

Schedulability Analysis of DAG Tasks with
Arbitrary Deadlines under Global Fixed-
Priority Scheduling

Journal Paper

*CISTER Research Centre

CISTER-TR-190107

2019

José Fonseca

Geoffrey Nelissen*

Vincent Nélis

Journal Paper CISTER-TR-190107 Schedulability Analysis of DAG Tasks with Arbitrary ...

© 2019 CISTER Research Center
www.cister-labs.pt

1

Schedulability Analysis of DAG Tasks with Arbitrary Deadlines under Global Fixed-
Priority Scheduling

José Fonseca, Geoffrey Nelissen*, Vincent Nélis

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP P.Porto)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: jcnfo@isep.ipp.pt, grrpn@isep.ipp.pt, nelis@isep.ipp.pt

https://www.cister-labs.pt

Abstract

One of the major sources of pessimism in the response time analysis (RTA) of globally scheduled real-time tasks is
the computation of an upper-bound on the inter-task interference. This problem is further exacerbated when intra-
task parallelism is permitted because of the complex internal structure of parallel tasks. This paper considers the
global fixed-priority (G-FP) scheduling of sporadic real-time tasks when each task is modeled by a directed acyclic
graph (DAG) of concurrent subtasks. We present a RTA based on the concept of problem window, a technique that
has been extensively used to study the schedulability of sequential task in multiprocessor systems. The problem
window approach of RTA usually categorizes interfering jobs in three different groups: carry-in, carry-out and body
jobs. In this paper, we propose two novel techniques to derive less pessimistic upper-bounds on the workload
produced by the carry-in and carry-out jobs of the interfering tasks. Those new bounds take into account the
precedence constraints between subtasks pertaining to the same DAG. We show that with this new
characterization of the carry-in and carry-out workload, the proposed schedulability test offers significant
improvements on the schedulability of DAG tasks for randomly generated task sets in comparison to state-of-the-
art techniques. In fact, we show that, while the state-of-art analysis does not scale with an increasing number of
processors when tasks have constrained deadlines, the results of our analysis are barely impacted by the
processor count in both the constrained and the arbitrary deadline case.

Real-Time Systems

https://doi.org/10.1007/s11241-018-09325-5

Schedulability analysis of DAG tasks with arbitrary
deadlines under global fixed-priority scheduling

José Fonseca1 · Geoffrey Nelissen1 · Vincent Nélis1

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract

One of the major sources of pessimism in the response time analysis (RTA) of globally

scheduled real-time tasks is the computation of an upper-bound on the inter-task inter-

ference. This problem is further exacerbated when intra-task parallelism is permitted

because of the complex internal structure of parallel tasks. This paper considers the

global fixed-priority (G-FP) scheduling of sporadic real-time tasks when each task

is modeled by a directed acyclic graph (DAG) of concurrent subtasks. We present

a RTA based on the concept of problem window, a technique that has been exten-

sively used to study the schedulability of sequential task in multiprocessor systems.

The problem window approach of RTA usually categorizes interfering jobs in three

different groups: carry-in, carry-out and body jobs. In this paper, we propose two

novel techniques to derive less pessimistic upper-bounds on the workload produced

by the carry-in and carry-out jobs of the interfering tasks. Those new bounds take into

account the precedence constraints between subtasks pertaining to the same DAG. We

show that with this new characterization of the carry-in and carry-out workload, the

proposed schedulability test offers significant improvements on the schedulability of

DAG tasks for randomly generated task sets in comparison to state-of-the-art tech-

niques. In fact, we show that, while the state-of-art analysis does not scale with an

increasing number of processors when tasks have constrained deadlines, the results of

our analysis are barely impacted by the processor count in both the constrained and

the arbitrary deadline case.

Keywords Parallel tasks · DAG scheduling · Response time analysis ·

Multiprocessor systems · Real-time systems

B José Fonseca

jcnfo@isep.ipp.pt

Geoffrey Nelissen

grrpn@isep.ipp.pt

Vincent Nélis

nelis@isep.ipp.pt

1 CISTER/INESC-TEC, Instituto Superior de Engenharia do Porto, 4249-015 Porto, Portugal

123

Real-Time Systems

1 Introduction

Few years ago, there was a neat and clear frontier separating the real-time embed-

ded domain from the high-performance computing domain. Nowadays, many modern

applications (e.g., intelligent transportation systems and autonomous driving) share

requirements from both worlds: they are subject to strong timing constraints and have

high computational demands. In order to cope with such orthogonal requirements, we

have witnessed a strong push towards the adoption of parallel programming paradigms

and multi-/many-core embedded architectures. Parallel programming models, such as

OpenMP (Board 2013), enable both inter- and intra-task parallelism in the systems,

thus offering opportunities for a more efficient exploitation of the immense processing

power that is today at the industry’s disposal.

For the real-time research community, the analysis of the worst-case timing behavior

of parallel systems requires a detailed representation of the intrinsic parallelism within

the application as well as a complete picture of the precedence constraints that it

imposes on its parallel activities. These new challenges have been progressively tackled

as shown by the different parallel task models and respective schedulability analysis

recently proposed in the literature (Lakshmanan et al. 2010; Saifullah et al. 2011;

Chwa et al. 2013; Maia et al. 2014; Baruah et al. 2012; Bonifaci et al. 2013; Li et al.

2013; Baruah 2014; Li et al. 2014; Fonseca et al. 2016; Melani et al. 2015; Baruah

et al. 2015).

In this paper, we study the sporadic DAG task model introduced in Baruah et al.

(2012) under global fixed-priority (G-FP) scheduling. In this model, each task is

characterized by a directed acyclic graph (DAG). The nodes of the graph represent

sequential computation units (e.g., openMP tasks) and the edges define precedence

constraints between the execution of nodes. Nodes that are not directly or transitively

connected with each other in the graph may execute in parallel, otherwise they must

follow the sequential order given by the DAG structure.

A key challenge in the response time analysis (RTA) of globally scheduled mul-

tiprocessor task systems is to compute an upper-bound on the interference that tasks

generate on each other. The complexity of computing such inter-task interference

bound is exacerbated for parallel tasks, DAGs in particular, due to their complex and

irregular internal structure. To the best of our knowledge, the work proposed by Melani

et al. (2015) represents the first attempt at analyzing the schedulability of a set of spo-

radic DAG tasks with a general G-FP scheduling policy through a RTA approach. Their

RTA is based on the concept of problem window developed originally by Baker (2003).

This technique consists in estimating the maximum interfering workload produced by

a higher priority task in a time interval of arbitrary length. While the work in Melani

et al. (2015) indeed succeeded in upper-bounding the interfering workload generated

by DAG tasks, it does so by considering that every job in the problem window is

a compact block of execution which uniformly occupies all the available processors

until its completion.

Since most DAGs exhibit different degrees of parallelism throughout their execution

and do not necessarily require to constantly access all processors, such abstraction

leads to a significant overestimation of the inter-task interference. This extra level of

pessimism in the schedulability analysis is evident in the experimental results reported

123

Real-Time Systems

Table 1 Performance of the schedulability test proposed by Melani et al. (2015)

Schedulability ratio (%) 94 63 49 32 24 16 14 10

Number of cores 2 4 6 8 10 12 14 16

in Table 1 (more details about the system configuration are deferred to Sect. 10). Table 1

shows the percentage of task sets that are deemed schedulable by the schedulability

test proposed in Melani et al. (2015) when increasing the number of available cores

but keeping the platform utilization fixed at 70% and the number of tasks proportional

to the number of cores. The steady schedulability performance deterioration visible in

Table 1 for the aforementioned test is counter-intuitive, as one would expect at least

a constant schedulability ratio when the parallelism of the platform is increased and

the average task utilization remains unchanged. Motivated by these observations, this

paper proposes techniques to derive improved bounds on the inter-task interference

by exploiting the knowledge of the precedence constraints in the internal structure

of the DAGs. As reported in the experimental section of this paper, the proposed

technique improves the ratio of task sets deemed schedulable and attenuate strongly

the counter-intuitive deterioration of the analysis performance with the increasing

number of cores.

1.1 Contributions and paper organization

In this paper, we study the schedulability of a set of sporadic DAG tasks under G-

FP scheduling. We present two novel techniques that exploit the internal structure

of the DAGs in order to derive improved upper-bounds on the worst-case workload

that each higher priority task carries into the problem window of the analyzed task.

We then identify the scenario that maximizes the combined interference contributions

of both the carry-in and carry-out jobs, allowing us to use the new upper-bounds to

refine traditional schedulability analysis methods. Experimental results show that the

proposed schedulability test not only dominates the state-of-the-art analysis (Melani

et al. 2015) but it is also robust to multiprocessor systems with larger number of cores.

The analysis is derived for systems composed of both constrained and arbitrary dead-

line tasks. Substantial schedulability improvements are attained even for the general

case.

The remainder of this paper is organized as follows. Next section provides a concise

review of the related work. In Sect. 3 we formally define the sporadic DAG model.

Sect. 4 describes briefly the RTA presented in Melani et al. (2015), while Sect. 5

introduces the proposed worst-case scenario for the interfering workload of the higher

priority tasks. In Sects. 6 and 7 we present how to upper-bound the worst-case carry-in

and carry-out workloads, which we then use to derive the schedulability analysis for

constrained deadline tasks in Sect. 8. Section 9 extends the analysis of Sect. 8 to the

more general case of systems composed of arbitrary deadline tasks. Finally, Sect. 10

reports our experimental results, right before we draw the conclusions in Sect. 11.

123

Real-Time Systems

2 Related work

The real-time community has been devoting significant efforts to the problem of

scheduling parallel tasks atop multiprocessor platforms. Parallel task models and

respective schedulability tests have been proposed to cope with the different forms of

task parallelism introduced by widely used parallel programming models. Imposing

the most restrictions, the fork-join model (Lakshmanan et al. 2010) characterizes a task

as an interleaved sequence of sequential and parallel segments, where the release of

each segment is constrained by the completion of its predecessors. A common assump-

tion is that every parallel segment contains the same number of subtasks, which cannot

exceed the number of cores in the platform. The synchronous parallel model (Saifullah

et al. 2011; Andersson and de Niz 2012; Nelissen et al. 2012; Chwa et al. 2013; Maia

et al. 2014) extends the fork-join model by allowing consecutive parallel segments

with an arbitrary number of subtasks. Nonetheless, synchronization is still enforced

at every segment’s boundary, meaning that a subtask cannot start executing until all

the subtasks of the previous segment have completed.

A more flexible and general parallel structure is captured by the DAG model (Baruah

et al. 2012) considered in this paper, where a task is instead represented by a directed

acyclic graph. Nodes represent subtasks to be sequentially executed and edges define

precedence constraints between nodes. According to this model, a subtask becomes

ready for execution as soon as all its precedences constraints are satisfied, and uncon-

nected subtasks may execute in parallel. Most existing work on the DAG model

addresses global earliest deadline first (G-EDF) scheduling, with (Qamhieh et al.

2013; Saifullah et al. 2013, 2014) or without decomposition1 (Baruah et al. 2012;

Bonifaci et al. 2013; Li et al. 2013, 2014; Baruah 2014; Parri et al. 2015).

Researchers have also studied partitioned scheduling (Fonseca et al. 2016), where

each subtask is statically assigned to a single processor and therefore cannot migrate.

Yet multiple subtasks of the same DAG may still execute on different cores. On the

other hand, federated scheduling (Li et al. 2014; Jiang et al. 2017) assigns each heavy

task (i.e., a task with an execution workload larger than their deadline) to a set of

dedicated processors, whereas light tasks (i.e., those that have a workload smaller

than or equal to their deadline) are forced to execute sequentially on the remaining

processors.

G-FP scheduling has been considered for DAG tasks with arbitrary deadlines, with

Bonifaci et al. (2013) proving a resource augmentation bound of 3 − 1/m under a

global deadline monotonic (G-DM) policy, whereas Parri et al. (2015) proposed a

RTA for G-DM that accounts for the interference experienced by each subtask instead

of each task. According to the authors (Parri et al. 2015), the analysis proposed by

Parri et. al. is essentially tailored for arbitrary deadline tasks.

Recently, the DAG model has been extended to support conditional statements,

allowing a parallel task to experience different flows of execution depending on input

and state variables (Fonseca et al. 2015; Melani et al. 2015, 2017; Baruah et al. 2015).

As a result, different instances of the same DAG may produce different parallel struc-

1 The “decomposition” process consists in assigning independent release offsets and virtual deadlines to

each subtask in a DAG. Different subtasks may then be scheduled as independent sequential tasks even if

they belong to the same DAG.

123

Real-Time Systems

tures during their execution. We particularly highlight the RTA presented in Melani

et al. (2015, 2017) since it addresses G-FP scheduling as it is also the case in this paper.

The RTA presented in Melani et al. (2015, 2017) is effective for both conditional and

non-conditional DAG tasks. In this paper, we restrict ourselves to the non-conditional

case.

3 Model

We consider a set of n sporadic real-time tasks τ = {τ1, . . . , τn} to be globally sched-

uled by a preemptive fixed-priority algorithm on a platform composed of m unit-speed

processors. We assume that priorities are per-task and that task τi has higher prior-

ity than τk if i < k. Each task τi is characterized by a 3-tuple (Gi , Di , Ti) with the

following interpretation. Task τi is a recurrent process that releases a (potentially)

infinite sequence of jobs, with the first job released at any time during the system

execution and subsequent jobs released at least Ti time units apart. Every job released

by τi has to complete its execution within Di time units from its release. In this paper,

we first consider the special case where τ is comprised of constrained deadline tasks,

i.e., Di ≤ Ti ,∀i . Then, in Sect. 9, we consider the general case where tasks in τ

may have arbitrary deadlines, i.e., smaller than, equal to or larger than their minimum

inter-arrival time Ti .

Each job of task τi is modeled by a DAG Gi = (Vi , Ei), where Vi =

{vi,1, . . . , vi,ni
} is a set of ni nodes and Ei ⊆ (Vi × Vi) is a set of directed edges

connecting any two nodes. Each node vi, j ∈ Vi represents a computational unit

(referred to as subtask) that must execute sequentially. A subtask vi, j has a worst-case

execution time (WCET) denoted by Ci, j . Each directed edge (vi,a, vi,b) ∈ Ei denotes

a precedence constraint between the subtasks vi,a and vi,b, meaning that subtask vi,b

cannot execute before subtask vi,a has completed its execution. In this case, vi,b is

called a successor of vi,a , whereas vi,a is called a predecessor of vi,b. A subtask is

then said to be ready if and only if all of its predecessors have finished their execution.

For simplicity, we will omit the subscript i when referring to the subtasks of task τi

if there is no possible confusion. A subtask with no incoming (resp., outgoing) edges

is referred to as a source (resp., a sink) of the DAG. Without loss of generality, we

assume that each DAG has a single source v1 and a single sink vni
. Note that any

DAG with multiple sinks/sources complies with this requirement, simply by adding a

dummy source/sink with zero WCET to the DAG, with edges from/to all the previous

sources/sinks.

For each subtask v j ∈ Vi , its set of direct predecessors is given by pred(v j),

while succ(v j) returns its set of direct successors. Formally, pred(v j) = {vk ∈

Vi | (vk, v j) ∈ Ei } and succ(v j) = {vk ∈ Vi | (v j , vk) ∈ Ei }. Furthermore, ances(v j)

denotes the set of ancestors of v j , defined as the set of subtasks that are either directly or

transitively predecessors of v j . Analogously, we denote by desce(v j) the descendants

of v j . Formally, ances(v j) = {vk ∈ Vi | vk ∈ pred(v j)∨(∃vℓ, vℓ ∈ pred(v j)∧vk ∈

ances(vℓ))} and desce(v j) = {vk ∈ Vi | vk ∈ succ(v j)∨ (∃vℓ, vℓ ∈ succ(v j)∧ vk ∈

desce(vℓ))}. Any two subtasks that are not ancestors/descendants of each other are

said to be concurrent. Concurrent subtasks may execute in parallel.

123

Real-Time Systems

Definition 1 (Path) For a given task τi , a path λ = (v1, . . . , vni
) is a sequence

of subtasks v j ∈ Vi such that v1 is the source of Gi , vni
is the sink of Gi , and

∀v j ∈ λ\{vni
}, (v j , v j+1) ∈ Ei .

Informally, a path λ is a sequence of subtasks from the source to the sink in which

there is a precedence constraint between any two adjacent subtasks in λ. Thus, there is

no concurrency between the subtasks that belong to a same path. The length of a path λ,

denoted len(λ), is the sum of the WCET of all its subtasks, i.e., len(λ) =
∑

∀v j ∈λ C j .

Definition 2 (Length of a task) The length L i of a task τi is the length of its longest

path.

Definition 3 (Critical path) A path of τi that has a length L i is a critical path of τi .

Note that when the number of cores m is greater than the maximum possible par-

allelism of τi , the length L i represents the worst-case response time (WCRT) of τi in

isolation (also known as the makespan of the graph). Therefore, an obvious necessary

condition for the feasibility of τi is L i ≤ Di .

Definition 4 (Workload) The workload Wi of a task τi is the sum of the WCET of all

its subtasks, i.e. Wi =
∑ni

j=1 C j .

Finally, we prove the following property on τi ’s execution and its critical path.

Lemma 1 At most Wi − max{0, L i − ℓ} units of workload can be executed by a job

of τi in a window of length ℓ.

Proof By Def. 1, all subtasks in a critical path have precedence constraints and must

therefore execute sequentially. In the worst-case, a job of τi cannot finish its execution

within a time window of length shorter than L i independently of the number of cores,

since the length of a critical path is L i by Def. 3. Since each DAG has at least one

critical path, ℓ time units after its release, a job of τi still has to execute for at least

max(0, L i − ℓ) time units in order to meet the sequential execution requirements of

its critical path entirely. Hence, at most Wi − max{0, L i − ℓ} units of workload are

executed in the interval of length ℓ. ⊓⊔

Corollary 1 No schedule of Gi whose length is shorter than L i can accommodate Wi

units of workload.

Note that Lemma 1 is a very coarse and pessimistic bound on the amount of work-

load executed by a DAG task in an interval of length ℓ. Yet, that property will be useful

to prove the correctness of the response time analysis proposed in this paper.

4 Background

In this section, we introduce the concept of interference for DAG tasks. We also

summarize the RTA introduced by Melani et al. (2015) as it sets the foundations for

123

Real-Time Systems

the schedulability analysis proposed in the upcoming sections. Although their work

targets a more general task model, known as “conditional DAG model”, empirical

evaluation in Melani et al. (2015) shows that it is also state-of-the-art for the non-

conditional DAG tasks considered in this paper.

A key challenge in the RTA of globally scheduled multiprocessor systems is the

computation of the interference among tasks. For sequential tasks, the interference

exerted on a task τk is defined as the cumulative length of all the time intervals in

which τk is ready but cannot be scheduled on any processor due to the concurrent

execution of m higher priority tasks. In order to adapt this definition to the parallel

structure of DAG tasks, we introduce the notion of critical chain.

Definition 5 (Critical chain) The critical chain λk of a DAG task τk is the path of τk

that leads to its worst-case response time Rk , with ties broken arbitrarily.

To determine the worst-case response time of τk , we then need to identify such

critical chain and compute the maximum possible interference exerted on it. We start

by characterizing the interference on a DAG task τk .

Definition 6 (Interference) The interference Ik on a DAG task τk is the cumulative

length of all the time intervals in which at least one subtask that belongs to τk’s critical

chain is ready but cannot be scheduled on any processor because all m cores are busy.

Alternatively, the total interference can be expressed as a function of the worst-case

interfering workload generated by each task in the system.

Definition 7 (Interfering workload) The interfering workload W i
k imposed by a DAG

task τi on a DAG task τk represents the total workload executed by subtasks of τi ,

while at least one subtask that belongs to τk’s critical chain is ready but cannot be

scheduled on any processor.

Definitions 6 and 7 also allow us to formulate a bound on the worst-case response

time of τk :

Rk ≤ len(λk) + Ik = len(λk) +
1

m

∑

∀τi ∈τ

W i
k (1)

Furthermore, under fixed-priority scheduling, a task τk cannot suffer interference

from lower priority tasks. That is, W i
k = 0, ∀i > k. However, when i = k, we have

W i
k ≥ 0. That is because other subtasks of τk that do not belong to its critical chain

may also delay the completion of τk itself. This phenomenon peculiar to parallel tasks

is called self-interference.

Unfortunately, deriving concrete values for either the overall term Ik or the indi-

vidual terms W i
k is computational intractable for non-trivial task sets, otherwise a

schedulability test would easily follow from Eq. (1). For this reason, an established

workaround is to bound the total worst-case interfering workload by analyzing the

maximum possible workload that can be produced by each interfering task during

the worst-case instance of τk . In the following, we present the upper-bounds derived

123

Real-Time Systems

Fig. 1 Worst-case interfering workload of a higher priority task τi , as considered in Melani et al. (2015)

in Melani et al. (2015) for both the self-interference (i = k) and inter-task interfer-

ence (i < k) components in the context of G-FP scheduling, as well as the resulting

response time equation.

Regarding the self-interference, in a constrained deadline setting two jobs of a same

task τk cannot interfere with each other. That is because one job must finish before the

next one is released, otherwise τk would fail to meet its deadline and the system would

immediately be deemed unschedulable. Therefore, the self-interfering workload is

independent of the response time of τk . Furthermore, due to the absence of priorities

at the subtask-level, every subtask that is not part of τk’s critical chain may potentially

contribute to the overall response time of τk and thus to its self-interfering workload

W k
k .

Let Mk denote the contribution of DAG task τk to its own response time, i.e.,

Mk
def
= len(λk) + W k

k /m. It was proven in Melani et al. (2015) that, for constrained

deadline tasks, an upper-bound on Mk is given by

Mk ≤ Lk +
1

m
(Wk − Lk) (2)

That is, the self-interfering workload is upper-bounded by W k
k ≤ Wk − Lk (i.e., the

remaining workload of τk after excluding the length of its critical path). Importantly,

Eq. (2) not only provides a bound on the maximum makespan of τk (i.e., its WCRT in

isolation) but also ensures that the critical chain λk can be safely replaced by a critical

path of τk in the response time analysis, as long as such critical path is subject to at

least the same amount of inter-task interference. Hence, we hereinafter restrict our

attentions to a single critical path of τk , fixed arbitrarily.

Contrary to the self-interference, the amount of inter-task interfering workload

depends on the length of the time interval that we consider. The longer the time

interval, the more workload can be generated by the higher priority tasks and thus

the larger is the inter-task interference on the analyzed task τk . For a time window

of length Δ starting at τk’s release, the contribution of a higher priority task τi to the

inter-task interfering workload W i
k is divided in three portions (see Fig. 1):

1. Carry-in: It accounts for the contribution of jobs of τi with release times before

the beginning of the problem window (i.e., before τk’s release at time rk) and a

deadline after the beginning of the problem window, i.e., after rk . The carry-in

jobs workload corresponds to the portion of those jobs execution that could not

123

Real-Time Systems

finish prior to rk . Note that for constrained deadline systems, if τi is schedulable,

then τi has at most one carry-in job.

2. Body: It takes into account the contribution of all subsequent job releases of τi

that are fully contained in the window. The workload of each of the body jobs to

the interfering workload is upper-bounded to its complete execution time Wi .

3. Carry-out: In the related literature, it usually accounts for the contribution of a job

of τi with release time within the problem window and deadline after the end of the

window (i.e., after rk + Δ). Yet, in this paper we will slightly bend the definition

and instead consider that a carry-out job is a job that is released within the problem

window less than Ti time units before its end (i.e., the carry-out job of τi is released

at time t such that (rk + Δ − Ti) < t < (rk + Δ)). Note that our definition is

compliant with the state-of-the-art definition when tasks have implicit deadlines

(i.e., Di = Ti). The interfering workload of the carry-out job corresponds to the

portion of its execution that actually overlaps with the time interval [rk, rk + Δ).

In Melani et al. (2015), the authors formulated a generic bound on the worst-case

workload generated by an interfering task τi with constrained deadline within such

window of length Δ. This upper-bound, which we state below, relates to the maximum

interfering workload imposed by τi on task τk under analysis by fixing Δ = Rk . Hence,

W i
k ≤ Wi (Rk) where Wi (Δ) is defined as follows:

Wi (Δ)
def
=

⌊

Δ + Ri − Wi/m

Ti

⌋

Wi + min (Wi , m((Δ + Ri − Wi/m) mod Ti))

(3)

Notice that Eq. (3) ignores completely the structure of the DAG Gi of τi and corre-

sponds to the scenario depicted in Fig. 1. The first term includes both the contributions

from the carry-in and body jobs, whereas the second term represents the carry-out com-

ponent. The interference imposed by τi on τk within the problem window is maximized

when: (1) the carry-in job starts executing at the start of the time window and finishes

by its WCRT Ri , (2) all subsequent jobs are released and executed as soon as possible

and (3) every job of τi is assumed to execute on all the cores during Wi/m time units.

Putting all the pieces together, for a given task τk , the schedulability condition

Rk ≤ Dk relies on a classic iterative RTA. Starting with Rk = Lk , an upper-bound on

the response time of task τk under G-FP scheduling can be derived by a fixed-point

iteration on the following expression:

Rk = Lk +
1

m
(Wk − Lk) +

1

m

∑

∀i<k

Wi (Rk) (4)

5 Rationale

Looking at the RTA described in the previous section, it is obvious that one of the

major sources of pessimism in the computation of the WCRT is the computation of

123

Real-Time Systems

Fig. 2 Worst-case scenario that maximizes the interfering workload released by τi in the problem window

of τk

the inter-task interference within the problem window. This is clear by examining the

execution pattern assumed for every job of the tasks τi that interferes with the analyzed

task τk (see Fig. 1). All these jobs are assumed to execute as a big compact block that

uniformly occupies the m cores during Wi/m time units. Although this assumption

provides a safe upper-bound on the interference that they cause, the upper-bound may

be greatly improved by not overlooking the rich internal structure of their DAG. Both

the precedence constraints and the number of subtasks in the DAG define the possible

shapes that the execution of τi entails. In general, wider and uneven shapes limit the

amount of workload that effectively enters the problem window. In fact, most DAGs

do not exhibit a constant degree of parallelism equal to m throughout their entire

execution (as it is assumed in the state-of-the-art analysis). Instead, the maximum

workload they may execute in a given time interval is limited by their internal structure.

This is illustrated in Fig. 2, where the maximum interfering workload imposed by the

carry-in and carry-out jobs of a task τi is presented.

This observation is emphasized in the example below.

Example 1 Consider the execution of the task of Fig. 3a on m = 5 cores. The maximum

parallelism attained by the DAG Gi is equal to 5, when subtasks {v2, v3, v4, v5, v6}

execute simultaneously. Such concurrent execution can only last for 4 time units.

After that, the degree of parallelism drops to 2 as v7 becomes ready but v2 has not

finished yet. We point out that different execution patterns are possible between the

subtasks mentioned so far if we include, for example, interference from higher priority

tasks. However, they cannot increase the amount of time during which Gi requires

all the available cores. Moreover, both the source v1 and the sink v8 cannot execute

concurrently with any other subtask of Gi . Therefore, the maximum workload that

can be generated by Gi in a window of length 5 is at most 22. Yet, the state-of-the-art

analysis presented in Sect. 4 assumes that 25 time units of interfering workload have

been generated in a window of length 5.

In this paper, we use the internal structure of each DAG to derive more accurate

upper-bounds on their contributions to the carry-in and carry-out interfering workload.

Note that, according to this analysis method, the DAG’s internal structure does not

affect the contribution of the body jobs to the interfering workload since they are fully

contained in the problem window. Thus, their exact execution pattern is irrelevant.

123

Real-Time Systems

Similar to the work in Melani et al. (2015), our analysis of the inter-task interference

is based on the notion of a problem window of length Δ. However, as illustrated

in Fig. 2, we model more accurately the worst-case scenario by taking into account

different execution patterns for the carry-in and carry-out jobs. Therefore, the workload

produced by task τi is maximized in the problem window [rk, rk + Δ) of τk when: (i)

every subtask of the body jobs of τi executes for its WCET; (ii) the carry-in job released

at a time ri < rk finishes its execution at time ri + Ri and executes as much workload

as possible as late as possible (to maximize its workload in the problem window); (iii)

all subsequent jobs are released Ti time units apart; and (iv) the carry-out job starts its

execution as soon as it is released and executes as much workload as possible as early

as possible (hence maximizing its workload in the problem window).

Our main problem to solve is the lack of a relative reference point between the

release time of the carry-in job of τi and the problem window [rk, rk + Δ). More

specifically, the value (rk − ri) is unknown a priori because, as will be shown later in

this paper, the worst-case schedules of the carry-in and carry-out jobs are incomparable.

Let ΔC I
i and ΔC O

i denote the length of the carry-in portion and the length of the carry-

out portion of τi ’s schedule, respectively. Formally, we have that2 (see Fig. 2 for visual

reference)

ΔC I
i

def
= ri + Ti − rk (5)

ΔC O
i

def
= max{0, (rk + Δ) − (rk + ΔC I

i +

⌊

Δ − ΔC I
i

Ti

⌋

0

× Ti)} (6)

We seek to derive (i) an upper-bound on the interfering workload executed by τi ’s

carry-in job as a function of ΔC I
i , (ii) an upper-bound on the interfering workload

executed by τi ’s carry-out job as a function of ΔC O
i , and (iii) determine concrete

values for ΔC I
i and ΔC O

i such that the interfering workload of τi on task τk cannot be

larger under any possible execution scenario.

To characterize the execution pattern of a carry-in and carry-out job of τi , we

introduce the notion of workload distribution.

Definition 8 (workload distribution) For a given task τi and a given schedule S of τi ’s

subtasks, the workload distribution WDS
i = [B1, . . . , Bℓ] describes S as a sequence

of consecutive blocks. Each block Bb ∈ WDS
i is a tuple (wb, hb) with the interpreta-

tion that there are hb subtasks (height) of Gi executing during wb time units (width)

in S, immediately after the completion of the subtasks that execute in the (b − 1)th

block.

Note that WDS
i does not provide any information about the precedence constraints

in the DAG Gi , neither is it required for S to be a valid schedule of Gi . Hence, according

to Def. 8, every interfering job of a task τi is modeled in Melani et al. (2015) with a

workload distribution WDS
i that comprises only one block B1 = (

Wi

m
, m). In the next

two sections, we will derive more accurate workload distributions in order to model

2 The operator ⌊x⌋0
def
= max{0, ⌊x⌋}.

123

Real-Time Systems

Fig. 3 Example for the carry-in interfering workload

the schedules of τi ’s carry-in and carry-out jobs that maximize their contribution to

the interference suffered by a lower priority task τk .

6 Carry-in workload

This section presents the analysis to compute the carry-in workload of a higher priority

task τi in the problem window [rk, rk +Δ) of τk . Recall that a carry-in job is a job of τi

such that its release time ri is earlier than rk and its deadline falls after rk . Therefore,

to upper-bound the interfering workload generated by the carry-in job, we need to

determine which subtasks of τi may execute within the carry-in window [rk , rk +ΔC I
i),

either fully or partially. Intuitively, to maximize the interfering workload the carry-in

job should execute as much workload as possible as late as possible.

For ease of understanding, we will use Fig. 3a as an example task throughout our

discussion on the carry-in job.

6.1 Workload distribution of the carry-in job

When the degree of parallelism of the DAG Gi is not constrained by the number of

cores (assuming m = ∞ for instance), the schedule of Gi that yields the maximum

makespan is simply that in which every subtask executes for its WCET. Note that

because there are always available cores, each subtask is scheduled as soon as it

becomes ready. We call this particular schedule “unrestricted carry-in” (UC I). If f j

denotes the relative completion time of each subtask v j ∈ Vi in UC I , then it holds

that:

123

Real-Time Systems

f j =

⎧

⎨

⎩

C j if v j is the source

C j + max
vh∈pred(v j)

(fh) otherwise
(7)

Note that the length (makespan) of UC I is given by the completion time fni
of the

sink of Gi and according to Eq. (7), fni
is equal to the critical path length L i .

Assuming that the source of τi starts executing at a relative time 0, the number of

subtasks in UC I that execute at any time t ∈ [0, L i) can be computed by the function

AS(t) defined as

AS(t) =
∑

v j ∈Vi

actv(v j , t) (8)

where actv(v j , t) is equal to 1 if v j is executing at time t and 0 otherwise. That is,

actv(v j , t) =

{

1 if t ∈
[

f j − C j , f j

)

0 otherwise
(9)

Let Fi be the set of finishing times of the subtasks v j ∈ Vi (without duplicates)

sorted in non-decreasing order. We build a workload distribution WDUC I
i modeling

the schedule UC I as follows:

– WDUC I
i has as many blocks as there are elements in Fi ;

– The bth block of WDUC I
i is represented by the tuple (tb+1 − tb, AS(tb)) such that

tb is the bth time instant in the ordered set {0} ∪ Fi .

Built that way, WDUC I
i models the maximum parallelism of τi at any time t assum-

ing that all subtasks execute for their WCET. An example of such workload distribution

is depicted in Fig. 3b for the DAG presented in Fig. 3a.

6.2 Upper-bounding the carry-in workload

Based on both the workload distribution WDUC I
i and the WCRT Ri estimated by

Eq. (4), we compute an upper-bound on the interfering workload produced by one

carry-in job of τi within its carry-in window [rk, rk + ΔC I
i). To do so, we push the

workload distribution WDUC I
i as much as possible “to the right”. We first align the

end of WDUC I
i with the worst-case completion time of the carry-in job of τi . That is,

we align the end of WDUC I
i with the time-instant rk + ΔC I

i − (Ti − Ri) (see Fig. 2).

This assumes that the carry-in job of τi is released at rk + ΔC I
i − Ti and completes at

most at rk + ΔC I
i − Ti + Ri .

Since the problem window starts at rk and the carry-in job must complete by

rk + ΔC I
i − (Ti − Ri), the part of the carry-in job that effectively interferes

with τk is given by the subtasks of that job executed in the last ΔC I
i − (Ti −

Ri) time units of its schedule. Therefore, under the schedule UC I , the maxi-

123

Real-Time Systems

mum interfering workload released by τi ’s carry-in job is upper-bounded by the

function3:

C Ii (WD
UC I
i ,ΔC I

i)

=

|WD
UC I
i |

∑

b=1

hb ×

⎡

⎣ri + Ri −

|WD
UC I
i |

∑

p=b+1

wp

⎤

⎦

wb

0

(10)

where ri
def
= ΔC I

i − Ti is the latest time at which τi ’s carry-in job may be released

(assuming that rk happens at time 0).

Equation (10) returns 0 if ΔC I
i is smaller than (Ti − Ri) (i.e., if the carry-in job

of τi completes before the beginning of the problem window). Otherwise, it sums the

height hb of the workload distribution WDUC I
i in its last ΔC I

i − (Ti − Ri) time units.

Example 2 If ΔC I
i = 9, Ti = 20, Ri = 15 and WDUC I

i is given by the workload

distribution presented in Fig. 3b, then Eq. (10) sums the height of the blocks in the last

ΔC I
i − (Ti − Ri) = 4 time units of WDUC I

i . Hence, it gives us C Ii (WDUC I
i ,ΔC I

i) =

6. If ΔC I
i was equal to 4, then Eq. (10) would return 0 since ΔC I

i − (Ti − Ri) is then

smaller than 0.

We now prove that the interfering workload executed by the carry-in job of τi is

upper-bounded by the workload distribution WDUC I
i , when the end of WDUC I

i is

aligned with the time-instant (rk + ΔC I
i − Ti + Ri) where Ri is computed by Eq. (4).

The carry-in workload computed by Eq. (10) assumes that (i) all subtasks of τi

execute for their WCET, (ii) the number of cores does not limit τi ’s parallelism and

(iii) the carry-in job of τi executes following the workload distribution WDUC I
i just

before its completion time at (rk +ΔC I
i −Ti + Ri). We prove in Lemmas 2–4 that those

three assumptions maximize the interfering workload of τi in the carry-in window.

Lemma 2 The interfering workload generated by the carry-in job of a higher priority

task τi is maximized when all its subtasks execute for their WCET.

Proof If a subtask v j ∈ Vi executes for less than its WCET C j , then either v j con-

tributes less to the interfering workload (assuming that v j is executed within the

carry-in window), or it may allow its successors (and subsequently its descendants) to

be released earlier (note that the release times of subtasks that are not descendant of v j

are not impacted). In the latter case, it may cause those descendants to start executing

before (instead of within) the carry-in window and thus reduce the total interfering

workload they may generate. Similarly, descendants of v j that were already starting

before the beginning of the carry-in window, may complete before the start of the

carry-in window, or earlier within the carry-in window. In both cases, the interfering

workload in the carry-in window is reduced. ⊓⊔

3 [x]
y
z = max{min{x, y}, z}, that is, y and z are an upper-bound and a lower-bound on the value of x ,

respectively.

123

Real-Time Systems

Fig. 4 Interference (blue block) on WD
UC I
i

critical path

Lemma 3 Let Ri be an upper-bound on the worst-case response time of τi and let WDi

be any workload distribution of length L i representing any possible schedule of τi .

Assume that WDi is aligned to the right with the time-instant (rk +ΔC I
i −Ti +Ri). The

workload that can be generated by WDi in the carry-in window cannot be increased

by delaying subtasks in τi ’s critical path.

Proof Remember that the length of the workload distribution WDi is L i , i.e., the

length of WDi is equal to the length of the critical path of τi . Therefore, there must

be a subtask of each critical path of τi
4 executing at any time instant between (rk +

ΔC I
i − Ti + Ri − L i) and (rk + ΔC I

i − Ti + Ri) (because WDi is aligned to the right

with (rk + ΔC I
i − Ti + Ri)). This case is illustrated on Fig. 4a.

Now consider the case where WDi is subject to self- and/or higher priority inter-

ference such that the execution of at least one subtask v j of a critical path of τi is

delayed by x time units.

Postponing the execution of v j by x time units leads to move both the workload of

v j and its descendants x time units “to the right”. Because v j belongs to a critical path

of τi , the length of τi ’s carry-in job schedule is increased by x (see Fig. 4b). However,

because Ri is assumed to be an upper-bound on τi ’s worst-case response time, τi ’s

carry-in job cannot complete later than (rk +ΔC I
i − Ti + Ri). Therefore, as visualized

in Fig. 4b, it is not the subtask v j or its descendants that are moved by x time units “to

the right”, but instead it is the workload executed by predecessors of v j that is pushed

by x time units to the left. Hence, the workload executed by τi in the carry-in window

[rk, rk + ΔC I
i) can only decrease. ⊓⊔

Lemma 4 Let Ri be the upper-bound on the worst-case response time of τi computed

by Eq. (4). Aligning WDUC I
i to the right with the time-instant (rk + ΔC I

i − Ti + Ri)

gives an upper-bound on the maximum interfering workload that can be generated by

τi in the carry-in window, independently of the interference imposed on τi .

4 A task τi may have more than one critical path.

123

Real-Time Systems

Fig. 5 y units of workload (green blocks) of WD
UC I
i

are moved in the carry-in window

Proof Remember that the length of WDUC I
i is L i . Hence, Lemma 3 proved that the

workload generated in the carry-in window cannot increase by interfering with the

critical path of τi . Therefore, this proof must show that the claim is still true even

when the interference exerted on τi does not interfere with its critical paths but delays

the execution of other subtasks of τi .

The proof is by contradiction. Assume that there is a schedule of τi such that, by

delaying subtasks of τi , y extra units of workload of τi enter the carry-in window

[rk, rk + ΔC I
i) comparatively to the workload generated by WDUC I

i (see Fig. 5a for

an illustration of y extra units of workload, colored in green, moved in the carry-in

window). By Lemma 3, the delayed subtasks do not belong to any critical path of τi

and the length of τi ’s schedule is therefore not affected, i.e., it remains equal to L i .

Let v j be any of the delayed subtasks and let δ j be the minimum time for which its

execution has to be delayed, in comparison to the schedule based on WDUC I
i , so that

v j enters the carry-in window. Let x be the maximum δ j over all the delayed subtasks,

i.e., x
def
= max j {δ j } (see Fig. 5a for an illustration of x). That is, at least one subtask

has been delayed by at least x time units to enter the carry-in window.

Since m subtasks are allowed to execute in parallel on m cores and the critical

path of τi is not delayed, postponing a subtasks by x time units implies that at least

(m − 1) × x interfering workload executes in parallel with the critical path to prevent

the delayed subtask to execute on any of the m cores. Additionally, note that the y units

of shifted workload do not interfere with the critical path either, and hence execute in

parallel with the critical path, since by assumption the schedule length is not increased.

Therefore, we have at least

(m − 1) × x + y

units of workload that do not interfere with the critical path but execute in parallel

with it instead.

Let R′
i be an upper-bound on the actual response time of τi ’s carry-in job under

this modified schedule. Since Ri is computed with Eq. (4), and Eq. (4) assumes that

123

Real-Time Systems

all higher priority jobs and all subtasks that do not belong to the critical path of τi

interfere with it, R′
i must be smaller than Ri and we have

R′
i ≤ Ri −

((m − 1) × x + y

m

)

≤ Ri −
(m × y

m
+

(m − 1) × (x − y)

m

)

≤ Ri − y −
(m − 1) × (x − y)

m
(11)

We analyse two cases:

– If y ≤ x , then the last term in (11) is positive and we have R′
i ≤ Ri − y. Hence the

response time of τi and thus the length of τi ’s schedule in the carry-in window has

been reduced by at least y time units (see Fig. 5b). Since at least one subtask of

each critical path of τi must execute at each of those time units (because the length

of the schedule is L i), the workload in the carry-in window has decreased by at

least y time units. This is in contradiction with the assumption that the workload

increased in the carry-in window.

– If y > x , then the last term of (11) is negative and we have R′
i ≤ Ri −y−(x −y) =

Ri − x . Hence, τi ’s response time has reduced by at least x time units. Therefore,

the subtasks that were delayed by x time units could not enter the carry-in workload

since the whole schedule of τi is pushed to the left by x time units too (see Fig. 5b).

Therefore, it contradicts the assumption that extra workload of τi entered the carry-

in window by delaying subtasks by x time units.

The two cases above prove the claim. ⊓⊔

Theorem 1 The interfering workload W C I
i generated by the carry-in job of a higher

priority task τi in a window of length ΔC I
i is upper-bounded by C Ii (W DUC I

i ,ΔC I
i).

Proof The proof follows directly from Lemmas 2–4.

6.3 Improved carry-in workload

The lemma below presents another upper-bound on the maximum interfering workload

that can be generated by a task τi in a carry-in window of length ΔC I
i . Since this upper-

bound cannot be compared with that given by Eq. (10), Theorem 2 below shall present

an improved upper-bound that is simply the minimum between that given by Eq. (10)

and that presented in Lemma 5.

The upper-bound on the carry-in workload of τi as computed in Eq. (10) may in

some cases be pessimistic since the number of subtasks executing simultaneously in

the workload distribution WDUC I
i (i.e., the height of the blocks) may sometimes be

greater than the number of cores m. Yet, we know for a fact that no more than m

subtasks can run simultaneously on m cores. This leads to the following lemma.

Lemma 5 An upper-bound on the maximum interfering workload that can be gen-

erated by a carry-in job of task τi in a carry-in window of length ΔC I
i is given by

max{0, ΔC I
i − (Ti − Ri)} × m.

123

Real-Time Systems

Proof Since τi cannot complete later than Ri , we know that τi does not execute during

the last (Ti − Ri) time units of the carry-in window (see Fig. 2). Therefore, τi executes

during at most max{0, ΔC I
i −(Ti − Ri)} time units on m processors within the carry-in

window of length ΔC I
i , hence the claim. ⊓⊔

Combining Theorem 1 with Lemma 5, we derive an improved bound on the carry-in

workload of an interfering task τi .

Theorem 2 The interfering workload W C I
i generated by the carry-in job of a higher

priority task τi in a window of length ΔC I
i is upper-bounded by min{C Ii (WDUC I

i ,

ΔC I
i), max{0, ΔC I

i − (Ti − Ri)} × m}.

Proof Follows from Theorem 1 and Lemma 5. ⊓⊔

7 Carry-out

This section presents the analysis for computing an upper-bound on the carry-out

part of the interfering workload of a higher priority task τi in the problem window

[rk, rk + Δ) of a task τk . The carry-out job is the last job of τi released in the problem

window, i.e., its release time is within the open interval (rk +Δ−Ti , rk +Δ). Contrary

to the carry-in job, the maximum interference generated by the carry-out job of τi is

found when it starts executing as soon as it is released and at its highest possible

concurrency level. That is, we are interested in pushing the workload of that job as

much as possible “to the left” of the schedule. Also, contrary to the carry-in and the

body jobs, finding an upper-bound on the interference generated by the carry-out job

does not necessarily imply that its subtasks execute for their WCET. Indeed, unless the

entire workload can contribute to the interference generated by τi , one must consider

that any subtask may instead be instantly processed (i.e., its execution time is 0). With

this assumption, some precedence constraints may be immediately resolved and the

degree of parallelism in the DAG potentially increased, leading to more workload at

the beginning of the carry-out window.

Example 3 Consider the DAG in Fig. 6a. If every subtask executes for its WCET then,

initially, only one subtask is active (v1) for 5 time units. On the other hand, if the

subtasks v1 and v4 both execute for 0 time units, then the subtasks v2, v3, v6 and v7

are instantly ready and there are four subtasks active during the first time unit. Thus,

if the carry-out window is only one time unit long, the latter case generates more

interfering workload.

Therefore, we seek to derive a schedule that maximizes the cumulative parallelism

throughout the execution of the job. We call this schedule “unrestricted carry-out”

(UCO).

7.1 DAG’s maximum parallelism

In order to maximize the workload produced by the carry-out job of τi within the

problem window, we need to find an execution pattern such that the overall parallelism

123

Real-Time Systems

Fig. 6 Running example for the carry-out workload

cannot be further increased. If the carry-out window is sufficiently short, then the

maximum degree of parallelism of Gi maximizes the carry-out workload, as described

in Example 3. Ideally, we would like to take the maximum parallelism of the DAG at

each time instant as a solution to the problem of maximizing its cumulative parallelism

within a time interval of arbitrary length. Unfortunately, this methodology cannot be

applied to DAGs, since the scenario that maximizes the parallelism at a certain step

may compromise the concurrency among subtasks later on. In fact, as shown in the

example below, whether or not the DAG’s maximum parallelism must be considered

depends on the length of the carry-out window.

Example 4 Consider the DAG in Fig. 6a. The maximum parallelism is four, given by

the subtasks v2, v3, v6 and v7 that can execute in parallel for at most 1 time unit. Note,

however, that every schedule which maximizes the DAG’s parallelism does not allow

any of the remaining subtasks to execute in parallel — subtasks v1, v4, v5 and v8 have

to execute sequentially due to their precedence constraints. Hence, if the maximum

parallelism is reached, then the carry-out job cannot produce more than 5 units of

workload within a window of length equal to 2. On the other hand, if subtask v4

executes for 1 time unit, we can have three subtasks executing in parallel for 2 time

units: first, subtasks v2, v3 and v4 execute in parallel for 1 time unit, and then subtasks

v5, v6 and v7 also execute in parallel for 1 time unit. As a result, the latter schedule

generates more interfering workload if the carry-out window is 2 time units long, but

it produces at most 3 units of workload when the length of the window is reduced to 1.

The issue highlighted in Example 4 comes from the potentially very complex

connection structures between subgraphs composing the DAG task. Maximizing the

parallelism in one subgraph may constrain and hence reduce the achievable parallelism

in another subgraph. We simplify the problem at hand by transforming the initial DAG

that describes the task in a well-structured, less general, type of DAG, which we call

123

Real-Time Systems

“nested fork-join DAG” (NFJ-DAG) (see below for an explanation on how the trans-

formation is performed and why the transformation is safe). We define a NFJ-DAG5

recursively as follows.

Definition 9 (Nested Fork-Join DAG) A DAG comprised of two nodes connected by

a single edge is NFJ. Further, if G1 and G2 are two independent NFJ-DAGs, then the

DAG obtained through either of the following operations is also NFJ:

(a) Series composition: merge the sink of G1 with the source of G2.

(b) Parallel composition: merge the source of G1 with the source of G2 and the sink

of G1 with the sink of G2.

The series composition links two NFJ-DAGs one after another, whereas the paral-

lel composition juxtaposes two NFJ-DAGs by merging their sources and sinks. For

example, the DAG of Fig. 6a is not a NFJ-DAG because it cannot be constructed with-

out violating the rules in Def. 9. However, if the edge (v4, v5) is removed, then the

DAG becomes NFJ. It is clear from the definition of a NFJ-DAG that maximizing the

parallelism of any of its subgraphs cannot limit the maximum parallelism achievable

by other subgraphs composing the NFJ-DAG.

7.1.1 Transforming a DAG in NFJ-DAG

Many efficient algorithms exist in the literature to identify if a DAG is NFJ (Valdes

et al. 1979; He and Yesha 1987). However, it is out of the scope of this paper to describe

how those algorithms work. We assume here that one of those tests is performed on

the graph Gi describing τi ’s structure. If it turns out that the original DAG Gi is not

NFJ, a transformation is required. Traditionally, in graph theory, the transformation

is performed by adding new edges between conflicting subtasks, so that the original

precedences are preserved (González-Escribano et al. 2002). However, we are inter-

ested in removing edges so as to reduce the number of precedence constraints. This

way, the set of all the valid schedules of τi (those that satisfy the precedence constraints

of its original DAG Gi) is a subset of all the valid schedules of the resulting NFJ-DAG.

That is because any schedule derived according to the DAG Gi will always respect

all the precedence constraints of the NFJ-DAG. As a result, the maximum carry-out

workload that can be generated by the NFJ-DAG is at least as large as the maximum

interfering workload that can be generated by the initial DAG Gi .

Let us refer to a subtask v j as a join-node if its “in-degree” is larger than one, i.e.

|pred(v j)| > 1. Similarly, we refer to a subtask v j as a fork-node if its out-degree is

larger than one, i.e. |succ(v j)| > 1. According to Def. 9, a DAG (as defined in Sect. 3)

is NFJ if and only if it respects the following property.

Property 1 Let Ji be the set of join-nodes in Vi and let Fi be the set of fork-nodes in

Vi . DAG Gi is a NFJ-DAG iff ∀v j ∈ Ji , there exists a subgraph G ′ of Gi such that

v j is the sink of G ′, the source of G ′ is a fork-node v f ∈ Fi and

∀va ∈ G ′\{v f , v j },∀vb ∈ {succ(va) ∪ pred(va)},

vb ∈ desce(v f) ∪ v f ∧ vb ∈ ances(v j) ∪ v j .

5 In graph theory, it is known as two terminal series parallel digraph (He and Yesha 1987).

123

Real-Time Systems

Fig. 7 Decomposition tree of the NFJ-DAG resulting from Fig. 6a

Proof The property directly follows from Def. 9, which enforces that any join-node is

the result of a parallel composition. Hence, for every join-node v j there must exist a

fork-node v f such that the subgraph G ′ that has v f as a source and v j as a sink is NFJ.

Moreover, according to the construction rule defined in Def. 9, there cannot be any edge

between a node va ∈ G ′ and a node vb /∈ G ′. Therefore, ∀va ∈ G ′,∀vb ∈ {succ(va)∪

pred(va)}, vb ∈ G ′, implying that vb ∈ desce(v f) ∪ v f ∧ vb ∈ ances(v j) ∪ v j . ⊓⊔

Using Property 1, a high-level algorithm for transforming a DAG Gi into a NFJ-

DAG G N F J
i , can be defined as follows.

1. Select the unvisited join-node v j ∈ Ji that is the closest to the source of Gi .

2. Find all the edges (vc, v j) in Ei for which there is no fork-node v f ∈ Fi such that

Prop. 1 is true. Call this set the set of conflicting edges EC .

3. Remove as many edges in EC as needed for join-node v j to respect Prop. 1 or for

its in-degree to become equal to 1 (in which case it is not a join node any more).

4. For each edge (vc, v j) ∈ EC that was removed, if succ(vc) = ∅, add an edge

(vc, vni
) from node vc to the sink of Gi .

5. Mark v j as visited. Repeat until all join-nodes have been visited.

Example 5 The DAG of Fig. 6a has two join-nodes {v5, v8}. The above algorithm starts

by analyzing join-node v5. Since its ancestor v4 has two direct successors {v6, v7}

which are not ancestors of v5, (v4, v5) is a conflicting edge. Because there is no other

conflicting edge with respect to join-node v5, our only choice is to remove (v4, v5)

from the DAG. In the next iteration, the DAG is already NFJ as join-node v8 does not

violate Property 1.

7.1.2 Maximum parallelism in a NFJ-DAG

By Def. 9, a NFJ-DAG can be reduced to a collection of basic DAGs by successively

applying series and parallel binary decomposition rules. Therefore, a NFJ-DAG G N F J
i

can be represented by a binary tree Ti , called decomposition tree (see Fig. 7 for an

123

Real-Time Systems

example). Each external node (leaf) of the decomposition tree corresponds to a subtask

v j ∈ Vi , whereas each internal node represents the composition type (series or parallel)

applied to its subtrees. That is, the children of a internal node are either smaller NFJ-

DAGs or subtasks. A node depicting a parallel or series composition is labeled P or S,

respectively. The algorithm proposed by Valdes et al. (1979) can be used to efficiently

build the decomposition tree of any NFJ-DAG. Figure 7 shows the decomposition tree

of the NFJ-DAG depicted in Fig. 6a (without the red edge).

The structure of the decomposition tree allows us to compute the sets of subtasks

yielding the maximum parallelism of a NFJ-DAG G N F J
i in an efficient manner. The

recursive function par(T U
i) defined below returns a set of subtasks in a decomposition

tree T U
i such that all subtasks in par(T U

i) can execute in parallel and the size of

par(T U
i) is maximum. Note that, in Eq. (12) below, T L

i and T R
i denote the left and

right subtrees of the binary tree T U
i rooted in node U .

par(T U
i) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

par(T L
i) ∪ par(T R

i) if U is a P-node

par(T L
i) if U is a S-node and

|par(T L
i)| ≥ |par(T R

i)|

par(T R
i) if U is a S-node and

|par(T R
i)| > |par(T L

i)|

{U } otherwise

(12)

Eq. (12) works as follows. When node U denotes a parallel composition, the maximum

parallelism corresponds to the sum of the maximum parallelism of its children. On the

other hand, the maximum parallelism in a series composition is given by the maximum

parallelism among its children. The recursion of Eq. (12) stops when U is a leaf of the

decomposition tree and hence corresponds to a subtask in the associated NFJ graph.

The set of subtasks in G N F J
i with maximum parallelism is obtained by calling par(.)

on G N F J
i ’s decomposition tree root node.

7.2 Workload distribution of the carry-out job

As discussed earlier in this section, the carry-out job of an interfering task τi generates

the maximum interfering workload when it starts executing as soon as it is released

and at its highest possible concurrency level. Therefore, we use the par(.) function

defined above to build the workload distribution WDUC O
i that characterizes the UC O

schedule for the carry-out job of τi .

The workload distribution WDUC O
i is constructed using Algorithm 1. In short,

the algorithm identifies the maximum number of subtasks that can run in parallel at

any point during the execution of the carry-out job as follows. It finds the largest

set of subtasks which may execute in parallel according to the decomposition tree

of G N F J
i (line 3). Then, it adds a new block (line 5) to the workload distribution

WDUC O
i with a width equal to the minimum WCET among those subtasks (line 4)

and a height equal to the number of subtasks in the set. Finally, it proceeds by updating

123

Real-Time Systems

the subtasks’ execution times in the reduction tree, i.e., decreasing their execution time

by the amount of time they executed in parallel (line 6). When a subtask reaches an

execution time equal to 0 (it finishes), its corresponding leaf is removed from the

decomposition tree (lines 7-8). Whenever a node of the decomposition tree has no

children anymore, it is also removed from the tree. Algorithm 1 is called iteratively

until all leaves have been removed.

Algorithm 1: Constructing WDUC O
i from G N F J

i .

Input : G N F J
i

, T N F J
i

- A NFJ-DAG and its decomposition tree.

Output: WD
UC O
i

- Workload distribution of the schedule UC O .

1 WD
UC O
i

← ∅;

2 while T N F J
i

�= ∅ do

3 P ← par(T N F J
i

);

4 width ← min{C p | vp ∈ P};

5 WD
UC O
i

← [WD
UC O
i

, (width, |P|)];

6 ∀vp ∈ P : C p ← C p − width;

7 ∀v j ∈ T N F J
i

such that C j = 0 : remove v j from T N F J
i

;

8 end

9 return WD
UC O
i

;

Example 6 The workload distribution WDUC O
i for the DAG of Fig. 6a (without the

red edge) is presented in Fig. 6b. It tells us that the NFJ-DAG in Fig. 6a can execute

with a parallelism of 4 during 1 time unit. It can execute with a parallelism of 2 during

3 more time units and then it can finally execute with a parallelism of 1 during 8

additional time units.

7.3 Upper-bounding the carry-out workload

Similarly to what was presented for the carry-in workload, an upper-bound on the carry-

out interfering workload generated by τi is calculated using the workload distribution

WDUC O
i . Let ΔC O

i denote the length of the carry-out window of τi (see Eq. (6)). The

maximum workload executed by τi in any window of length ΔC O
i is upper-bounded by

the cumulative workload found in the first ΔC O
i time units of the workload distribution

WDUC O
i . Such cumulative workload is denoted by C Oi (WDUC O

i ,ΔC O
i) and can be

computed by the function:

C Oi (WD
UC O
i ,ΔC O

i) =

|WD
UC O
i |
∑

b=1

hb ×
[

ΔC O
i −

b−1
∑

p=1

wp

]wb

0
(13)

Example 7 If ΔC O
i = 3 and WDUC O

i is given by the workload distribution presented

in Fig. 6b, then Eq. (13) sums the height of the blocks in WDUC O
i up to 3. That

123

Real-Time Systems

is, C Oi (WDUC O
i ,ΔC O

i) = 8. If ΔC O
i was equal to 10, then C Oi (WDUC O

i ,ΔC O
i)

would be equal to 16.

We now prove that C Oi (WDUC O
i ,ΔC O

i) is indeed an upper-bound on the carry-out

interfering workload W C O
i .

Theorem 3 The interfering workload W C O
i generated by the carry-out job of a

higher priority task τi in a carry-out window of length ΔC O
i is upper-bounded by

C Oi (WDUC O
i ,ΔC O

i).

Proof We recall that τi ’s carry-out job generates the maximum interfering workload

when it starts executing as soon as it is released and at its highest possible concurrency

level.

First, we note that the NFJ-DAG G N F J
i , built from Gi by removing some of Gi ’s

edges, has a concurrency level at least as high as Gi . Hence, the workload distribution

WDUC O
i constructed based on G N F J

i has at least as much workload than Gi in the

carry-out window.

Since WDUC O
i is constructed with Algorithm 1, and because Algorithm 1 computes

the maximum parallelism of G N F J
i at each time t , the height of WDUC O

i on its first

ΔC O
i time units maximizes the workload that τi can generate in the carry-out window.

Finally, because C Oi (WDUC O
i ,ΔC O

i) provides the cumulative workload in

WDUC O
i over its first ΔC O

i time units, C Oi (WDUC O
i , ΔC O

i) upper-bounds the inter-

fering workload that can be generated by τi ’s carry-out job. ⊓⊔

7.4 Improved carry-out workload

Note that because the workload distribution WDUC O
i is built based on the NFJ-DAG

of τi and not on its DAG, the length of the schedule UC O may become shorter than

L i . That happens when any of the edges removed during the transformation belongs to

the critical path of Gi . In fact, the length of WDUC O
i matches the critical path length

of G N F J
i , which may be shorter than the critical path of the initial DAG Gi (since

edges may have been removed).

Example 8 The workload distribution WDUC O
i presented in Fig. 6b has a length equal

to 12, while the initial DAG (with the red edge) in Fig. 6a has a critical path composed

of v1, v4, v5 and v8 of length L i = 14.

As stated by Corollary 1, task τi cannot execute Wi time units in less than L i time

units. Therefore, we derive a new upper-bound on the interfering workload of τi ’s

carry-out job, that respects Corollary 1.

Lemma 6 The workload W C O
i generated by the carry-out job of a higher priority task

τi in a window of length ΔC O
i is upper-bounded by Wi − max{0, L i − ΔC O

i }.

Proof Directly follows from Lemma 1. ⊓⊔

Theorem 4 The interfering workload W C O
i generated by the carry-out job of

a higher priority task τi in a window of length ΔC O
i is upper-bounded by

min
{

C Oi (WDUC O
i ,ΔC O

i), ΔC O
i × m, Wi − max{0, L i − ΔC O

i }
}

.

123

Real-Time Systems

Proof Because at most m subtasks can execute simultaneously on m cores, ΔC O
i × m

is an upper-bound on the workload that can execute in a window of length ΔC O
i . Since

C Oi (WDUC O
i ,ΔC O

i) (Theorem 3) and Wi − max{0, L i −ΔC O
i } (Lemma 6) are also

upper-bounds on W C O
i , so is the minimum between the three values. ⊓⊔

8 Schedulability analysis for constrained deadline tasks

In the previous two sections we have derived upper-bounds on the workload produced

by the carry-in and carry-out jobs of τi as a function of ΔC I
i and ΔC O

i , respectively.

Now we show how to balance ΔC I
i and ΔC O

i such that the interfering workload in

the problem window of length Δ is maximized. In this section, we assume that all

tasks have constrained deadlines (i.e., Di ≤ Ti). The case of arbitrary deadlines is

considered in Sect. 9. If tasks have constrained deadlines, then at most one job of

each higher priority task τi can be a carry-in job, i.e., at most one job of τi can be

released before rk and have a deadline after rk . Similarly, at most one job of τi may be

a carry-out job, i.e., there is at most one job of τi that can be the last job of τi released

in the problem window.

The difficulty in computing the values ΔC I
i and ΔC O

i comes from the fact that the

worst-case scenario for τk does not necessarily happen when the problem window is

aligned with the start of the carry-in job or the end of the carry-out job (see Fig. 2).

Furthermore, the positioning of the problem window of τk relatively to the release

pattern of τi may have to vary according to the value of Δ in order to guarantee that

the workload imposed by τi on τk is maximized.

Let ΔC
i be the sum of the carry-in and the carry-out windows lengths, i.e, ΔC

i =

ΔC I
i + ΔC O

i , and let WC
i (ΔC

i) be the maximum workload produced by the carry-in

and carry-out jobs of τi over ΔC
i . An upper-bound on the total interfering workload

generated by τi in a time interval of length Δ is therefore given by

Wi (Δ) = W
C
i (ΔC

i) + max

{

0,

⌊

Δ − ΔC
i

Ti

⌋}

× Wi (14)

where the first term is the maximum workload produced by both the carry-in job and

the carry-out job of τi and the second term is the maximum number of body jobs that

can be released by τi within (Δ−ΔC
i), multiplied by their maximum workload. To use

Eq. (14), we need to compute ΔC
i and WC

i (ΔC
i). The value of ΔC

i can be computed

as follows.6

ΔC
i = Δ − max

{

0,

⌊

Δ − Bi

Ti

⌋}

× Ti (15)

6 We note that Eq. (15) was incomplete in the original RTNS paper (Fonseca et al. 2017). We correct it here

by replacing the term L i by τi ’s best-case response time Bi . All the original experiments were performed

again with the corrected equation and none was visibly impacted by the change made in Eq. (15).

123

Real-Time Systems

Fig. 8 Scenario that maximizes the number of body jobs released by τi over Δ

where Bi is the best-case response time (BCRT) of τi when it executes for its worst-case

workload. It is given by

Bi = max

{

L i ,
Wi

m

}

(16)

which was derived using Corollary 1 (i.e., the BCRT of τi cannot be smaller than L i)

and the fact that τi cannot execute on more than m processors at a time, hence Bi is

lower-bounded by Wi

m
.

The length ΔC
i is thus obtained by aligning the problem window with the earliest

completion time of the carry-out job of τi (which takes no less than Bi time units to

execute) and removing all the body jobs of τi from the problem window of length

Δ (see Fig. 8). This way, the number of full jobs of τi in the problem window is

maximized, and so is its interference. Note that the fact that ΔC
i is computed by

aligning the problem window with the end of τi ’s carry-out job does not mean that τi ’s

interference is maximized when ΔC O
i contains the full carry-out job of τi . Instead,

the window may be shifted left (yet without changing the number of body jobs) to

include a larger portion of τi ’s carry-in job if it increases the total interfering workload

generated by τi .

Lemma 7 The interfering workload Wi (Δ) generated by a higher priority task τi in

a window of length Δ is maximized when ΔC
i is computed by Eq. (15).

Proof In this proof, we assume that Δ > Bi since otherwise Δ ≤ Ti (i.e., assuming

that τi is schedulable, its BCRT must be no larger than Di ≤ Ti) and there cannot

be any body job released by τi . This would imply that ΔC
i is by default equal to Δ,

thereby proving the claim for that case.

Thus, if Δ > Bi , we note that Bi ≤ ΔC
i < Bi + Ti when computed with Eq. (15).

Two cases must be considered.

Case 1 If ΔC
i is shortened then at most one more body job can be added to the problem

window Δ (remember that ΔC
i < Bi +Ti and Bi ≤ Ti and each body job executes in a

window of length Ti). Therefore, the interfering workload generated by τi ’s body jobs

increases by at most Wi (i.e., the workload of exactly one job). Moreover, because

ΔC
i is now Ti time units shorter, one less job can execute in ΔC

i and the interfering

123

Real-Time Systems

workload WC
i (ΔC

i) generated by τi ’s carry-in and carry-out jobs must decrease by

at least Wi time units too. Hence, in total, the interfering workload Wi (Δ) does not

increase.

Case 2 The length of ΔC
i is increased. Using Eq. (15), the computed value of ΔC

i is

Δ minus an integer multiple of Ti and thus, when injecting Eq. (15) into Eq. (14),

we get that

⌊

Δ−ΔC
i

Ti

⌋

=
Δ−ΔC

i

Ti
. By increasing ΔC

i by a positive value ǫ, it thus holds

that

⌊

Δ−(ΔC
i +ǫ)

Ti

⌋

<

⌊

Δ−ΔC
i

Ti

⌋

for ǫ > 0. Therefore, at least one less body job can

execute in the time window of length Δ and the interfering workload generated by τi ’s

body jobs is decreased by at least Wi . Furthermore, since the carry-out job is already

completely included in ΔC
i (i.e., ΔC

i ≥ Bi), in the best case increasing the length of

ΔC
i will allow us to fully integrate τi ’s carry-in job in WC

i (ΔC
i). Hence, WC

i (ΔC
i) may

be increased by at most Wi time units (the workload of τi ’s carry-in job). Summing

all the contributions to the interfering workload Wi (Δ), we have that Wi (Δ) does not

increase. ⊓⊔

The problem of computing WC
i (ΔC

i) can be formulated as the maximization of

C Ii (WDUC I
i , x1) + C Oi (WDUC O

i , x2) subject to ΔC
i = x1 + x2. The optimal

solution of this optimization problem is an upper-bound on WC
i (ΔC

i), whereas the final

values of the decisions variables x1 and x2 correspond to ΔC I
i and ΔC O

i , respectively.

We solve this problem by using Algorithm 2 that is based on a technique named “sliding

window” introduced in Maia et al. (2014). It computes the maximum solution to the

optimization problem defined above in linear time by checking all possible scenarios

in which the problem window is aligned with any block of WDUC I
i or WDUC O

i .

Specifically, the scenarios tested can be divided into two groups: (i) the beginning of

the problem window coincides with the start of a block in WDUC I
i (lines 7 to 14);

or (ii) the problem window ends at the completion of a block in WDUC O
i (lines 15

to 22). Algorithm 2 also tries the configuration where the carry-out workload in the

problem window is maximized (lines 1 to 3) and where the carry-in workload in is

maximized (lines 4 to 6). It was proven in Maia et al. (2014), that the maximum

interfering workload is obtained in one of those scenarios.

By replacing the terms Wi (Rk) (1 ≤ i < k) with Eq. (14) in Eq. (4), a schedulability

condition for task τk is stated in the next theorem.

Theorem 5 A task τk is schedulable under G-FP iff Rk ≤ Dk , where Rk is the smallest

Δ > 0 to satisfy Δ = Lk + 1
m

(Wk − Lk) + 1
m

∑

∀i<k Wi (Δ).

The task set is declared schedulable if all tasks are schedulable. This can be checked

by applying Theorem 5 to each task τi ∈ τ , starting from the highest priority task (i.e.,

τ1) and proceeding in decreasing order of priority.

123

Real-Time Systems

Algorithm 2: Computing WC
i for constrained deadline tasks.

Input : ΔC
i

, WD
UC I
i

, WD
UC O
i

.

Output: W
C
i

- Upper-bound on the workload of both the carry-in and carry-out jobs.

/* We maximize the carry-out workload inside the problem window */

1 x2 ← min{ΔC
i

, Bi };

2 x1 ← ΔC
i

− x2;

3 W
C
i

← C Ii (WD
UC I
i

, x1) + C Oi (WD
UC O
i

, x2);

/* We maximize the carry-in workload inside the problem window */

4 x1 ← min{ΔC
i

, Bi + (Ti − Ri)};

5 x2 ← ΔC
i

− x1;

6 W
C
i

← max{WC
i

, C Ii (WD
UC I
i

, x1) + C Oi (WD
UC O
i

, x2)};

/* We align the start of the problem window with the boundaries of

every block in WD
UC I
i

*/

7 x1 ← Ti − Ri ;

8 foreach (wb, hb) ∈ WD
UC I
i

in reverse order do

9 x1 ← x1 + wb;

10 x2 ← ΔC
i

− x1;

11 if x2 ≥ 0 then

12 W
C
i

← max{WC
i

, C Ii (WD
UC I
i

, x1) + C Oi (WD
UC O
i

, x2)};

13 end

14 end

/* We align the end of the problem window with the boundaries of

every block in WD
UC O
i

*/

15 x2 ← 0;

16 foreach (wb, hb) ∈ WD
RC O
i

in order of appearance do

17 x2 ← x2 + wb;

18 x1 ← ΔC
i

− x2;

19 if x1 ≥ 0 then

20 W
C
i

← max{WC
i

, C Ii (WD
UC I
i

, x1) + C Oi (WD
UC O
i

, x2)};

21 end

22 end

23 return W
C
i

;

9 Schedulability analysis for arbitrary deadline tasks

In the previous section, we presented a RTA for the special case where all tasks have

constrained deadlines. In this section, we treat the general case where tasks may have

arbitrary deadlines.

The difficulty with arbitrary deadline tasks is twofold:

1. Let Jk be the job of τk for which we compute the WCRT and assume that Jk is

released at time rk . Since it may be that Dk > Tk , more than one job of τk may

execute in the problem window [rk, rk + Δ). That is, jobs of τk released before

123

Real-Time Systems

rk (i.e., at time t ≤ rk − Tk) may not have completed their execution at rk and

yet τk may still be schedulable (i.e., it completes all jobs before their deadlines).

Therefore, Eq. (4) that computes the WCRT of τk must be updated to integrate

the residual workload of jobs of τk released before rk but interfering with Jk’s

execution.

2. The second difficulty is that higher priority tasks may have more than one carry-in

job. Specifically, if Di > Ti , more than one job of τi may be released before rk

and have a deadline after rk . This property, which is formally proven in Lemma 8

in Sect. 9.3, requires to derive a new bound on the carry-in wokload released by

each higher priority task interfering with τk .

We address the first issue in Sect. 9.1 and the second in Sect. 9.3.

9.1 Response time analysis

In this section, we update Eq. (4) and derive a new bound on the WCRT of a task τk .

We integrate the fact that, for arbitrary deadline tasks, a job Jk,l of task τk may be

released before the completion of its preceding job Jk,l−1. Indeed, let us assume that

Jk,l−1 and Jk,l were released at time rk,l−1 and rk,l , respectively. In the worst-case

scenario we have that rk,l = rk,l−1 + Tk and Jk,l−1 may complete its execution at any

time smaller than or equal to (rk,l−1 + Dk). Therefore, if Dk > Tk , job Jk,l−1 may

not have completed its execution when Jk,l is released. In such situation, we assume

that Jk,l does not start executing before the completion of Jk,l−1.7 Hence the earliest

instant at which Jk,l may start executing is not its release time rk,l anymore, but the

maximum between its release time and the completion time of Jk,l−1.

We now consider the two cases mentioned above:

1. if job Jk,l can start executing as soon as it is released (i.e., at rk,l), then the previous

job Jk,l−1 of τk has already completed by time rk,l . In such case, the situation is

identical, with respect to Jk,l , to the worst-case scenario considered for constrained

deadline tasks. That is, there is no additional interference by previous jobs of τk and

the WCRT of Jk,l is therefore obtained using Eq. (4) and maximizing the higher

priority task interference. This scenario is encountered for the first job released

by τk . Let Xk,1 be the completion time of that job. Without any loss of generality

we can assume that that job was released at time 0. Hence we have rk,1 = 0 and,

using Eq. (4), Xk,1 is upper-bounded by the smallest positive solution to

Xk,1 = Lk +
1

m
(Wk − Lk) +

1

m

∑

∀i<k

Wi (Xk,1) (17)

2. if job Jk,l−1 is not yet completed when Jk,l is released, then Jk,l cannot start

executing before the completion of Jk,l−1. Therefore, the worst-case scenario for

Jk,l happens when the overlap between the execution window of Jk,l−1 and the

active window of Jk,l is maximized. This happens when Jk,l−1 completes as late

7 We enforce this execution behavior to avoid data inconsistencies between successive jobs of a same task.

Indeed, a job may require the computation results of its preceding job to be able to proceed correctly.

123

Real-Time Systems

as possible and Jk,l is released as early as possible. Assume that Xk,l−1 and Xk,l

are the worst-case completion times of Jk,l−1 and Jk,l , respectively. The WCRT

of Jk,l is then given by

Rk,l = Xk,l − rk,l

= Xk,l − (l − 1) × Tk (18)

where

Xk,l = Xk,l−1 + Lk +
1

m
(Wk − Lk) +

1

m

∑

∀i<k

(

Wi (Xk,l) − Wi (Xk,l−1)

)

(19)

Eq. (19) is composed of four terms detailed hereafter.

– Xk,l−1 is the worst-case completion time of the preceding job Jk,l−1, i.e., the

earliest time at which Jk,l may start executing;

– Lk is the minimum amount of time required by Jk,l to complete its execution

when it executes for its WCET and does not suffer any interference;

– 1
m

(Wk − Lk) is an upper-bound on Jk,l ’s self-interference (as proven in Melani

et al. (2017));

– 1
m

∑

∀i<k

(

Wi (Xk,l) − Wi (Xk,l−1)
)

is the maximum interfering workload that

can be released by higher priority tasks in the problem window of length Xk,l

that has not yet been accounted for in the term Xk,l−1, i.e., the worst-case

completion time of Jk,l−1.

The WCRT of a task τk is thus given by its job with the largest response time.

Formally,

Rk = max
l>0

{

Xk,l − (l − 1) × Tk

}

(20)

where Xk,l is the worst-case completion time of the l th job released by τk in the problem

window. Combining Eqs. (17) and (19) we get that

Xk,l = l × (Lk +
1

m
(Wk − Lk)) +

1

m

∑

∀i<k

Wi (Xk,l) (21)

Note that we can stop iterating over l when

– we reach the first l > 0 such that Xk,l ≤ (l × Tk), i.e., the first job of τk released

in the problem window that completes before the release of the next job of τk ;

– we reach the first l > 0 such that Xk,l > (l −1)×Tk + Dk , i.e., at the first job of τk

released in the problem window that has a response time larger than its deadline.

In the first case the task τk is schedulable while in the second it is not. One of these

two termination conditions holds eventually in most cases. However, it cannot be

guaranteed that Eq. (20) always terminates in the general case, as it has already been

123

Real-Time Systems

shown for sequential tasks (Guan et al. 2009). Such rather special corners cases have

not been detected at all during our experimental evaluation. Nonetheless, one can

simply define a threshold for the values of l. Whenever the threshold is reached, the

procedure terminates and the task τk is declared unschedulable. Note that this may

decrease the effectiveness of the response time analysis.

The term Wi (Xk,l) in Eq. (21) is computed using Eq. (14). Equation (14) uses an

upper-bound WC
i on the carry-in and carry-out workload that can be released by higher

priority task τi . As discussed at the beginning of this section, each higher priority task

may execute more than one carry-in job in the problem window and a new bound on

WC
i must be derived. We present this bound in the next subsections.

9.2 Carry-out workload

As defined in Sect. 4, a carry-out job is a job that is released in the problem window

less than Ti time units before the end of that window. Hence the carry-out job of τi

is the last job that can be released by τi in the problem window (remember that job

releases are at least Ti time units apart). Therefore, each higher priority task τi can

release at most one carry-out job, even when τi has an arbitrary deadline. It results

that the upper-bound on the carry-out workload proven in Theorem 4 is still valid for

arbitrary deadline tasks.

9.3 Carry-in workload

As mentioned in Sect. 4, a carry-in job is defined as a job released before the start

of the problem window and with a deadline after the problem window start. When a

higher priority task τi has a deadline smaller than or equal to its minimum inter-arrival

time (i.e., Di ≤ Ti), at most one such carry-in job may exist. However, this result does

not hold for tasks with arbitrary deadlines. Indeed, it may happen that Di > Ti , in

which case a job of τi may have its deadline after the release of one (or several) other

job(s) of τi . Yet, the number of carry-in jobs may still be upper-bounded as proven in

Lemma 8.

Lemma 8 Each higher priority task τi with an arbitrary deadline has at most
⌈

Di

Ti

⌉

carry-in jobs.

Proof Let Ji be the earliest carry-in job released by τi . Let ri be its release time and

di its absolute deadline. By definition of Ji , all jobs released before ri are not carry-in

jobs. Let c =
⌈

Di

Ti

⌉

. Let Ji+c be any job of τi released at or later than (ri +c×Ti). Then,

Ji+c is released at or after di (because di = ri + Di ≤ ri +
⌈

Di

Ti

⌉

× Ti = ri + c × Ti).

Since Ji is a carry-in job, di is necessarily after the problem window start. Hence any

job Ji+c is released after the problem window start and is not a carry-in job. Since at

most c − 1 jobs of τi can be released between ri and ri + c × Ti , we conclude that

there are at most c − 1 other jobs than Ji that may be carry-in jobs. This proves the

claim. ⊓⊔

123

Real-Time Systems

Fig. 9 Worst-case interfering workload released by τi in τk ’s problem window when Di > Ti . Yellow jobs

are carry-in jobs

Note that Lemma 8 covers the case of constrained deadline tasks too since
⌈

Di

Ti

⌉

= 1

in that particular case.

Example 9 Consider the worst-case interfering scenario of task τi depicted in Fig. 9.

We have that Di = 2.6×Ti . Hence three jobs may be released by τi before rk and have

their deadline after rk . Further, because in this example Ri = Di , the three carry-in

jobs (in yellow in the picture) execute at least partially in the problem window starting

at time rk .

Since there might be more than one carry-in job released by τi , we must update the

definition of ΔC I
i (Eq. (5)) and the upper-bound on the worst-case carry-in interfering

workload (Eq. (10)).

As depicted in Fig. 2 for constrained deadline tasks and in Fig. 9 for arbitrary

deadline tasks, we define the carry-in window of τi as the interval starting at the

beginning of the problem window (i.e., at time rk) and ending at the earliest release

of a body job of τi . Therefore, if rbody is the release time of that job, we have that

ΔC I
i

def
= rbody − rk (22)

By Lemma 8, we know that there are at most
⌈

Di

Ti

⌉

carry-in jobs released before

rbody . Therefore, the j th carry-in job of τi (with 1 ≤ j ≤
⌈

Di

Ti

⌉

) cannot be released

later than time

ri, j
def
= rbody − j × Ti (23)

= rk + ΔC I
i − j × Ti (24)

Similar to the constrained deadline case, the carry-in workload generated by τi

would be maximized if each carry-in job of τi is released as late as possible and

executes as much workload as possible in the problem window. Now, let Ri be the

upper-bound on the worst-case response time of τi computed with Eq. (21). Lemma 9

(see below) proves that aligning WDUC I
i to the right with the time-instant (ri, j + Ri)

and calculating the part of WDUC I
i ’s workload released after rk (using Eq. (10))

123

Real-Time Systems

provides an upper-bound on the maximum interfering workload that can be generated

by the j th carry-in job of τi . Formally, we have that the interfering workload executed

by the j th carry-in job of τi in the problem window is upper-bounded by

C Ii, j (WD
UC I
i ,ΔC I

i) =

|WD
UC I
i |

∑

b=1

hb ×

⎡

⎣ΔC I
i − j × Ti + Ri −

|WD
UC I
i |

∑

p=b+1

wp

⎤

⎦

wb

0

(25)

This is stated in Lemma 9 below.

Lemma 9 Let Ri be the upper-bound on the worst-case response time of τi computed

by Eq. (21). Aligning WDUC I
i to the right with the time-instant (ri, j + Ri) gives

an upper-bound on the maximum interfering workload that can be generated by τi ’s

carry-in job released at ri, j in the carry-in window, independently of the interference

imposed on τi .

Proof Since Eqs. (4) and (21) both compute the WCRT of a task based on the following

algorithm (i) summing all the self-interfering workload and all the workload released

by higher priority tasks in the problem window, (ii) dividing it by the number of cores

m, and (iii) adding the result to τk’s critical path length, the proof of this lemma is

identical in every word to the proof of Lemma 4, replacing Eq. (4) with Eq. (21). ⊓⊔

Since there are up to
⌈

Di

Ti

⌉

carry-in jobs, we have that the maximum interfering

carry-in workload generated by τi is given by the sum of the interfering workload

generated by each of its carry-in jobs. That is,

C Ii (WD
UC I
i ,ΔC I

i)

=

⌈

Di
Ti

⌉

∑

j=1

⎛

⎝

|WD
UC I
i |

∑

b=1

hb ×
[

ΔC I
i − j × Ti + Ri −

|WD
UC I
i |

∑

p=b+1

wp

]wb

0

⎞

⎠ (26)

Note that the actual implementation of Eq. (26) can be drastically simplified using

two simple mathematical facts on Eq. (26):

1. for each carry-in job j such that (ΔC I
i − j × Ti + Ri − L i) ≥ 0, the contribution

of the inner-sum to the carry-in workload will always be Wi ;

2. for each carry-in job such that (ΔC I
i − j × Ti + Ri) ≤ 0, the contribution of the

inner-sum to the carry-in workload will always be 0.

This means that there is at most one carry-in job and therefore only one j for which

the summation on b needs to be done. For all the other
⌈

Di

Ti

⌉

− 1 carry-in jobs, the

interfering workload can readily be considered to be equal to Wi or 0 depending on

whether (ΔC I
i − j × Ti + Ri − L i) ≥ 0 or (ΔC I

i − j × Ti + Ri) ≤ 0, respectively.

Example 10 Consider the example in Fig. 10 where Di = 2.6 × Ti . As in Example 9,

task τi releases three carry-in jobs. However, because the WCRT Ri of τi is smaller

123

Real-Time Systems

Fig. 10 Worst-case interfering workload released by τi in τk ’s problem window when Di > Ti but Ri < Di .

Yellow jobs are carry-in jobs

than Di , the carry-in job released at (rbody − 3 × Ti) completes no later than time

(rbody − 3 × Ti + Ri) which is before the start of the problem window (i.e., time rk).

Therefore, we have that (ΔC I
i −3× Ti + Ri) < 0 and the contribution of that carry-in

job to the interfering workload is 0. On the other hand, the carry-in job released at

time (rbody − Ti) respects the inequality (ΔC I
i − Ti + Ri − L i) ≥ 0 since it starts and

complete after the beginning of the problem window. Therefore, its contribution to the

interfering workload is equal to its total workload Wi . For the carry-in job released at

time (rbody − 2 × Ti), none of the two conditions holds. Hence its execution overlaps

with the beginning of the problem window and its contribution to the interfering

workload is a portion of its workload distribution WDUC I
i .

Theorem 6 The interfering workload W C I
i generated by the carry-in jobs of a higher

priority task τi in a window of length ΔC I
i is upper-bounded by Eq. (26).

Proof It directly follows from the combination of Lemmas 8 and 9. ⊓⊔

Similar to the constrained deadline case covered in Sect. 6.3, an improve bound on

the carry-in workload can be derived using Lemma 10 proven below.

Lemma 10 An upper-bound on the maximum interfering workload that can be gener-

ated by a carry-in job of task τi released at time ri, j in a carry-in window of length

ΔC I
i is given by max{0, ΔC I

i − j × Ti + Ri } × m.

Proof Since no job of τi can complete later than Ri time units after its release, we

know that the carry-in job released at ri, j completes no later than ri, j + Ri = rk +

ΔC I
i − j ×Ti + Ri (using Eq. (24)). Therefore, the carry-in job executes during at most

max{0, ΔC I
i − j × Ti + Ri } time units on m processors within the carry-in window

[rk, rk + ΔC I
i), hence the claim. ⊓⊔

Combining Theorem 6 with Lemma 10, we derive an improved bound on the carry-

in workload of an interfering task τi with arbitrary deadline.

Theorem 7 The interfering workload W C I
i generated by the carry-in jobs of a higher

priority task τi in a window of length ΔC I
i is upper-bounded by

123

Real-Time Systems

⌈

Di
Ti

⌉

∑

j=1

min

⎧

⎨

⎩

max{0, ΔC I
i − j × Ti + Ri } × m,

|WD
UC I
i |

∑

b=1

hb ×

⎡

⎣ΔC I
i − j × Ti + Ri −

|WD
UC I
i |

∑

p=b+1

wp

⎤

⎦

wb

0

⎫

⎪

⎬

⎪

⎭

(27)

Proof Follows from Theorem 6 and Lemma 10. ⊓⊔

9.4 Upper-bounding the carry-in and carry-out Interference

In the previous subsections, we have upper-bounded the carry-in and carry-out inter-

ference that a higher priority task τi can generate in windows of length ΔC I
i and ΔC O

i ,

respectively. However, as already discussed in Sect. 8 for the constrained deadline

case, the difficulty is to identify the lengths of ΔC I
i and ΔC O

i that maximize the total

interference generated by τi . For constrained deadline tasks, this optimization prob-

lem was solved using Algorithm 2. In this section, we adapt Algorithm 2 to support

systems composed of arbitrary deadline tasks. The result is presented in Algorithm 3.

Like for the constrained deadline case, Algorithm 3 uses the sliding window tech-

nique to maximize the interfering workload released by a task τi in the problem

window. First, the distance ΔC
i , which by definition is equal to ΔC I

i + ΔC O
i , is com-

puted using Eq. (15) (note that the proof of Lemma 7 is still valid for arbitrary deadline

tasks). Then, Algorithm 3 is called.

Algorithm 3 is identical to Algorithm 2 for lines 1 to 3 and lines 17 to 24, which

are related to the carry-out workload. However, as it was to be expected, Algorithm 3

differs from Algorithm 2 for parts that are related to the carry-in workload (lines 4

to 16).

Algorithm 3 first tries to maximize the carry-out workload released by τi in the

problem window (lines 1 to 3). To this end, it aligns the end of the problem window

with the earliest time at which τi ’s carry-out job may complete (i.e., setting ΔC O
i to

Bi), or by setting ΔC O
i to ΔC

i if ΔC
i is smaller than the BCRT of τi . Then, Algorithm 3

similarly tries to maximize the carry-in workload released by τi in the problem window

(lines 4 to 6). This is achieved by aligning the beginning of the problem window with

the latest time at which the earliest carry-in job of τi may start executing. Hence we

set ΔC I
i to (Bi +

⌈

Di

Ti

⌉

× Ti − Ri), where (

⌈

Di

Ti

⌉

× Ti − Ri) is the smallest possible

distance between the completion of the earliest carry-in job of τi and the release of its

first body job at rbody . The length (Bi +
⌈

Di

Ti

⌉

× Ti − Ri) is thus the smallest possible

distance between the time at which the earliest carry-in job of τi starts executing and

rbody . Line 4 also ensures that ΔC I
i cannot be larger than ΔC

i .

Lines 6 to 16 iterate over the
⌈

Di

Ti

⌉

carry-in jobs released by τi . For each carry-in

job it computes the latest time at which that job may complete (line 8) and then aligns

the beginning of the problem window with the start of every block in the workload

distribution WDUC I
i of that job (lines 10 to 14).

123

Real-Time Systems

Algorithm 3: Computing WC
i for arbitrary deadline tasks.

Input : ΔC
i

, WD
UC I
i

, WD
UC O
i

.

Output: W
C
i

- Upper-bound on the workload of both the carry-in and carry-out jobs.

/* We maximize the carry-out workload inside the problem window */

1 x2 ← min{ΔC
i

, Bi };

2 x1 ← ΔC
i

− x2;

3 W
C
i

← C Ii (WD
UC I
i

, x1) + C Oi (WD
UC O
i

, x2);

/* We maximize the carry-in workload inside the problem window */

4 x1 ← min{ΔC
i

, Bi +
⌈

Di
Ti

⌉

× Ti − Ri };

5 x2 ← ΔC
i

− x1;

6 W
C
i

← max{WC
i

, C Ii (WD
UC I
i

, x1) + C Oi (WD
UC O
i

, x2)};

/* We align the start of the problem window with the boundaries of

every block in WD
UC I
i

for every carry-in job of τi */

7 forall the j = 1 to
⌈

Di
Ti

⌉

do

8 x1 ← j × Ti − Ri ;

9 foreach (wb, hb) ∈ WD
UC I
i

in reverse order do

10 x1 ← x1 + wb;

11 x2 ← ΔC
i

− x1;

12 if x1 ≥ 0 and x2 ≥ 0 then

13 W
C
i

← max{WC
i

, C Ii (WD
UC I
i

, x1) + C Oi (WD
UC O
i

, x2)};

14 end

15 end

16 end

/* We align the end of the problem window with the boundaries of

every block in WD
UC O
i

*/

17 x2 ← 0;

18 foreach (wb, hb) ∈ WD
RC O
i

in order of appearance do

19 x2 ← x2 + wb;

20 x1 ← ΔC
i

− x2;

21 if x1 ≥ 0 then

22 W
C
i

← max{WC
i

, C Ii (WD
UC I
i

, x1) + C Oi (WD
UC O
i

, x2)};

23 end

24 end

25 return W
C
i

;

Lines 17 to 24 are identical to Algorithm 2 and align the end of the problem window

with the end of every block in the workload distribution WDUC O
i of τi ’s carry-out

job.

The maximum interfering workload released by carry-in and carry-out jobs of τi

is the maximum over the interfering workload computed for each of the scenarios

described above (as already discussed in Maia et al. (2014)).

123

Real-Time Systems

10 Experimental evaluation

The analysis presented in this paper has been implemented within the MATLAB frame-

work released by the authors of Melani et al. (2015). We follow the same technique

as in He and Yesha (1987) and Melani et al. (2015) to generate random task sets

composed of DAG tasks.

Each DAG in the task set is initially a composition of two NFJ-DAGs connected in

series. The NFJ-DAGs are constructed by recursively expanding their nodes. Each node

has a probability ppar to fork and a probability pterm to join, where pterm + ppar = 1.

Each parallel branch has a maximum depth that limits the number of nested forks.

Additionally, the number of parallel branches leaving from a fork node is randomly

chosen within a uniform distribution bounded by [2, n par]. Finally, a general DAG is

obtained by randomly adding directed edges between pairs of nodes, granted that such

randomly-placed precedence constraints do not violate the “acyclic” semantics of the

DAG. The probability of adding an edge between two nodes is given by padd , with the

restriction that any two nodes with a common fork-node as direct predecessor cannot

be connected. This last restriction avoids generating degenerated DAGs that behave

as sequential tasks.

Once the DAG Gi of a task τi is constructed, the task parameters are assigned

as follows. The WCET C j of a subtask v j ∈ Vi is uniformly chosen in the interval

[1, 100]. The task length L i , the workload Wi and the maximum makespan Mi (see

Eq. 2) of τi are computed based on the internal structure of the DAG and the WCET

of its nodes. The minimum inter-arrival time Ti is uniformly chosen in the interval

[Mi , Wi/β], where the parameter β is used to define the minimum utilization of all the

tasks. Therefore, the task utilization becomes uniformly distributed over [β, Wi/Mi].

For all experiments that have a varying total utilization Utot (i.e., Figs. 11, 16), we

keep generating and adding new tasks to the task set until the target total utilization

Utot is met. Utot is achieved exactly by adjusting the period of the last task added to

the system. Otherwise, for all other experiments, we use UUnifast (Bini and Buttazzo

2005) to derive individual task utilizations (and consequently their period) for a fixed

value of n. Priorities are assigned following the DM policy.

For each tested system configuration, we generated and assessed the schedulabil-

ity of 500 task sets. Unless stated otherwise, in all experiments reported herein, we

have set ppar = 0.8, pterm = 0.2, depth = 2, n par = 5, padd = 0.2, β =

0.035 × m, Utot = 0.7m, n = 1.5m and m = 8. These settings lead to a rich variety

of internal DAG structures, some of which resemble real-world applications as noted

in Melani et al. (2017): we observed both heavy and unbalanced workloads with dif-

ferent degrees of parallelism and sequential segments in each task set. The maximum

parallelism of a DAG (i.e., the number of subtasks that can execute in parallel) with

such configuration is 25.

10.1 Evaluation for constrained deadlines

We compare our response time analysis for DAG tasks with constrained deadlines

(referred to as IRTA-FP) to the schedulability analysis described in Melani et al.

123

Real-Time Systems

Fig. 11 IRTA-FP varying Utot

(2015) (referred to as Mel-DAG) for G-FP scheduling. In an attempt to maximize

the schedulability ratios of these tests, we restrict our attentions to the case where

the relative deadline Di is set equal to the period Ti . For insights concerning how

RTA for G-FP scheduling fares against other scheduling algorithms and/or paradigms,

the interested reader is referred to the experimental results reported in Melani et al.

(2017), Jiang et al. (2017), and Pathan et al. (2018). Note that the different scheduling

strategies are incomparable, since their performance varies significantly according to

the application parameters.

In the first set of experiments, the system utilization Utot was varied in (0, m] by

steps of 0.25. Figure 11 shows the number of schedulable task sets when m = 8.

For both low and very high utilization (i.e., when all or none of the task sets are

schedulable), IRTA-FP and Mel-DAG are indistinguishable. However, for Utot ∈

[4, 6], IRTA-FP performs substantially better. In particular, when Utot = 5.25, IRTA-

FP schedules 341 task sets against 156 for Mel-DAG. Instead, Fig. 12 reports the

schedulability as a function of the number of tasks n, with n ranging from 4 to 20. The

values of Utot and m were kept constant and equal to 0.7m and 8, respectively. IRTA-

FP outperforms Mel-DAG for any value of n with an average gain of approximately

20%, although both tests converge to full schedulability for larger n. Intuitively, it is

easier to schedule many light tasks than few heavy tasks.

We then study the impact of the DAG structures on the outcome of the two schedu-

lability tests. A trend similarly to that of Fig. 12 can be observed in Fig. 13, where

we varied the maximum number of parallel branches n par in the interval [2, 8]. Mel-

DAG has clear limitations when the average parallelism of the DAGs is up to half

of the platform’s parallelism (i.e., n par ≤ 4) and only admits a large share of tasks

sets for n par ≥ 6. On the other hand, IRTA-FP accepts at least 50% of the task sets

for n par ≥ 4 even though the schedulability ratio reduces when the tasks become

nearly sequential (i.e., n par becomes close to 2). As expected, both approaches are

comparable when the task parallelism is consistently greater than m. Figure 14 reports

123

Real-Time Systems

Fig. 12 IRTA-FP varying n

Fig. 13 IRTA-FP varying n par

the results obtained for different types of DAGs, as the probability of adding edges

padd between two nodes is increased from 0 to 1 by steps of 0.1. To clarify, padd = 0

corresponds to generating NFJ-DAGs, while padd = 1 leads to synchronous parallel

tasks. In between we have arbitrary DAGs. IRTA-FP attains a solid 40% schedula-

bility improvement over Mel-DAG for any value of padd . Interestingly, such gain is

not maximized when IRTA-FP benefits from a more accurate characterization of the

carry-out workload (i.e., in the case of NFJ-DAGs). This stresses the importance of

exploring the precedence constraints within a DAG when deriving bounds on the inter-

fering workload. Furthermore, we remark that IRTA-FP could achieve better results

had we transformed the final DAGs into NFJ instead of considering the original ones.

123

Real-Time Systems

Fig. 14 IRTA-FP varying padd

Fig. 15 IRTA-FP varying m

In conjunction with an average increase in the individual critical path lengths, this also

justifies the slow degradation when increasing padd .

In Fig. 15, we illustrate how IRTA-FP performs when m varies according to

the sequence [2, 4, 6, 8, 10, 12, 14, 16], with Utot and n scaling with m. Mel-DAG

degrades for higher values of m, while IRTA-FP maintains a schedulabity ratio around

72%. Such improvement is due to the characterization of the carry-in and carry-out

workload distribution. IRTA-FP exploits the internal structure of the DAGs to bound

the parallelism of such jobs, hence limiting the number of cores on which they execute

for larger m; whereas Mel-DAG assumes that all interfering jobs always use the m

cores.

123

Real-Time Systems

10.2 Evaluation for arbitrary deadlines

We now compare the performance of our response time analysis for DAG tasks with

arbitrary deadlines (referred to as IRTA-FP2) to the schedulability test proposed by

Parri et al. (2015) for G-DM scheduling (referred to as Parri(16)), which was shown

to outperform the tests in Bonifaci et al. (2013), and hence, as far as we know, the only

competitor to our test for arbitrary deadline DAG tasks. The number 16 added to Parri’s

test name denotes the maximum number of iterations allowed for the convergence of

the outer loop in their RTA, which in most cases is sufficient to satisfy the convergence

of the analysis, as suggested by the authors. Furthermore, since the analysis in Parri

et al. (2015) assumes that multiple jobs of the same DAG tasks may execute in parallel

(instead of a job becoming ready only after the previous one completes its execution, as

we do), for the sake of fairness, we enforce that no task is assigned with a period smaller

than its maximum makespan. That is, Ti ≥ Mi , ∀τi ∈ τ . By default, the deadline Di

is uniformly selected in the interval [Ti , αmax Ti], with αmax = 3 controlling the

maximum ratio of Di/Ti ; meaning that Ti ≤ Di ≤ 3Ti .

Figure 16 reports the number of schedulable tasks sets as a function of the total uti-

lization Utot for m = 8. While IRTA-FP2 has a breakdown utilization at Utot = 7. For

Parri(16) such breakdown happens 10% earlier. Notably, when Utot ∈ [5.25, 6.75],

IRTA-FP2 greatly outperforms Parri(16), with a schedulability gain peaking at 75%.

This suggests that the way we handle the multiple interfering jobs carried-in by the

higher priority tasks largely compensates the handicap on the self-interference com-

ponent due to the different runtime assumptions.

In order to study the effectiveness of both approaches for different values of Di , we

varied αmax in the range [1, 5]. The results are depicted in Fig. 17 for constant values

of Utot , n and m. In the case of implicit deadlines (i.e., αmax = 1 �⇒ Di = Ti),

Parri(16) performs very poorly, confirming the author’s observation that their analysis

Fig. 16 IRTA-FP2 varying Utot

123

Real-Time Systems

Fig. 17 IRTA-FP2 varying αmax

Fig. 18 IRTA-FP2 varying m

is specifically tailored for arbitrary deadlines and as such is overly pessimistic for more

restrictive models. On the other hand, IRTA-FP2 is able to schedule 328 task sets as

it was already witnessed in the constrained deadline case studied above. As αmax is

increased, both tests rapidly achieve nearly full schedulablity. It is worth noting that

larger values of Di strongly benefit Parri(16) since they assume that several jobs of

the same task can execute in parallel, whereas in IRTA-FP2 assumes that a job cannot

start executing before its preceding job has been completed.

In Fig. 18, we show the schedulability results as a function of the number of cores

m. Both tests are robust to platforms with increased parallelism, although IRTA-FP2

succeedes in scheduling most task sets for any value of m, Parri(16) requires m ≥ 12

123

Real-Time Systems

Fig. 19 IRTA-FP2 varying n

to perform similarly. Finally, Fig. 19 illustrates how IRTA-FP2 performs when the

number of tasks n is varied according to the sequence [2, 4, 6, 8, 10, 12, 14, 16]. IRTA-

FP2 substantially outperforms Parri(16) when n < 14, with an average schedulability

improvement close to 35%. Nevertheless, both approaches are indistinguishable when

the amount of tasks is at least twice the number of cores. From these last sets of

experiments, we can conclude that the workload distributions derived to characterize

the carry-in and carry-out jobs are also effective for the analysis of DAG tasks with

arbitrary deadlines.

11 Conclusions

With the ubiquity of massively parallel architectures, it is expected that conventional

real-time applications will increasingly exhibit general forms of parallelism. In this

paper, we studied the sporadic DAG model under G-FP scheduling. Motivated by the

fact that a poor characterization of the higher priority interfering workload leads to

pessimistic analysis of parallel task systems, we presented new techniques to model

the worst-case carry-in and carry-out workload. These techniques exploit both the

internal structure and worst-case execution patterns of the DAGs. Following a sliding

window strategy that leverages from such workload characterization, we then derived

a schedulability analysis to compute an improved upper-bound on the WCRT of each

DAG task. Experimental results not only attest the theoretical dominance of the pro-

posed analysis over its state-of-the-art counterpart (in the constrained deadline case),

but also showed that its effectiveness is independent of the number of cores and it

substantially tightens the schedulability of DAG tasks on multiprocessor systems for

both constrained and arbitrary deadline cases.

As future work, we plan to better characterize the self interfering workload as well

as the interference generated by body jobs. We believe that most of the pessimism

123

Real-Time Systems

remaining in the analysis is located in those two terms. Furthermore, we plan to perform

an extensive comparison between global and partitioned scheduling. However, such

comparison would require to first develop an efficient partitioning scheme for DAG

tasks. Although analyses for partitioned DAGs exist (Fonseca et al. 2016), there is

no algorithm for deciding which node of the DAG should be assigned to which core

while maximizing the schedulability of the system.

Finally, similar to what was achieved by Melani et al. (2017), we are considering

extending our work, and more particularly the workload distribution characterization

presented in this paper, to G-EDF. We expect that the poor performance of G-EDF

reported by the authors of Melani et al. (2017) may be attenuated when the carry-in

and carry-out interfering workloads are modeled more accurately as it was done in

this paper for G-FP scheduling.

Acknowledgements This work was partially supported by National Funds through FCT/ MCTES

(Portuguese Foundation for Science and Technology) and co-financed by ERDF (European Regional Devel-

opment Fund) under the PT2020 Partnership, within the CISTER Research Unit (CEC/04234).

References

Andersson B, de Niz D (2012) Analyzing global-edf for multiprocessor scheduling of parallel tasks. In:

Principles of distributed systems, lecture notes in computer science, vol 7702, pp 16–30

Baker TP (2003) Multiprocessor edf and deadline monotonic schedulability analysis. In: RTSS’03, pp

120–129

Baruah S (2014) Improved multiprocessor global schedulability analysis of sporadic dag task systems. In:

ECRTS’14, pp 97–105

Baruah S, Bonifaci V, Marchetti-Spaccamela A (2015) The global edf scheduling of systems of conditional

sporadic dag tasks. In: ECRTS’15

Baruah SK, Bonifaci V, Marchetti-Spaccamela A, Stougie L, Wiese A (2012) A generalized parallel task

model for recurrent real-time processes. In: RTSS’12, pp 63–72

Bini E, Buttazzo GC (2005) Measuring the performance of schedulability tests. Real-Time Syst 30(1):129–

154

Board OAR (2013) OpenMP application program interface version 4.0 http://www.openmp.org/mp-

documents/OpenMP4.0.0.pdf

Bonifaci V, Marchetti-Spaccamela A, Stiller S, Wiese A (2013) Feasibility analysis in the sporadic dag task

model. In: ECRTS’13

Chwa HS, Lee J, Phan KM, Easwaran A, Shin I (2013) Global edf schedulability analysis for synchronous

parallel tasks on multicore platforms. In: ECRTS’13, pp 25–34

Fonseca J, Nélis V, Raravi G, Pinho LM (2015) A multi-dag model for real-time parallel applications with

conditional execution. In: SAC’15

Fonseca J, Nelissen G, Nélis V (2017) Improved response time analysis of sporadic dag tasks for global fp

scheduling. In: Proceedings of the 25th international conference on real-time networks and systems,

pp 28–37. ACM

Fonseca J, Nelissen G, Nelis V, Pinho LM (2016) Response time analysis of sporadic dag tasks under

partitioned scheduling. In: SIES’16

González-Escribano A, Van Gemund AJC, Cardeñoso Payo V (2002) Mapping unstructured applications

into nested parallelism. In: VECPAR’02, pp. 407–420

Guan N, Stigge M, Yi W, Yu G (2009) New response time bounds for fixed priority multiprocessor schedul-

ing. In: 30th IEEE real-time systems symposium, pp 387–397

He X, Yesha Y (1987) Parallel recognition and decomposition of two terminal series parallel graphs. Inf.

Comput. 75(1):15–38

Jiang X, Guan N, Long X, Yi W (2017) Semi-federated scheduling of parallel real-time tasks on multipro-

cessors. In: RTSS’17

123

Real-Time Systems

Lakshmanan, K., Kato, S., Rajkumar, R (2010) Scheduling parallel real-time tasks on multi-core processors.

In: RTSS’10, pp 259–268

Li J, Agrawal K, Lu C, Gill CD (2013) Analysis of global EDF for parallel tasks. In: ECRTS’13, pp 3–13

Li J, Chen J, Agrawal K, Lu C, Gill CD (2014) Analysis of federated and global scheduling for parallel

real-time tasks. In: ECRTS’14, pp. 85–96

Maia C, Bertogna M, Nogueira L, Pinho LM (2014) Response-time analysis of synchronous parallel tasks

in multiprocessor systems. In: RTNS’14, pp 3–12

Melani A, Bertogna M, Bonifaci V, Marchetti-Spaccamela A, Buttazzo GC (2015) Response-time analysis

of conditional dag tasks in multiprocessor systems. In: ECRTS’15, pp 211–221

Melani A, Bertogna M, Bonifaci V, Marchetti-Spaccamela A, Buttazzo GC (2017) Response-time analysis

of conditional dag tasks in multiprocessor systems. IEEE Trans Comput 66(2):339–353

Nelissen G, Berten V, Goossens J, Milojevic D (2012) Techniques optimizing the number of processors to

schedule multi-threaded tasks. In: ECRTS, pp 321–330

Parri A, Biondi A, Marinoni M (2015) Response time analysis for g-edf and g-dm scheduling of sporadic

dag-tasks with arbitrary deadline. In: RTNS’15, pp 205–214

Pathan R, Voudouris P, Stenstrm P (2018) Scheduling parallel real-time recurrent tasks on multicore plat-

forms. IEEE Trans Parallel Distrib Syst 29(4):915–928

Qamhieh M, Fauberteau F, George L, Midonnet S (2013) Global edf scheduling of directed acyclic graphs

on multiprocessor systems. In: RTNS, pp 287–296

Saifullah A, Agrawal K, Lu C, Gill C (2011) Multi-core real-time scheduling for generalized parallel task

models. In: RTSS’11, pp 217–226

Saifullah A, Ferry D, Li J, Agrawal K, Lu C, Gill C (2014) Parallel real-time scheduling of dags. IEEE

Trans Parallel Distrib Syst 25(12):3242–3252

Saifullah A, Li J, Agrawal K, Lu C, Gill C (2013) Multi-core real-time scheduling for generalized parallel

task models. Real-Time Syst 49(4):404–435

Valdes J, Tarjan RE, Lawler EL (1979) The recognition of series parallel digraphs. In: STOC’79, pp 1–12

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps

and institutional affiliations.

José Fonseca holds a BSc (2010) and a MSc (2012) both in Com-

puter Engineering from the School of Engineering of the Polytechnic

Institute of Porto (ISEP). Currently, he is pursuing a PhD in Elec-

trical and Computer Engineering at the Faculty of Engineering of

the University of Porto (FEUP). Since he joined CISTER Research

Unit in February 2012, his main research interests include real-time

operating systems, parallel programming models, real-time schedul-

ing theory and multi-/many-core platforms.

123

Real-Time Systems

Geoffrey Nelissen is a research scientist at CISTER (Research Cen-

tre in Real-Time and Embedded Computing Systems), a research

centre co-hosted by the Faculty of Engineering of the University of

Porto (FEUP) and the School of Engineering (ISEP) of the Polytech-

nic Institute of Porto. Prior to joining CISTER, he studied in Brus-

sels at the Université Libre de Bruxelles (ULB), where he earned his

PhD in January 2013 and his master degree in electrical engineering

in 2008. His research activities are mostly related to the modelling

and analysis of real-time and safety critical embedded systems. His

research interests span all theoretical and practical aspects of real-

time embedded systems design with a particular emphasis on the

analysis and configuration of real-time parallel applications on mul-

ticore and distributed platforms.

Vincent Nélis received his PhD degree in 2010, at the age of 25, at

the Computer Science Department of the Université Libre de Brux-

elles, Belgium. Since then, he has graduated 2 PhD students as

main supervisor (both received the highest distinction for their the-

sis) and one PhD student as co-supervisor. He is currently the main

supervisor of a third PhD student and co-supervises a second PhD

student. He has published more than 40 papers with about 50 differ-

ent co-authors in international journals, conferences, and workshops.

He received 7 awards, contributed to 9 R&D projects, led a Work

Package in a European FP7 STREP project, chaired 3 international

workshops, and he has been member of the program committee of

more than 30 international journals, conferences and workshops.

Throughout his short career he has given countless presentations

and attended numerous meetings, from simple collaborations with

academic peers to project meetings, technical and review meetings.

Currently, his main research interest is in developing methods and

tools to derive all sorts of timing estimates for applications running on multicore platforms.

123

	Schedulability analysis of DAG tasks with arbitrary deadlines under global fixed-priority scheduling
	Abstract
	1 Introduction
	1.1 Contributions and paper organization

	2 Related work
	3 Model
	4 Background
	5 Rationale
	6 Carry-in workload
	6.1 Workload distribution of the carry-in job
	6.2 Upper-bounding the carry-in workload
	6.3 Improved carry-in workload

	7 Carry-out
	7.1 DAG's maximum parallelism
	7.1.1 Transforming a DAG in NFJ-DAG
	7.1.2 Maximum parallelism in a NFJ-DAG

	7.2 Workload distribution of the carry-out job
	7.3 Upper-bounding the carry-out workload
	7.4 Improved carry-out workload

	8 Schedulability analysis for constrained deadline tasks
	9 Schedulability analysis for arbitrary deadline tasks
	9.1 Response time analysis
	9.2 Carry-out workload
	9.3 Carry-in workload
	9.4 Upper-bounding the carry-in and carry-out Interference

	10 Experimental evaluation
	10.1 Evaluation for constrained deadlines
	10.2 Evaluation for arbitrary deadlines

	11 Conclusions
	Acknowledgements
	References

