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Abstract 
The recent trends of chip architectures with higher number of heterogeneous cores, and non-uniform memory/non-
coherent caches, brings renewed attention to the use of Software Transactional Memory (STM) as a fundamental 
building block for developing parallel applications. Nevertheless, although STM promises to ease concurrent and 
parallel software development, it relies on the possibility of aborting conflicting transactions to maintain data 
consistency, which impacts on the responsiveness and timing guarantees required by embedded real-time systems. In 
these systems, contention delays must be (efficiently) limited so that the response times of tasks executing transactions 
are upper-bounded and task sets can be feasibly scheduled. In this paper we assess the use of STM in the development 
of embedded real-time software, defending that the amount of contention can be reduced if read-only transactions 
access recent consistent data snapshots, progressing in a wait-free manner. We show how the required number of 
versions of a shared object can be calculated for a set of tasks. We also outline an algorithm to manage conflicts 
between update transactions that prevents starvation. 
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Abstract—The recent trends of chip architectures with higher
number of heterogeneous cores, and non-uniform memory/non-
coherent caches, brings renewed attention to the use of Soft-
ware Transactional Memory (STM) as a fundamental building
block for developing parallel applications. Nevertheless, al-
though STM promises to ease concurrent and parallel software
development, it relies on the possibility of aborting conflicting
transactions to maintain data consistency, which impacts on the
responsiveness and timing guarantees required by embedded
real-time systems. In these systems, contention delays must
be (efficiently) limited so that the response times of tasks
executing transactions are upper-bounded and task sets can
be feasibly scheduled. In this paper we assess the use of
STM in the development of embedded real-time software,
defending that the amount of contention can be reduced if
read-only transactions access recent consistent data snapshots,
progressing in a wait-free manner. We show how the required
number of versions of a shared object can be calculated for a
set of tasks. We also outline an algorithm to manage conflicts
between update transactions that prevents starvation.

I. INTRODUCTION

The current trend to increase processing power by man-
ufacturing chips including multiple processor cores has
popularised the ability to execute concurrent software in
parallel. This tendency for even larger number of processor
cores will further impact the way systems are developed1,
as software performance must rely on efficient techniques to
design and execute concurrent software in parallel.

The real-time systems community has established strong
scheduling and synchronisation theories and techniques that
are essential to verify and guarantee the timing requirements
of any set of concurrent tasks, executing on a uniprocessor
system. Avoiding race conditions with lock-based synchro-
nisation became commonplace, despite the well-known pit-
falls: complexity, lack of composability [2] and (bounded)
priority inversion. In multiprocessor systems, lock-based
synchronisation introduces additional drawbacks. Coarse-
grained locks serialise non-conflicting operations that could
progress in parallel, and may cause cascading or convoying
blocks [3], impairing concurrency with an impact on system

1E.g., the experimental Intel Single-chip Cloud Computer (SCC) [1] car-
ries 48 cores, has message-based interconnection and no cache coherency.

throughput. Fine-grained locks increase the complexity of
system design, hindering composability.

On multiprocessors, non-blocking approaches present
strong conceptual advantages [4] and may perform better
than lock-based ones [5]. One concept under research is the
software transactional memory (STM) [6], in which a critical
section – the transaction – executes isolated from other
simultaneous transactions, without blocking. An optimistic
concurrency control mechanism preserves the consistency of
shared data, generally aborting selected transactions to solve
data access conflicts.

The number of times a transaction is aborted reflects on
the execution time of the host job. Therefore, this value must
be limited in order to compute the worst-case execution time
(WCET) of the job, and minimised to reduce the processor
capacity used with wasted work. In this paper, we defend
two approaches to reduce and limit the amount of transaction
aborts suffered by every transaction:

• Using multi-versioned STM. Read-only transactions
can be serialisable if executed with a recent and consis-
tent snapshot of their read-sets without conflicting with
other concurrent transactions, as long as the STM keeps
multiple versions of each object, reducing the overall
frequency of transaction aborts. We demonstrate how
the timing characteristics of real-time systems can be
used to determine the maximum number of versions for
each data object (Section II).

• Preventing starvation using scheduling data. Con-
flicts are unavoidable, and transaction starvation in-
creases abnormally the execution time of a task. We
outline an algorithm that prevents indefinite aborts
(Section V), setting a limit on the number of aborts
for each transaction.

The paper is structured as follows. Section II describes
the problem of guaranteeing timing requirements when using
STM in embedded real-time systems based on parallel archi-
tectures, and presents relevant published work in this field.
Section III sets the system model in which the assumptions
of this work is valid. We show how to determine the exact
number of versions each shared object must store on a



real-time system using multi-version STM in Section IV.
Additionally, we outline a distributed algorithm to manage
conflicts between concurrent transactions that limits the
number of aborts for each transaction (Section V). This
paper terminates with the conclusions and perspectives for
further work in Section VI.

II. BACKGROUND AND RELATED WORK

Transactional Memory promises to ease concurrent pro-
gramming: the programmer marks the transactional code and
leaves the burden of synchronisation details to an underlying
mechanism that must maintain the consistency of shared data
located at the transactional memory. Multiple transactions
can be executed optimistically in parallel; when conflicting
accesses to an object occur, a contention policy serialises the
concurrent schedules, generally selecting one transaction to
commit and aborting-and-repeating the contenders. This ap-
proach scales well with multiprocessors [7], delivers higher
throughput than coarse-grained locks and does not increase
design complexity as fine-grained locks do [8].

STM achieves better performances when contention is
low, specially when exists a predominance of read-only
transactions, short-running transactions and a low ratio of
context switching during the execution of a transaction [9].
Reducing the probability of conflicts may have a beneficial
effect on the schedulability of the task set. Removing
read-only transactions from the conflict arena, using multi-
versioned STM is one option to that end.

Still, under contention, some transactions may present
characteristics (e.g. long running, low priority) that can
potentially expose them to starvation. The contention man-
agement policy has often the role to prevent livelock (a
pair of transactions indefinitely aborting each other) and
starvation (one transaction being constantly aborted), so that
every transaction will eventually commit.

The guarantee that a transaction will eventually commit
does not assure the critical timing requirements of real-
time systems: it must be known how long it will take to
commit. The schedulability analysis of the task set requires
that the WCET of each task is known, and that includes
the maximum time required for the transaction to commit.
As such, STM can only be used in real-time systems if the
contention management policy provides guarantees on the
maximum number of retries for each transaction.

Although the concept of STM is not new and numerous
works have been published, only some few dealt with it
in the context of real-time systems. Early work covered
transaction support in uniprocessor real-time systems, with
Anderson et al. [11] establishing scheduling conditions for
lock-free transactions under EDF and DM. More recently,
Manson et al. [10] presented an analysis to bound the
response time of jobs with atomic regions, but the system
model does not allow concurrent transactions.

Considering transaction support in multiprocessor plat-
forms, Anderson et al. [12] described a wait-free mechanism
that provides an upper bound on the transaction execution
time, but the helping scheme employed is pessimistic and
increases the upper bound with the number of processors.
Fahmy et al. [13], described how to calculate an upper-
bound on the WCET of tasks containing multiple transac-
tions, scheduled under Pfair; however, transactions must be
limited in duration. Sarni et al. [14], adapted a practical STM
to a real-time kernel, and modified the contention manager to
decide based on the absolute deadlines associated with each
transaction (EDF); this approach can increase the abort ratio
of transactions with further deadlines, and allows deadlines
to be missed. Finally, Schoeberl et al. [15] demonstrated
that a task containing a single transaction, executing on a
system with hardware TM, will meet deadlines as long as
the transactions of two consecutive jobs are separated by the
resolve time, but conflicts are not solved based on on-line
scheduling data.

Concerning multi-versioned STM, published works either
store an arbitrary fixed number of versions for each object
(just reducing the probability of read-only aborts) such
as in [16] or a variable number of versions dynamically
managed by a garbage collector, which eliminates read-only
transaction aborts [17]–[19] but does not suit the timing
requirements of real-time systems.

These works provide already some perspectives on how
to deal with STM in real-time systems, but there are many
issues pending, so further research is necessary to take ad-
vantage of future parallel architectures. Therefore, this paper
proposes new approaches to manage contention between
conflicting transactions, using on-line information, with the
purpose of reducing the overall number of retries, increasing
responsiveness and reducing wasted processor utilization,
while assuring deadlines are met.

III. SYSTEM MODEL

The system model assumes that jobs are released by
a set of periodic tasks τ = {τ1, . . . , τn} with implicit
deadlines, and scheduled on m identical processors denoted
P = {P1, . . . , Pm}, under partitioned EDF. Each task τi

is characterised by (Ti, Ci), being Ti the period of job
arrivals and Ci the worst-case execution time. The jth job
of task τi, hence forward denominated Jij , is characterised
by (rij , dij), being rij the time the job is released and dij

the absolute deadline of the job, defined as

dij = rij + Ti. (1)

In this analysis, we assume each task τi performs at most
one transaction, TRXi, characterised by:

• Wi – the maximum execution time necessary to execute
once the sequential code,

• RSi – the read-set, the collection of objects that are
accessed solely for reading, and
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Figure 1. A read-only (TRX1) and an update (TRX2) transactions
contend on access to objects O1 and O2.

• WSi – the write-set, the collection of objects that are
modified during the execution of the transaction.

When a transaction arrives, it executes the transaction code
and then tries to commit; if no conflicts are detected, the
transaction commits, otherwise it may be aborted, restarting
immediately. A transaction may be aborted multiple times
until successfully commits. Transaction overhead is the
additional execution time required by the naborts

ij aborted
retries before the transaction commit, and is given by

W
overhead
ij = n

aborts
ij ×Wi. (2)

A transaction can abort while trying to commit, if it finds
conflicting data accesses and the contention policy dictates
that another contending transaction must conclude before it.

A collection of STM objects O = {O1, . . . , Op} are
assumed to be globally accessible to tasks, independently
of the processor in which transactions are executing, and
multiple simultaneous transactions are supported.

The response time of a job is here defined as the time
elapsed since a job arrives until its execution is completed.
For a job release of task τi that executes a transaction, the
response time RTi depends on the execution time of the task
if executed sequentially (without aborts) C �

i, the interference
time Iij in which the job was pre-empted by higher-priority
tasks and the overhead due to the naborts

ij aborted executions
of the transaction. The response time of a job can be defined
by

RTij = C
�
i + Iij + n

aborts
ij ×Wi (3)

and to meet deadlines, the response time must be

RTij ≤ Ti ∀i, j (4)

IV. REDUCING CONTENTION USING MULTI-VERSIONED
STM

Previous work on STM has consistently shown that the
amount of contention has a relevant impact on the behaviour
of a STM. Under this evidence, reducing contention will
expectedly improve the performance of the system.

A conflict occurs when concurrent transactions access
the same data location and at least one of the transactions
updates it. Considering the example in Figure 1, transaction
TRX1 reads object O1 and, later on, reads object O2; in

between these two accesses, transaction TRX2 modifies
both objects and tries to commit. This concurrent execution
is not serialisable because it does not produce the same
outcome as if TRX1 was executed sequentially before or
after TRX2. In this situation, one of the transactions must
abort so the contender can commit.

With multi-versioned STM, read-only transactions work
on recent consistent snapshots of their read-sets without
ever conflicting with other concurrent transactions [17] and,
therefore, commit at first try. Considering the same example
in Figure 1, both transactions can now commit, as long as
TRX1 has access to the version of O2 previous to the update
performed by TRX2: although TRX1 commits after TRX2,
it can be serialisable as if it has executed before TRX2.

The amount of contention on object accesses is reduced
at the expense of higher memory utilization to temporar-
ily store previous version of each object. The amount of
memory overhead that optimises the system throughput
is a subject of current research in the field of parallel
systems [16], [18]–[20], essentially relying on fixed number
of versions or in garbage collecting techniques that will
statistically reduce or eliminate the abort ratio of read-only
transactions.

In real-time systems, the timing characteristics of the task
set and the data set of each transaction are known before-
hand, allowing to determine the exact number of versions
required for every object. Knowing the exact number of
versions each object must store, permits to design a STM
with minimum memory overhead without garbage collecting
mechanisms, and guaranteeing read-only transactions will
never conflict with concurrent transactions.

To determine the number of versions required for any
object we have to:

1) determine the maximum number of updates for each
object in a given interval, and

2) determine the time each object must store a version.
For an arbitrary time interval ∆T we can calculate the

maximum number of updates of an object Ok – denoted as
N

updates
k – considering the timing properties of the tasks

that modify the object, given by the number of job releases
of tasks that host transactions including Ok in its write-set:

N
updates
k =

�

i

ai ×
�
∆T

Ti

�
(5)

in which ai is given by

ai =

�
1 if Ok ∈ WSi,
0 otherwise.

(6)

Each version of object Ok must be stored for the max-
imum time a read-only transaction including the Ok in its
read-set can execute. Pessimistically, we assume the object
may be read any time during the period of the task. Thus,
a version of object Ok must be stored for



T
store
k = max{Ti : Ok ∈ RSi ∧ TRXi is read-only}. (7)

Combining the two results from Equations (5) and (7),
the number of versions required for Ok is given by

N
versions
k =

�

i

ai ×
�
T store
k

Ti

�
(8)

in which ai is given by

ai =

�
1 if Ok ∈ WSi,
0 otherwise.

(9)

Therefore, multi-versioned STM can be implemented ef-
ficiently in real-time systems with predetermined memory
overhead, and assuring all read-only transactions will exe-
cute in a wait-free manner.

V. CONTENTION MANAGEMENT

Conflicting concurrent object accesses must be solved by
a contention management policy that is responsible to main-
tain object consistency, serialising contending transactions
according to a criteria that represents the expected behaviour
of the system. A contention management policy must avoid
live-lock situations, in which a group of transactions are
indefinitely aborted without ever committing, and must
prevent transactions from starving because of some of their
inherent characteristics.

In this paper we outline an approach that tackles three
important issues.

• Predictability. Predictability is one of the most im-
portant requirements in real-time systems. When a
transaction arrives, we want to be assured that it will
not exceed a determined time to commit, thus we
need a limit on the number of aborts. Full control
on managing conflicts with update transactions implies
read operations must be visible, allowing to abort a
transaction that is trying to modify an object in favour
of a contender that is merely reading the same object.

• Liveliness. We want to ensure liveliness will be dis-
tributed fairly between contending transactions. If a
transaction is overlooked by the contention manage-
ment policy and gets excessively aborted, then the host
job will have its execution time increased and may end
up monopolising the processor in which it is executing,
disturbing the execution of the local task set. Refraining
excessive aborts on each transaction directly hinders
this type of abnormal behaviour.

• Distributed contention management. The algorithm
must be distributed and executed by each transaction
at the moment it tries to commit. In case of a conflict,
all involved transactions must reach a consensus on the
transaction that will commit. The parallel nature of this
algorithm avoids any possible bottlenecking problem

that a centralised contention manager could present in
a many-cores architecture.

Our approach sequences contending transactions by their
chronological order of arrival, i.e. by the moment a transac-
tion starts executing its first try. This criterion is fair in the
sense that no transaction will be chronically discriminated
due to some innate characteristic. The time overhead of a
transaction depends solely on the ongoing transactions at
the moment the transaction arrives, being independent of
future arrivals of other transactions. It has the side-effect of
a transaction not being able to commit before an older direct
contender that is, in turn, waiting for a third transaction (that
does not directly conflicts with the first one) to commit.

However, a transaction can overtake an older transaction
that is, at that moment, pre-empted. This is absolutely
necessary to avoid deadlock between conflicting transactions
assigned to the same processor (i.e. a more recent transaction
pre-empts an older one, but becomes unable to commit
before the pre-empted transaction and enters in a try-abort
infinite cycle) and prevents the transaction overhead be
increased by the interference suffered by other concurrent
jobs executing in other processors.

The probability of ties on the times of arrival is low
but, if necessary, they are broken by two additional levels
of decision: first by comparing the laxities of the jobs
when the transactions arrived selecting the transaction with
smaller laxity to succeed and second (if still necessary)
selecting the transaction executing on the processor with
lower identification to succeed.

When a transaction finishes to execute its sequential
code and tries to commit, it checks for conflicts on every
transactional object accessed. For every conflict detected, the
transaction applies the algorithm to determine if it is has the
means to commit. The transaction will finally commit if has
won on all detected conflicts, otherwise it aborts and will
have to repeat the transaction code, again.

VI. CONCLUSIONS AND FURTHER WORK

In this paper we assess the use of Software Transactional
Memory (STM) as a building block for the development
of parallel embedded real-time systems. We further propose
the use of multi-version STM to reduce contention between
transactions and to execute jobs with read-only transactions
in a wait-free manner. Profiting the known timing charac-
teristics of real-time task sets, we are able to calculate the
exact number of versions each object must keep.

In this model, contention is only possible between update
transactions. Conflicting transactions are serialised by their
chronological order of arrival, applying an algorithm that
is executed in parallel by each transaction when trying to
commit. This approach avoids transactions to starve due to
some inherent characteristic overlooked by the contention
management policy. However, an effect of this model is that
a transaction may have to wait for a direct contender to



commit that, in turn, is waiting for another transaction to
commit, that is not conflicting with the first one.

The scenario considered on this paper is purposely pes-
simistic, because we do not want to make any assumptions
on particular optimisations available on a practical STM.
However, this work points directions for improvements that
can reduce the time overheads of transactions, reducing
wasted processor utilization and increasing throughput.

An immediate improvement could be achieved if a com-
mitting transaction could signal its contenders so they could
restart immediately instead of letting them misspend exe-
cution time that will helplessly result in an abort. Another
alternative would be for a committing transaction to mark
their contenders as zombies, which would enable other trans-
actions waiting on these zombie transactions to commit, as
long as no other conflicts with active and sound transactions
occurred.
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