

Two Protocols Without Periodicity for the
Global and Preemptive Scheduling Problem
of Multi-Mode Real-Time Systems upon
Multiprocessor Platforms

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-090501

Version: 0

Date: 05-04-2009

Vincent Nelis, Joël Goossens and Björn Andersson

Technical Report HURRAY-TR-090501 Two Protocols Without Periodicity for the Global and Preemptive Scheduling Problem of Multi-Mode Real-Time Systems upon Multiprocessor Platforms

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

Two Protocols Without Periodicity for the Global and Preemptive Scheduling
Problem of Multi-Mode Real-Time Systems upon Multiprocessor Platforms

Vincent Nelis, Joël Goossens and Björn Andersson

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: bandersson@dei.isep.ipp.pt

http://www.hurray.isep.ipp.pt

Abstract

We consider the global and preemptive scheduling problem of multi-mode real-time systems upon identical

multiprocessor platforms. Since it is a multi-mode system, the system can change from one mode to another such that

the current task set is replaced with a new task set. Ensuring that deadlines are met requires not only that a

schedulability test is performed on tasks in each mode but also that (i) a protocol for transitioning from one mode to

another is specified and (ii) a schedulability test for each transition is performed. We propose two protocols which

ensure that all the expected requirements are met during every transition between every pair of operating modes of the

system. Moreover, we prove the correctness of our proposed algorithms by extending the theory about the makespan

determination problem.

Two Protocols for Scheduling Multi-Mode Real-Time Systems
upon Identical Multiprocessor Platforms

Vincent Nelis1,2

vnelis@ulb.ac.be
Joël Goossens1

joel.goossens@ulb.ac.be
Björn Andersson3

bandersson@dei.isep.ipp.pt

Abstract

We consider the problem of scheduling a multi-mode
real-time system upon identical multiprocessor platforms.
Since it is a multi-mode system, the system can change from
one mode to another such that the current task set is re-
placed with a new task set. Ensuring that deadlines are met
requires not only that a schedulability test is performed on
tasks in each mode but also that (i) a protocol for transition-
ing from one mode to another is specified and (ii) a schedu-
lability test for each transition is performed. We propose
two protocols which ensure that all the expected require-
ments are met during every transition between every pair of
operating modes of the system. Moreover, we prove the cor-
rectness of our proposed algorithms by extending the theory
about the makespan determination problem.

1. Introduction

Hard real-time systems require both functionally correct
executions and results that are produced on time. Control
of the traffic (ground or air), control of engines, control of
chemical and nuclear power plants are just some examples
of such systems. Currently, numerous techniques exist that
enable engineers to design real-time systems while guaran-
teeing that all their temporal requirements are met. These
techniques generally model each functionality of the sys-
tem by a recurrent task, characterized by a computing re-
quirement, a temporal deadline and an activation rate. Com-
monly, real-time systems are modeled by a set of such tasks.
However, some applications exhibit multiple behaviors is-
sued from several operating modes (e.g., an initialization
mode, an emergency mode, a fault recovery mode, etc.),
where each mode is characterized by its own set of func-

1Université Libre de Bruxelles (U.L.B.) CP 212, 50 Av. F.D. Roo-
sevelt, B-1050 Brussels, Belgium.

2Supported by the Belgian National Science Foundation (FNRS) under
a FRIA grant.

3Polytechnic Institute of Porto, Rua Dr. Antonio Bernardino de
Almeida 431, 4200-072 Porto, Portugal.

tionalities, i.e., its set of tasks. During the execution of such
multi-mode real-time systems, switching from the current
mode (called the old-mode) to another one (the new-mode
hereafter) requires to substitute the current executing task
set with the set of tasks of the target mode. This substitu-
tion introduces a transient stage, where the tasks of the old-
and new-mode may be scheduled simultaneously, thereby
leading to an overload which can compromise the system
schedulability.

The scheduling problem during a transition between two
modes has multiple aspects, depending on the behavior and
requirements of the old- and new-mode tasks when a mode
change is initiated (see e.g., [5, 9] for details about the dif-
ferent task requirements during mode transitions). For in-
stance, an old-mode task may be immediately aborted, or it
may require to complete the execution of its current instance
in order to preserve data consistency. In this document, we
assume that every old-mode task must complete its current
instance when a mode change is requested. Indeed we will
see that, while using scheduling algorithms such as the one
considered in this paper, tasks which can be aborted upon a
mode change request do not have any impact on the schedu-
lability during the mode transitions. On the other hand, a
new-mode task sometimes requires to be activated as soon
as possible, or it may also have to delay its first activation
until all the tasks of the old-mode are completed. Moreover,
there may be some tasks (called mode-independent tasks)
present in both the old- and new-mode, such that their peri-
odic (or sporadic) execution pattern must not be influenced
by the mode change in progress.

The existing transition scheduling protocols are clas-
sified with respect to (i) their ability to deal with the
mode-independent tasks and (ii) the way they schedule
the old- and new-mode tasks during the transitions. In
the literature (see [13] for instance), a protocol is said
to be synchronous if it does not schedule old- and new-
mode tasks simultaneously, otherwise it is said to be
asynchronous. Furthermore, a synchronous/asynchronous
protocol is said to be with periodicity if it is able to deal
with mode-independent tasks, otherwise it is said to be
without periodicity.

Related work. Numerous scheduling protocols have al-
ready been proposed in the uniprocessor case to ensure
the transition between modes (a survey of the literature
about this uniprocessor problem is provided in [13]). In
synchronous protocols, one can cite the Idle Time Proto-
col [14] where the periodic activations of the old-mode tasks
are suspended at the first idle time-instant occurring during
the transition and then, the new-mode tasks are released.
The Maximum-Period Offset Protocol proposed in [2] is a
protocol with periodicity which delays the first activation
of all the new-mode tasks for a time equal to the period
of the less frequent task in both modes (mode-independent
tasks are not affected). The Minimum Single Offset Proto-
col in [13] completes the last activation of all the old-mode
tasks and then, releases the new-mode ones. This protocol
exists in two versions, with and without periodicity. Con-
cerning the asynchronous protocols, the authors of [15] pro-
pose a protocol with periodicity and the authors of [12, 11]
propose a protocol without periodicity.

To the best of our knowledge, no protocol exists in the
multiprocessors case (except for the “Work in progress”
version of this paper [10]). This problem is much more
complex, especially due to the presence of scheduling
anomalies upon multiprocessors (see, e.g., Chapter 5 of [1]
on page 51 for a definition). Nowadays, it is well-known
that real-time multiprocessor scheduling problems are typi-
cally not solved by applying straightforward extensions of
techniques used for solving similar uniprocessor problems.

This research. In this paper, we propose two proto-
cols without periodicity (a synchronous protocol and an
asynchronous one) for managing every mode transition
during the execution of a multi-mode real-time system on a
multiprocessor platform. Both protocols can be considered
to be a generalization to the multiprocessor case of the
Minimal Single Offset (MSO) protocol proposed in [13].

Paper organization. In Section 2, we define the computa-
tional model used throughout the paper. In Section 3, we
propose a synchronous protocol and we prove its correct-
ness by extending the theory about the makespan determi-
nation problem. In Section 4, we propose an asynchronous
protocols and we prove that it also meets all the expected re-
quirements during every mode transition. Finally, Section 5
gives conclusions.

2. Model of computation

2.1. System and platform specifications

We consider multiprocessor platforms composed of
a known and fixed number m of identical processors

{P1,P2, . . . ,Pm} upon which a multi-mode real-time sys-
tem is executed. “Identical” means that all the processors
have the same profile (in term of consumption, computa-
tional capabilities, etc.) and are interchangeable.

We define a multi-mode real-time system τ as a set of x
operating modes notedM1,M2, . . . ,Mx where each mode
contains its own set of functionalities to execute. At any
time during its execution, the system runs in only one of its
modes, i.e., it executes only the set of tasks associated with
the selected mode, or the system switches to one mode to
another one. A mode Mk contains a set τk of nk function-
alities denoted

{
τk1 , τ

k
2 , . . . , τ

k
nk

}
. Every functionality τki

is modeled by a sporadic constrained-deadline task char-
acterized by three parameters (Cki , D

k
i , T

k
i) – a worst-case

execution time Cki , a minimum inter-arrival separation T ki
and a relative deadline Dk

i ≤ T ki – with the interpretation
that, during the execution of the mode Mk, the task τki gen-
erates successive jobs τki,j (with j = 1, . . . ,∞) arriving at
times aki,j such that aki,j ≥ aki,j−1 + T ki (with aki,1 ≥ 0),
each such job has an execution requirement of at most Cki ,
and must be completed at (or before) its deadline noted
Dk
i,j

def= aki,j + Dk
i . Since Dk

i ≤ T ki , successive jobs of
a task τki do not interfere with each other. In our study,
all the tasks are assumed to be independent, i.e., there is
no communication, no precedence constraint and no shared
resource (except the processors) between them.

At any time t during the system execution, a job τki,j
is said to be active iff aki,j ≤ t and it is not completed
yet. Moreover, an active job is said to be running at time
t if it is allocated to a processor. Otherwise, the active
job is waiting in a ready-queue of the operating system
and we say that it is waiting. We respectively denote by
active(τk, t), run(τk, t) and wait(τk, t) the subsets of ac-
tive, running and waiting jobs of the tasks of τk at time t.
Notice that the following relation holds: active(τk, t) def=
run(τk, t) ∪ wait(τk, t).

A task must be enabled to generate jobs, and the system
is said to run in modeMk only if every task of τk is enabled
and all the tasks of the other modes are disabled. Thereby,
disabling a task τki prevents future job arrivals from τki . In
the following, we respectively denote by enabled(τk, t) and
disabled(τk, t) the subsets of enabled and disabled tasks of
τk at time t.

2.2. Scheduler specifications

We consider in this study the global scheduling prob-
lem of sporadic constrained-deadlines tasks on multipro-
cessor platforms. “Global” scheduling algorithms, on the
contrary to partitioned algorithms, allow different tasks and
different jobs of the same task to be executed upon different
processors. Furthermore, we consider preemptive, work-

conserving and fixed job-level priority assignment accord-
ing to the following interpretations:

• a preemptive global scheduler: every job can start its
execution on any processor and may migrate at run-
time to any other processor (with no loss or penalty) if
it gets meanwhile preempted by a higher-priority job.

• a work-conserving global scheduler: a processor can-
not be idle if there is a waiting job. In this paper, we
assume that the scheduler assigns, at each time-instant
during the system execution, them highest priority ac-
tive jobs (if any) to the m processors.

• a fixed job-level priority assignment: the scheduler as-
signs a priority to jobs as soon as they arrive and ev-
ery job keeps its priority constant until it completes.
Notice that, if the set of highest-priority jobs do not
change during a time interval [t0, t1) then no preemp-
tion or task migration occurs during the time interval
[t0, t1).

Moreover, we consider scheduling algorithms S for
which the following property holds: for any set of tasks
τ ` and any integers m > 0 and m′ > m, if S schedules
τ ` upon m processors without missing any deadline, then it
also schedules τ ` upon m′ processors without missing any
deadline. Global Deadline Monotonic and Global Earliest
Deadline First [3] are just some examples of such schedul-
ing algorithms.

Every mode Mk of the system uses its own schedul-
ing algorithm noted Sk, which is global, preemptive, work-
conserving, and which assigns fixed job-level priorities. In
the remainder of this paper, we assume that every mode
Mk can be scheduled by Sk on m processors without miss-
ing any deadline. This assumption allows us to only focus
on the schedulability of the system during the mode tran-
sitions, and not during the executions of the modes. We
denote by Ji >Sk Jj the fact that job Ji has a higher pri-
ority than Jj according to the scheduler Sk, and we as-
sume that every assigned priority is distinct from the oth-
ers, i.e., ∀k, i, j such as i 6= j we have either Ji >Sk Jj or
Ji <Sk Jj .

2.3. Mode transition specifications

While the system is running in a mode M i, a mode
change can be initiated by any task of τ i or by the sys-
tem itself, whenever it detects a change in the environment
or in its internal state. This is performed by invoking a
MCR(j) (i.e., a Mode Change Request), where M j is the
targeted destination mode (i.e., the new-mode). We denote
by tMCR(j) the invoking time of a MCR(j) and we assume
that a MCR may only be invoked in the steady state of the
system, and not during the transition between two modes.

Suppose that the system is running in mode M i and a
MCR(j) is invoked (with j 6= i). At time tMCR(j), the
system entrusts the scheduling decisions to a transition pro-
tocol. This protocol immediately disables all the old-mode
tasks (i.e., the tasks of τ i), hence preventing new job ar-
rivals from these tasks. The active old-mode jobs at time
tMCR(j), henceforth called the rem-jobs, may have two dis-
tinct behaviors: either they can be aborted, or they must
complete their execution. As it was introduced in Section 1,
we assume in this work that every rem-jobs must complete.
Indeed we will see in the following section that it is the
worst scenario, since jobs which can be aborted do not have
any impact on the system schedulability while considering
schedulers such as the one introduced in the previous sec-
tion. As a consequence, every result proposed in this pa-
per also holds while considering that some rem-jobs can
be aborted. Finally, notice that we do not consider mode-
independent tasks in this paper.

Since the rem-jobs may cause an overload if the tasks
of τ j are immediately enabled upon a MCR(j), the tran-
sition protocols usually have to delay the enablement of
these new-mode tasks until it is safe to enable them. We
denote by Djk(M i) the relative enablement deadline of the
task τ jk during the transition from the mode M i to the
mode M j , with the following interpretation: the transi-
tion protocol must ensure that τ jk is not enabled after time
tMCR(j) + Djk(M i). The goal of a transition protocol is
therefore to complete every rem-job and to enable every
task of the new-mode M j , while meeting all the job and en-
ablement deadlines. When all the rem-jobs are completed
and all the tasks of τ j are enabled, the system entrusts the
scheduling decisions to the scheduler Sj of the new-mode
M j and the transition phase ends.

Definition 1 (a valid protocol) A transition scheduling
protocol is said to be valid for a given multi-mode real-time
system if it always meets all the job and enablement
deadlines during the transition from any mode of the system
to any other one.

3. The protocol SM-MSO

In this section, we present our synchronous protocol
without periodicity called “Synchronous Multiprocessor
Minimum Single Offset” (SM-MSO) protocol. The main
idea is the following: upon a MCR(j), every task of the
current mode (say M i) is disabled and the rem-jobs con-
tinue to be scheduled by Si upon the m processors. When
all of them are completed, all the new-mode tasks (i.e., the
tasks of τ j) are simultaneously enabled. Figure 1 depicts an
example with a 2-processors platform. The modes M i and
M j respectively contain 4 and 3 tasks, where the light and

dark gray boxes are the old- and new-mode tasks, respec-
tively. Algorithm 1 gives the pseudo-code of this protocol.

-
time

P1

P2

ModeMi in progressz }| {
τi1,1 τi4,1

τi2,1 τi3,1

τi1,2 τi4,2

τi2,2 τi3,2

MCR(j)

τ
j
2,1

τ
j
1,1 τ

j
3,1

@
@I

�
��

arrival of every
job of τi

transition delayz }| { ModeMj in progressz }| {

@@I
no more rem-job

⇒ SM-MSO enables all the tasks of τj
(end of the transition phase)

Figure 1. Illustration of a mode transition
handled by SM-MSO.

Algorithm 1: SM-MSO
Input: t: current time; M i: the old mode; Mj : the new-mode
begin

Schedule all the jobs of τ i by Si ;

At job (say Jk) completion time t :
if active(τ i, t) = φ then

enable all the tasks of τ j ;
enter mode Mj ;

end

In order to know if this protocol is valid for a given multi-
mode system, we need to establish a validity test, i.e., a
condition based on the tasks and platform characteristics
which indicates a priori whether the given system will al-
ways comply with the expected requirements during every
mode change. In the following, we first introduce the notion
of predictable algorithms and we prove in Lemma 2 that
disabling the old-mode tasks upon a mode change request
does not jeopardize the schedulability of the rem-jobs, when
they continue to be scheduled by the old-mode scheduler
upon the m processors. Then in Lemma 5, we establish an
upper bound on the maximal transition delay which could
be produced by the completion of the rem-jobs. Finally, we
use this upper bound to provide a sufficient schedulability
condition that indicates, a priori, if all the enablement dead-
lines will be met during all possible mode changes.

Definition 2 (predictability [8]) Let A denote a schedul-
ing algorithm, and let J = {J1, J2, . . . , Jn} be a set of n
jobs, where each job Ji = (ai, ci, di) is characterized by
an arrival time ai, a computing requirement ci and an ab-
solute deadline di. Let fi denote the time at which job Ji
completes its execution when J is scheduled by A. Now,
consider any set J ′ = {J ′1, J ′2, . . . , J ′n} of n jobs obtained
from J as follows. Job J ′i has an arrival time ai, an execu-
tion requirement c′i ≤ ci, and a deadline di (i.e., job J ′i has
the same arrival time and deadline as Ji, and an execution

requirement no larger than Ji’s). Let f ′i denote the time at
which job J ′i completes its execution when J ′ is scheduled
by A. Algorithm A is said to be predictable if and only if
for any set of jobs J and for any such J ′ obtained from J ,
it is the case that f ′i ≤ fi ∀i.

The result from [6] that we will be using can be stated as
follows.

Lemma 1 Any global, preemptive, work-conserving and
fixed job-level priority assignment scheduler is predictable.

Lemma 2 When a MCR(j) occurs at time tMCR(j) while
the system is running in mode M i, every rem-job issued
from the tasks of τ i meets its deadline when scheduled by
Si upon m processors.

Proof From our assumptions, we know that the set of tasks
τ i of the modeM i is schedulable by Si uponm processors,
and from Lemma 1 we know that Si is predictable. When the
MCR(j) occurs at time tMCR(j), SM-MSO disables every
task of τ i. Disabling these tasks is equivalent to set the
execution time of all their future jobs to zero, and since Si

is predictable the deadline of every rem-job is still met.

From Lemma 2, every rem-job always meets its dead-
line while using SM-MSO during the transition phases.
Thereby, SM-MSO is valid for a given multi-mode real-
time system if, for every mode change, the maximal tran-
sition delay which could be produced by the rem-jobs is not
larger than the minimal enablement deadline of the new-
mode tasks. The transition delay is equal to the completion
time of all the rem-jobs. Notice that, since (i) we consider
fixed job-level priority assignment and (ii) the old-mode
tasks are disabled upon any mode change request, there is
no job arrival and therefore no preemption during the whole
transition phase while using SM-MSO.

The completion time of a given set of n jobs (all ready
at a same time) executed upon a given number m of proces-
sors is called the makespan in the literature and hereafter.
Unfortunately, authors usually address the NP-hard prob-
lem of determining a job priority assignment which mini-
mizes the makespan. This problem, of finding priorities to
minimize the makespan, can be cast as a bin-packing prob-
lem for which a vast literature base is available. However in
this work, we focus on the maximal makespan that could be
produced by any set of n jobs (all ready at a same time) ex-
ecuted upon m processors, without relying on any specific
job-level fixed priority.

In the following, J = {J1, J2, . . . , Jn} denotes a set of
n jobs with processing times c1, c2, . . . , cn that are ready
for execution at time 0. Suppose that these jobs are sched-
uled upon m identical processor by a scheduler such as the
one described in Section 1. In Lemma 3, we first deter-
mine the latest instant in the schedule of J at which job Ji

may start its execution. Then, we determine in Lemma 5
an upper bound on the makespan that could be produced
by J . To help the reader, Figure 2 illustrates the main no-
tations used in the following proofs. In this figure, 7 jobs
{J1, J2, . . . , J7} ready at time 0 are scheduled upon 4 pro-
cessors by a scheduler S (with J1 >S J2 >S . . . >S J7)
such as the one described in Section 1. We shall use the
notations:

• W j
i denotes the exact amount of processing times as-

signed to the processor Pj , after having scheduled ev-
ery job with a higher priority than Ji.

• talloc
i denotes the smallest instant in the schedule at

which job Ji is assigned to a CPU. Notice that job
Ji is always assigned to a processor at time talloc

i =
minmk=1{W k

i } while using a scheduler such as the one
considered in this paper.

• tcomp
i denotes the exact completion time of the job Ji.

For instance, we have tcomp
1 = talloc

7 and tcomp
3 =

talloc
6 .

• tidle
i (with i = 1, . . . ,m) denote the smallest instant in

the schedule such that at least i CPUs are idle.

• “makespan” denotes the time needed to complete all
the rem-jobs. Notice that the makespan is always equal
to tidle

m .

-
time

P1

P2

P3

P4

J7J1

J5J2

J6J3

J4

tidle
4

| {z }
W4

6

tidle
2

| {z }
W3

6 t
comp
3 = talloc

6

tidle
1

| {z }
W2

6

tidle
3

| {z }
W1

6 t
comp
1 = talloc

7

makespanz }| {
0

Figure 2. Illustration of our notations.

Lemma 3 Let J = {J1, J2, . . . , Jn} be a set of n jobs with
processing times c1, c2, . . . , cn that are ready for execution
at time 0. Suppose that these jobs are scheduled upon m

identical processor by a scheduler S such as the one de-
scribed in Section 1. Then, an upper bound on the smallest
instant talloc

i in the schedule at which the job Ji is assigned
to a CPU is given by

t̂alloc
i

def=

{
0 if m ≥ n,
1
m

∑
Jj>SJi

cj otherwise.
(1)

Proof The proof is obvious for m ≥ n. Otherwise, the
proof is obtained by contradiction. Suppose that

talloc
i > t̂alloc

i

Since we know that job Ji is assigned to a processor at time
talloc
i = minmk=1{W k

i } while scheduling the n jobs by S,
we get

m
min
k=1
{W k

i } > t̂alloc
i

and thus,

W k
i > t̂alloc

i ∀k = 1, 2, . . . ,m

By summing these m inequalities we obtain∑m
k=1W

k
i > m · t̂alloc

i

⇔
∑m
k=1W

k
i > m · 1

m

∑
Jj>SJi

cj
⇔

∑m
k=1W

k
i >

∑
Jj>SJi

cj

The above inequality means that the total amount of pro-
cessing time associated to the processors after having
scheduled every job with a higher priority than Ji is strictly
larger than the amount of processing time of jobs with
higher priority than Ji. This result being fallacious, the
contradiction shows the property.

Lemma 4 Let J = {J1, J2, . . . , Jn} be a set of n jobs with
processing times c1, c2, . . . , cn that are ready for execution
at time 0. Suppose that these jobs are scheduled upon m
identical processor by a scheduler such as the one described
in Section 1. Then for every Ji ∈ J , an upper bound on its
completion time tcomp

i is given by:

t̂comp
i

def= t̂alloc
i + ci (2)

where t̂alloc
i is defined by Equation 1.

Proof The proof is a direct consequence of the fact that
there is no preemption during the schedule of the n jobs.

Lemma 5 Let J = {J1, J2, . . . , Jn} be a set of n jobs with
processing times c1, c2, . . . , cn (assuming c1 ≤ c2 ≤ . . . ≤
cn) that are ready for execution at time 0. Suppose that
these jobs are scheduled upon m identical processors by a
scheduler S such as the one described in Section 1. Then,
whatever the priority assignment of jobs, an upper bound
on the makespan is given by:

upms(J, m)
def
=

(
cn if m ≥ n
1
m

Pn
i=1 ci + (1− 1

m
) cn otherwise

(3)

Proof The proof is obvious for m ≥ n. We will now prove
the lemma for m < n. Using Lemma 3 and Lemma 4 we
get for every job Ji ∈ J that

t̂comp
i

def=
1
m

∑
Jj>SJi

cj + ci

One can observe that the set ∪nk=1 {Jk | Jk >S Ji} ⊆ J \
{Ji}. Hence we have:

t̂comp
i ≤ 1

m

∑
J\{Ji}

cj + ci

Rewriting this yields:

t̂comp
i ≤ 1

m

n∑
j=1

cj + (1− 1
m

)ci

We know that ci ≤ cn ∀i. Applying this gives us:

t̂comp
i ≤ 1

m

n∑
j=1

cj + (1− 1
m

)cn

which states the lemma.

The two following corollaries are direct consequences of
Expression 3.

Corollary 1 Let J = {J1, J2, . . . , Jn} be a set of n jobs
with processing times c1, c2, . . . , cn that are ready for exe-
cution at time 0. Suppose that these jobs are scheduled upon
m identical processors by a scheduler such as the one de-
scribed in Section 1. Then, for any job Ji 6∈ J of processing
time ci ≥ 0 and ready at time 0, we have

upms(J ∪ {Ji},m) ≥ upms(J,m)

where upms(J,m) is defined by Equation 3.

Notice that we know from Corollary 1 that aborting a
rem-job upon a MCR can only reduce the largest makespan.
As a result, only the case where every task must complete
its current active job upon a MCR is studied in this paper,
since it represents the worst scenario.

Corollary 2 Let J = {J1, J2, . . . , Jn} be a set of n jobs
with processing times c1, c2, . . . , cn that are ready for ex-
ecution at time 0. Suppose that these jobs are scheduled
upon m identical processors by a scheduler such as the one
described in Section 1. Then, for any job Ji ∈ J and for
any job J ′i 6∈ J ready at time 0 and such that c′i ≥ ci, we
have

upms(J \ {Ji} ∪ {J ′i},m) ≥ upms(J,m)

where upms(J,m) is defined by Equation 3.

In the framework of our problem, we respectively know
from Corollary 1 and 2 that the largest makespan is reached
when (i) every task of τ i has an active job at time tMCR(j)

and (ii) every rem-job has a processing time equal to the
worst-case execution time of its task. From Lemma 5, a
sufficient schedulability condition may therefore be formal-
ized as follows.

Validity test 1 For any multi-mode real-time system τ , SM-
MSO is valid provided:

upms(τ i,m) ≤
nj

min
k=1
{Djk(M

i)} ∀i, j with i 6= j

where

upms(τ i,m)
def
=

(
Cmax if m ≥ ni
1
m

P
τi
k
∈ τi C

i
k + (1− 1

m
) Cmax otherwise

and
Cmax

def= max
τ ik∈ τ i

{Cik}

4. The protocol AM-MSO

The main idea of this second protocol is to reduce the en-
ablement delay applied to the new-mode tasks, by enabling
them as soon as possible. On the contrary to SM-MSO,
rem-jobs and new-mode tasks can be scheduled simultane-
ously during the transition phases.

The priorities of the rem-jobs are assigned according to
the old-mode scheduler, whereas those of the new-mode
tasks are assigned according to the new-mode scheduler.
However during the whole transition phases, every rem-job
always get a higher priority than every new-mode task. For-
mally, let Mold and Mnew be the old- and new-mode re-
spectively, let Ji and Jj be two active jobs during the mode
change fromMold to Mnew, and let Strans be the scheduler
used by AM-MSO during every mode transition. According
to these notations we have

Jj >Strans Ji iff (Jj ∈Mold ∧ Ji ∈Mnew)

∨(Jj ∈Mold ∧ Ji ∈Mold ∧ Jj >Sold Ji)

∨(Jj ∈Mnew ∧ Ji ∈Mnew ∧ Jj >Snew Ji)

Notice that in some cases, it could be more interesting to
assign a higher priority to a new-task than to a rem-job (e.g.,
if the rem-job has a large deadline and the new-mode task
has a small enablement deadline). However since this work
is a first-step study, we did not implement this solution and
we leave this problem open for future work.

AM-MSO works as follows: upon a MCR(j), all the
old-mode tasks are disabled and the rem-jobs continue to
be scheduled by Si (assuming that M i is the old-mode).
Whenever a processor completes a rem-job (say at time t)

and there is no more waiting rem-jobs, AM-MSO immedi-
ately enables some new-mode tasks; contrary to SM-MSO
which waits for the completion of all the rem-jobs. In or-
der to select the new-mode tasks to enable at time t, AM-
MSO uses the following heuristic: it considers every dis-
abled new-mode task in increasing order of their enable-
ment deadline and it enables those which can be scheduled
by Sj upon the current number of available CPUs (i.e., the
number of CPUs which are not running a rem-job and which
are therefore available for executing some new-mode tasks).

-
time

P1

P2

ModeMi in progressz }| {
τi1,1 τi4,1

τi2,1 τi3,1

τi1,2 τi4,2

τi2,2 τi3,2

MCR(j)

τ
j
2,1

τ
j
1,1 τ

j
3,1

transition phasez }| { ModeMj in progressz }| {

@
@I

�
��

arrival of every
job of τi

time t�
��

enablement of some
tasks of τj

@
@I

no more rem-job
⇒ enablement of every task of τj

(end of the transition phase)

Figure 3. Illustration of a mode transition
handled by AM-MSO.

Figure 3 depicts an example on a 2-processors platform
(the same example as in Figure 1). At time t, P2 completes
a rem-job and there is no more waiting rem-jobs to execute.
Notice that time t is equivalent to time tidle

1 , defined as pre-
viously. AM-MSO therefore considers every disabled task
of τ j (in increasing order of their enablement deadline) and
enables some of them in such a way that the resulting set
of enabled tasks can be scheduled by Sj upon 1 processor
(since at this time, only this processor P2 is available for
executing some new-mode tasks).

We denote by CPUS(τ `) the function returning a suffi-
cient number of processors so that the set of tasks τ ` can
be scheduled by S without missing any deadline. Unfor-
tunately, no efficient necessary and sufficient schedulability
test is known for most of multiprocessor scheduling algo-
rithms in order to determine the minimal number of required
CPUs to schedule a given task set (Theodore Baker has
proposed [4] a necessary and sufficient schedulability test
for arbitrary-deadline sporadic tasks scheduled by Global-
EDF but its time-complexity is very high so only small sys-
tems can be tested). Fortunately, sufficient tests exist. For
instance, examples of such functions can be found in [7]
for the scheduling algorithms Global-DM and Global-EDF.
The pseudo-code of the protocol AM-MSO is given by Al-
gorithm 2.

In order to know if AM-MSO is valid for a given multi-
mode system, we established a validity algorithm that indi-
cates if all the job and enablement deadlines are met, while
considering the worst-case scenario for every mode transi-

Algorithm 2: AM-MSO
Input: M i: the old mode; Mj : the new-mode
begin

Assign priorities to the jobs according to Strans ;
Sort disabled(τ j , t) by increasing order of enablement
deadline ;

At job (say Jk) completion time t :
if Jk ∈ τ i and wait(τ i, t) = φ then

foreach τ jr ∈ disabled(τ j , t) do
if CPUS

j
(enabled(τ j , t) ∪ {τ jr }) ≤

m−#(run(τ i, t)) then
enable τ jr ;

if active(τ i, t) = φ then enter mode Mj ;

end

tion. This algorithm returns “true” only if the enablement
deadlines will be always met, otherwise it returns “false”.
The main idea of this method is to simulate the behavior of
Algorithm 2 for every mode transition, while considering
the largest instants at which the new-mode tasks could be
enabled.

Since Strans always assigns higher priorities to the rem-
jobs than to new-mode jobs, the arrivals of the new-mode
jobs do not influence the schedule of the rem-jobs. As a re-
sult, the largest enablement instants of the new-mode tasks
can be determined by only considering the schedule of the
rem-jobs. Actually, these largest instants correspond to the
largest instants tidle

k as defined previously. Hence, we es-
tablish in Lemma 7 an upper bound on the smallest instants
tidle
k in the transition phase at which at least k processors

are idle (while ignoring the new-mode job arrivals). Fi-
nally, we prove the correctness our the validity algorithm
in Lemma 8.

Lemma 6 Let J = {J1, J2, . . . , Jn} be a set of n jobs with
processing times c1, c2, . . . , cn (assuming c1 ≤ c2 ≤ . . . ≤
cn) that are ready for execution at time 0. Suppose that
these jobs are scheduled upon m identical processors (with
m < n) by a scheduler S such as the one described in
Section 1. Then, whatever the priority assignment of jobs,
we have ∀j, k ∈ [1,m] such that j < k:

tidle
j ≥ tidle

k − cn−m+k

Proof The proof is obtained by contradiction. Suppose that
there are j and k in [1,m] such that j < k and

tidle
j < tidle

k − cn−m+k

By definition of the instants tidle
i ’s, we know that tidle

i ≤
tidle
i+1 ∀i ∈ [1,m]. Therefore, we know from the above in-

equality that the following (m− k + 1) inequalities hold:

tidle
j < tidle

k − cn−m+k

⇒ tidle
j < tidle

k+1 − cn−m+k

⇒ tidle
j < tidle

k+2 − cn−m+k

⇒ tidle
j < . . .

⇒ tidle
j < tidle

m − cn−m+k

According to the specifications of S, we know that a proces-
sor (say Pi) gets idle at time tidle

j only if there is no more
waiting job at time tidle

j , i.e., each one of the (m − j) re-
maining active jobs is running on another processor than
Pi. However, the above (m − k + 1) inequalities suggest
that there remain (m − k + 1) running jobs at time tidle

j

with a remaining processing time larger than cn−m+k. This
leads to a contradiction since there can only be at most
(m − k) jobs with a processing time larger than cn−m+k

(since c1 ≤ c2 ≤ . . . ≤ cn). The property follows.

Lemma 7 Let J = {J1, J2, . . . , Jn} be a set of n jobs with
processing times c1, c2, . . . , cn (assuming c1 ≤ c2 ≤ . . . ≤
cn) that are ready for execution at time 0. Suppose that
these jobs are scheduled upon m identical processors by
a scheduler such as the one described in Section 1. Then,
whatever the priority assignment of jobs, an upper bound on
the smallest instant tidle

k in the schedule such that at least k
CPUs (with k = 1, . . . ,m) are idle is given by t(J,m, k)
where

t(J,m, k)
def
=

(
0 if (n ≤ m) ∧ (m− n ≥ k)
ck−m+n if (n ≤ m) ∧ (m− n < k)

(4)

and t(J,m, k) def=

n−m+k−1
max
i=0

{∑n
j=1 cj −

∑i+m−k+1
j=i+1 cj

m
+

∑i+m−k+1
j=i+1 cj

m− k + 1

}

otherwise (n > m).

Proof Both cases where n ≤ m are obvious. Otherwise,
we prove the lemma by contradiction. Let tidle

k denote the
smallest instant in the schedule such that at least k CPUs
are idle and suppose that there is a k ∈ [1,m] such that
tidle
k > t(J,m, k). The following properties hold:

(a) ∀ i > k: tidle
i ≥ tidle

k (by definition of tidle
i ’s).

(b) ∀ i < k: tidle
i ≥ tidle

k − cn−m+k (from Lemma 6).

Obviously, we know that:

m∑
i=1

tidle
i =

k−1∑
i=1

tidle
i + tidle

k +
m∑

i=k+1

tidle
i

By applying properties (a) and (b) on the right-hand side,
we get

m∑
i=1

tidle
i ≥

k−1∑
i=1

(tidle
k − cn−m+k) + tidle

k +
m∑

i=k+1

tidle
k

≥ (k − 1)(tidle
k − cn−m+k) + tidle

k + (m− k)tidle
k

≥ m tidle
k − (k − 1)cn−m+k

Since by assumption tidle
k > t(J,m, k) we can replace tidle

k

by t(J,m, k) in the above inequality, which leads to

m∑
i=1

tidle
i > m t(J,m, k)− (k − 1)cn−m+k

Let ` be a value of i which maximizes t(J,m, k) in Expres-
sion 4. The above inequality becomes

mX
i=1

tidle
i > m

 Pn
j=1 cj −

P`+m−k+1
j=`+1 cj

m
+

P`+m−k+1
j=`+1 cj

m− k + 1

!
−(k − 1)cn−m+k

Rewriting this yields:

mX
i=1

tidle
i >

nX
j=1

cj −
`+m−k+1X
j=`+1

cj +
m

m− k + 1

`+m−k+1X
j=`+1

cj

−(k − 1)cn−m+k

>
nX
j=1

cj + (
m

m− k + 1
− 1)

`+m−k+1X
j=`+1

cj − (k − 1)cn−m+k

>

nX
j=1

cj +
k − 1

m− k + 1

`+m−k+1X
j=`+1

cj − (k − 1)cn−m+k (5)

By definition of `, we know from Expression 4 that ∀i =
0, . . . , n−m+ k − 1 we have:∑n

j=1 cj −
∑`+m−k+1
j=`+1 cj

m
+

∑`+m−k+1
j=`+1 cj

m− k + 1

≥
∑n
j=1 cj −

∑i+m−k+1
j=i+1 cj

m
+

∑i+m−k+1
j=i+1 cj

m− k + 1

Rewriting this yields:

`+m−k+1∑
j=`+1

cj ≥
i+m−k+1∑
j=i+1

cj

and consequently,

(k − 1)
m− k + 1

`+m−k+1∑
j=`+1

cj ≥ (k − 1)
m− k + 1

i+m−k+1∑
j=i+1

cj

≥ (k − 1)
m− k + 1

(m− k + 1)ci+1

≥ (k − 1)ci+1

∀i = 0, . . . , n−m+ k− 1. Replacing i by n−m+ k− 1
in the above inequality leads to

(k − 1)
m− k + 1

`+m−k+1∑
j=`+1

cj ≥ (k − 1)cn−m+k

Therefore, rewriting Inequality 5 yields:

m∑
i=1

tidle
i >

n∑
j=1

cj

which leads to a contradiction since we know that∑m
i=1 t

idle
i =

∑n
i=1 ci. The lemma follows.

Important notes.

• Expression 4 can be considered to be a generalization
of Expression 3. Indeed, the makespan is the particular
case where k = m in Expression 4, leading to

t(J,m,m)
def
=8<:cn if n ≤ m

maxn−1
i=0

Pn
j=1 cj−

Pi+1
j=i+1 cj

m
+
Pi+1
j=i+1 cj

ff
otherwise

With n > m, it is easy to show (using Lemma 9 in
Appendix) that the above expression is maximized for
i = n− 1. In that case, we get

maxn−1
i=0

{Pn
j=1 cj−

Pi+1
j=i+1 cj

m +
∑i+1
j=i+1 cj

}
=

Pn
j=1 cj−cn
m + cn

=
Pn
j=1 cj

m + (1− 1
m)cn

which is equivalent to Expression 3.

• Notice that both Expressions 3 and 4 are tight. In
some particular cases, these upper bounds can even
be reached. For instance, the maximal makespan pro-
duced by the set of jobs J = {J1, J2, J3, J4, J5}
with respective processing times 2, 3, 3, 4, 8 on a 2-
processors platform is 14 (e.g., by choosing the prior-
ity assignment J1 > J2 > J4 > J3 > J5); and from
Expression 3 we get

upms(J, 2) =
1
2
(2+3+3+4+8)+(1− 1

2
) ·8 = 14

Similar examples can easily be found concerning Ex-
pression 4.

The validity algorithm for AM-MSO is given by Algo-
rithm 3, where the largest instants at which the new-mode
tasks are enabled are determined in line 7 thanks to Expres-
sion 4.

Algorithm 3: Validity algorithm for AM-MSO
Output: boolean schedulable (or not)
begin1

foreach i, j ∈ [1, x] such as i 6= j do2
τdisabled ← τ j ;3
sort(τdisabled) by increasing order of enablement4
deadline ;
τenabled ← φ ;5
for (k = 1; k ≤ m; k + +) do6

tidle
k ← t(τ i,m, k) ;7

foreach τr ∈ τdisabled do8
if (Djk(M

i) < tidle
k) then return false ;9

if CPUS
j
(τenabled ∪ τr) ≤ k then10

τenabled ← τenabled ∪ {τr} ;11
τdisabled ← τdisabled \ {τr} ;12

return true;13
end14

Lemma 8 Algorithm 3 provides a sufficient validity test.

Proof This proof is a direct consequence of the fact that ev-
ery instant at which some new-mode tasks are enabled in
Algorithm 3 (cf. line 7) is large as possible. Indeed, let M i

andM j be two operating modes of the given system, and let
tidle
r be the smallest instant such that r CPUs are idle dur-

ing the transition from M i to M j in the system execution.
Suppose that at this time tidle

r , a new-mode task τ jk misses
its enablement deadline Djk(M i) (i.e., tidle

r > Djk(M i)).
Since tidle

r < t(τ i,m, r) from Lemma 7, τ jk also misses its
enablement deadline while executing Algorithm 3.

5. Conclusion and future work

In this paper, we proposed two protocols which handle
every mode transition during the execution of a sporadic
multi-mode real-time system. The first one (called MS-
MSO) is a synchronous protocol in the sense that the tasks
of the old- and new-mode are not scheduled simultaneously.
On the other hand, our second protocol (called AM-MSO)
allows old- and new-mode tasks to be scheduled together.
Both protocols can be considered to be a generalization
to the multiprocessor case of the “Minimal Single Offset”
(MSO) protocol proposed in [13]. For both of them, we
established a schedulability test which allows the system
designer to predict whether the given system can meet all
the expected requirements. This study led us to extend the
theory about the makespan determination problem, by es-
tablishing an upper bound on the maximal makespan that
can be produced by a given set of jobs.

In our future work, we aim to take into account mode-
independent tasks, i.e., tasks whose the periodic (or spo-
radic) activation pattern is not affected by the mode
changes. Moreover, instead of scheduling the rem-jobs by

using the scheduler of the old-mode during the transition,
it could be better, in term of the enablement delays applied
to the new-mode tasks, to propose a dedicated priority as-
signment which meets the deadline of every rem-job, while
minimizing the makespan. To the best of our knowledge,
the problem of minimizing the makespan while meeting job
deadlines together is not yet addressed in the literature and
remains for future work.

References

[1] B. Andersson. Static-priority scheduling on multiproces-
sors. PhD thesis, Chalmers University of Technology, 2003.

[2] C. M. Bailey. Hard real-time operating system kernel. in-
vestigation of mode change. Technical report, Task 14
Deliverable on ESTSEC Contract 9198/90/NL/SF, British
Aerospace Systems Ltd., 1993.

[3] T. Baker. Multiprocessor EDF and deadline monotonic
schedulability analisys. In Proceedings of the 24th IEEE In-
ternational Real-Time Systems Symposium, pages 120–129,
December 2003.

[4] T. Baker and M. Cirinei. Brute-force determination of mul-
tiprocessor schedulability for sets of sporadic hard-deadline
tasks. In Proceedings of OPODIS 2007, The 10th Inter-
national Conference on Principles of Distributed Systems,
number 4878, pages 62–75, Guadeloupe, December 2007.
Springer Lecture Notes in Computer Science.

[5] G. J. Fohler. Flexibility in statically scheduled hard real-
time systems. PhD thesis, Technische Universität Wien,
1994.

[6] J. Goossens, S. Funk, and S. Baruah. Priority-driven
scheduling of periodic task systems on uniform multipro-
cessors. Real-Time Systems, 25:187–205, 2003.

[7] J. Goossens, D. Milojevic, and V. Nelis. Power-aware real-
time scheduling upon dual CPU type multiprocessor plat-
forms. In T. Baker, A. Bui, and S. Tixeuil, editors, 12th
International Conference On Principles Of Distributed Sys-
tems (OPODIS), number 5401 in LNCS, pages 388–407,
Luxor, Egypt, December 2008. Springer.

[8] R. Ha and J. W. S. Liu. Validating timing constraints in
multiprocessor and distributed real-time systems. In Pro-
ceedings of the 14th IEEE International Conference on Dis-
tributed Computing Systems, pages 162–171, 1994.

[9] F. Jahanian, R. Lee, and A. Mok. Semantics of modechart
in real time logic. In Proceedings of the 21st Hawaii Inter-
national Conference on Systems Sciences, pages 479–489,
1988.

[10] V. Nelis and J. Goossens. Mode change protocol for multi-
mode real-time systems upon identical multiprocessors. In
Proceedings of the 29th IEEE Real-Time Systems Sympo-
sium (Work in Progress session - RTSS08-WiP), pages 9–12,
Barcelona Spain, December 2008.

[11] P. Pedro. Schedulability of mode changes in flexible real-
time distributed systems. PhD thesis, University of York,
Department of Computer Science, 1999.

[12] P. Pedro and A. Burns. Schedulability analysis for mode
changes in flexible real-time systems. In Proceedings of

the 10th Euromicro Workshop on Real-Time Systems, pages
172–179, 1998.

[13] J. Real and A. Crespo. Mode change protocols for real-time
systems: A survey and a new proposal. Real-Time Systems,
26(2):161–197, March 2004.

[14] K. Tindell and A. Alonso. A very simple protocol for mode
changes in priority preemptive systems. Technical report,
Universidad Politécnica de Madrid, 1996.

[15] K. Tindell, A. Burns, and A. J. Wellings. Mode changes in
priority pre-emptively scheduled systems. In Proceedings
Real-Time Systems Symposium, pages 100–109, Phoenix,
Arizona, 1992.

Appendix

Lemma 9 If c1 ≤ c2 ≤ . . . ≤ cn then

n−1
max
i=0


∑n
j=1 cj −

∑i+1
j=i+1 cj

m
+

i+1∑
j=i+1

cj


is maximal for i = n− 1.

Proof Consider the function

n−1
max
i=0


∑n
j=1 cj −

∑i+1
j=i+1 cj

m
+

i+1∑
j=i+1

cj


We can rewrite this function to

n−1
max
i=0

{∑n
j=1 cj

m
+ ci+1 −

ci+1

m

}

Consider the following term (which is dependent on i):

n−1
max
i=0

{
(1− 1

m
)ci+1

}
Since we know that c1 ≤ c2 ≤ . . . ≤ cn, the above expres-
sion is maximal for i = n − 1. This is the statement of the
lemma.

