

Work-In-Progress: WCRT Analysis for the 3-
Phase Task Model in Partitioned Scheduling

Conference Paper

*CISTER Research Centre

CISTER-TR-201005

2020/12/01

Jatin Arora*

Cláudio Maia*

Syed Aftab Rashid*

Geoffrey Nelissen

Eduardo Tovar*

Conference Paper CISTER-TR-201005 Work-In-Progress: WCRT Analysis for the 3-Phase Task Model ...

© 2020 CISTER Research Center
www.cister-labs.pt

1

Work-In-Progress: WCRT Analysis for the 3-Phase Task Model in Partitioned
Scheduling

Jatin Arora*, Cláudio Maia*, Syed Aftab Rashid*, Geoffrey Nelissen, Eduardo Tovar*

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP P.Porto)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: jatin@isep.ipp.pt, clrrm@isep.ipp.pt, syara@isep.ipp.pt, gnn@isep.ipp.pt, emt@isep.ipp.pt

https://www.cister-labs.pt

Abstract

Multicore platforms are being increasingly adopted in Cyber-Physical Systems (CPS) due to their advantages over
single-core processors, such as raw computing power and energy efficiency. Typically, multicore platforms use a
shared system bus that connects the cores to the memory hierarchy (including caches and main memory).
However, such hierarchy causes tasks running on different cores to compete for access to the shared system bus
whenever data reads or writes need to be made. Such competition is problematic as it may cause large variations
in the execution time of tasks in a non-deterministic way. This paper presents an analysis that allows one to derive
bus contention aware worst-case response-time of tasks that follow the 3-phase task model executing under
partitioned scheduling.

Work-In-Progress: WCRT Analysis for the 3-Phase

Task Model in Partitioned Scheduling

Jatin Arora*, Cláudio Maia*, Syed Aftab Rashid*, Geoffrey Nelissen†, Eduardo Tovar*

*CISTER, ISEP, Polytechnic Institute of Porto, Portugal †Eindhoven University of Technology (TU/e), Eindhoven, the Netherlands

Abstract—Multicore platforms are being increasingly adopted
in Cyber-Physical Systems (CPS) due to their advantages over
single-core processors, such as raw computing power and energy
efficiency. Typically, multicore platforms use a shared system
bus that connects the cores to the memory hierarchy (including
caches and main memory). However, such hierarchy causes tasks
running on different cores to compete for access to the shared
system bus whenever data reads or writes need to be made. Such
competition is problematic as it may cause large variations in the
execution time of tasks in a non-deterministic way. This paper
presents an analysis that allows one to derive bus contention-
aware worst-case response-time of tasks that follow the 3-phase
task model executing under partitioned scheduling.

I. INTRODUCTION

Multicore processors offer advantages over the traditional

single-core computing platforms such as higher computational

power and lower energy consumption, among others. However,

the use of multicore processors in hard real-time systems,

i.e., systems with stringent timing requirements, is still under

scrutiny of the real-time systems community due to their

unpredictable nature. This unpredictability is a direct result

of current designs which include shared resources such as

a system bus, caches, main memory and I/O devices. When

accessing any of these shared resources, a task running on a

given core may suffer inter-core interference from co-running

tasks, i.e., tasks running on the other cores. This inter-core

interference causes non-deterministic variations in the tasks’

execution time.

Solutions that use phased execution models [2]–[4] are

promising candidates to circumvent the problem of inter-core

interference due to shared resources. In these models, tasks’

executions are divided into separate memory and execution

phases. The memory phase is responsible for loading tasks’

data and instructions into a core’s local memory (e.g., cache or

scratchpad) and to push back the processed data into the main

memory. During the execution phase, the core executes the

task’s code by processing data/instructions already available in

the core’s local memory without any need to access the system

bus or the main memory. Still, even under these models, tasks

may contend to access the shared bus. This situation happens

This work was partially supported by National Funds through FCT/MCTES
(Portuguese Foundation for Science and Technology), within the CISTER
Research Unit (UIDB/04234/2020); also by the Operational Competitiveness
Programme and Internationalization (COMPETE 2020) under the PT2020
Partnership Agreement, through the European Regional Development Fund
(ERDF), and by national funds through the FCT, within project POCI-01-
0145-FEDER-029119 (PREFECT)

when a task tries to access the bus to load its data/instructions

from the main memory and the bus is already busy serving the

memory phase of another task executing on another core. Such

situation forces the requesting task to hold its execution until

the bus is free. This phenomenon is referred to as bus blocking

in this work. Since bus blocking can significantly impact task

schedulability, even under phased execution models, works

like [3] have been proposed to bound the bus blocking under

global scheduling. Contrary to [3], in this work we focus

on analyzing the bus contention and deriving the worst-case

response time (WCRT) for the 3-phase task model assuming

fixed-priority partitioned scheduling. We derive the maximum

bus blocking that may be experienced by each task and then

use this value to determine their worst-case response-time.

II. SYSTEM MODEL

We consider a multicore platform comprising m identical

cores (π1, π2, ..., πm) where each core has a local mem-

ory (i.e., cache or scratchpad) that can store the task’s

data/instructions during runtime. Each core uses a shared

system bus to access the main memory and cores can access

the bus concurrently which, as explained previously, may lead

to contention. Furthermore, we assume that the system bus can

handle only one access at a time and the system bus arbitration

policy assumed is First-Come First-Served (FCFS).

Task Model: We consider a task set Γ comprising n sporadic

tasks. Each task τi is executed following a 3-phase task model.

In this model, the execution of a task τi is divided into three

phases namely: Acquisition (A), Execution (E) and Restitution

(R) phase. The worst-case execution time (WCET) of each

phase of τi is denoted by CA
i , CE

i , and CR
i , respectively.

Thus, the WCET of τi in isolation is given by the sum of

the WCET of each of the phases, i.e., Ci = CA
i +CE

i +CR
i .

The response time of the kth job of task τi executing on a

given core πl is denoted by Ri,k,l. Consequently, the worst-

case response time (WCRT) of task τi, denoted by Rmax
i,l , is

given by maximizing Ri,k,l over all jobs of τi. We assume

partitioned scheduling where task to core mapping is given

at design time and any fixed task-priority algorithm is used to

assign task priorities. Additionally, we define the following set

of tasks: hepi,l denotes the set of tasks with higher or equal

priority than τi on core πl; hpi,l (resp. lpi,l) denotes the set

of tasks with priority higher (resp. lower) than τi on core πl.

Execution Model: In the 3-phase model, the A-phase executes

first to fetch data from the main memory and store it in the

core’s local memory. Then, the E-phase executes the task’s

code using the data previously fetched by the A-phase. Finally,

the R-phase writes the modified data, resulting from the E-

phase execution, to the main memory. Thus, the A-phase

and R-phase are memory phases in which the system bus is

accessed to read/write data from main memory. In addition,

each task executes non-preemptively, i.e., once a task starts

executing its A-phase, it cannot be preempted by any other

task of the same core until completion. It is also assumed that

a core remains idle during a memory phase.

Each core maintains its own ready queue sorted by priority

with tasks that are ready to execute. Whenever a task in the

queue becomes ready to execute, the core requests access to

the system bus and if the system bus is free, the core executes

the A-phase of that task. However, if the system bus is busy

serving a memory phase from any other core, then the core

will busy-wait until the bus becomes available, at which point

it will execute the A-phase of the task with highest priority in

the ready queue. Once the A-phase of a task completes, the

E-phase of the same task starts executing immediately on the

core. After the E-phase completes, the task requests access to

the bus to execute its R-phase. At this point, the core may have

to busy-wait for the bus if the bus is busy serving requests of

co-running tasks. Once the bus becomes available, the task

can execute its R-phase and finalize its execution. In addition,

if there are other tasks waiting in the core’s ready-queue, we

assume that the A-phase of another ready task can execute

immediately after an R-phase that just completed its execution

on the same core in order to avoid any bus blocking during

this transition of phases/tasks.

When more than one core requests access to the system bus

simultaneously, it is assumed that, in the worst-case, the core

under analysis accesses the bus after the completion of the

bus requests of all the other cores (i.e., the request of the core

under analysis is the last to arrive on a FCFS basis).

III. BUSY WINDOW COMPUTATION

According to our system model, a task that started exe-

cuting its A-phase cannot be preempted until completion of

its R-phase. It thus behaves similarly to a non-preemptive

system. For single-core platforms that use fixed-priority non-

preemptive (FPNP) scheduling, the worst-case response time

of a task τi is observed in the longest level-i busy window [1].

Definition III.1. Level-i busy window: A level-i busy window

is a time interval (a, b) in which the pending workload of tasks

with priorities higher or equal to that of task τi is positive for

all t ∈ (a, b) and 0 at the boundaries a and b.

To compute the longest level-i busy window w.r.t a task τi,

we must compute the maximum interference and maximum

blocking τi can suffer during its execution. It was proven

in [1], [6] that on single-core platforms, a task τi can suffer

blocking from at most one lower-priority job, and suffers

interference from all higher priority jobs that execute before

τi. However, when considering a multicore platform, task τi
may additionally suffer bus blocking due to co-running tasks

that are executing on other cores than τi. These co-running

tasks can cause additional delays in the execution of τi by

blocking its accesses to the system bus leading to an increase

in the length of level-i busy window.

Let Wi,l be the length of the level-i busy window w.r.t a

task τi executing on core πl, where Wi,l can be computed

using the following iterative equation:

Wi,l = Cmax
lp,i,l +Busmax

i,l (Wi,l) +
∑

τh∈hepi,l

(η+h (Wi,l)× Ch)

(1)

Cmax
lp,i,l is the maximum blocking that can be caused by one job

of a lower-priority task on core πl, i.e., Cmax
lp,i,l = max

τj∈lpi,l

{Cj},

and Busmax
i,l (Wi,l) is the maximum bus blocking suffered by

τi in a time window of length Wi,l (this value is bounded in

next subsections).

To bound the maximum number of jobs of any task τh
that may interfere with the execution of task τi, we use

the concept of upper event arrival function [5]. The upper

event arrival function η+h (Wi,l) returns the maximum number

of jobs released by task τh in any time interval of length

Wi,l. The upper event arrival function can efficiently capture

the variability in the load and can represent complex task

activation patterns such as periodic with jitter, burst, etc.

Considering that Ch is the WCET of task τh in isolation,

i.e., Ch = CA
h + CE

h + CR
h , (η+h (Wi,l) × Ch) upper-bounds

the maximum interference the higher or equal priority task τh
may generate on τi in the longest level-i busy window. Note

that η+h (Wi,l) can be computed and used as proposed in [5],

e.g., see Equation 3 in [5].

A. Bounding the Bus Blocking

To bound the maximum bus blocking suffered by tasks

running on the local core πl due to the tasks running on a

remote core πr, we start by computing the following values:

• The maximum number of times the tasks running on the

local core πl can suffer bus blocking in a time window

of length Wi,l, denoted as Nπl
(Wi,l).

• The maximum number of times the tasks running on the

remote core πr can cause bus blocking in a window Wi,l,

denoted as Nπr
(Wi,l).

Lemma 1. The maximum number of times the tasks running

on a local core πl can suffer bus blocking in a window of

length Wi,l is given by:

Nπl
(Wi,l) =

∑

τh∈hepi,l

η+h (Wi,l) + 1 (2)

Proof. We know that in the longest level-i busy window all

jobs (except the first job) of the local core can only execute

after the completion of the R-phase of the job executed just

before on the same core. Since the A-phase of a task starts

immediately after the R-phase execution of the previous job,

each job (except the first) does not suffer blocking before its A-

phase and thus can only suffer bus blocking once i.e., before

its R-phase. Thus, the bus blocking in Wi,l is bounded by

the maximum number of jobs released by tasks in hepi,l in

Wi,l, which is bounded by
∑

τh∈hepi,l
η+h (Wi,l). Two cases

are considered for the additional 1 in the equation: (case 1) if

the first job in the busy window is a job from a lower priority

task, it will suffer bus blocking only at its R-phase as lower

priority task can only cause blocking to task τi after it starts

executing its A-phase on the bus. Therefore, the additional 1

in the equation accounts for the bus blocking of one job of

this lower priority task at its R-phase; (case 2) if τi does not

suffer any blocking from lower priority task (e.g. if τi is the

lowest priority task) then the additional one accounts for bus

blocking suffered by the first job executed in the longest level-

i busy window at its A-phase. Hence, the maximum number

of times the tasks running on core πl can suffer bus blocking

in Wi,l are bounded by
∑

τh∈hepi,l
η+h (Wi,l) + 1.

Lemma 2. The maximum number of times tasks running on

a remote core πr can cause bus blocking in a time window of

length Wi,l is upper bounded by Nπr
(Wi,l), where

Nπr
(Wi,l) =

∑

τu∈Γr

η+u (Wi,l) (3)

The proof is similar to that of Lemma 1 except that it

accounts for all tasks executing on core because any task

running on core πr can participate in the bus blocking.

B. Maximum Bus Blocking

Having bounded the maximum number of bus blockings

suffered by the core under analysis πl in Wi,l (i.e. Nπl
(Wi,l))

and caused by any remote core πr in Wi,l (i.e. Nπr
(Wi,l)),

we can now derive the maximum bus blocking that a task τi
executing on core πl can suffer due to tasks that may execute in

parallel with τi on core πr in the level-i busy window of length

Wi,l. For this, three cases must be considered: (i) Nπl
(Wi,l) >

Nπr
(Wi,l), (ii) Nπl

(Wi,l) = Nπr
(Wi,l) and (iii) Nπl

(Wi,l) <
Nπr

(Wi,l). We will compute the maximum bus blocking for

case 1 using Lemma 3 and for case 2 using Lemma 4. The

maximum bus blocking for case 3 is then derived by dividing

case 3 into two sub-cases.

Let MA
r (resp. MR

r) be a set that contains all the A-phases

(resp. R-phases) of the jobs released on core πr in Wi,l sorted

in non-increasing order of their execution times, i.e.,

MA
r = {CA

r,1, C
A
r,2, . . . , C

A

r,N̂πr

| CA
r,x ≥ CA

r,x+1}

MR
r = {CR

r,1, C
R
r,2, . . . , C

R

r,N̂πr

| CR
r,y ≥ CR

r,y+1}

where N̂πr
is equal to the value of Nπr

(Wi,l) computed using

Equation 2. Note that CA
r,x and CR

r,y may or may not belong

to different jobs released on core πr in Wi,l.

Lemma 3. If Nπl
(Wi,l) > Nπr

(Wi,l), then the maximum bus

blocking i.e., Busi,r(Wi,l) caused by tasks running on core

πr to the tasks running on core πl in time window Wi,l is:

Busi,r(Wi,l) =

N̂πr
∑

x=1

CA
r,x +

N̂πr
∑

y=1

CR
r,y (4)

where CA
r,x (resp. CR

r,y) is the execution time of the A-phase

(resp. R-phase) in the set MA
r (resp. CR

r,y ∈ MR
r).

Proof. Each bus blocking caused by πr can be composed of

either an A-, or an R-phase of a job, or one R- and one A-phase

of two different jobs released on core πr in Wi,l (remember

that the A-phase of a job can execute immediately after the R-

phase of another job on πr). Since, the precise bus access time

of tasks running on core πr is unknown, there can be a scenario

in which all the memory phases of all the jobs of core πr

released in Wi,l participate to the bus blocking if Nπl
(Wi,l) >

Nπr
(Wi,l). Therefore, the maximum contribution of N̂πr

jobs

of core πr to bus blocking, i.e.,
∑N̂πr

x=1 C
A
r,x+

∑N̂πr

y=1 C
R
r,y upper

bounds the maximum bus blocking core πr can cause on the

tasks of core πl in Wi,l.

Lemma 4. If Nπl
(Wi,l) = Nπr

(Wi,l), then the maximum bus

blocking Busi,r(Wi,l) caused by tasks running on core πr to

tasks running on core πl in a time window Wi,l is given by:

N̂πr
∑

x=1

CA
r,x +

N̂πr
∑

y=1

CR
r,y −min(min

∀x∈MA
r

{CA
r,x}, min

∀y∈MR
r

{CR
r,y})

(5)

Proof. To prove this, we consider two cases:

Case 1. If the A-phase of the first job on πr participate

to the bus blocking of any job of πl released in Wi,l, then

the first bus blocking is composed of only one A-phase while

the rest of the bus blockings can be composed of one R- and

one A-phase of two different jobs running on πr within Wi,l.

Consequently, the R-phase of the last job executing on πr

within Wi,l cannot participate to Busi,r(Wi,l).
Case 2. If the A-phase of the first job on πr participating

to the bus blocking of τi does not block the memory-phase

of any job of πl released in Wi,l, then all the memory phases

except the A-phase of the first job executing on πr within

Wi,l can contribute to Busi,r(Wi,l), as the first bus blocking

is composed of an R-phase of first job and A-phase of any

other job executed on πr within Wi,l.

Considering both cases above, either one A-phase or

one R-phase does not participate to Busi,r(Wi,l). Thus,

Busi,r(Wi,l) is maximised when the non-participating mem-

ory phase is the smallest among those in MA
r and MR

r , hence

proving the lemma.

If Nπl
(Wi,l) < Nπr

(Wi,l), then only Nπl
(Wi,l) bus block-

ings can be caused by tasks running on core πr to the tasks

running on core πl in Wi,l. To extract Nπl
(Wi,l) number

of A and R-phases with higher memory demand, we can

simply divide the set MA
r (resp. MR

r) into two sub-sets named

MAH
r and MAL

r (resp. MRH
r and MRL

r). The subset MAH
r

(resp. MRH
r) contains Nπl

(Wi,l) number of A-phases (resp.

R-phases) with maximum memory demand and rest of the

A-phases (resp. R-phases) are in the MAL
r (resp. MRL

r) as

follows:

MAH
r = {CA

r,1, C
A
r,2, . . . , C

A

r,N̂πl

| CA
r,x ≥ CA

r,x+1}

MAL
r = {CA

r,N̂πl
+1

, CA

r,N̂πl
+2

, . . . , CA

r,N̂πr

| CA
r,y ≥ CA

r,y+1}

MRH
r = {CR

r,1, C
R
r,2, . . . , C

R

r,N̂πl

| CR
r,x ≥ CR

r,x+1}

MRL
r = {CR

r,N̂πl
+1

, CR

r,N̂πl
+2

, . . . , CR

r,N̂πr

| CR
r,y ≥ CR

r,y+1}

The maximum bus blocking can be computed by considering

the memory phases of MAH
r and MRH

r . If each element of

MAH
r and MRH

r belongs to the exact same set of jobs then

there will be N̂πl
(where N̂πl

= Nπl
(Wi,l)) number of jobs

that are involved in the bus blocking, otherwise it is greater

than N̂πl
. Therefore, we will consider two sub-cases; (1) when

the number of jobs involved in the bus blocking is greater

than N̂πl
and (2) when the number of jobs involved in the bus

blocking is equal to N̂πl
.

Sub-case 1: If the number of jobs involved in the bus

blocking is greater than N̂πl
then the maximum bus blocking

Busi,r(Wi,l) can be derived by considering all the memory

phases of MAH
r and MRH

r as given below.

Busi,r(Wi,l) =

N̂πl
∑

x=1

CA
r,x +

N̂πl
∑

y=1

CR
r,y (6)

where CA
r,x (resp. CR

r,y) is the execution time of the A-phase

(resp. R-phase), CA
r,x ∈ MAH

r (resp. CR
r,y ∈ MRH

r).

Sub-case 2: If the number of jobs involved in the bus

blocking is equal to N̂πl
then either one A-phase or R-phase

needs to be removed from the bus blocking (similarly to

Lemma 4). Unlike Lemma 4, we have Nπl
(Wi,l) < Nπr

(Wi,l)
that means possibly a memory phase from MAL

r or MRL
r can

participate in the bus blocking. To compute the maximum bus

blocking in this sub-case, we will remove the smallest A-phase

or R-phase from MAH
r or MRH

r and will add the largest A-

phase or R-phase from MAL
r or MRL

r , as follows:

Busi,r(Wi,l) =

N̂πl
∑

x=1

CA
r,x +

N̂πl
∑

y=1

CR
r,y

−min
(

(min
∀x∈MAH

r

{CA
r,x} − max

∀y∈MAL
r

{CA
r,y}),

(min
∀x∈MRH

r

{CR
r,x} − max

∀y∈MRL
r

{CR
r,y})

)

(7)

As the bus arbitration policy is FCFS, the maximum bus

blocking suffered by core πl from all the remote cores in a

time window of length Wi,l is given by Busmax.
i,l (Wi,l), where

Busmax.
i,l (Wi,l) =

m
∑

r=1,r 6=l

Busi,r(Wi,l) (8)

IV. WCRT ANALYSIS

As proven in [1], to compute the WCRT of task τi, we need

to determine the response time of each job of τi that executes

during the level-i busy window Wi,l. Having computed Wi,l

by Equation 1, the maximum number of jobs of task τi that

can execute within Wi,l is given by:

Ki = η+i (Wi,l) (9)

To compute the response time of the kth job of τi on core πl,

denoted by τi,k,l, we first need to compute the starting time

of the R-phase of τi,k,l. This is due to the fact that each job

executing on core πl, including τi,k,l, can suffer bus blocking

at its R-phase. Assuming sRi,k,l denote the starting time of the

R-phase of τi,k,l on core πl, then sRi,k,l can be computed using

the following iterative equation:

sRi,k,l = Cmax
lp,i,l +

∑

h∈hepi,l\τi

η+h (s
R
i,k,l − (CA

i + CE
i))× Ch+

Busmax.
i,l (sRi,k,l) + (k − 1)× Ci + (CA

i + CE
i)
(10)

For Equation 10, the computation of Cmax
lp,i,l is similar to

Equation 1. Similarly, Busmax.
i,l (sRi,k,l) is computed using

Equation 8; (k − 1) × Ci represents the time k − 1 jobs

of τi take to execute before starting τi,k,l. Since any task of

core πl cannot preempt the execution of τi,k,l once it starts

executing its A-phase on the bus, the maximum interference

from higher or equal priority tasks (except τi) running on core

πl is captured by η+h (s
R
i,k,l − (CA

i +CE
i))×Ch; where Ch is

the WCET of task τh in isolation. As sRi,k,l appears on both

sides of Equation 10, it can be solved iteratively by initializing

sRi,k,l = CA
i +CE

i +Cmax
lp,i,l +Ch. The starting time sRi,k,l will

then be given by the smallest positive value of sRi,k,l for which

Equation 10 converges.

Using sRi,k,l, the response time Ri,k,l of τi,k,l can be

computed by simply adding it to the execution time of R-

phase CR
i of task τi

Ri,k,l = sRi,k,l + CR
i (11)

Finally, the WCRT of task τi can be computed by maximizing

equation 11 over all jobs of τi that execute during the level-i

busy window, i.e., Rmax
i,l = max

k∈[1,Ki]
{Ri,k,l}

If the WCRT of each task in the task set is less than or equal

to its relative deadline, then the task set is deemed schedulable,

otherwise it is not.

V. CONCLUSION

In this work, we propose an approach to analyze bus block-

ing suffered by tasks that execute using the 3-phase execution

model. For future work, we will evaluate the accuracy of our

analysis.

REFERENCES

[1] R. J. Bril, J. J. Lukkien, and W. F. J. Verhaegh. Worst-case response
time analysis of real-time tasks under fixed-priority scheduling with
deferred preemption revisited. In 19th Euromicro Conference on Real-

Time Systems (ECRTS’07), pages 269–279, 2007.
[2] Guy Durrieu, Madeleine Faugère, Sylvain Girbal, Daniel Gracia Pérez,

Claire Pagetti, and W. Puffitsch. Predictable Flight Management System
Implementation on a Multicore Processor. In Embedded Real Time

Software (ERTS’14), TOULOUSE, France, February 2014.
[3] Claudio Maia, Geoffrey Nelissen, Luis Nogueira, Luis Miguel Pinho,

and Daniel Gracia Perez. Schedulability analysis for global fixed-priority
scheduling of the 3-phase task model. In 2017 IEEE 23rd International

Conference on Embedded and Real-Time Computing Systems and Appli-

cations (RTCSA), pages 1–10, Hsinchu, Taiwan, August 2017. IEEE.
[4] Rodolfo Pellizzoni, Emiliano Betti, Stanley Bak, Gang Yao, John

Criswell, Marco Caccamo, and Russell Kegley. A Predictable Execution
Model for COTS-Based Embedded Systems. In 2011 17th IEEE Real-

Time and Embedded Technology and Applications Symposium, pages 269–
279, Chicago, IL, USA, April 2011. IEEE.

[5] Simon Schliecker and Rolf Ernst. Real-time performance analysis of
multiprocessor systems with shared memory. ACM Transactions on

Embedded Computing Systems, 10(2):1–27, December 2010.
[6] K W Tindell. An Extendible Approach for Analysing Fixed Priority Hard

Read-Time Tasks. page 16.

