

Scheduling Parallel Real-Time Tasks using
a Fixed-Priority Work-Stealing Algorithm on
Multiprocessors

Technical Report

CISTER-TR-130607

Version:

Date: 06-19-2013

Cláudio Maia

Luís Nogueira

Luis Miguel Pinho

Technical Report CISTER-TR-130607 Scheduling Parallel Real-Time Tasks using a Fixed-Priority

 Work-Stealing Algorithm on Multiprocessors

© CISTER Research Unit
www.cister.isep.ipp.pt 1

Scheduling Parallel Real-Time Tasks using a Fixed-Priority Work-Stealing
Algorithm on Multiprocessors
Cláudio Maia, Luís Nogueira, Luis Miguel Pinho

CISTER Research Unit

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail:

http://www.cister.isep.ipp.pt

Abstract
This paper proposes a model for scheduling parallel real-time tasks. The proposed model uses a work-stealing
approach to schedule real-time parallel task sets at runtime, where each job may present a nested fork-join
structure, generate an arbitrary number of parallel jobs, and each parallel job inherits the timing properties of the
job that spawns it.

Scheduling Parallel Real-Time Tasks using a Fixed-Priority Work-Stealing

Algorithm on Multiprocessors

Cláudio Maia, Luı́s Nogueira, Luis Miguel Pinho
CISTER/INESC TEC, ISEP

Polytechnic Institute of Porto

Portugal

{crrm, lmn, lmp}@isep.ipp.pt

Abstract—This paper proposes a model for scheduling par-

allel real-time tasks. The proposed model uses a work-stealing

approach to schedule real-time parallel task sets at runtime,

where each job may present a nested fork-join structure,

generate an arbitrary number of parallel jobs, and each

parallel job inherits the timing properties of the job that

spawns it.

Keywords-Parallel Real-time, Work-Stealing, Scheduling

I. INTRODUCTION

Multicores offer an opportunity to maximise perfor-
mance and, through parallelism, execute more complex and
computing-intensive tasks whose stringent timing constraints
can be difficult to meet through traditional multiprocessing
of sequential task models. Nevertheless, most results in mul-
tiprocessor real-time scheduling concentrate on sequential
tasks running on multiple processors or cores [1]. Moreover,
current parallel models are still restrictive in nature, i.e.
they are static, less general, and based on task decompo-
sition. Task decomposition enables the application of well-
known schedulability analysis techniques, but it requires all
the information to be known a priori, therefore exploiting
parallelism only when the system is not schedulable in a
sequential way.

There exists a number of applications that take advantage
of multiprocessor architectures by exploiting the features
provided by frameworks such as Cilk [2] and OpenMP [3].
These frameworks allow the application programmers to
divide the applications into smaller blocks which can be as-
signed to different CPUs so that they can execute in parallel.
In order to dynamically schedule the parallel blocks in a load
balancing manner, such frameworks use the work-stealing
algorithm, proposed by Blumofe and Leiserson [4]. This
algorithm is formally proven to be asymptotically optimal
for scheduling fully-strict computations, i.e. computations
in which all join dependencies from a thread point to its
parent thread.

Traditional work-stealing considers a pool of worker
threads (the schedulable entities). Each worker thread pos-
sess its own local double-ended queue (deque) and is
mapped to a core. A task may generate new subtasks and

such subtasks are enqueued into the local deque of the
worker thread. Worker threads execute tasks from their own
deques in a LIFO order, but whenever they become idle
they steal work from a randomly chosen core deque’s tail
(accessed in a FIFO order), i.e. tasks or subtasks that were
enqueued first in the deque of the chosen core.

Work-stealing has the advantages of reducing task con-
tention, load balancing the workloads, and preserving data
locality [4]. Nevertheless, it cannot be directly applied in
real-time systems as it may cause priority inversion, which
may eventually lead to deadline misses depending on the
timing properties of the task sets. A motivational example
to this problem is presented next.

Example 1: Assume a system with two cores and two
worker threads, WT1 and WT2. In core 1, WT1 is executing
a medium priority task (Tm), and in core 2 WT2 is executing
a high priority task (Th). Now let us assume that Tm

generates medium priority subtasks which are enqueued into
core 1’s deque. If at this particular time instant a new high
priority task is ready for execution (Th2), Tm is preempted.
If Th2 also generates subtasks, these subtasks are enqueued
into core 1’s deque, more specifically pushing older subtasks
(of medium priority) to the end of the queue. If at this time
instant, core 2 becomes idle, it is allowed to steal work from
the core 1’s deque. By doing so, the candidates for stealing
are the subtasks of Tm.

This is clearly an example of priority inversion. In order
to have a correct behaviour, both cores should have been ex-
ecuting the subtasks generated by Th2 in parallel. However,
on the other hand if stealing was not allowed, core 2 would
be idle and the system would be wasting resources.

It is our belief that a modification of work-stealing may
be useful in real-time systems. In this paper we present a
scheduling model that is a variation of the traditional work-
stealing approach in the sense that it considers the real-time
behaviour of parallel applications which may be modelled
as real-time nested fork-join tasks.

The objectives of the proposed approach are the schedul-
ing of tasks that inherently present a parallel behaviour, and
the support for dynamic systems where the internal parallel
structure may not be known in advance. Moreover, by using

work-stealing, the approach is able to take advantage of data
locality and load balancing of the workloads, which may
reveal useful in environments composed of real-time nested
fork-join tasks.

The remainder of this paper is organised as follows.
Section II presents the parallel real-time tasks literature.
Section III describes the system model. In Section IV, the
approach is described and finally, Section V concludes the
paper by presenting future work.

II. RELATED WORK

Considering the scheduling of parallel real-time tasks,
Goossens and Berten [5] redefined a classification from the
parallel literature. According to this classification, the model
presented in this paper is considered to be composed of
malleable tasks (i.e. the number of processors assigned to a
job is determined by the scheduler at runtime). Although we
consider a set of fixed-priority parallel real-time tasks, the
processor assignment of the jobs generated by the parallel
tasks is performed in a dynamic manner.

The study of scheduling malleable tasks was covered by
Jansen [6] with the objective of minimizing the makespan.
Collette et al. [7] study the problem of the global scheduling
of sporadic task systems on multiprocessor platforms con-
sidering job-level parallelism. Korsgaard and Hendseth [8]
proposed a pessimist (although sustainable) schedulability
test for task systems composed of malleable task scheduled
with global Earliest Deadline First (EDF).

Drozdowski [9] considers the problem of scheduling par-
allel tasks with the objective of minimizing the makespan.
Han and Lin [10] prove that the problem of scheduling par-
allelisable jobs with a fixed priority is NP-Hard. Manimaran
et al. [11] proposed a variant of non-preemptive EDF that
considers parallel real-time tasks. Goossens and Berten [5]
proposed a scheduling algorithm for parallel real-time tasks
based on gang scheduling.

Lakshmanan et al. [12] proposed a scheduling algorithm
to schedule periodic real-time tasks that follow a fork-join
structure on multiprocessor systems. This model is restrictive
in the sense that all parallel segments have the same number
of threads and this number cannot be greater than the number
of processors in the system. Saifullah et al. [13] build their
work upon previous work ([12]) and present a more general
synchronous task model for scheduling parallel real-time
tasks with a fork-join structure. However, their model does
not present any limitations on the number of parallel threads
per segment or even on the number of parallel threads
executing at the same time in the system. Both models use
task decomposition to schedule the tasks in order to apply
well-known schedulability analysis techniques.

Concerning the application of work-stealing into real-time
systems, Mattheis et al. [14] provide an upper bound on
the latency for different work-stealing strategies suitable for
stream processing applications, however without considering

system predictability. Nogueira and Pinho [15] propose
a server-based approach combined with work-stealing to
support parallel tasks. More recently, Nogueira et al. [16]
present an approach that combines global EDF with work-
stealing, however this approach only covers simple fork-join
tasks. The approach presented in this paper differs from the
previous approaches in the sense that it presents a model
that combines work-stealing with real-time for scheduling
fixed-priority nested fork-join tasks.

III. SYSTEM MODEL

We consider the problem of scheduling independent jobs
on a system comprised of m identical processors/cores with
uniform memory access (UMA). A fully preemptive system
is assumed where any job executing may be preempted at
any time instant and resumed later without any cost. At any
given time instant, the jobs with the highest priority among
the ready jobs are the ones executing.

Let ⌧ = {⌧1, ⌧2, ..., ⌧n} denote the set of n periodic
tasks. Each task ⌧i in the task set ⌧ is characterised by
a period Ti, a worst-case execution time requirement Ci,
and a relative deadline Di. Furthermore, each task releases
a sequence of jobs, Ji = {j1, j2, ..., jj}, at periodic time
intervals separated by Ti time units. Each job has an implicit
deadline equal to Di = Ti.

During execution, the j

th job may spawn a set
of k parallel jobs or in short p-jobs, pJi,j =
{pJi,j,1, pJi,j,2, ..., pJi,j,k}. Parallel jobs are sequential
threads that decompose the job’s workload so that its ex-
ecution can be parallelised. Thus, each job has a set of
instructions that are executed sequentially, and may have
a set of instructions that can be executed in parallel upon m

cores, i.e. sequential and parallel parts.
Each job as well as p-jobs may spawn other p-jobs

(i.e. nested structure), and each p-job instance may have
a variable worst-case execution time. Let C

T
j denote the

total worst-case execution time of job j, C

Seq
j the total

sequential worst-case execution time of j, and C

Par
j,k the

worst-case execution time of the k

th p-job spawned by job
j. The total worst-case execution time of job j is given by:
C

T
j = C

Seq
j +

Pk
l=1 C

Par
j,l .

Concerning the timing properties, each p-job instance
pJi,j,k inherits the timing properties from the j

th job that
spawns it. Thus, the k

th instance of a p-job is characterised
by the same period Ti and relative deadline Di of the parent
job. In this model, parallel jobs are independent, and with
the exception of the processors, there are no other shared
resources or critical sections.

For the purpose of modelling jobs and p-jobs, it is possible
to represent the job tree of the j

th job as a directed acyclic
graph (DAG), denoted as Gj = (V,E), as depicted in
Figure 1. Each element in the set of vertices V represents
a sequential part of a job or a p-job spawned during the
execution of job j. Furthermore, each vertex has associated

Figure 1. Job tree (DAG) of the jth job of Task ⌧i

with it its worst-case execution time. Each element in the
set of edges E represents the communication path between
two vertices, vi and vj in the set V , i.e. vi, vj 2 V .

As the system is comprised of identical processors with
UMA, the proposed model does not take into account any
communication cost between any two nodes in the graph.
Therefore, communication costs are assumed to be zero.
Nevertheless, a partial order in the execution is imposed
which is deemed correct from the relation that exists between
a job and its spawned p-jobs, i.e each job/p-job is parent of
the spawned p-jobs in the sense that it is responsible for the
creation of the p-jobs.

The maximum execution time of a job j is defined to be
C

T
j , i.e. its total worst-case execution time. This interval of

time represents the time a job takes to execute in a single
processor without preemption.

The minimum execution time P

T
j of a job j is defined to

be the longest execution path in the task graph from the root
vertex to the leaves, i.e. the critical path length. Formally,
P

T
j is defined as follows: P

T
j =

P
vv2Li

max(Cj,v), i =
0, 1, ..., L, where vv represents the v

th vertex that is part of
level Li and L denotes the number of levels in the graph,
as depicted in Figure 1. The interpretation for P

T
j is that

even if the number of processors in the system is infinite,
the j

th job takes at least P

T
j units of execution time to

complete. If P

T
j > Di then the system is not schedulable

(see Proposition 1 in [12]).
The utilisation factor uj of job j, i.e. the fraction of

processor time that is dedicated to the execution of the j

th

job, is the ratio of the job’s execution time to its period,
and is defined as follows: uj =

CT
j

Ti
. For the task set ⌧ ,

the total utilisation factor is defined as: U(⌧) =
Pn

i=1
Ci
Ti

.
For implicit-deadline periodic task sets, a necessary and
sufficient condition for feasibility is U(⌧)  m ([17]).

IV. REAL-TIME WORK STEALING

The proposed approach is a modified version of the work-
stealing algorithm. Instead of using a single non-priority
deque to store ready tasks, which would cause priority
inversion as shown previously, we propose the addition of
per-core priority deques. The priority deques are ordered
by priority, so instead of stealing randomly, idle cores steal

Figure 2. Example of real-time work-stealing

jobs from the highest priority deque. An example of the
behaviour of the algorithm is presented next.

Example 2: Figure 2 depicts a scenario of a system con-
sisting of four identical processors and a possible schedule
for two jobs. Only the first 16 time units are depicted in the
figure. Job 1 has a C

T
j = 15 and Ti = 20, and Job 2 presents

a typical fork-join structure with C

T
j = 8 and Ti = 8. Jobs

are released at t = 0 and Job 2, with highest priority, is
assigned to P1, and Job 1 to P2 respectively.

In the first period of Job 2 (i.e. from t = 0 to t = 8),
processors P3 and P4 are idle and therefore help P1 exe-
cuting the p-jobs spawned by Job 2 at t = 1 and the p-jobs
spawned by Job 1 at t = 5 and t = 7.

In the second period of Job 2 (i.e. from t = 8 to t = 16),
at t = 9 Job 2 spawns three p-jobs (J2,2, J2,3 and J2,4) and
Job 1 spawns two p-jobs (J1,7 and J1,8). As Job 2 has a
higher priority than Job 1, processors P3 and P4 will steal
p-jobs from the highest priority deque, and therefore both
steal J2,3, J2,2, respectively. At t = 11, there is still one
p-job left in P1’s deque (J1,7), which is stolen by P3.

Concerning the details of the approach, there is a Global
Submission Queue (GSQ) ordered by priority. The ready
jobs from the task set are enqueued in the GSQ. From this
queue, each core chooses the next job for execution, the
highest priority jobs execute first. Once a job is picked up
from the GSQ, it is executed in that core until completion or
until preempted. In case a preemption occurs, the processor
enqueues the preempted job/p-job in the respective local
deque, and executes the higher priority job/p-job that was
released, leaving the execution of the preempted job to be
resumed in this core or another core depending on the
priority of other jobs. Preemptions occur when a higher
priority job is released or a higher priority job spawns new
p-jobs. In the latter case, and in order to avoid priority
inversion, such p-jobs must preempt other lower priority
jobs/p-jobs executing in the system.

Parallel jobs are stored in the local deques according to
their priority. As a job may spawn an arbitrary number of p-
jobs, local queues are used to store them in order to benefit
from data locality. As the system evolves through time, p-
jobs are executed by a core until no more p-jobs exist. When
a core is idle, it steals the highest priority job/p-job from the
local deque of the core that has this job/p-job.

The advantages of this model are the following: (i) when a
job/p-job is stolen from the other cores’ deques the migration
overhead is supported by the idle core; (ii) keeping jobs/p-
jobs in local deques maximises data locality in caches;
(iii) load balancing workloads considering their real-time
properties.

V. FUTURE WORK

This paper presents a model that combines work-stealing
with real-time with the objective of scheduling task sets
composed of nested fork-join tasks. Such tasks present
several challenges from a real-time systems perspective due
to their characteristics.

From a schedulability analysis perspective, important de-
cisions are yet to be considered namely: (i) precedence
constraints among tasks; (ii) worst-case behaviour of a
nested fork/join considering stealing; (iii) migration costs
and preemption costs. Such decisions will influence the
schedulability conditions that must be derived in order to
assure that a particular task set can be scheduled with the
proposed variant of work-stealing for real-time systems.

Concerning the algorithmic behaviour, other alternatives
may be applied in order to obtain better schedulability
results, as for instance a stolen p-job may not be the target
of a preemption and therefore execute in a non-premptive
fashion, or even allow for random steals as long as these
can be bounded in order to assure system schedulability.

ACKNOWLEDGMENT

This work was partially supported by National Funds
through FCT (Portuguese Foundation for Science and
Technology) and by ERDF (European Regional Develop-
ment Fund) through COMPETE (Operational Programme
’Thematic Factors of Competitiveness’), within projects
Ref. FCOMP-01-0124-FEDER-022701 (CISTER) and ref.
FCOMP-01-0124-FEDER-020447 (REGAIN); also by FCT
and by ESF (European Social Fund) through POPH (Por-
tuguese Human Potential Operational Program), under PhD
grant SFRH/BD/88834/2012.

REFERENCES

[1] R. I. Davis and A. Burns, “A survey of hard real-time
scheduling for multiprocessor systems,” ACM Comput. Surv.,
vol. 43, no. 4, pp. 35:1–35:44, Oct. 2011.

[2] M. Frigo, C. E. Leiserson, and K. H. Randall, “The imple-
mentation of the cilk-5 multithreaded language,” SIGPLAN

Not., vol. 33, pp. 212–223, May 1998.

[3] OpenMP, “Openmp,” http://openmp.org/, Jun. 2011.

[4] R. D. Blumofe and C. E. Leiserson, “Scheduling multi-
threaded computations by work stealing,” J. ACM, vol. 46,
pp. 720–748, September 1999.

[5] J. Goossens and V. Berten, “Gang ftp scheduling of periodic
and parallel rigid real-time tasks,” CoRR, vol. abs/1006.2617,
2010.

[6] K. Jansen, “Scheduling malleable parallel tasks: An asymp-
totic fully polynomial-time approximation scheme,” in Pro-

ceedings of the 10th Annual European Symposium on Algo-

rithms, ser. ESA ’02, 2002, pp. 562–573.

[7] S. Collette, L. Cucu, and J. Goossens, “Integrating job paral-
lelism in real-time scheduling theory,” Inf. Process. Lett., vol.
106, no. 5, pp. 180–187, May 2008.

[8] M. Korsgaard and S. Hendseth, “Schedulability analysis of
malleable tasks with arbitrary parallel structure,” Real-Time

Computing Systems and Applications, International Workshop

on, vol. 1, pp. 3–14, 2011.

[9] M. Drozdowski, “Real-time scheduling of linear speedup
parallel tasks,” Inf. Process. Lett., vol. 57, no. 1, pp. 35–40,
Jan. 1996.

[10] C.-C. Han and K.-J. Lin, “Scheduling parallelizable jobs
on multiprocessors,” in IEEE Real-Time Systems Symposium,
1989, pp. 59–67.

[11] G. Manimaran, C. S. R. Murthy, and K. Ramamritham, “A
new approach for scheduling of parallelizable tasks in real-
time multiprocessor systems,” Real-Time Syst., vol. 15, no. 1,
pp. 39–60, Jul. 1998.

[12] K. Lakshmanan, S. Kato, and R. R. Rajkumar, “Scheduling
parallel real-time tasks on multi-core processors,” in Proceed-

ings of the 2010 31st IEEE Real-Time Systems Symposium,
ser. RTSS ’10, 2010, pp. 259–268.

[13] A. Saifullah, K. Agrawal, C. Lu, and C. Gill, “Multi-core
real-time scheduling for generalized parallel task models,”
Real-Time Systems Symposium, IEEE International, vol. 0,
pp. 217–226, 2011.

[14] S. Mattheis, T. Schuele, A. Raabe, T. Henties, and U. Gleim,
“Work stealing strategies for parallel stream processing in
soft real-time systems,” in Proceedings of the 25th interna-

tional conference on Architecture of Computing Systems, ser.
ARCS’12, 2012, pp. 172–183.

[15] L. Nogueira and L. M. Pinho, “Server-based scheduling of
parallel real-time tasks,” in Proceedings of the tenth ACM in-

ternational conference on Embedded software, ser. EMSOFT
’12, 2012, pp. 73–82.

[16] L. Nogueira, J. Fonseca, C. Maia, and L. Pinho, “Dynamic
global scheduling of parallel real-time tasks,” in Compu-

tational Science and Engineering (CSE), 2012 IEEE 15th

International Conference on, 2012, pp. 500–507.

[17] W. A. Horn, “Some simple scheduling algorithms,” Naval

Research Logistics Quarterly, vol. 21, no. 1.

