pd

&
CISTER

Research Centre in

Computing Systems

Journal Paper

|
Worst-Case Traversal Time Analysis of TSN
with Multi-level Preemption

Mubarak Ojewale*
Patrick Meumeu Yomsi*
Borislav Nicolic

*CISTER Research Centre
CISTER-TR-210208

2021

Journal Paper CISTER-TR-210208 Worst-Case Traversal Time Analysis of TSN with Multi-level ...

Worst-Case Traversal Time Analysis of TSN with Multi-level Preemption

Mubarak Ojewale*, Patrick Meumeu Yomsi*, Borislav Nicolic

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP P.Porto)

Rua Dr. Anténio Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: mkaoe@isep.ipp.pt, pmy@isep.ipp.pt, borislav.nikolic@metropolitan.ac.rs

https://www.cister-labs.pt

Abstract

To achieve low latency transmission of time-sensitive flows in Ethernet networks, the IEEE introduced the IEEE
802.1Qbu Standard, which specifies a 1-level preemption scheme for IEEE 802.1 networks. The specification
allows the suspension of a preemptable frame prior to its completion for the speedy transmission of an express
frame; but any other preemptable frame cannot be transmitted before the completion of the already preempted
frame. While this approach improves the performance of express frames, the performance is negatively impacted
in scenarios where the number of express frames is high. Another limitation is the fact that preemptable frames
with timing requirements can suffer long blocking periods due to the non-preemptive service of frames in the
same category. This is irrespective of the individual priority level of each frame.

Recently, a multi-level preemption scheme has been proposed to circumvent these limitations. The work focused
on the feasibility and implementation requirement of such an approach, but a formal analysis of the worst-case
performance guarantees under the proposed scheme was not provided. In this paper, we fill this gap by
presenting the aforementioned analysis of the TSN IEEE 802.1Qbu networks under the multi-level preemption
assumption. Evaluation is performed with a realistic automotive use-case and the results showcase an
improvement of up to 53:07% for preemptable frames with firm timing requirements.

© 2021 CISTER Research Center 1
www.cister-labs.pt

Journal of Systems Architecture 116 (2021) 102079

journal homepage: www.elsevier.com/locate/sysarc

Contents lists available at ScienceDirect

EMBEDDED
SOFTWARE
DESIGN

Journal of Systems Architecture

Check for

Worst-case traversal time analysis of TSN with multi-level preemption et

Mubarak Adetunji Ojewale **, Patrick Meumeu Yomsi ?, Borislav Nikoli¢

2 CISTER Research Centre, ISEP, Polytechnic Institute of Porto, Portugal
b Faculty of Information Technology, Metropolitan University, Serbia

ARTICLE INFO

Keywords:

Frame preemption
Ethernet

Time-sensitive networking
Real-time networks

ABSTRACT

To achieve low latency transmission of time-sensitive flows in Ethernet networks, the IEEE introduced
the IEEE 802.1Qbu Standard, which specifies a 1-level preemption scheme for IEEE 802.1 networks. The
specification allows the suspension of a preemptable frame prior to its completion for the speedy transmission
of an express frame; but any other preemptable frame cannot be transmitted before the completion of the
already preempted frame. While this approach improves the performance of express frames, the performance
is negatively impacted in scenarios where the number of express frames is high. Another limitation is the fact
that preemptable frames with timing requirements can suffer long blocking periods due to the non-preemptive
service of frames in the same category. This is irrespective of the individual priority level of each frame.
Recently, a multi-level preemption scheme has been proposed to circumvent these limitations. The work
focused on the feasibility and implementation requirement of such an approach, but a formal analysis of the
worst-case performance guarantees under the proposed scheme was not provided. In this paper, we fill this
gap by presenting the aforementioned analysis of the TSN IEEE 802.1Qbu networks under the multi-level
preemption assumption. Evaluation is performed with a realistic automotive use-case and the results showcase

an improvement up to 53.07% for preemptable frames with firm timing requirements.

1. Introduction

One of the major requirements of distributed real-time systems
is “real-time communication”, i.e., the ability of data to move on the
underlying network in a reliable and predictable manner. To date, an
entire body of promising solutions have been proposed in literature,
each targeting a set of domain-specific requirements. Few examples of
well-established solutions include the Controller Area Network (CAN)
protocol [1], the Local Interconnect Network (LIN) protocol [2], the
FlexRay protocol [3], and TTEthernet [4] that mainly focus on the au-
tomotive domain; the Avionics Full Duplex Switched Ethernet (AFDX) [5]
that targets the avionic domain; and the so called field buses such as
SERCUS III [6], EtherCAT [7], and PROFINET [8] that address the
industrial domain. Most of these solutions now struggle to keep up
with the growing bandwidth and performance demands of emerging
applications in their respective domains [9]. On another front, with
the convergence of Operation Technology (OT) and Information Tech-
nology (IT) [10,11], yet another challenge has settled on the table,
justifying the need for new communication technologies that would
facilitate the handling of heterogeneous traffic (real-time, non real-
time, long and short frames) on the same network infrastructure. In
this regard, among all the candidate solutions, Ethernet [12] bursts
forth as the leading and most promising replacement for all previous

* Corresponding author.

technologies. This is due to its ability to scale up to the increasingly
stringent timing requirements and distance, as well as its high band-
width capacity [13]. Unfortunately, the legacy Ethernet standards were
originally designed targeting only non real-time applications and desir-
able features for real-time applications like (1) frame preemption [14];
(2) global time synchronization [15]; (3) frame replication and elimina-
tion [16]; (4) path control and reservation [17]; and finally (5) network
configuration [18] among other features were missing. A tremendous
amount of work has been achieved in this direction over the past few
decades and several modifications and/or amendments have been made
to the standards. Ethernet has successfully been enhanced with all the
aforementioned features [19], thus leading to a set of updated standards,
referred to as Time-Sensitive Networking (TSN) [20].

> IEEE 802.1Qbu. The IEEE 802.1Qbu [21] (now merged with the
IEEE 802.1Q-2018 Standard [22]) TSN sub-standard introduces a 1-
level frame preemption feature into the IEEE 802.1 networks. This
allows to temporarily suspend the transmission of a frame prior to its
completion for the speedy transmission of a higher priority frame. This
standard is closely connected to the IEEE 802.3br [14] Standard, which
allows urgent time-critical data frames to split non-critical frames in
transit over a physical link into smaller fragments [23]. Specifically,

E-mail addresses: mkaoe@isep.ipp.pt (M.A. Ojewale), pmy@isep.ipp.pt (P.M. Yomsi), borislav.nikolic@metropolitan.ac.rs (B. Nikoli¢).

https://doi.org/10.1016/j.sysarc.2021.102079

Received 4 August 2020; Received in revised form 10 February 2021; Accepted 26 February 2021

Available online 3 March 2021
1383-7621/© 2021 Elsevier B.V. All rights reserved.

http://www.elsevier.com/locate/sysarc
http://www.elsevier.com/locate/sysarc
mailto:mkaoe@isep.ipp.pt
mailto:pmy@isep.ipp.pt
mailto:borislav.nikolic@metropolitan.ac.rs
https://doi.org/10.1016/j.sysarc.2021.102079
https://doi.org/10.1016/j.sysarc.2021.102079
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2021.102079&domain=pdf

M.A. Ojewale et al.

Journal of Systems Architecture 116 (2021) 102079

f; |
Il eMAC frames
f, | pMAC frames
Preemption overhead
f, | Frame arrivals
t Frame transmission
f, f, 115 f,
Frame
Transmissions 1 -
0 time (t)

Fig. 1. Illustration of the one-level preemption scheme. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

depending on their priority levels and timing requirements, frames are
mapped to two Media Access Control (MAC) Sublayer service interfaces
namely, (1) the “Express MAC” (eMAC) and (2) the “Preemptable MAC”
(pMACQ). Frames mapped to the eMAC and pMAC interfaces are referred
to as the “express frames” and “preemptable frames”, respectively.
These two classes are managed as follows: (1) only express frames can
preempt preemptable frames; and (2) two frames belonging to the same
class cannot preempt each other. Fig. 1 illustrates such a scenario at a
given output node.

In this figure, three frames (f;, f, and f3) are considered for
transmission. Frames f, and f; are eMAC frames (in red colored box),
whereas f, is a pMAC frame (in green colored box). The downward
arrows define the frame arrivals and upward arrows define the time
instant at which the transmission of each frame is completed. Frame f;
arrives first (at time 0) and starts its transmission. However, upon the
arrival of f,, f, is preempted and f, is transmitted. Now during the
transmission of f,, frame f; arrives, but it cannot start its transmission
because f,, which is in the same service category, is being transmitted.
The transmission of f; starts only after the transmission of f, is
completed. Finally, as all the eMAC frames, which arrived after the
preemption of f| have been transmitted, /| can resume its transmission.
As shown in the figure, preemption favors a prompt service of all eMAC
frames, but this comes at the cost of some overheads, unfortunately.
The overheads stem from the fact that fragments of split frames have to
form valid Ethernet frames. As a matter of fact, pieces of information
(e.g., the fragment count, an error correction code to detect whether
all fragments have correctly been transmitted, etc.) must be added to
the fragments of the preempted frame - here, /| — so that the network
nodes can correctly transmit and receive all of them. In addition,
these overheads are used to correctly reconstruct the original frame at
each receiver node. The total overhead associated to the occurrence of
each preemption is equivalent to the time taken to transmit 24 bytes
of data (i.e., 0.19 ps and 1.9 ps, assuming a 1Gb and 100Mb speed
Ethernet, respectively). Experimental studies show that this approach
improves the performance of express frames [9,13]. Specifically, Thiele
and Ernst [9] show that the performance of Standard Ethernet with
frame preemption is comparable to that of IEEE 802.1Qbv [15], thus
making it an interesting alternative.

> IEEE 802.1Qbv. The IEEE 802.1Qbv standard defines a time-
triggered gate control mechanism for TSN flows, using a Time-Aware
Shaper (TAS). Here, each queue at a switch output port has a guaran-
teed transmission slot in a cyclic and pre-computed dispatch schedule
called the Gate Control List (GCL). A frame on a queue can be trans-
mitted only when the gate of the queue is opened at the time period
according to the GCL configuration. Note that each queue contains a
unique class of frames, i.e., frames belonging to different traffic classes
cannot share the same queue. The standard also specifies a so-called
“guard-band” that ensured that the transmission of time-triggered flows
is protected from any interference by other flows. The guard band
is a time-period between the gate-close operation non-time-triggered
queues and the commencement of transmission of time-triggered flows.

The length of this guard band is equal to the time taken to transmit
the largest possible non-time-sensitive frame on the network. While
the guard band ensures that time-triggered traffic are protected from
interference, it results in poor utilization of network bandwidth.

> Comparing IEEE 802.1Qbu and IEEE 802.1Qbv from a qualita-
tive standpoint: Thiele and Ernst [9] noted that a IEEE 802.1Qbu
network is less complex to configure as only two basic steps are re-
quired: (1) the assignment of priorities to flows; and (2) the assignment
of flows to preemption interfaces [24]. Even though this process is
non-trivial [24], it is bearable in comparison to the IEEE 802.1Qbv
configuration. Here, TAS requires finding a suitable schedule for each
flow at each switch output port and this problem has been shown
to be NP-Hard [25], unfortunately. On another front, IEEE 802.1Qbu
solves an issue of IEEE 802.1Qbv. By combining frame preemption
with TAS, optimal bandwidth utilization is possible for non-scheduled
traffic and this enables low-latency communication [23]. Nevertheless,
the IEEE 802.1Qbv standard remains central to TSN. It defines up to
8 queues per port for forwarding traffic and frames are assigned to
queues based on Quality of Service (QoS) priority. The TAS mechanism
blocks all ports except one based on a predefined schedule in order to
prevent delays during scheduled transmission. From an implementation
standpoint, the performance of IEEE 802.1Qbu networks degrades in
scenarios where the number of express frames is high [23]. This is
due to the fact that frames of the same class are transmitted in non-
preemptive manner. As a consequence, there are frames that cannot be
classified as express, but have firm timing requirements. In order not
to jeopardize the schedulability of these frames, and the schedulability
of the entire system subsequently, these frames should not be blocked
for prohibitively long time periods. The 1-level preemption operation in
the current version of the standards does not allow preemptable frames
with firm timing requirements to leverage the basic benefits of enabling
preemption, unfortunately.

To circumvent the limitations of the 1-level preemption scheme, a
multi-level preemption scheme has been proposed [26,27]. This setup
allows for more than two preemption classes and introduces a new
class of flows called time-sensitive preemptable traffic (tpflows), i.e., flows
with firm timing requirements. In this scheme, tpflow frames can be
preempted by express frames and at the same time preempt lower
priority frames to satisfy their timing requirements. Fig. 2 illustrates an
example scenario that compares the improvement in the responsiveness
of tpflows under a 1-level and a 2-level preemption setups. In this fig-
ure, five frames (f}, f>, f3, f4, and fs) are considered for transmission
from a certain switch. All frames traverse in the same direction, so they
compete for transmission from the output port. We assume three types
of frames: (1) frames f, and f, are express frames (in red colored boxes)
with stringent timing constraints; (2) frames f; and f5 are preemptable
frames (in black colored box) with firm timing constraints; and finally,
(3) f, is a preemptable frame with no timing constraint (in green
colored box). In this example, it is assumed that frames with stringent
and firm timing requirements must be transmitted before the arrival of
the next one of the same type. We also assume that f; and f5 have a

M.A. Ojewale et al.

Transmission with 1-level
Preemption

Transmission with 2-level
Preemption

Journal of Systems Architecture 116 (2021) 102079

- eMAC frames

- pMAC frames with timing constraints

- pMAC Frames with no timing constraints

/7] Preemption overhead

v

time (t)

Fig. 2. Frame transmissions under 1-level preemption and 2-level preemption schemes. (For interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)

higher priority than f,. Frame f, arrives first (at time 0) and starts its
transmission, followed by frame f,, and finally f5.

> In the 1-level preemption paradigm: upon the arrival of f,, f; is
preempted since f, is an express frame. Then, upon the completion
of this frame, f, resumes its transmission. This holds true despite the
earlier arrival of f3, which has a higher priority than f,. This situation
is due to the 1-level preemption scheme as preemptable frames cannot
preempt each other, thus exhibiting a priority inversion problem. Conse-
quently, the transmissions of f; and f5 are delayed until the completion
of f,, thereby preventing f; from meeting its timing requirement.

> In the 2-level preemption paradigm: The aforementioned issue is
circumvented. Here, frames f; and f5 received better services. Frame f;
is transmitted right after the completion of f,, and f5 is transmitted
right after the completion of f,. This allows f; to meet its timing
requirement, as well as reduces the completion times of both f; and f5.

Ojewale et al. already provided another example (see [27], Sec-
tion 7) to promote the need for multi-level preemption which will not
be replicated in this paper.

Contribution. A worst-case traversal time (WCTT) analysis for TSN
frames has been conducted in the literature by Thiele and Ernst [9] us-
ing Compositional Performance Analysis (CPA) framework [28]. How-
ever, the authors only considered the traditional 1-level preemption
scheme as defined in the standards. Also, Ojewale et al. [26,27] propose
the multi-level preemption scheme, but do not provide any formal
timing guarantees for frames under such a scheme. In this paper,
we build on top of these studies. We enrich the state of the art by
developing a WCTT analysis of TSN frames, considering a multi-level
preemption scheme. To the best of our knowledge, this is the first
contribution in this direction. According to the TSN IEEE 802.1 Qbu
standard, frame preemption can be implemented with or without the
TSN shapers such as TAS and Credit-Based Shapers (CBS) [29]. In this
work, we choose the latter scenario to focus purely on the evaluation of
multi-level preemption without the added complexity of other protocol
mechanisms.

Paper organization. The rest of the paper is structured as follows.
The model of computation is presented in Section 2 together with key
notations used throughout the paper. Section 3 provides a background
on the CPA approach while Section 4 presents the proposed analysis.
Section 5 contains experimental results from the evaluation of the
proposed analysis, while Section 6 discusses relevant related works.
Finally, Section 7 concludes the paper and presents future research
directions.

2. Model of computation

Network specification. We assume an Ethernet backbone network for
a real-time distributed system. We model the network as a directed

def
graph G = (Y, L), where V is the set of all nodes and L is the set

of all physical links in the network. We assume that every link is
bi-directional; full-duplex; and operates at a single reference speed,
say s > 0. The tuple G is given with the interpretation that: (1) ¥ =

def
EP U SW, where EP = {EP,,EP,, ...} represents the set of all end-points

and SW o {SW,,SW,, ...} the set of all switches. Each EP, (with k > 1)
has a single I/0 port and can receive and send network traffic while
SW consists only of forwarding nodes, each with a finite number of
output ports, through which the traffic is routed. Each SW, (with # > 1)
is enabled with 802.1Qbu capability and decides, based on its internal
routing table, to which output port a received frame will be forwarded.

Traffic specification. We consider a network traffic consisting of a
set ¥ = {f1,f2....f,} of n > 1 flows partitioned into two traffic
classes: the express traffic (denoted by &) and the preemptable traffic
(denoted by P), i.e., F = £ v P. In other words, £ U P = F and
NP = @. Each flow f; € F consists of a potentially infinite number
of frames f’/‘ (with k > 1) and the smaller the subscript of a flow,
the higher its priority. This means that flows with different priorities
follow a total order. All frames generated by a flow inherit its priority.
We assume that the preemptable traffic class is further partitioned
into two disjoint sub-classes referred to as the time-sensitive preemptable
traffic (tpflows), with firm timing requirements (deadlines); and best
effort preemptable traffic (bpflows), with no timing requirements at all.
We denote these two sub-classes as 7P and BP, respectively: P =
TPy BP. Frame f* is the k't frame of f; and is characterized by its
arrival time af.‘ and its payload pf.‘. The size pf.‘ of flow f; is the sum
of its payload and transmission overheads. Throughout this paper, we
assume that the maximum size of any flow is limited to 1518 bytes,
i.e., the maximum Ethernet frame size as defined in the IEEE 802.3
Standard [14]. Every flow f; is also assigned a unique preemption
class CZ(i) that qualifies the set of flows with the same preemption
properties as f;. For convenience, we assume that there are m different
preemption classes in the system (1 denotes the highest preemption
class — comprising only flows in &, then 2, 3, and so on till m > 1, the
lowest one — comprising only flows in BP). Note that C£(i)nCZ(j) = @,
Vi # j and the following rules are enforced.

Ry~ Every flow, say f;, can preempt any other flow, say f;, only if
CZ(i) < C£(j), but flows in C#(j) cannot preempt flows in CZ(i);

R,- Flows in the same preemption class cannot preempt each other
and are transmitted with a strict priority order;

R;— Flows with the same priority are transmitted in a FIFO manner;

R,— Flows with the same priority always belong to the same preemp-
tion class but the converse is not true. In other words, flows with
different priorities can be assigned to the same preemption class
(see Fig. 3).

Finally, for the sake of readability, an overview of notations used
throughout this paper is provided in Table 1.

M.A. Ojewale et al.

Journal of Systems Architecture 116 (2021) 102079

Py

. Ethernet frames

— .
v -
g
=4 m
S o
3 -
=, m
< © 1/0 port
- 3] —
B 3
[d
o im
3 o,
[o
3 S
2
@,
o -
S
- -

Fig. 3. System model: Preemption class vs. priority queues.

Table 1
Overview of key variables.
al Arrival time of the gth frame (f/) of flow f,
BP Set of best-effort preemptable flows
c Maximum time to transmit any frame of f;
C£(i) Set of flows in the same preemption class as f;
5,” (@ Latest/earliest arrival time of f
5 Set of eMAC flows
F* Maximum number of fragments of C;*
hep(i) Set of flows with a higher priority than or equal to f;
HPI, Higher-priority interference suffered by f;
hp(i) Set of flows with a higher priority than f,
Ip(i) Set of flows with a lower priority than f;
LPB, Lower-priority blocking suffered by f; (including express frames)
mWCTT Maximum measured end-to-end delay
;1,”) Maximum/Minimum possible arrivals of a frame of f; within the
period At
pl Maximum/Minimum payload of frames of f;
PB; Blocking suffered by f; due to the transmission of a lower-priority

preemptable frame/frame fragment
PO,(4t,q,a) Preemption overhead incurred by f/

0,(g.a)) Queuing delay of f7

TX Link data transmission rate

SPB; Same-priority blocking suffered by f;

sp(i) Set of all flows with the same priority as f;
TP Set of time-sensitive preemptable flows
WCTT(g.a) Worst-case traversal time of fl."

3. A brief background on CPA

Before we present our proposed WCTT analysis, it is paramount
to provide the reader with a brief background on the CPA approach
for a smooth understanding of the rest of this paper. For a complete
and detailed description of the fundamental concepts, we refer the
interested reader to [28]. In this framework, a component is modeled as
a resource p, which provides some service to one or more tasks. Tasks’
activations are abstracted by an event model, which defines an upper-
bound (denoted by 7% (4r)) and a lower-bound (denoted by 5~ (4r)) on
the number of activations within any half-open time interval [z, + 4f).
This framework also defines a distance function §*(q) (respectively,
67(g)) which denotes an upper-bound (respectively, a lower-bound) on
the maximum (respectively, minimum) time instant at which the g
activation instance can occur [28,30]. Fig. 4 illustrates the event model
of a task with a period and jitter of 50 time units. A jitter of 50 time
units (and equal to the period) implies that two instances can occur
simultaneously (67(2) = 0; 7(0) = 2) or two periods apart (5+(2) = 500;
n~(500) = 0).

The service period of each task, say z;, is bounded by two param-
eters: from above by C; and from below by C;. These parameters

respectively represent the longest and the shortest time it takes the
resource, say p, to service an instance of 7;, in the absence of any
blocking or interference. The worst-case response time (WCRT) of task
7; is investigated within a so-called level-i busy period. In summary,
this is a time interval [o, 4] within which only task instances belonging
to hep(i) (except the first job, which is generated from task z; €
Ip(i) with the longest C]T) are executed throughout [o, i], but no jobs
belonging to hep(i) are executed in [6—¢, o) or (u, u+e] for any arbitrary
small e > 0.

Since the WCRT of 7; may not occur at its first activation, CPA
examines all the ¢ activations of z; within the level-i busy period. To
this end, it defines a g-activation processing time B;(q) which describes
how long the resource p is busy processing g jobs of z;. This is computed
in Eq. (1).

Bi(q) = Qf (@ +C} (€8]

In Eq. (1), note that B;(q) assumes a non-preemptive scheduling scheme.
Here, Qlf’(q) is the time interval from the start of the level-i busy period
to the beginning of service of the gth instance of r;. It is computed as
in Eq. (2).

of@= mux {CHh+@-n-cr+ Y ¢ (@@t @
J €1pG) R
kehp(i)
In Eq. (2), Ip(i) and hp(i) denote the set of tasks with a lower and higher
priority than r;, respectively. The first term computes the maximum
delay that can be experienced due to the presence of a lower priority
task in the system; the second term estimates the delay experienced
due to the processing of all preceding ¢ — 1 instances; and the third
term computes all possible delays due to the service of higher priority
tasks within B;(g). It is worth mentioning that Eq. (2) is reminiscent
of the Worst-Case Response Time estimation for the classical single-
core fixed-priority tasks and it is also solved by using a fixed point
algorithm, i.e., the solution is computed in an iterative manner and
the algorithm stops as soon as two consecutive values of Qj(q) are
equal or when one value exceeds the deadline. In the latter case, the
set of flows is deemed unschedulable. After obtaining Q,.*(q), we can
derive the maximum number of activations qi* of 7; within B;(q) by
using Eq. (3).

g} =min{g > 1| Bi(g) <& (g + 1)} 3

This equation computes the first ¢; instances of z; such that the comple-
tion time of instance g; is less than the earliest arrival time of instance
gi+1- The response time of the ¢'h instance of 7, is given by computing
the difference between the time instant when all the ¢ instances of z;
have been processed and the arrival time of the instance ¢g. Formally,
this is given by Eq. (4).

Rf(9) = Bi(q) - 67 (@) 4

M.A. Ojewale et al.

n(At)
- — — - n*(at)
5 | ——— n'(aAt)
——
1
1
4 1
-F--- o
1
1
1
3 -——— a1
1
< 1
1
2 b4
1
0
0 50 100 150 200
(at)

(a.) An event arrival function.

Journal of Systems Architecture 116 (2021) 102079

* 6*(n)
x 67 (n)
200 *
150 * x
g
100 * x
50 X
0 1 2 3 4 5

n

(b.) An event distance function

Fig. 4. CPA event model for a task with a period and jitter of 50 time units.

Finally, the WCRT le' of 7; is the maximum R?’(q) over all q;" activations
of 7; within the busy window and is computed through Eq. (5).

Rf = max {RH (@)}

1<q<q;

)

So far, we have discussed the worst-case delay at each resource
node, also called the local analysis. Specifically, a rigorous computation
of the maximum possible blocking/interference that a task can suffer is
carried out locally at every resource node. This means that the potential
interference between any two tasks will be effectively captured when
performing the local analysis at the shared resource node. But in many
cases, real-time applications involve interacting tasks sharing different
resources. To evaluate the WCRT of a task in this scenario, the CPA
defines an event propagation step in addition to the local analysis step.
Here, the output of each resource along the execution path of a task
serves as input for the next one and Rj’(q) at the last node is the WCRT
of the task.

The CPA approach has been applied to standard Ethernet [31,32],
AVB [33], and TSN [9,34]. In these works, the output port of the
switches are the resources and flows are tasks. The frames are jobs
or instances of the tasks and the path of a flow is modeled as a
chain of dependent tasks [33]. Specifically, the resources render some
service(s) (transmission) to some task activations (frames) upon some
event occurrence (frame arrivals) within a time window (a level-i busy
period). In this context, the service period of each frame is bounded
by two parameters: from above by C* and from below by C~. These
parameters represent the longest and the shortest time to transmit the
frame in absence of any interference. Obviously, these depend on the
minimum and maximum possible payload p~/* of the flow to which the
frame belongs to as well as the output link speed. Eq. (6) illustrates the
relationship between these parameters.!

42 bytes + max{42 bytes, p~/*}
rTX

In this equation, rT'X represents the transmission speed on the port

link and the constant terms (here, 42) represent the protocol overhead

and minimum frame payload requirement as specified in the Stan-

dards [22]. As shown in Fig. 5, the end-to-end delay that a frame

c/t = (6)

1 The minimum size of a frame is 84 bytes w.r.t. the Standards specification.

experiences in a switch fabric consists of the following five components:
(1) the input delay at the switch input port; (2) the processing delay;
(3) the queuing delay at the switch output port; (4) the propagation
delay; and finally (5) the transmission delay [35]. As pointed out
by Thiele and Ernst [9], all these components are implementation
dependent and usually in the order of a few clock cycles, except for
the queuing delay, which is captured in Eq. (2) and whose components
are illustrated in Fig. 6.

In Fig. 6, frame f/ arrives at time a! during the transmission of a
lower preemption class frame, LP (green box). Before ”?’ frame HP (red
box) of the express class had arrived as well as two other frames SP
(black boxes) with the same priority and preemption class as f;. The
preemption operation commands that a minimum number of bytes has
been transmitted and a number of bytes is left so that the preempted
fragment can meet the minimum size requirement of a valid Ethernet
frame. This brings the highest possible blocking that a preempting
frame can incur to the size of the largest non-preemptable fragment of a
preemptable frame, i.e., 143 bytes of data [9] and explains the transmis-
sion process of LP before it is preempted. Upon the preemption of LP,
HP; all SP frames; and all newly arrived HP frames are transmitted, thus
forcing £/ to be served only afterwards. Note that in the representation
of the frame transmission process in Fig. 6, frames are labeled based on
their contribution to the queuing delay, e.g., the segment of LP that is
transmitted before fiq is labeled as LPB.

In addition to the queuing delay components captured in Eq. (2),
the preemption overhead is yet another term that should be taken
into account. This is not the case in the general CPA model, un-
fortunately [30]. The preemption overhead is a significant factor in
the TSN frame transmission scheme. The total overhead induced by
each preemption is 12 bytes (i.e., 6-byte preamble, 1-byte start frame
delimiter, 1-byte frame count variable; and finally 4-byte error check
variable) [26]. In addition, the Inter Frame Gap (IFG) between two
consecutive transmission has to be accounted for before the next
frame/fragment is transmitted. According to the Standards, the size of
each IFG equals the time it takes to transmit 12 bytes of data. This
brings the total overhead associated to each preemption to 24 bytes [9,
26]. Thiele and Ernst [9] have also proven in that the maximum
number of preemptions that a single frame can suffer is given by Eq. (7).
Eq. (7) provides an upper-bound on the number of times that an

M.A. Ojewale et al.

Journal of Systems Architecture 116 (2021) 102079

Input Buffers
°

Output Queues \

Queueing Transmission| Propagation

Input Processing
Delay Delay Delay

DeIay/ Delay

SR

Fig. 5. End-to-end delay components.

o
=

l Frame arrival time

t Frame completion time

1 % Preemption overhead

Frame transmission EPBI 7% | HPI SPB

% WP % C Y

>

0 : Q(ql aiq)

T >
1

] time(t)

Fig. 6. Queuing delay components. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Ethernet frame can be preempted, due to the restrictions defined in
the standards on the minimum valid frame size.

4
p — 42 bytes
i+ - { i J (7)

60 bytes

In this equation, the constant terms (here, 42 and 60) are the mini-
mum payload requirements for the first and subsequent fragments of a
preemptable frame in the Standards [22]. For every flow f;, its worst-
case traversal time is obtained by combining Egs. (1) and (4). We
note that Eq. (4) does not take into account the preemption overhead.
This computation will be refined to integrate the cost in Section 4.6.
Also, note that the CPA model allows arbitrary deadlines, i.e., there
is no particular correlation between the deadline and the minimal
inter-arrival time of each flow.

4. Proposed approach

In the multi-level preemption scheme, each frame can belong to
only one of the following three categories: (1) can preempt other frames
and is non-preemptable, i.e., cannot be preempted by any other frame,
because it is part of the highest priority class (e.g., express traffic);
(2) can preempt other frames and can also be preempted and finally
(3) cannot preempt other frames and can be preempted by any frame
in categories (1) and (2). We recall the flow classes mentioned in
Section 2: the class of “express flows”; the classes of “preemptable
flows with firm timing requirements” (tpflows) and the class of “best
effort frames” (bpflows). While categories (1) and (4) maps directly
to express and bpflows, respectively, categories (2) map to tpflows.
With this mapping in mind, we have everything we need to discuss the
components of the end-to-end delay of a frame, say f; that arrives at
time af. In a nutshell, there are four components, namely: (1) the lower-
priority blocking — i.e., the delay due to frame(s) with a lower priority
than f;; (2) the same-priority blocking — i.e., the delay due to frame(s)
with the same priority as f;; (3) the higher priority interference - i.e., the
delay associated to frame(s) with a higher priority than f;; and finally,
(4) the preemption overheads, which is the delay due to preemption
overheads.

4.1. Lower-priority blocking

In this section, we derive an upper-bound on the lower-priority
blocking experienced by a frame in each flow class.

4.1.1. Lower-priority blocking for “express flows”

Every express frame can experience the maximum lower-priority
blocking in two scenarios: (i) when it is blocked by the largest lower
priority express frame since frames in the same preemption class are
served in a non-preemptive manner; or (ii) when it is blocked by the
largest non-preemptable fragment of a preemptable frame.? Lemma 1
provides an upper-bound on the blocking due to scenario (ii).

Lemma 1 (PBf). For any express flow f; € &, the maximum blocking
of any frame f} (with ¢ > 1) caused by a preemptable frame is given
by Eg. (8).

PBf = min{ max {CT}, 143 bytes (8)
i jer 7 "TX
—_— ——
(a) ()

Proof. On one side, if all the preemptable frames are shorter than
143 bytes, then the maximum blocking time to any express frame is
caused by the largest of these frames. This is captured by term (a). On
the other side, the longest non-preemptable fragment of any preempt-
able frame is 143 bytes length [9]. This means a maximum blocking
time of % (where rT X is the link speed). This is captured by term
(b). Therefore, a tight upper-bound on the blocking time caused by a
preemptable frame to any express frame /7 (with ¢ > 1) is given by the
minimum between terms (a) and (b), and the lemma follows. []

From Lemma 1, Theorem 1 provides a tight upper-bound on the
lower-priority blocking incurred by any express frame.

2 We recall that any preemptable frame that is less than or equal to
143 bytes in size cannot be preempted.

M.A. Ojewale et al.

Theorem 1 (LPBf). For any express flow f; € &, if Ipf(i) represents
the set of express frames with a priority lower than that of f;, then a tight
upper-bound on the lower-priority blocking to any frame f (with q > 1) is
given by Egq. (9).

LPBf =max{ max {C}}. PBf ©
jeifm LT
—_—

(b)
(a)

Proof. Any express frame f; can suffer lower-priority blocking due
either to the transmission of (1) a lower-priority express frame or
(2) a preemptable frame. In the first case, term (a) captures the largest
blocking time since frames in the same preemption class are served in
a non-preemptive manner. On the other hand, if the blocking is caused
by a preemptable frame, then Lemma 1 provides an upper-bound on the
lower-priority blocking, i.e., PBf (term (b)). Therefore, a tight upper-
bound on the blocking time suffered by any express frame f (with
q > 1) is given by the maximum between terms (a) and (b), and the
theorem follows. []

Note that Egs. (8) and (9) are similar to Equations 5 and 7 in [9].
We explicitly address this behavior in the analysis for the sake of
completeness.

4.1.2. Lower-priority blocking for “tpflows”

Every flow can preempt all flows in a lower preemption class by
design, but the converse is not true. A tpflow is no exception to this
rule. This means that each tpflow frame f,." can be blocked by (i) at
most the largest non-preemptable fragment of any preemptable frame
in a lower preemption class or (ii) a lower-priority frame of the same
preemption class as f;, since frames of the same class are served in a
non-preemptive manner. Lemma 2 computes an upper-bound on the
blocking time incurred by a tpflow frame due to frame(s) in lower
preemption classes.

Lemma 2 (PBiTP). For any flow f; € T P, the maximum blocking time of

any frame f; (with q > 1) caused by a frame of a lower preemption class
is given by Eq. (10).

14
PB”” = min max {Cfr }, 143 bytes (10)
i jetpiyceGy>ceay LI rTX
——

(a) ®

Proof. The proof of Lemma 2 is similar to that of Lemma 1. Given
frame fi", if all the frames in a lower preemption class are shorter than
143 bytes, then the maximum blocking incurred by f is caused by
the largest of these frames. This is captured by term (a). Otherwise,
the longest non-preemptable fragment of any preemptable frame is
143 bytes length [9] and this means a maximum blocking time of
% (where rT X is the link speed). This is captured by term (5).
Therefore, a tight upper-bound on the blocking time caused by a
preemptable frame of a lower preemption class to f; is given by the
minimum between terms (a) and (b), and the lemma follows. []

From Lemma 2, Theorem 2 derives a tight upper-bound on the
lower-priority blocking incurred by any tpflow frame.

Theorem 2 (LPBITP). For any tpflow flow f; € TP, the maximum
lower-priority blocking of any frame f' (with q > 1) is given by Eq. (11).

LPB,.TP=maX{' max el PB,.”’} an
JE)| CEG) = CeG)) _—

(b)

(@)

Journal of Systems Architecture 116 (2021) 102079

Proof. Any tpflow frame f/ can suffer lower-priority blocking either
due to the transmission of (1) a lower-priority frame of the same
preemption class or (2) a frame of a lower preemption class. In the first
case, term (a) captures the largest blocking time that can be caused by
a frame of the same preemption class, since these frames are served in
a non-preemptive manner by design. In the second case, if the blocking
is caused by a frame of a lower preemption class, we have already
shown in Lemma 2 that this delay cannot exceed PBiTP (i.e., term (b)).
Therefore, a safe upper-bound on the blocking time suffered by any
tpflow frame f7 (with ¢ > 1) is given by the maximum between

terms (a) and (), and the theorem follows. []

4.1.3. Lower-priority blocking for “bpflows”

Since bpflows belong to lowest preemption class by assumption,
it follows that the maximum lower-priority blocking that any bpflow
frame can experience is provided by the largest lower priority frame in
the same class. This is given by Eq. (12).

LPBY = max {7} a2)
JjE lp(I?)P

Now that we have discussed in details the computation of all lower-
priority blocking terms, we can proceed with the computation of the
same-priority blocking - i.e., the delay due to frame(s) with the same
priority as the flow under analysis.

4.2. Same-priority blocking

In the following subsections, we compute upper-bounds on the
delay experienced by a frame due to the transmission of same-priority
frame(s).

4.2.1. Same-priority blocking for “‘express flows”

Every express frame /" can be blocked by all frames of the same
priority that arrive before its arrival at time, say a’, within the level-
i busy period. Also, all the previous ¢ — 1 instances of f; must be
transmitted before fl." is transmitted and hence, contribute to the same
priority blocking term. Therefore, the maximum same-priority blocking
SPBf that express frame fl.q can incur is given by Eq. (13).

SPBf (¢.a)) =), nf@)-Cy+-1)-Cf a3)
J € spli)

In Eq. (13), sp(i) denotes the set of all flows with the same priority as f;.

The first term computes the maximum delay due to the transmission

of all frames with the same priority that arrive before a!, while the

second term computes the maximum delay incurred by f; due to the

transmission of all previous ¢ — 1 instances.

4.2.2. Same-priority blocking for “tpflow”

Similar to express frames, every tpflow frame f'." can be blocked
by all frames with the same priority that arrive before a! within the
level-i busy period as well as all the previous ¢ — 1 instances of f;. In
addition, because f is preemptable, it can incur additional delay even
after the start of its transmission. It is guaranteed uninterrupted only
during the transmission of its final non-preemptable fragment. In other
words, the last fragment of f;/ must wait for all the preceding fragments
of the instance to be transmitted. That is, the size of this last fragment is
the minimum valid Ethernet frame size [9]. With the above-mentioned,
the maximum same-priority blocking SPB;” that f can incur is given
by Eq. (14).

SPB/P(q.aly= Y, nt@)-CH+(g-1)-Cf + <c,.+ - 82?’(”) as)
J € spi)

In Eq. (14), the first term computes the maximum delay due to the
transmission of all frames with the same priority as f; that arrive before
a!, while the second term computes the delay incurred due to the
transmission of all previous g — 1 instances of f;. Finally, the third term
computes the maximum delay due to the transmission of all non-final
fragments of f;'.

M.A. Ojewale et al.

4.2.3. Same-priority blocking of “bpflows”

The same priority blocking term for bpflows is identical to that of
tpflows in Eq. (14). This is because the behavior of frames within these
classes are identical in that they are transmitted in a non-preemptive
manner; and they are served in a FIFO manner. This imply that a bpflow
frame fl," can be blocked by all frames with the same priority that arrive
before its arrival time o] within the level-i busy period; all previous g—1
instances of f;; and all its preceding fragments (i.e., the non-end ones)
if it was preempted. For this class, Eq. (14) also suffices, where 7P in
superscript is replaced with BP in order to reflect the corresponding
frame class.

4.3. Higher-priority interference

Irrespective of its class, every frame f; cannot commence its trans-
mission in the presence of another frame of a higher priority [9,36].
This implies that all higher priority frames that arrive before the
transmission of frame f; will always impact its transmission. With the
aforementioned, it follows that the higher priority interference term for
the three classes of frames is given by Eq. (15).

HPI, (41) = z nt (4 - CF (15)
J € hp(i)

4.4. Preemption overheads

Each preemption operation involves some overhead upon its occur-
rence, which is equivalent to the time taken to transmit 24 bytes of
data [9]. This overhead is always added to the transmission time of the
preempted frame. As such, since express flows are transmitted in a non-
preemptive manner, then they do not incur any preemption overhead.
Therefore, only tpflows and bpflows incur preemption overheads as
they are preemptable. From an analytical standpoint, the approach
adopted to compute the preemption overhead terms are identical for
these two preemption classes.

Roughly speaking, the maximum preemption overheads that a pre-
emptable frame f; can incur depends solely on the maximum number
of preemption events that can occur between its arrival time up until
the transmission of the first bit of the last non-preemptable fragment.
With this in mind, the maximum number of preemptions can occur in
either of the following two cases:

(1) all preemptable frames transmitted between a;’ and the complete
transmission of f; are preempted for the maximum number of
times beyond which cutting a frame into further fragments would
violate the minimum Ethernet frame size (see Eq. (7)).

(2) all possible arrivals of higher priority frames belonging to a higher
preemption class occur and each of these causes a preemption.

To assess the first case, we consider a preemptable flame f/ transmitted
within the busy period of length, say 47, then we calculate the maxi-
mum number of times f; and all other preemptable frames that are
transmitted within the window of size At can be preempted. We can dis-
tinguish between three different types of preemptable frames, namely:
(1) preemptable frames with a lower priority than f;; (2) preemptable
frames with the same priority as f;; and finally (3) preemptable frames
with a higher priority than f;. Below, we elaborate each of these three
cases.

4.4.1. Maximum number of preemptions incurred by a lower-priority pre-
emptable frame

This maximum number of preemptions occurs when a lower-priority
preemptable frame, say f ;‘, which is obstructing the transmission of f;
gets preempted itself a maximum number of times. Frame f/f‘ can either
(i) belong to a lower preemption class than f or (ii) share the same
preemption class as f;.

> Case (i). If f;‘ belongs to a lower-preemption class, then it is
preempted at most once by f or by any other frame belonging to

Journal of Systems Architecture 116 (2021) 102079

a higher preemption class. By design, the preempted frame will not
resume its transmission before all pending frames of higher preemption
class (including /") have completed their transmission.

> Case (ii). If fjf‘ is in the same preemption class as fl.”, then f ,k
can be preempted several times and f;' can only start its transmission
after the complete transmission of f;‘. By using Eq. (7), we derive the
maximum number of preemptions N,.P‘ '? incurred a by a lower-priority
preemptable frame in the same preemption class as £, in Eq. (16).

N[p’ p max { FF } (16)
tlcew=cegyni>jy LY

4.4.2. Maximum number of preemptions incurred by same-priority preempt-
able frames

This involves the preemptions incurred by frames with the same
priority as f; that arrive before a! within the level-i busy period as
well as those suffered by ;7 up until its last non-preemptable fragment.
By using Eq. (7), the maximum number of preemptions N,.p’ (q,a}) is
computed in Eq. (17).

N Pgal)=q-FF =1+ Y nf)-Ff a7
J €spli)

The first term of Eq. (17) computes the maximum preemption incurred

by the first (¢ instances of f; apart from the last fragment, while the

second term computes the maximum preemption incurred by all other

frames with the same priority as f; that arrives before f/ within the

busy-window.

4.4.3. Maximum number of preemptions incurred by higher-priority pre-
emptable frames

This number involves the preemptions incurred by all frames with
a higher priority than f/ that are transmitted during 41, i.e., the
transmission period of fiq. It is denoted by Nl.p’ hp (4r) and occurs when
all these frames get preempted for the maximum amount times, given
by Eq. (18).

N "an =Y

{j€hpi)AjEP}

ny(an - Ff s

Putting Egs. (16), (17), and (18) together, the maximum number of
preemptions incurred by the preemptable frames transmitted during 4t
is given by Eq. (19).

Ni(g.al, 40 = N7 + N[(g,al) + N[" (a0 a9

1
With this Eq. (19), we have everything we need to derive an
upper-bound on the maximum preemption overhead suffered by any
preemptable frame f;', as formalized by Theorem 3.

Theorem 3 (Pin(At, g.a))). For any preemptable flow f; € P, an upper-
bound on the maximum preemption overhead incurred by frame f (with
q > 1), arrived at time a! within the busy-period A, is given by Eq. (20).

24 byt
PO/ (41, q.al) = 225 xmin{(> n,.*(m), Ni(g, a;',m)}
N JeFICEG) < e} —e
pe — ——— (©

®)
(20)

Proof. The maximum preemption overhead is reached in one of the
following two cases: (Case 1) All the preemptable frames incur the max-
imum possible number of preemptions; or (Case 2) All arriving frames
belonging to a higher preemption classes cause a preemption. For the
first case, Eq. (19), which is captured in term (c¢) provide an upper-
bound. For the situation described in Case 2, a computation of the
maximum number of arrivals from frames in a higher preemption class
is captured by term (b). Therefore, the actual number of preemptions
cannot exceed the minimum of these two terms. Now, because each
preemption operation generates an overhead corresponding to term (a),
the theorem follows. []

M.A. Ojewale et al.

4.5. Worst-case queuing delay

In Section 4, we discussed the individual components of the worst-
case queuing delay. For any frame f; that arrives at time a! within
the busy period, we obtain an upper-bound Q;(q.a) on this factor by
summing up all these terms, as formally stated in Eq. (21).

0i(q,a))

LPB{ + SPB (g, a") + HPL(Q,(q, a?)) if f, € &

={LPB7” +SPB/”(q,a!) + HPL(Q,(q, a")) + PO (Q,(q.a")) if f, € TP;
LPB?” + SPB” (¢, a?) + HPL,(Q,(q, a)) + PO/ (Q,(q,a?)) if f, € BP
@n

Note that Eq. (21) defines a fixed-point iterative process since
0i(q, a;’) appears on both sides of the equation. As such, a valid solution
for every frame f is obtained by starting the fixed-point algorithm
with the base value C;*. The algorithm stops as soon as two consecutive
values of Q;(q, a?) are identical or the relative deadline associated to
flow f; is exceeded. In the latter case, the timing requirement of f; is
violated and there is no valid solution.

4.6. Worst-case traversal time

For every frame f; arriving at time o, the discussions conducted
in the previous sections command that its worst-case traversal time
(WCTT,(q, a:.l)) is obtained by combining Egs. (1) and (4), where Qi*(q)
(in Eq. (1)) and 57 (q) (in Eq. (4)) are substituted by Q;(¢.a}) and],
respectively. Formally, WCTT,(q, a;’) is reported in Eq. (22).

Q(g.a})+ C —d] if f; € &
‘ q 84bytes g .)
WCTT,(g,a]) =4 Qi(¢, ;) + —Tx it f; € TP; (22)
84bytes .
Qi(q,a?)+W—a? lffi e BP

Finally, the worst-case traversal time for flow f; within the level-i busy
period, denoted by WCTT, is obtained by computing the maximum of
all the WCTT,(g.a?), where 1 < g < ¢ and g is the last frame of f; in
the level-i busy period. Formally, this is expressed in Eq. (23).
WCTT; = max {WCTT,(¢.a))} (23)
1<q<q}
This equation concludes the computation of WCTT; for flow f; within
a switch node (i.e., the local analysis). Therefore, the overall traversal
time for flow f; (i.e., the global analysis) is obtained by summing up
these values at all the individual switch nodes along its transmission
path. Here, the level-i busy period is a time interval [o, #] within
which only frames belonging to hep(i) (except the first frame, which
is generated from flow f; € Ip(i) with the longest non-preemptable
fragment) are transmitted throughout [c, 4], but no frame belonging
to hep(i) is transmitted in [o6 — €, 6) or (u, u + €] for any arbitrary small
e>0.

In order to perform the analysis, the scenario leading the longest
level-i busy period for each flow f; was considered, i.e., the scenario
where either (1) a frame f;‘ in CZ(i) < CZ(j) with the longest non-
preemptable fragment; or (2) a frame f ,k in C£(3i) = C¢(j) with the
largest size and a lower priority than f;, was released just before f;; all
the flows in hep(i) release a frame at the same time as f; and finally,
all future frames are released as soon as is legally permitted to do so.

5. Evaluation

In this section we perform the evaluation of the proposed approach.
Specifically, we consider two realistic use-cases from the automotive
domain and evaluate the safety & tightness of the proposed analysis.

Journal of Systems Architecture 116 (2021) 102079

100Mbps

[eer] EP4

SW; 7 |
SWs P9 |
Yeewo | | ers |

Fig. 7. Network topology.

Table 2
Flow properties.
D Class Src. Dst. Period (ps) Deadline (ps) Size (bytes)
1. Express EP 7 EP3 5000 150 200
2. Express EP 6 EP 1 10000 200 250
3. Tpflow EP 2 EP 9 5000 500 300
4. Tpflow EP 3 EP 8 5000 500 400
5. Bpflow EP 4 EP 10 1000 - 1300
6. Bpflow EP 1 EP 8 1000 - 1300
7. Bpflow EP 9 EP 5 1000 - 1500

5.1. Report on use-case 1

> Setup. In this use-case, we consider a realistic network topology from
the automotive domain, consisting of ten End Points EPs (a.k.a. Engine
Control Units or ECUs) and seven full-duplex preemption enabled TSN
switches SW,,SW,, ..., SW; displayed as illustrated in Fig. 7. We con-
sidered seven flows — fi, f,,..., f; — where f| and f, are express; f3
and f, are tpflows; and the remaining flows are bpflows. The name
and make of the system are protected under an NDA. However, the
specifications of the flows are provided in Table 2 and they are in the
same range as those of the use-case presented by Alderisi et al. [37].
We recall that flows are ordered according to their priorities, i.e., the
smaller the subscript of a flow, the higher its priority. Three batches
of analyses together with the associated simulations by using NeST-
iNg [38] to evaluate their tightness are conducted: (a) All flows are
transmitted in under the 1-level preemption scheme (i.e., only express
flows can preempt other flows); (b) all flows are transmitted under
the 2-level preemption scheme (i.e., express frames can preempt all
other frames; and tpflows can preempt bpflows); finally (c¢) all flows
are transmitted in a fully preemptive manner (i.e., any higher priority
frame can preempt any lower priority frame).

> Results and discussion. Here, we report the results obtained from
the experiments. We considered the safety and tightness of the proposed
analysis. Also, we reported the behavior of the network with respect to
“each additional preemption level” and the “maximum frame size in
each preemption class”.

>< On the tightness of the proposed analysis. Fig. 8 compares for
each flow the maximum measured end-to-end delays - mWCTT - (see
the yellow box plots) against the analytical WCTT bounds (see the
red dots). We can notice that all mWCTT fall below the corresponding
WCTT when adopting the 1-level preemption scheme (see Fig. 8(a)),
the 2-level preemption scheme (see Fig. 8(b)), and finally, the fully
preemptive scheme (Fig. 8(c)).

+ Under the 1-level scheme, the observed gaps between the WCTT
bounds and the mWCTT for express flows f; and f, are 1.6%
(WCTT : 120 ps, mWCTT : 118 ps) and 16.25% (WCTT : 144 ps,
mWCTT : 119.7 ps), respectively. This pessimism comes from
the fact that f, and f, share the same path as f;. The gaps

M.A. Ojewale et al.

1-level Preemption

800

700

600

500

End-to-end delay (us)

fl f2 f3 fa f5
flows

fo

End-to-end delay (us)

800

700

600

@
3
S

2-level Preemption

.
9= =

fl f2 f3 fa fs f6
flows

End-to-end delay (us)

@
3
3

3
8

o
3
3

@
3
S

IS
S
S

w
8
S

~
S
S

=
S
3

Journal of Systems Architecture 116 (2021) 102079

multi-level Preemption

° .
=
f2 3 fa fs fo 7

flows

(a) 1-level preemption scheme.

(b) 2-level preemption scheme.

(c) fully-preemptive scheme.

Fig. 8. Observed end-to-end delay from simulation. Red dots represent WCTT bounds, black are outliers. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

between WCTT and mWCTT for tpflows f; and f, are 30.92%
(WCTT : 328 ps, mWCTT : 226.56 ps) and 43.05% (WCTT :
520 ps, mWCTT : 296.16 ps), respectively. This is due to the fact
that tpflows share the same path as bpflows and can be blocked
for long periods of time.

Under the 2-level scheme, both the WCTT and mWCTT for express
flows remain the same. However, there is a significant improve-
ment in the performance of tpflows in comparison to the 1-level
scheme. The maximum observed delay for f; and f, reduced
by 21.17% (from 226.56 ps to 178.58118 ps) and 38.89% (from
296.16 ps to 180.98 ps), respectively. Also, the gaps between WCTT
and mWCTT for f; and f, reduced by 2.94% (WCTT : 184 ps,
mWCTT : 178.58 ps) and 16.25% (WCTT : 244 ps, mWCTT :
180.98 ps), respectively.

Under the fully-preemptive scheme, there is further improvement
in performance of express flows and tpflows. Specifically, the
mWCTT values of f; and f; reduced by 14.1% (from 108 ps
to 101.3 ps) and 21.09% (from 178.58 ps to 140.9 ps), respec-
tively, as compared to the 2-level scheme. The gaps between
WCTT and mWCTT for flows f, f,, f3, and f, under the fully-
preemptive scheme are 2.7% (WCTT : 104 ps, mWCTT : 101.3 ps),
17.77% (WCTT : 148 ps, mWCTT : 119.7 ps), 4.79% (WCTT :
148 ps, mWCTT : 140.9 ps), and 26.22% (WCTT : 248 ps,
mWCTT : 180.98 ps), respectively. It is worth noticing the slight
degradation in the performance of f, and f, (1.67% and 1.10%,
respectively). This is due to the preemption overhead incurred
by additional preemption operations. From this observation, it
follows that there is a trade-off to find between the number of
preemption levels allowed for the flow transmissions and the
additional overheads that each new preemption level brings on
the table. Note that we can define only up to six intermediate pre-
emption levels since Ethernet offers a maximum of eight priority
classes. We leave this pending question of the optimal number of
preemption-levels for frame transmissions for future works.

>< On the impact of each extra preemption level. From Fig. 9, we
observe an improvement in the responsiveness of the tpflows when
an extra preemption level is added to the frame transmission scheme.
Specifically, this improvement reaches 43.9% (from 328 ps to 184 ps)
and 53.07% (from 520 ps to 244 ps) for f3 and f,, respectively. The
rationale behind this trend can be cast as follows. With the introduction
of the extra preemption level, f; and f, become protected from any
eventual long blocking time associated to the transmission of f, and
f5 along their paths. Also, we note that the overhead induced by this
extra preemption level is negligible: the WCTT f, and f, remains the
same for both the 1-level and 2-level preemption schemes. The same
condition roughly holds true for bplfows (i.e., flows fs, fs, and f7).
Here, we note a cumulative performance degradation of 1.78%, which
is negligible for the adopted use-case (a degradation from 472 ps to

10

476 ps and 768 ps to 778 ps for f5 and fg, respectively). We also note
that some mWCTT values for f5 and f, (the black circles) fall outside
the whiskers of the box plot. These outliers are the cases where an
instance of a flow experiences an unusually high (or low) interference.

Still in Fig. 9, we observe an average improvement of 9.6% in the
WCTT of tpflows when moving from a 2-level preemption scheme to
a fully preemptive approach. This suggests that the performance im-
provement is not linear despite the benefits brought about by each extra
preemption level. On the downside, each preemption level involves
extra hardware implementation overheads, which may turn out not
to be negligible, unfortunately. This situation gives rise to an open
question: What is the optimal trade-off in terms of preemption-level
scheme to adopt for the flow transmission as the performance gain
brought about by enabling each extra-preemption level is diminished
by the hardware implementation overheads it brings? We are aware
of this, but we leave the question out for future work as it deserves a
thorough investigation.

>< On the impact of the frame sizes in each preemption class. From
the use-case setup, the maximum byte size of tpflows is reasonably
small in comparison to that of the bpflows. We vary this parameter
from 400 to 1200 bytes in order to investigate its effect on the WCTT
for each tpflow. The results are reported in Fig. 10.

From Fig. 10(a), we observe that the gains on the WCTT obtained
from the multi-level preemption scheme over the 1-level preemption
approach diminishes with an increase in the maximum frame size.
Specifically, the improvement drops from 43.9% (328 ps to 184 ps)
to only 7.82% (614 ps to 566 ps) for f; and from 53.07% (520 ps to
244 ps) to 32.3% (972 ps to 658 ps) for f,. This significant impact
of the frame size on the performance of f; can be explained by the
increasing blocking time it suffers as the highest priority tpflow. We
recall that frames in the same preemption class are transmitted in a
non-preemptive manner. Consequently, careful attention must be paid
to the maximum possible frame size of each tpflow during the flow-to-
preemption-class mapping at design time. It is worth mentioning that
the degradation is less severe when assuming a full preemptive scheme
as illustrated in Fig. 10(b). Here, the performance gains over the 1-level
preemption scheme dropped from 54.87% (328 ps to 148 ps) to 33.55%
(614 ps to 408 ps) for flow f; and from 52.30% (520 ps to 248 ps) to
36.62% (972 ps to 616 ps) for flow f,.

5.2. Report on use-case 2

To further evaluate the safety of the WCTT bounds, we consider an-
other use-case scenario with a larger network and more flows provided
by Renault and borrowed from Migge et al. [39]. The adopted network
topology is replicated in Fig. 11.

> Setup. The network comprises 5 full-duplex Ethernet switches and
14 nodes: 4 cameras (CAMs), 4 displays (DSPs), 3 control units (ECUs)

M.A. Ojewale et al.

WCTT (us)

|

m 1-level preemption

Fig. 9. WCTT for each flow under 1-level preemption,

o b
L] \,
f3 f4

m 2-level preemption

Improvement over 1-level scheme (%)

Journal of Systems Architecture 116 (2021) 102079

5 f6 7

flows

fully preemptive

2-level preemption and fully preemptive schemes.

100
80
60 52.3
48.42
43.31
54.87 39.53
. NSZ
42.62
37.68
33.55
20
0
400 600 800 1000 1200

Maximum frame size (bytes)

3 —f4

(b) fully-preemptive scheme.

Fig. 10. Performance improvement w.r.t. maximum tpflow frame size.

__ 100
&
o
E 80
[
L
5
3
T 60 53.07
>
2 T ae
& : 37.43
= 34.41
g 40 439 323
2 33.64
g 20 -
£ 22.95
[
>
2 0 9.57 7.82
E 400 600 800 1000 1200
Maximum frame size (bytes)
3 —a—f4
(a) two-level preemption scheme.
[eoolews] [mloe] [enelme]ms]
SW1 Sw2 SW3 DM3
(o)
| DSP1 " DSP 2 | | DSP3 " DSP4 |

Fig. 11. Network topology.

and 3 (functional) domain masters (DMs). The data transmission rate
is 100Mbit/s on all links. Assuming this setting, we consider a fully
preemptive scheme, i.e., the preemption class of each flow is also its
priority. The traffic specification consists of a total of 41 flows as shown
in Table 3.

> Results and discussion. Fig. 12 presents the results obtained from
the experiments. The numerical values are reported in Table 4. From
Fig. 12, it is observed that the mWCTT of all flows are less than
the computed WCTT bounds. This also demonstrates the safety of the
analysis presented in this work. The mWCTT values of Audio flows
— which are the highest priority flows — are lower than the WCTT
values by an average of 65.92%. The mWCTT values for Command and
Control Traffic — the highest priority traffic after Audio traffic — are
lower than the WCTT by an average of 42.84%. And finally, for the
lower priority flows (Video and Best Effort flows), the mWCTT values

11

Table 3
Prototype flow specification with the characteristics and performance requirements for
each traffic class.

Audio - 8 streams
streams - 128 and 256 byte frames
- up to sub-10 ms period and deadline
- soft deadline constraints
Command - 11 streams 256 to 1024 byte frames
and Control - up to sub-10 ms periods and deadlines
(C&C) — deadline constraints (hard)
Video - 2 ADAS + 6 Vision streams
streams — up to 301446 byte frame each 16 ms (60FPS) or each 33

ms (30FPS)
— 10 ms (ADAS) or 30 ms deadline (Vision)
- hard and soft deadline constraints

Best-effort: - 11 streams including TFTP traffic pattern

file & data - up to 0.2 ms period
transfer, - both throughput guarantees (up to 20Mbits per stream)
diagnostics and deadline constraints (soft)

are lower than the WCTT by an average of 36.53%. We noticed that
the gap between the mWCTTs and the WCTTs are lowest for flows
with the lowest priorities (Best Effort flows) and, generally speaking,
the gap between mWCTT and WCTT values increases as the priority
of flows increases. This is because lower priority flows are more likely
to suffer the maximum possible interferences as accounted for in the
analysis. We plan to further investigate this phenomenon with the aim
of reducing the pessimism in the WCTT values of higher priority flows
and make the analysis as tight as possible.

M.A. Ojewale et al. Journal of Systems Architecture 116 (2021) 102079

delay bounds with multi-level Preemption

3500 -

3000 A

2500 A1

2000 A -+

1500 o > T .0 L] =

End-to-end delay (us)
N
]

1000 - +

1leleslss3l taos s ,

— T T T T T T — — T T T T T T T T T T T T T T T T T T — T T
2 3 45 6 7 8 910111213 1415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
flows

=

Fig. 12. Observed end-to-end delays from simulation for the Renault use-case (in yellow box plots). The blue lines represent the WCTT bounds and the circles represent outlier
values. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 4
Results: Renault use-case.

mWCTT and WCTT for the Renault Automotive Use-Case

ID Src. Dest. Size (bytes) Priority period (ps) Deadline (pus) mWCTT (ps) WCTT (ps)
1 DM2 DSP1 210 1 5000 5000 72.5 310
2 DM1 DSP1 200 1 5000 5000 95.8 310
3 DM1 DM3 189 0 5000 5000 97.5 136
4 DM2 DSP2 199 1 5000 5000 87.0 363
5 ECU1 DSP2 179 0 5000 5000 77.5 163
6 DM2 DSP2 159 0 5000 5000 75.8 177
7 DM2 DSP2 225 0 5000 5000 115.4 362
8 DM2 DSP1 138 0 5000 5000 59.5 177
9 ECU3 DSP1 240 2 10000 10000 304.0 490
10 ECU3 DM1 170 3 10000 10000 165.2 263
11 ECU3 DM3 239 3 10000 10000 112.6 204
12 ECU2 DSP2 200 2 10000 10000 322.0 499
13 ECU1 DSP2 234 2 10000 10000 252.0 492
14 ECU1 DSP2 214 3 10000 10000 247.0 589
15 ECU1 DSP1 210 2 10000 10000 214.0 442
16 ECU1 DM1 190 3 10000 10000 251.2 289
17 ECU3 DM3 210 2 10000 10000 90.2 133
18 ECU3 DSP1 242 3 10000 10000 167.5 630
19 ECU1 DM1 250 2 10000 10000 121.8 215
20 CAM4 DSP4 1446 5 10000 10000 723.2 1475
21 CAM1 DSP1 1446 5 10000 10000 1304.9 1783
22 CAM4 DSP4 1446 4 10000 10000 382.6 525
23 CAM1 DSP3 1446 4 10000 10000 965.8 1217
24 CAM2 DSP2 1446 4 10000 10000 505.9 1477
25 CAM1 DSP2 1446 4 10000 10000 941.1 1597
26 CAM4 DSP3 1446 5 10000 10000 1208.83 1355
27 CAM4 DSP4 1446 5 10000 10000 1329.6 1475
28 CAM1 DM3 1446 6 10000 10000 1529.7 2341
29 ECU2 DM1 1446 7 10000 10000 1621.1 1939
30 CAM1 DM2 1446 6 10000 10000 1500.6 1880
31 CAM2 DM1 1446 7 10000 10000 1499.8 1518
32 CAM2 DM2 1446 6 10000 10000 1220 1528
33 CAM2 DM3 1446 7 10000 10000 1737.5 3757
34 ECU2 DM2 1446 7 10000 10000 1076.2 1330
35 CAM3 DM3 1446 6 10000 10000 1494.9 1867
36 ECU3 DM1 1446 7 10000 10000 1742.4 1906
37 CAM2 DM1 1446 7 10000 10000 1509.7 1518
38 CAM4 DM1 1446 7 10000 10000 1863.7 2279
39 CAM2 DM2 1446 7 10000 10000 1410.7 2826
40 CAM2 DM3 1446 7 10000 10000 2005.6 3757
41 CAM3 DM3 1446 7 10000 10000 1616.2 3157

12

M.A. Ojewale et al.

6. Related work

The Network Calculus (NC) [40]; the Trajectory Approach (TA)
[41]; and the Compositional Performance Analysis (CPA) [28] have
all been used as established techniques to provide timing guarantees
for real-time Ethernet flows. In this section we report only the most
significant contributions related to our topic discussed in this paper.

In NC, a so-called arrival curve and service curve are used to model
the arrival of flows and the transmission bandwidth at a switch output
port, respectively. To the best of our knowledge, only a hand-full of
contributions using this approach are available in the literature on
TSN related issues. Zhao et al. [42] provided a worst-case latency
analysis for IEEE 802.1Qbv networks. To this end, they assumed that
the Gate Control List (GCL) and the priority assignment configurations
are given. They validated the performance of their approach by using
both synthetic and real-world use-cases in terms of scalability and effect
of GCL overlapping characteristics on individual flows. The authors,
in another work, also provided a latency analysis for AVB traffic in
TSN [43]. However, their analyses only target non-preemptive TSN
networks and lefts the preemptive case unanswered, unfortunately.

In TA, Martin and Pinet [41] investigated the highest number of
frames that share the same trajectory as it is a potential source of delay
for each of these flows. The adopted approach proceeds “backwards”,
i.e., from the receiver node to the source node. In another context,
this approach as been used by Bauer et al. in [44] for the timing
analysis of AFDX with strict priority, non-preemptive flows transmitted
by following a FIFO scheduling strategy. In the work, the TA has been
further enhanced by exploring the basic idea according to which flows
sharing a common link cannot arrive at the same time at a switch. Li
et al. [45] have proven the result to be optimistic and have corrected
the flaw. Nonetheless, the analysis still considers only non-preemptive
frame transmission.

Cao et al. [46,47] introduced a so-called eligibility interval approach
for the timing analysis of Ethernet Audio Video Bridges (AVB) [48]
networks with Credit-Based Shapers (CBS). In this approach, the worst-
case performance of a flow is examined when a flow has some pending
payload to transmit and a non-negative transmission credit. This ap-
proach was proven to be tight for AVB networks and subsequently
extended for the timing guarantees of AVB flows in standard TSN [49].
Thangamuthu et al. [50] proposed a worst-case performance analysis
for Switched Ethernet with Burst-Limiting Shaper (BLS); Peristaltic
Shaper (PS); and Time-Aware Shaper (TAS) for TSN, but concluded that
only the TAS can schedule control traffic within the maximum delay
imposed by the Standards. In a nutshell, PS imposes an organization
on the reception and transmission of frames at each node by following
well-defined time intervals. Here, every time window is divided into
intervals (even and odd intervals) and all frames received within an
interval are transmitted in the next interval only. BLS is an extension
of CBS introduced by the AVB Standard [48], wherein a transmission
budget or “credit” is assigned to each traffic class to control its trans-
mission rate and mitigate against burst traffic. Finally TAS defines a
time-triggered gate control mechanism for TSN flows. Here, each flow
class has a guaranteed transmission slot in a cyclic and pre-computed
dispatch schedule.

CPA has been used extensively for the timing behavior of Ether-
net flows [32,36]. It uses the so-called level-i busy period approach,
activated by the so-called critical instant, to investigate the worst-case
response time of each real-time flow [30]. CPA was employed for the
timing behavior of Switched Ethernet in [31] and for Ethernet AVB
in [33]. The analysis for Switched Ethernet was improved by Thiele
et al. [36] to tighten the worst-case response time bounds of each
flows by up to 80%, then the same authors exploited the FIFO nature
of Switched Ethernet transmission [32] to reduce the interference
estimation in frame transmissions and achieved about 30% latency
improvement over the state-of-the-art CPA at the time. Still by using

13

Journal of Systems Architecture 116 (2021) 102079

CPA, Thiele et al. [51] and Thiele and Ernst [34] proposed the worst-
case analysis for TSN with PS and BLS, respectively. Both contributions
focused only the shapers, leaving frame preemption concerns beyond
the scope of their work. On another front, Thiele and Ernst [9] used
CPA to provide worst-case guarantees for both Standard Ethernet and
IEEE 802.1Qbv when frame preemption in enabled. Lo Bello et al. [52]
also provide a schedulability analysis for IEEE 802.1Qbv networks with
preemption support. In these works, the authors address only the tradi-
tional 1-level preemption scheme, as defined in the standards. Recently,
Ojewale et al. [26,27] promoted the multi-level preemption approach
for IEEE 802.1Qbu networks in order to circumvent the limitations
of the I-level preemption scheme. The authors first investigated the
feasibility and advantages of multi-level preemptions in time-sensitive
Ethernet networks. Then, they focused on its feasibility and implemen-
tation requirements in details. Recently, Mladen et al. [53] provided
an improved implementation approach for the multi-level preemption
scheme. However, their works stop short of providing a formal analysis
of the worst-case performance guarantees under the proposed scheme.
We fill this gap in this paper by providing the worst-case traversal time
analysis of TSN frames under the multi-level preemption assumption,
which is the first contribution in this direction to the best of our
knowledge.

7. Conclusion

In this paper, we advocated for a multi-level preemption scheme for
TSN frame transmission in order to circumvent the limitations of the
traditional 1-level preemption scheme as specified in the standards. We
provided a formal timing guarantees for each flow under such a scheme
by using a CPA based approach. Using a realistic automotive use-
case, we assessed the performance improvements in terms of worst-case
traversal time (WCTT) over the 1-level scheme. From our results, the
multi-level preemption scheme shows an improvement up to 53.07%
in the WCTT guarantee for preemptable time-sensitive frames. Then,
we demonstrated the tightness of the analysis with another automotive
use-case from Renault. We concluded that a careful attention must be
paid to the maximum size of each of these flows during the flow-
to-preemption-class assignment at design time. Also, an interesting
discussion was conducted on the performance improvement brought
about by each extra preemption level in the frame transmission scheme
and we showed that the trend was not linear on one hand; and each
extra preemption level involves additional hardware implementation
overheads, which may not be negligible, unfortunately. In a near future,
we seek to investigate: (1) the optimal preemption-level scheme that
will prove to be the perfect trade-off between the performance that
each additional preemption level brings and the overhead of enabling
this level; (2) efficient flow priority assignment strategies in order to
further improve the responsiveness of preemptable time-sensitive flows;
and finally (3) the interoperability of multi-level preemption with other
TSN mechanisms.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was partially supported by the project Safe Cities -
Inovagdo para Construir Cidades Seguras, Portugal, ref. POCI-01-0247-
FEDER-041435, co-funded by the European Regional Development
Fund (ERDF), through the Operational Programme for Competitiveness
and Internationalization (COMPETE 2020); also by National Funds,
Portugal through FCT/MCTES (Portuguese Foundation for Science and
Technology), within the CISTER Research Unit (UIDB/04234/2020).

M.A. Ojewale et al.

References

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Bosch, CAN Specification, Vol. 50, Robert Bosch GmbH, Postfach, 1991.

J.W. Specks, A. Rajnédk, LIN-protocol, development tools, and software interfaces
for local interconnect networks in vehicles, VDI-Berichte (2000) 227-250.

T. Pop, P. Pop, P. Eles, Z. Peng, A. Andrei, Timing analysis of the FlexRay
communication protocol, Real-Time Syst. 39 (1-3) (2008) 205-235.

W. Steiner, G. Bauer, B. Hall, M. Paulitsch, S. Varadarajan, TTEthernet dataflow
concept, in: Eighth IEEE International Symposium on Network Computing and
Applications, 2009, pp. 319-322.

F. Brajou, P. Ricco, The Airbus A380-an AFDX-based flight test computer concept,
in: AUTOTESTCON, 2004, pp. 460-463.

E. Schemm, SERCOS to link with ethernet for its third generation, Comput.
Control Eng. 15 (2) (2004) 30-33.

D. Jansen, H. Buttner, Real-time Ethernet: the EtherCAT solution, Comput.
Control Eng. 15 (1) (2004) 16-21.

J. Feld, PROFINET-scalable factory communication for all applications, in: IEEE
International Workshop on Factory Communication Systems, 2004, pp. 33-38.

D. Thiele, R. Ernst, Formal worst-case performance analysis of time-sensitive eth-
ernet with frame preemption, in: 21st IEEE Int. Conf. on Emerging Technologies
and Factory Automation, 2016, pp. 1-9.

S. Kamal, S. Al Mubarak, B. Scodova, P. Naik, P. Flichy, G. Coffin, et al., IT
and OT convergence-Opportunities and challenges, in: SPE Intelligent Energy
Int. Conference and Exhibition, 2016, pp. 1-10.

P. Pop, M.L. Raagaard, M. Gutierrez, W. Steiner, Enabling fog computing for
industrial automation through time-sensitive networking (TSN), IEEE Com. Stand.
Mag. 2 (2) (2018) 55-61.

IEEE, IEEE standard for local and metropolitan area networks-bridges and
bridged networks, 2014, pp. 1-1832, Std 802.1Q-2014.

W.K. Jia, G.H. Liu, Y.C. Chen, Performance evaluation of IEEE 802.1Qbu:
Experimental and simulation results, in: 38th Annual IEEE LCN, 2013, pp.
659-662.

IEEE, IEEE standard for ethernet amendment 5: Specification and management
parameters for interspersing express traffic, 2016, pp. 1-58, Std 802.3br-2016.

IEEE, IEEE standard for local and metropolitan area networks — bridges and
bridged networks - amendment 25: Enhancements for scheduled traffic, 2016,
pp. 1-57, IEEE Std 802.1Qbv-2015.

IEEE, IEEE standard for local and metropolitan area networks—frame replication
and elimination for reliability, 2017, pp. 1-102, Std 802.1CB-2017.

IEEE, IEEE standard for local and metropolitan area networks — Bridges and
bridged networks amendment 24: Path control and reservation IEEE computer
society, ISBN: 9781504407724, 2015, IEEE Std 802.1Qca-2015.

IEEE, IEEE draft standard for local and metropolitan area networks-media access
control (MAC) bridges and virtual bridged local area networks amendment:
Stream reservation protocol (SRP) enhancements and performance improvements,
2018, pp. 1-214, P802.1Qcc/D2.2.

A. Nasrallah, A.S. Thyagaturu, Z. Alharbi, C. Wang, X. Shao, M. Reisslein, H.
ElBakoury, Ultra-low latency (ULL) networks: The IEEE TSN and IETF detnet
standards and related 5G ULL research, IEEE Commun. Surv. Tutor. 21 (2018)
88-145.

IEEE, Time-sensitive networking task group. [online]. Available: http://www.
IEEE802.0rg/1/pages/tsn.html.

IEEE, IEEE approved draft standard for local and metropolitan area networks-
media access control (MAC) bridges and virtual bridged local area networks
amendment: Frame preemption, 2015, pp. 1-50, P802.1Qbu/D3.1, September
2015.

IEEE, IEEE standard for local and metropolitan area network-bridges and bridged
networks, 2018, pp. 1-1993, Std 802.1Q-2018.

L.L. Bello, W. Steiner, A perspective on IEEE time-sensitive networking for
industrial communication and automation systems, Proc. IEEE 107 (6) (2019)
1094-1120.

T. Park, S. Samii, K.G. Shin, Design optimization of frame preemption in real-time
switched Ethernet, in: IEEE DATE, 2019, pp. 420-425.

W. Steiner, An evaluation of SMT-based schedule synthesis for time-triggered
multi-hop networks, in: 31st IEEE Real-Time Systems Symposium, 2010, pp.
375-384.

M.A. Ojewale, P. Meumeu Yomsi, G. Nelissen, On multi-level preemption in
ethernet, in: WiP Session, ECRTS, 2018, pp. 16-18.

M.A. Ojewale, P. Meumeu Yomsi, B. Nicoli¢, Multi-level preemption in TSN:
feasibility and requirements analysis, in: 23rd IEEE Int. Symposium on Real-Time
Distributed Computing, 2020, pp. 1-9.

R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, R. Ernst, System level
performance analysis—the SymTA/S approach, Comput. Digit. Tech. 152 (2)
(2005) 148-166.

IEEE, IEEE standard for local and metropolitan area networks- audio video
bridging (AVB) systems— corrigendum 1: Technical and editorial corrections,
2016, pp. 1-13, IEEE Std 802.1BA-2011/Cor 1-2016 (Corrigendum to IEEE Std
802.1BA-2011).

R. Hofmann, L. Ahrendts, R. Ernst, S. Ha, J. Teich, CPA: Compositional
performance analysis, 2017.

14

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

Journal of Systems Architecture 116 (2021) 102079

J. Rox, R. Ernst, Formal timing analysis of full duplex switched based ethernet
network architectures, 2010, SAE International.

D. Thiele, P. Axer, R. Ernst, Improving formal timing analysis of switched
ethernet by exploiting FIFO scheduling, in: DATE, 2015, p. 41.

J. Diemer, D. Thiele, R. Ernst, Formal worst-case timing analysis of Ethernet
topologies with strict-priority and AVB switching, in: 7th IEEE Int. Symposium
on Industrial Embedded Systems, 2012, pp. 1-10.

D. Thiele, R. Ernst, Formal worst-case timing analysis of Ethernet TSN’s
burst-limiting shaper, in: DATE, 2016, pp. 187-192.

N. Finn, Time-sensitive and deterministic networking whitepaper, 2017, pp.
1-24.

D. Thiele, P. Axer, R. Ernst, J.R. Seyler, Improving formal timing analysis of
switched ethernet by exploiting traffic stream correlations, in: Int. Conf. on
Hw/Sw Codesign and Sys. Syn., ACM, 2014, p. 15.

G. Alderisi, G. Iannizzotto, L.L. Bello, Towards IEEE 802.1 Ethernet AVB for
advanced driver assistance systems: A preliminary assessment, in: IEEE 17th
ETFA, 2012, pp. 1-4.

J. Falk, D. Hellmanns, B. Carabelli, N. Nayak, F. Diirr, S. Kehrer, K. Rothermel,
NeSTiNg: Simulating IEEE Time-sensitive Networking (TSN) in OMNeT++, in:
Int. Conf. on Networked Systems, 2019.

J. Migge, J. Villanueva, N. Navet, M. Boyer, Insights on the Performance and
Configuration of AVB and TSN in Automotive Ethernet Networks, in: Proc.
Embedded Real-Time Software and Systems, ERTS 2018, 2018.

F. Reimann, S. Graf, F. Streit, M. GlaB, J. Teich, Timing analysis of Ethernet
AVB-based automotive E/E architectures, in: 18th IEEE ETFA, 2013, pp. 1-8.
S. Martin, P. Minet, Worst case end-to-end response times of flows scheduled
with FP/FIFO, in: ICNICONSMCL’06, 2006, pp. 1-7.

L. Zhao, P. Pop, S.S. Craciunas, Worst-case latency analysis for IEEE 802.1
Qbv time sensitive networks using network calculus, IEEE Access 6 (2018)
41803-41815.

L. Zhao, P. Pop, Z. Zheng, H. Daigmorte, M. Boyer, Latency analysis of multiple
classes of AVB traffic in TSN with standard credit behavior using network
calculus, IEEE Trans. Ind. Electron. (2020).

H. Bauer, J.-L. Scharbarg, C. Fraboul, Applying trajectory approach with static
priority queuing for improving the use of available AFDX resources, Real-Time
Syst. 48 (1) (2012) 101-133.

X. Li, O. Cros, L. George, The Trajectory approach for AFDX FIFO networks
revisited and corrected, in: 20th IEEE Int. Conf. on Embedded and Real-Time
Computing Systems and Applications, 2014, pp. 1-10.

J. Cao, P.J. Cuijpers, R.J. Bril, J.J. Lukkien, Tight worst-case response-time
analysis for ethernet AVB using eligible intervals, in: IEEE WFCS, 2016, pp. 1-8.
J. Cao, P.J. Cuijpers, R.J. Bril, J.J. Lukkien, Independent yet tight WCRT analysis
for individual priority classes in ethernet AVB, in: 24th RTNS, ACM, 2016, pp.
55-64.

IEEE, IEEE standard for local and metropolitan area networks-audio video
bridging (AVB) systems, 2011, pp. 1-45, Std 802.1BA-2011.

D. Maxim, Y.-Q. Song, Delay analysis of AVB traffic in time-sensitive networks
(TSN), in: 25th Int. Conf. on Real-Time Networks and Systems, ACM, 2017, pp.
18-27.

S. Thangamuthu, N. Concer, P.J. Cuijpers, J.J. Lukkien, Analysis of ethernet-
switch traffic shapers for in-vehicle networking applications, in: DATE, EDA
Consortium, 2015, pp. 55-60.

D. Thiele, R. Ernst, J. Diemer, Formal worst-case timing analysis of Ether-
net TSN’s time-aware and peristaltic shapers, in: IEEE Vehicular Networking
Conference, 2015, pp. 251-258.

L.L. Bello, M. Ashjaei, G. Patti, M. Behnam, Schedulability analysis of time-
sensitive networks with scheduled traffic and preemption support, Journal of
Parallel and Distributed Computing 144 (2020) 153-171.

M. Knezic, M. Kovacevic, Z. Ivanovic, Implementation aspects of multi-level
frame preemption in TSN, in: 25th IEEE International Conference on Emerging
Technologies and Factory Automation, Vol. 1, ETFA, 2020, pp. 1127-1130.

Mubarak Adetunji Ojewale is a Student Researcher at
CISTER Research Centre and is pursuing a Ph.D. degree
in Electrical and Computer Engineering at the University
of Porto, Portugal. Mubarak holds a bachelor’s degree in
Computer Science from the University of Ibadan, Nigeria,
with First-Class honors in 2014 and also a Masters’ Degree
in Computer Science from the African University of Science
and Technology (AUST), Nigeria, 2016, with distinction
grade. His research is focused on real-time networks and
data management.

http://refhub.elsevier.com/S1383-7621(21)00066-7/sb1
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb2
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb2
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb2
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb3
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb3
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb3
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb6
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb6
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb6
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb7
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb7
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb7
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb11
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb11
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb11
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb11
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb11
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb12
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb12
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb12
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb14
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb14
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb14
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb15
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb15
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb15
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb15
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb15
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb16
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb16
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb16
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb17
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb17
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb17
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb17
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb17
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb18
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb18
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb18
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb18
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb18
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb18
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb18
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb19
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb19
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb19
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb19
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb19
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb19
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb19
http://www.IEEE802.org/1/pages/tsn.html
http://www.IEEE802.org/1/pages/tsn.html
http://www.IEEE802.org/1/pages/tsn.html
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb21
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb21
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb21
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb21
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb21
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb21
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb21
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb22
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb22
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb22
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb23
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb23
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb23
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb23
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb23
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb28
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb28
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb28
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb28
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb28
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb29
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb29
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb29
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb29
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb29
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb29
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb29
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb30
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb30
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb30
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb31
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb31
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb31
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb35
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb35
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb35
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb36
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb36
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb36
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb36
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb36
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb42
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb42
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb42
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb42
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb42
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb43
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb43
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb43
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb43
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb43
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb44
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb44
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb44
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb44
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb44
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb47
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb47
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb47
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb47
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb47
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb48
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb48
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb48
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb49
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb49
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb49
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb49
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb49
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb50
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb50
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb50
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb50
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb50
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb52
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb52
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb52
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb52
http://refhub.elsevier.com/S1383-7621(21)00066-7/sb52

M.A. Ojewale et al.

Patrick Meumeu Yomsi, is an expert in the field of
real-time scheduling theory and applications. His research
blends software engineering principles with a detailed do-
main knowledge to innovate new models and accompanying
analyses which provide developers with early evaluations of
safety-critical systems. Patrick received his Ph.D. in 2009
from Paris-Sud University in Orsay, France. He joined the
CISTER Research Centre in 2012 and is currently a Senior
Researcher. His research interests include real-time schedul-
ing theory, real-time communication and real-time operating
systems. He authored or co-authored 70+ scientific papers
and his work was awarded on several occasions.

15

Journal of Systems Architecture 116 (2021) 102079

Borislav Nikolic (born 1982 in Leskovac, Serbia) received
the Degree in electrical engineering from the University of
Belgrade, Serbia, in 2007, and the Ph.D. Degree in com-
puter engineering from the University of Porto, Portugal, in
2015. After that, he worked as a Postdoctoral researcher
at the Institute of Computer and Network Engineering at
TU Braunschweig, Germany. Currently, he is a lecturer
at the Faculty of Information Technology at Metropolitan
University, Belgrade, Serbia. His main research interest is
in the formal analysis of on-chip and off-chip network
architectures, with an emphasis on their application in the
automotive domain.

	Worst-case traversal time analysis of TSN with multi-level preemption
	Introduction
	Model of computation
	A brief background on CPA
	Proposed approach
	Lower-priority blocking
	Lower-priority blocking for ``express flows''
	Lower-priority blocking for ``tpflows''
	Lower-priority blocking for ``bpflows''

	Same-priority blocking
	Same-priority blocking for ``express flows''
	Same-priority blocking for ``tpflow''
	Same-priority blocking of ``bpflows''

	Higher-priority interference
	Preemption overheads
	Maximum number of preemptions incurred by a lower-priority preemptable frame
	Maximum number of preemptions incurred by same-priority preemptable frames
	Maximum number of preemptions incurred by higher-priority preemptable frames

	Worst-case queuing delay
	Worst-case traversal time

	Evaluation
	Report on use-case 1
	Report on use-case 2

	Related work
	Conclusion
	Declaration of competing interest
	Acknowledgments
	References

