLICATION EXAMPLE

To explain the typical user work�ow with the tool, let us

take an example application that uses temperature sensors and



(a) Task graph view. Shows sensor, actuator, and processing tasks con-
nected with data �ows. On some of �ows, PDR constraints are con�gured

(b) Network view. Shows sensing and actuating nodes (as blue and
red circles, respectively) connected with network links (grey lines), and
mapped tasks (rectangles) connected with data �ows (black arrows)

Fig. 2: The visual interface of ProFuN TG showing a heater control application with �re detection

heater actuators to a maintain stable temperature in a number

of rooms. The tool allows the user to:

• Create a task graph model for the application. The model

consists of two tasks connected with a data �ow.

• Set a constraint for minimally required PDR on the �ow.

• Describe the model of the network: node locations, capabili-

ties, and links between nodes. Probabilistic parameters such

as link delay are described by probability distributions. In

absence of explicit con�guration, link existence and quality

parameters are estimated by the simulator.

• Partition the network into regions (rooms) and con�gure

task allocation frequency: one-pair-per-room.

Subsequently, the tool:

• Maps the tasks on network nodes, taking into account the

network model, with the objective to minimize energy usage

and satisfy the PDR constraints.

• If desired, simulates the setup to see if the constraints hold

in the simulation environment.

• Deploys the task graph on a real WSN.

• Continuously tests for satisfaction of the constraints and

requests task remapping when the test fails.

IV. DEMO SETUP

We plan to demonstrate a fault-tolerant light-sensing appli-

cation developed with the tool.

The setup is going to consist of a laptop and a number

of sensor nodes equipped with light sensors. On the laptop,

ProFuN TG will be running, and the measured light intensity

will be displayed. Light sensing and data collection tasks will

be activated on the nodes.

Interested attendees are going to be invited to try to “break”

the application by covering some of the light sensors and

turning off some of the nodes, while the system is expected

to demonstrate robustness by ignoring readings of the affected

sensors and reallocating tasks to a different set of nodes.

V. CONCLUDING REMARKS

ProFuN TG enables design of data quality requirement-

aware task graph applications by allowing the user to write

PDR and delay constraints on data �ows between tasks.

The tool also enables deployment and maintenance of these

applications by providing middleware that checks for faults at

runtime and triggers reallocation in case a violation is detected.

A major dif�culty for the tool to provide quality-of-service

guarantees is caused by the fact that the inherent unreliability

of wireless communications makes it hard to predict the

performance of an application before actually deploying it.

To make the runtime system more predictable, advanced link-

layer protocols such as Glossy [3] should be used instead of

the current Contiki network stack.
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Abstract—In this demo, a radio interferometry based indoor 
object tracking will be demonstrated. The system consists of 
several infrastructure nodes in fixed and known positions and the 
tracked objects are equipped with the same type of devices. The 
tracking method does not require special hardware components, 
only the onboard radio chips. The experiment is performed on 
low-end devices utilizing distributed phase difference calculation 
and the real-time tracking results can be seen on the host 
computer. 

I. INTRODUCTION 

Nowadays tracking and localization services are important 
building blocks of several application e.g. surveillance, supply 
chain management or robot control. While outdoors several 
well-known and widely used systems exists (e.g. GPS), 
indoors a large variety of competitive methods try to offer 
reliable positioning and tracking. Some of the possible 
solutions utilize radio interferometry, which do not require 
special or expensive hardware elements, but use only the 
onboard radio modules of the sensor nodes. The accuracy of 
the radio interferometric localization and tracking can be in 
the range of a few centimeters. 

In this real-time application an indoor radio interferometric 
object tracking will be demonstrated, based on the Radio 
Interferometric Object Trajectory Estimation [1]. 

II. RADIO INTERFEROMETRIC MEASUREMENT 

The basic radio interferometric measurement was designed to 
provide a low cost alternative for localization and tracking in 
sensor networks [2], utilizing the inexpensive onboard radio 
modules on the nodes. Instead of high frequency signal 
processing, radio interferometry performs low-frequency 
processing of the interference signal. The operation of the 
basic radio interferometric measurement can be seen in Fig. 1. 
Two devices (A and B) are transmitting carrier waves at 
almost the same frequency , thus generating an 
interference signal with a low-frequency envelope, where the 
beat frequency is . This low-frequency beat 
signal is the actual receive signal strength (RSS) which can be 
measured with most RF receivers.  

By recording the RSS signals, detected by the two receivers 
(C and D), the phase difference  between the two signals can 
be measured.  

 
This research was supported by the Hungarian Government and the 

European Union and co-financed by the European Social Fund under project 
TÁMOP-4.2.2.C-11/1/KONV-2012-0004. 

Using the measured phase difference , the following 
relationship holds for the distances between the four nodes [2]:  

  (1) 

where c is the speed of light, and the distance notations are 
shown in Fig. 1. Note that if the position of three nodes is 
known then in (1) only two unknown ranges remain. Also 
notice the modulus operator in (1), resulting in a phase 
ambiguity problem. In order to calculate the unknown ranges 
multiple measurements are necessary [1], [2]. 

III. RADIO INTERFEROMETRIC TRACKING 

A. Infrastructure 

In the demonstration one moving node will be tracked, and 
fixed infrastructure nodes at known locations will be utilized 
to perform the measurements. To provide redundant 
measurements, in the demo four infrastructure nodes will be 
utilized, each of which can be either receiver or transmitter. In 
each measurement configurations three of the infrastructure 
nodes will be active (two transmitters and one receiver), and 
the tracked device will play the role of a receiver. Using four 
infrastructure nodes, 12 possible configurations are possible, 
as shown in Fig.2. The operation of the measurement is 
illustrated in Fig. 3. In step (a) the base station broadcasts a 
synchronization and measurement configuration command. 
Based upon the received configuration command, in step (b) 

-
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Fig. 1.  Radio interferometric phase measurement 

Config A B C D X 

C1 T T R  R 

C2 T R T  R 

C3 T R  T R 

C4 R T T  R 

C5 R T  T R 

C6 R  T T R 

C7 T T  R R 

…      

C12  R T T R 

Fig. 2.  The 12 possible configurations in the demo infrastructure, where 
four infrastructure nodes (A, B, C, D) and one tracked node (X) are 

utilized. 



nodes start operating in their designated roles as transmitters 
or receivers, and perform synchronized phase measurements. 
The results are transmitted back to the base station in step (c).  

B. Object tracking 

For sake of simplicity the method is discussed in 2D. In 
each measurement round (i.e. measurements in the 12 possible 
configurations) the phase differences are collected and a 
confidence map is created over the possible locations of the 
tracked object [1]. A confidence map is shown in Fig. 4, 
where blue peaks show locations where the tracked object can 
be with high confidence, and red areas shows unlikely 
locations. Due to the phase ambiguity problem of (1), the 
confidence map contains multiple possible solutions: one 
solution corresponds to the true location, the other solutions 
are phantoms. As the tracked object moves, the peaks on the 
confidence map shift, following the movement of the object. 
The true solution follows the object along its trajectory, while 
the phantoms eventually disappear. Thus the method can be 
used in two operating modes: (i) after sufficiently long track 
record the full trajectory can be determined (retrospectively), or 
(ii) the track can be followed, if the initial position is known.  

IV. DEPLOYMENT 

A. Hardware 

The node used in the demonstration can be seen in Fig. 5. 
These special dual-radio nodes are based on Atmel’s 
ATmega128RFA1 microcontroller and transceiver. The RFA1 
radio is used to transmit measurement results, start commands, 
and setup messages. The node also features another radio chip 
(Silicon Labs Si4432), which has the ability of fine tuning the 
transmission frequency. This feature makes the chip suitable for 
radio interference based tracking, where the two transmission 
frequencies should nearly be the same. This radio is used to 
perform the interferometric measurements in the 868MHz ISM 
frequency band. Before the measurements transmission 
frequencies are calibrated on one of the devices for each 
transmitter pairs. RSSI values were recorded with sampling 
frequency of 62.5kHz. Synchronized receivers perform 
frequency and phase difference measurements, using the stored 
RSSI data with length of approximately 8ms.  

B. Demo scenario 

In the demo application the four infrastructure devices are 
placed on tripods, approx. 1.5m above ground, while the 
tracked device can be carried in hand. The movement of the 
node should be performed in the area bounded by the four 
infrastructure nodes for proper tracking. 

The phase measurements are controlled by the host 
computer utilizing a base node as a bridge device, as shown in 
Fig 3. The real-time tracking results with the confidence maps 
can be seen on the laptop screen. 

V. CONCLUSION 

A sensor fusion algorithm for radio interferometric tracking was 
demonstrated. The algorithm utilizes redundant phase 
measurements to estimate the position of the tracked device. The 
method is able the track objects with known initial positions in 
real time, or can determine the full track of an object 
retrospectively. As opposed to earlier solutions [2], the phase 
ambiguity problem is resolved by redundant and sequential 
measurements, allowing real-time tracking. The accuracy of the 
tracking method is in the range of 5-15 centimeters. 
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 (a)  (b) (c) 

Fig. 3.  Measurement steps for measuring phase differences: (a) broadcast 
of measurement and synchronization command, (b) data collection and 

phase estimation, (c) transmission of measurement results 

Fig.  4. Calculated confidence maps (left) in two positions along the trajectory
of the tracked object. The shift in the confidence map can be seen, as the
object moved about 250 millimeters. Red and blue colors in the maps
correspond to high and low confidence values, respectively. The peak
positions, identifying possible locations are shown in the right hand side,
arrows showing the direction and size of the shift between the two positions.
Red and blue dots identify true and phantom positions, respectively. Fig. 5.  A measurement device with dual-radios used in the demonstration 
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Abstract—Many applications require deployments of thou-
sands of sensors per square meter with high sampling rates to
observe specific phenomena of interest. We proposed XDense
as a wired mesh grid sensor network architecture tailored for
scenarios that can benefit from such a deployment. We evaluated
and validated the XDense model together with its application
specific potentials through extensive simulations. In this paper,
we discuss the practical implementation issues of XDense and the
steps for its experimental validation. Using an emulation setup,
we demonstrate and evaluate XDense potentials practically, and
show the results using a supervisory system.

I. INTRODUCTION

In order to observe a phenomena of interest, numerous

applications rely on extremely dense deployments of sen-

sor networks (SN) to achieve very high spatial resolution,

likewise high temporal resolutions is also desirable. Such

sensors can be of different natures, and some applications

may require deployments as dense as hundreds to thousands

of units per square meter. For example, artificial skins for

robotics, biomedical devices, such as electroencephalographs

and brain implantable retinal prosthesis. Fluid dynamics is

another potential application field which has tight spatial and

temporal sensing requirements, specially if closed control

loops are desirable, for example, for active flow control on

aircrafts [1]. For such dense deployments, sensor network

technology faces scalability issues in some key aspects as such

as cost, communication time, interconnectivity, processing

time, power, and reliability.

We proposed XDense to alleviate these issues [2]. XDense

has a wired mesh grid network of sensors and actuators

that resembles Network-on-Chip topologies and is tailored to

address the challenges of extremely dense sensor deployments.

It enables efficient data extraction of observed phenomena,

without the need of collecting the data from each individual

node centrally. It allows the user to program each node, to

exploit their computational power, with distributed algorithms,

in order to decrease communication load and response time.

The XDense architecture is presented in Figure 1(a), with its

details summarized underneath.

Similar deployments are found in literature [3], but authors

utilize different approaches for communication, such as shared

medium or sensors multiplexing, limiting scalability and dis-

tributed processing opportunities.

We first conceptualized XDense and present preliminary

simulation results in [4]. More recently, extensive simulation

results were performed and presented in [2]. We shown two

(a) (b) (c)

Fig. 1. Overview of XDense architecture (a): An example 5×5 network
with one sink in the center; (b) Node pinout: one full-duplex port in each
direction; (c) Node’s model architecture: a software/application layer (μC),
and the hardware layer, which includes the switch (Sw), the net-device (ND)
and the sensor (S)

different algorithms for efficient data extraction of a network

of 101×101 sensors and one sink. Both results provided

greater understanding of the network principle of operation,

and evaluated, with simulations, the potential gains offered.

II. SYSTEMS REQUIREMENTS

Although we have developed extensive simulations, a hard-

ware solution is desirable to validate and consolidate our

model’s feasibility in real application scenarios. In this sense,

the hardware platform must fulfill some basic performance and

cost requirements: 1) Simplicity: Nodes should be simple

in terms of hardware and software, for enabling cost effec-

tive deployments with miniaturized nodes. 2) Performance:

The controller should allow fast enough communication links

and processing with respect to the application requirements.

3) Communication ports: Our sensor node requires at least four

serial ports, one for each direction. An extra port is desirable

for debugging proposes, or for an external link to a supervisory

system; 4) Sensors/actuators: The attachment of any kind of

sensing or actuation should be possible through the available

interfaces. 5) Power consumption: Node’s should be energy

efficient due to the density of deployment, and its impact on

the overall system power consumption.
Usually, for realising the above, a custom design integrated

circuit (IC) obviously provides the best-fit solution. But,

this reduces design flexibility and might become a single-

application solution. It is desirable to have a hardware platform

and software framework that is flexible enough to allow cus-

tomization of applications to a variety of scenarios. Moreover,

the overhead of development and initial costs of production of

a custom design IC is prohibitive.

III. SYSTEMS BUILDING

Keeping these requirements in mind, and other practical

aspects, we use COTS to prototype XDense. With the require-
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Fig. 2. XDense sensor node schematic and prototype. Figure (a), the node’s
schematic shows each of major components of the system. Dotted lines are
actually headers for external connections. Others are on-board components,
like the LED’s, the IrDA transceiver and the temperature (T), pressure (P),
light (L) and acceleration (A) sensors. (b) and (c) shows the top and bottom
side of the PCB respectively.

ments stated in the previous section, we are also restricted

to a limited number of candidate μCs, especially concerning

the number of high-speed serial ports available. Availability

of Direct Memory Access (DMA) is also desirable, to reduce

processing time spent on communication.

Our choice, the Atmel IC ATSAM4N8A, is based on the

32-bit ARM Cortex-M4 RISC processor, a mid-range general

purpose μC. It runs at up to 100 MHz and has a good balance

between power consumption and processing power. It has

a small 48-pin footprint, with five high speed serial ports

(one USART and four UART ports), and 23 DMA channels

that allows efficient communication and sensor reading. With

a digital signal processing extensions (DSP) and floating

point unit (FPU) co-processor, the IC chosen has enough

computational power to allow us to demonstrate the benefits

of distributed processing.

The prototype node is shown in Figure 2 with the detailed

explanation of each of the main components seen in the board.

We placed four different sensors on the top of the board for

sensing: a 3-axis accelerometer (A), a pressure sensor (P), a

temperature (T), and a visual-range light sensor (L). Along

with this, for actuation, we have four RGB LEDs to transduce

sensed values to colors, and represent any kind of distributed

actuation for debugging proposes.

Given the above requirements and design considerations,

constructing an XDense node is an iterative process involving

two distinct steps [5]: 1) system conception, manufacturing

and assembly, and 2) initial software setup and device driver

development. The details of the steps are given below.

1) System conception, manufacturing and assembly Circuit

schematic definition and pin-to-peripheral mapping; Place-

ment of the components and routing of the printed circuit

board (PCB); PCB manufacturing and testing; Power supply

assembly and tests; Assembly of the remaining components

and tests; 2) Initial software setup, and device driver de-

velopment Setup the initialization routines of the μC and

programming/debugging interfaces; Development and opera-

tionalization the drivers of internal and external peripherals;

Development of unit tests to each peripheral; Implementation

of a bootloader, to allow in-network programming.

We then started porting our protocol model, previously de-

veloped with the ns-3 simulator, to our μC. Some abstractions

of the model, such as the net-device and sensor components,

are translated into device drivers that interact with the actual

hardware peripherals. The switch and packet processor are

implemented in software as part of the communication stack.

Algorithms for data processing and feature detection and

extraction are also implemented in software, but in a modular

fashion, to allow easy re-programming.

The FreeRTOS real-time operating system is used. It pro-

vides drivers for asynchronous communication, and some

additional abstractions desired such as multi tasking, and tools

for timing analysis and predictability.

IV. CURRENT STATUS AND NEXT STEPS

Before performing real-life experiments, a basic testbed

is required to validate our assumptions using a restricted

application scenario. For this purpose, we have built a simple

3×3 XDense network. Our first experiment at analyzing this

architecture will be to use the light sensor to demonstrate

distributed data processing capabilities. The results will be

compared with our previous simulation results in [2]. We

project controlled light source on the deployment using a video

projector. This can be artificial computer generated data or

representational data from a natural phenomena.

This input will involve gradients and geometric shapes to

test distributed data processing algorithms for data aggregation

and edge detection. Comparison of input data with data ac-

quired will allow us to comment on granularity of results, data

consistency and network performance for different scenarios.

This results will be shown using a supervisory user interface

running on a PC, wirelessly connected to the sink. With this

demonstration, we will be able to validate and iterate through

our implementation. This feasibility study will allow us to

then proceed with testing XDense in some of the real-life

application scenarios we have talked about [2].
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Abstract—This demonstration presents a set of services for
streamlined experimental evaluation and benchmarking of RF-
based indoor localization algorithms using previously collected
raw measurements. The platform consists of an online service for
storing and managing raw indoor localization data collected in a
set of extensive experiments. The platform also integrates a cloud-
based service for calculation of a standardized set of metrics for
characterizing the performance of indoor localization algorithms.
To simplify the access to the above services, we also offer a set
of Software Development Kits (SDKs) for their use from Python
and MATLAB. Experimenters are able to “link” the platform to
their indoor localization algorithms, use previously collected data
to evaluate the performance of their algorithms and calculate a
set of metrics for characterizing their performance.

I. INTRODUCTION

Indoor localization algorithms are usually benchmarked in

different environments and scenarios, mostly using different

hardware. Thus, even with the usage of a standardized set of

metrics the results from experimental valuation are not easily

comparable. In addition, experimental benchmarking of indoor

localization algorithms is labor, time and cost expensive.

Within the EVARILOS project [1], we address these draw-

backs by providing a set of online services for experimental

benchmarking of Radio Frequency (RF)-based indoor localiza-

tion algorithms without the overhead of running real measure-

ment campaigns. Any algorithm can be evaluated and com-

pared with other ones by running it on exactly the same raw

datasets, where the raw data is a typical low-level input to RF-

based localization algorithms like Received Signal Strength

Indicator (RSSI), Time of Arrival (ToA), etc. The focus on raw

input data differentiates our approach from the one taken in

related efforts like VirTIL [2], which exports already processed

range (distance) values as the basic datum. For the purpose of

virtual evaluation we provide two online services: a service

for access and management of database of raw localization

data collected in extensive measurement campaigns and a

service for calculation of an extensive set of metrics for char-

acterizing the performance of indoor localization algorithms.

The platform also includes two SDKs, for the Python and

MATLAB programming languages, providing functions for

easy interaction with the above introduced services.

II. PLATFORM OVERVIEW

The overview of the platform is given in Figure 1. The

service for managing the raw data is responsible for storing

and making available measurement datasets collected in exper-

imental campaigns. A detailed description of the service and

its functions is given in [3]. The measurements are stored to-

gether with the locations where they are taken, annotated with

the locations of the transmitting devices, metadata describing

the environment and hardware used for the collection. The

service provides a publicly available Application Programming

Interface (API) for managing the stored data, where the user

can “browse” the stored datasets and select the desired one.

We further provide the visualization tool that enables users

to easily visualize the collected information stored in the

provided measurement collections.

Fig. 1. Overview of the platform

The platform further consists of a set of software SDKs

developed for Python and MATLAB programming languages,

which are selected because they are widely used for prototyp-

ing various kinds of software algorithms, including those for

indoor localization. The user can use the wrappers to fetch

the desired measurements through a single function call. The

user is then able to input the fetched data to the algorithm to

be evaluated. The output of the algorithm, i.e. the estimated

location can, together with the ground-truth coordinate where

the measurement was taken, be sent to a cloud service for

calculation of the performance metrics using a single function

call provided by the wrappers. In that way, the user is able

to easily evaluate the performance of its algorithm, using the

experimentally collected data as the input and receiving a set



of standardized metrics as the output of the procedure [4].

A snapshot of the raw data is given with Listing 1. The

data consists of RSSI measurements, accompanying metadata

(timestamp, transmitter ID, run number, etc.) and locations of

transmitting and receiving devices.

Listing 1. Raw data format
1 {
2 receiver_id: "MacBook Pro",
3 run_nr: 13,
4 timestamp_utc: 1373126790,
5 sender_id: "tplink08",
6 sender_bssid: "64:70:02:3e:aa:11",
7 rssi: -42,
8 channel: "11",
9 receiver_location: {

10 room_label: "FT226",
11 coordinate_z: 9.53,
12 coordinate_y: 1.67,
13 coordinate_x: 23.9},
14 sender_location: {
15 room_label: "FT226",
16 coordinate_z: 10.9,
17 coordinate_y: 0.7,
18 coordinate_x: 31},
19 }

The SDKs wrap the interaction with the cloud service for

the data storage using a simple API shown in Listing 2. Using

the “get_measurements” command, the experimenter is able to

fetch the data from an experiment or a specific measurement.

With the “filtering” command, it is possible to filter the

fetched data based on desired parameters, such as number

of measurements, wireless channel or transmitting device.

Finally, using the “calculate_metrics” call, the experimenter is

able to obtain the standardized set of the performance metrics.

Listing 2. Python API overview

def g e t _ m e a s u r e m e n t s ( d a t a b a s e , e xpe r i men t , measurement ) ;

def f i l t e r i n g ( measurement , num_meas , channe l , s e n d e r ) ;

def c a l c u l a t e _ m e t r i c s ( d a t a ) ;

As the API shows, the platform offers a set of services for

easy “scoping and filtering” this data, so that experimenters

can selectively ask for specific record at a set of location

coordinates and for a given technology and then get this dataset

in an efficient way. This approach, in comparison to plain

“downloading” of measurement traces, offers several benefits.

Experimental raw datasets for evaluation of indoor localization

algorithms can be very large. Especially for “universal” data

sets that can be used for evaluation of different localization

algorithms, the aim is to collect data at high spatial sampling

densities and using diverse hardware equipment. At the same

time, any particular algorithm would likely use only a small

subset of this data in a given evaluation campaign. Approach

of disseminating the whole raw data sets as “downloadable”

files is thus very inefficient and leaves to the user the burden

of finding the nuggets of relevant data from the whole dataset.

The alternative that we offer, an online service for management

of this data, is much more convenient for the users.

III. DEMO DESCRIPTION

In this demonstration we show how the service for stor-

age of the raw data from indoor localization benchmarking

experiments can be accessed and how one can “browse” the

available data collections. We also present the functionalities

of the visualization tool and how it can be used to easily access

the raw data and the metadata related to each data collection.

Finally, we show the fetching and filtering capabilities of the

SDKs for Python and MATLAB, how the data can be used

by a simple WiFi-based fingerprinting algorithm and how the

metrics can be calculated with one function call by interacting

with the online service.

The above features will be shown on the basis of a dataset

collected in the TWIST tesbted [5]. It contains multiple collec-

tions of IEEE 802.11 beacon packets RSSI values from APs

distributed in locations depicted as blue squares in Figure 2.

The dataset also contains collections of beacon packets from

IEEE 802.15.4 nodes deployed on positions depicted with dots.

Fig. 2. Transmitting nodes locations in the testbed

IV. CONCLUSION AND FUTURE WORK

This work demonstrates a set of tools and measurements

collections that can easily be used for experimental bench-

marking of IEEE 802.11 and IEEE 802.15.4 RSSI-based

indoor localization algorithms, without a need for a testbed

and all complexities and costs that usage of testbed introduces.

Future work will be focused on collections of different types

of data, such as Time of Arrival and Angle of Arrival (AoA).
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Abstract—While existing work focuses on the transceiver and
the processing unit to increase the energy efficiency of wireless
sensor nodes, it is missed that peripheral energy consumption
may dominate that of the entire node. Related to Dynamic Voltage
Scaling (DVS), even peripherals’ energy efficiency benefit from
a downscaled voltage level, but different peripherals require
different minimum voltage levels. With this demo we combine
theory and practice to present the implementation of an algorithm
weighing off the benefits of a downscaled voltage level against the
switching overhead, e.g. for calculating an optimal peripheral
voltage schedule.

I. INTRODUCTION

As the dynamic power consumption of CMOS gates shows
a quadratic dependency on the voltage level, DVS helps to
significantly improve the energy efficiency of microelectronic
systems [1]. Hence, several existing DVS approaches [2], [3]
lead to an increase of WSN lifetime. Nevertheless, not only
MCUs but also peripherals like memory devices, sensors, or
actuators benefit from a downscaled voltage level.

Each peripheral hardware device requires a minimum voltage
to be properly operated. The common practice is to statically
configure the lowest peripheral voltage conform to all periph-
eral devices’ voltage requirements. This can be very inefficient,
because most hardware consumes more energy when exposed
to higher voltage. Hence, we seek to exploit a sensor node’s
mechanism to dynamically switch the peripheral voltage.
The crux is that switching the voltage does not come for free.
If it would, one could simply operate every peripheral device
with its minimum required voltage. But switching the voltage
consumes energy as well: The additional time interfacing a
scalable voltage supply prolongs the duty-cycle of a processing
unit, leading to a higher energy consumption.
The concept of incorporating switching cost among power
different radio modes was discussed in [4], but is focussed on
the radio transceiver only. In the following we outline the algo-
rithm introduced in [5] which will be showed in our demo. This
algorithm allows for peripheral voltage scheduling that weighs
off the energetic benefits of switching to a lower peripheral
voltage against the switching overhead without violating the
minimum voltage requirements of active hardware.
Consider a sensor node with a set S of peripheral hardware
devices. In order to assess the benefits of switching to a lower
peripheral voltage before using s ∈ S, we need to know
how much energy is consumed when querying s using the

peripheral voltage v. es(v) depends on the time ts necessary to
query s, the peripheral voltage v, and the accumulated current
Is(v, t) flowing through s as well as through the inactive
peripheral hardware S \ {s}:

es(v) = v

∫ ts

0

Is(v, t) dt (1)

Each s ∈ S has two attributes: 1. a minimum voltage vmin(s)
required to properly operate s, and 2. the energy consumption
es(v) of all peripherals while only s is active, depending on
the peripheral voltage v, see above. Throughout this work, we
assume es(v) to be a monotonically increasing function, i. e.,
that a reduction of the peripheral voltage never results in an
increased energy consumption. For a constant amount C of
energy, the switching overhead, the sensor node can adapt its
peripheral voltage. The sensor node is presented a sequence of
queries denoted by [1, . . . , n], so that the energy consumption
E of a voltage schedule is given by:

E =
n∑

i=1

esi(v(i)) +

n∑

i=2

{
C if v(i− 1) �= v(i),

0 otherwise.
(2)

Our goal is to minimize E, so we call a voltage schedule
optimal if E is minimal. It follows from the monotonicity of
es(v) that an optimal schedule only uses v(i) ∈ {vmin(s) | s ∈
S} = {V1, . . . , Vm} with V1 < . . . < Vm.

II. ALGORITHM

Let us, for a pair of query and voltage (i, Vj), determine the
minimum amount of energy Ei,j necessary to reach it using
a feasible schedule v(1), . . . , v(i) while assuming an infinite
energy consumption for infeasible configurations. For the first
query, we have:

E1,j =

{∞ if Vj < vmin(s1),

es1(Vj) otherwise.
(3)

For 2 ≤ i ≤ n, there is the mandatory energy consumption
esi(Vj) to answer the query i itself, as well as the accumulated
costs for traversing i − 1 preceding configurations. There are
two ways to reach the configuration (i, Vj) with an optimal
energy consumption: Either the peripheral voltage from the
previous query is kept, or it is changed. The former case yields
an additional energy consumption of Ei−1,j . In the latter case

we require the minimum amount of energy Êi−1 to reach the



cheapest feasible predecessor configuration and the additional
costs C for switching the voltage, where Êi−1 = Ei−1,ĵ with
ĵ := argminj Ei−1,j . This yields, for 2 ≤ i ≤ n:

Ei,j =

⎧
⎪⎨

⎪⎩

∞ (i, Vj) is infeasible,

esi(Vj) + Ei−1,j Ei−1,j < Êi−1 + C,

esi(Vj) + Êi−1 + C otherwise.

(4)

We use dynamic programming to efficiently solve the recursion
by determining Ei,· before Ei+1,·; the optimal overall schedule

is that ending in the configuration (n, Vj), where En,j = Ên is
minimal. For a detailed description of the algorithm and some
extensions please refer to [5].

III. IMPLEMENTATION
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Figure 1. Block diagram and a picture of the actual prototype implementation.

Related to the INGA sensor node [6], we use an 8-bit At-
mel ATmega1284p MCU as processing unit. Thus, the low
computational capabilities of this MCU demonstrates that our
approach is sufficiently lightweight for WSN requirements.
Figure 1 shows a picture and a block diagram of the prototype.
Compared to ordinary sensor nodes a voltage scaling module
is connected to the processing unit via I2C-bus. This module
provides a voltage level of 1.8V ≤ v ≤ 3.3V with an 8-
bit resolution to the peripherals. In this case, the overhead of
switching to an arbitrary voltage level is C ≈ 7.76μJ. This
includes the increased active time of the MCU and the voltage
scaling module’s static power dissipation, refer to [3], [5] for
details.
Our prototype’s sensing unit is divided into an analog and
a digital section. The analog section offers the ability of
connecting fully analog sensors to the ADC channels of the
ATmega1284p, while the digital section includes the devices
of Table I. All of them are connected via I2C bus. In order to

Table I. EQUIPPED PERIPHERALS FOR DEMONSTRATION.

Peripheral s Device Description vmin(s) [V]

A ADXL345 Accelerometer 2.000

E AT24C08C EEPROM 1.800

P BMP085 Pressure Sensor 1.800

G L3G4200D Gyroscope 2.400

M MAG3110 Magnetometer 1.950

calculate an optimal schedule, we need information describing
the overall peripheral energy consumption.For this reason, we
added a tiny co-MCU to the prototype, which is able to
concurrently sample the current consumption of the peripherals
(a shunt is used in connection with current sense amplifiers)
and to measure the time (the co-MCU can be triggered by
the ATmega1284p via digital GPIOs). Hence, es(v) can be
measured for any given values of s and v.

IV. EVALUATION

Although the demonstration will give the user already the
chance to optimize custom schedules, the following table
depicts some exemplary schedules to show the general benefit
of our approach. The energy savings are compared against
three classical strategies. CONSTDEFAULT is what happens
when a sensor node has no mechanism to adapt the pe-
ripheral voltage. A constant peripheral voltage of 3.3 V is
kept. CONSTMAXMIN is the trivial strategy that uses the
maximum minimum voltage, i. e., maxs∈S vmin(s), for all
queries. ALWAYSSWITCH always switches the voltage to its
minimum requirement. It ignores the switching overhead.

Table II. SAMPLE SCHEDULES TO SHOW THE BENEFIT OF

PERIPHERALS’ VOLTAGE SCHEDULING COMPARED TO NAIVE APPROACHES.

Energy saved by SCHEDULED compared to

Query Sequence CONSTDEFAULT CONSTMAXMIN ALWAYSSWITCH

AEPGMAEPGM 45.80 % 17.13 % 0.97 %

GAMGAMGAM 46.15 % 17.04 % 0.49 %

GAMPE 46.91 % 18.52 % 1.40 %

GPGPGPGPGP 31.54 % 0.00 % 20.29 %

PAMPE 47.90 % 20.41 % 2.53 %

V. DEMONSTRATION

With a GUI a custom query of peripherals (cf. Table I) can be
created. This query is transferred to the prototype board via
USB. As the implementation follows a fully self-optimizing
approach, the prototype board firstly self-parametrizes the
energy functions es(v) of involved peripherals. Afterwards, the
board executes the optimization algorithm to get the optimal
voltage schedule for the given query. Finally the query is
processed while the optimal schedule is compared against
the trivial voltage strategies as described in the previous
section. For this purpose, the second tiny MCU samples the
current consumption of CONSTDEFAULT, CONSTMAXMIN,
ALWAYSSWITCH and of course SCHEDULED. The results are
send back to the PC, where the GUI displays an oscilloscope
of the current consumptions as well as an analysis of the saved
energy.
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