

Scalable and Efficient Data Processing in
Networked Control Systems

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-101004

Version:

Date: 10-08-2010

Aida Ehyaei

Eduardo Tovar

Nuno Pereira

Technical Report HURRAY-TR-101004 Scalable and Efficient Data Processing in Networked Control Systems

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

Scalable and Efficient Data Processing in Networked Control Systems

Aida Ehyaei, Eduardo Tovar, Nuno Pereira

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail:

http://www.hurray.isep.ipp.pt

Abstract
Network control systems (NCSs) are spatially distributed systems in which the communication between sensors,
actuators and controllers occurs through a shared band-limited digital communication network. However, the use of a
shared communication network, in contrast to using several dedicated independent connections, introduces new
challenges which are even more acute in large scale and dense networked control systems. In this paper we investigate a
recently introduced technique of gathering information from a dense sensor network to be used in networked control
applications. Obtaining efficiently an approximate interpolation of the sensed data is exploited as offering a good trade-
off between accuracy in the measurement of the input signals and the delay to the actuation. These are important aspects
to take into account for the quality of control. We introduce a variation to the state-of-the-art algorithms which we
prove to perform relatively better because it takes into account the changes over time of the input signal within the
process of obtaining an approximate interpolation.

1

Abstract
Network control systems (NCSs) are spatially

distributed systems in which the communication between
sensors, actuators and controllers occurs through a
shared band-limited digital communication network.
However, the use of a shared communication network, in
contrast to using several dedicated independent
connections, introduces new challenges which are even
more acute in large scale and dense networked control
systems. In this paper we investigate a recently introduced
technique of gathering information from a dense sensor
network to be used in networked control applications.
Obtaining efficiently an approximate interpolation of the
sensed data is exploited as offering a good trade-off
between accuracy in the measurement of the input signals
and the delay to the actuation. These are important
aspects to take into account for the quality of control. We
introduce a variation to the state-of-the-art algorithms
which we prove to perform relatively better because it
takes into account the changes over time of the input
signal within the process of obtaining an approximate
interpolation.

1. Introduction
Modern control theory is mostly based on the

abstraction that information (signals) is transmitted
through perfect communication channels and that
computation is either instantaneous (continuous time) or
periodic (discrete time) [2]. This abstraction has served the
field well for over 50 years, and has led to many success
stories in wide variety of applications.

However, emerging applications of control will be
much more information-rich than those of the past and
will involve massively networked communications,
distributed computing, and higher levels of logic and
decision-making. New theory, algorithms, and technology
must therefore be developed, and the design of Networked
Control Systems (NCS) needs to combine information
theory, computer science, physics, control and other
disciplines in a much tighter way than ever before for
progressing in this field.

A typical NCS is composed of four basic elements:
Sensors, Controllers, Actuators, and Communication
networks. In an NCS, control loops are closed through a

real-time network. Control and feedback signals are
exchanged among the system's components in the form of
messages through the communication network.

Wireless communication is starting to play an
increasingly important role in NCS. Transmitting sensor
measurements and control commands over wireless links
allows rapid deployment, flexible installation and fully
mobile operation. Also prevents the cable wear and tear
problem. Building a networked control system over a
wireless medium is however a challenging task. The
scarce spectrum imposes a fundamental limit on the
performance of the wireless channel. Random delays and
packet losses are inevitable. Even though these challenges
exist for any communication network, they are much more
significant in wireless networks due to limited spectrum
and power, time-varying channel gains and interference
[3].

The other important concern in distributed wireless
networks is gathering data from nodes, especially in dense
networks. Data aggregation methods can be used to
combine data of several nodes into a single message,
reducing the number of transmitted messages within the
network and, accordingly, the communications’ energy
consumption. This is achieved at the expense of message
delays, since each node must wait to receive messages
from all (or some) of its neighbors for aggregating. Thus, a
main concern in data aggregation protocols is finding a
proper balance between the communication (energy) and
delay costs [4].

The time-complexity of data gathering protocols is
heavily dependent on the number of nodes in the overall
network. Multiple broadcast domains offer the opportunity
for parallel transmissions and may reduce the time-
complexity, depending upon the scale and topology of the
network. This is however not the case of densely
instrumented systems where even a very small area may
contain several hundreds of nodes. To face these
challenges, recent research efforts [15] have been
proposing novel approaches for quantity aggregation in
very dense networks.

These approaches are based on the intelligent
exploitation of Dominance / Binary-Countdown Medium
Access Control (MAC) protocols [8]. By associating the
priorities of messages to physical quantities (such as
temperature or acceleration), several high performance

Scalable and Efficient Data Processing in Networked Control Systems

Aida Ehyaei, Eduardo Tovar, Nuno Pereira

IPP-HURRAY!
Polytechnic Institute of Porto (ISEP-IPP)

{aaei,emt,nap,baa}@isep.ipp.pt

2

algorithms for data processing can be devised in which
time-complexity is independent of the number of nodes.

In this paper we will evaluate the quality of these
quantity aggregation methods within networked control
applications with densely deployed input nodes. In this
paper, we will also propose an improved version of the
distributed algorithm able to better track densely sensed
systems in networked control systems.

 The rest of this paper is organized as follows. In
Section 2 we briefly survey the principles behind
Dominance / Binary-Countdown MAC Protocols. In
Section 3 we describe quantity aggregation and
approximate interpolation of data by using Dominance
MAC protocols in densely deployed sensor networks. In
Section 4 previous interpolation algorithms are evaluated
and a novel algorithm is proposed. This algorithm
performs relatively better because it takes into account the
changes over time of the input signal within the process of
obtaining an approximate interpolation. Finally, in Section
5 conclusions are drawn and some future works are
outlined.

2. Basic Principles of Dominance MAC
Protocols

Dominance-based or binary-countdown protocols [8]
are an important family of MAC protocols. These
protocols have good properties for supporting timeliness
in systems with event-triggered messages. Moreover, they
are capable of simultaneous “non-destructive”
transmission of information in the same broadcast domain.
This is an important characteristics for the approaches
described in this paper.

The wired implementation of this protocol is widely
used in the Controller Area Network (CAN) bus [9]. In
CAN, messages have a unique contention field which
could be their priority. When a node has a request to
transmit, after waiting a predetermined time until the
channel becomes idle, it starts a conflict resolution phase
(arbitration phase). In this phase, the nodes send their
contention field, bit-by-bit, starting from the most
significant bit. The medium is devised in such a way that
nodes can hear a recessive bit (a logical ‘1’) only if no
other node sends a dominant bit (a logical ‘0’); the bus
behaves as a logical wired-AND. The nodes which hear a
dominant bit while themselves send a recessive bit, refrain
from arbitration. At last the only one node that reaches the
end of arbitration without hearing a dominant bit (unless
he was sending it as well), proceeds with transmitting the
data.

The arbitration phase of dominance/binary countdown
protocols is illustrated by an example in Figure 1.

The wireless implementation of a dominance MAC is
dubbed WiDom [10]. During the conflict resolution phase,
which is called tournament in WiDom, a node with a

recessive bit should listen to the medium to assess whether
any dominance bit is being transmitted or not. But,
wireless transceivers can hardly be transmitting and
receiving at the same time. Thus, when the transmitted bit
is dominant there is no need to sense the medium,
whereas, when the bit to transmit is recessive, nothing has
to be effectively sent, and only the medium state has to be
sensed. Likewise in CAN, before any tournament, nodes
have to agree on a common reference point in time to start
transmitting their bits at the same time. This is called
synchronization and is achieved by letting nodes to wait
for a long period of silence. After detecting this period of
silence, a node may signal to start the tournament by
sending a synchronization carrier pulse. More details can
be found in [10].

WiDom is a collision free and fully distributed protocol.
It does not require synchronized clocks and supports a
large number of priority levels. Such a large number of
priorities can be supported by other prioritized protocols
only at the cost of much higher overhead. WiDom can also
be used for scheduling sporadic message streams in
wireless networks with real-time requirements and
provides pre-runtime guarantees. This is important
because most of the emerging embedded systems are
dealing with physical environments in which, stimuli are
typically sporadic.

As it will be explained in the next sections various
interesting features of Dominance-based protocols (CAN
and WiDom are examples) can be exploited to obtain
aggregate quantities in large scale dense networks, with a
time-complexity that is very low and independent of the
number of nodes.

3. Data Aggregation in Dense Networks
As a result of improving technology the cost of sensor

nodes is decreasing towards zero. This makes it
economically feasible to deploy and use a large number of

Figure 1. Arbitration in dominance/binary countdown protocols

3

sensor nodes for monitoring the physical quantities. Also
very dense networks offer a better resolution of the
physical world and a better capability of detecting the
occurrence of events.

There are various applications where measurements at
fine spatial scales are required. Structural Health
Monitoring (SHM) of buildings and propulsion systems,
active flow control on the aircraft skin surfaces to reduce
fuel consumption by using a very dense deployment of
sensor/controller/actuator nodes embedded in the aircraft
wings and fuselage [5] are some of the examples.

All these applications stress the use of dense (and large-
scale) deployments of sensors/actuators to instrument
physical infrastructures. Such density and scale poses huge
challenges concerning both interconnectivity and the
enormous quantities of sensor data to be processed.

In fact, in a very dense deployment many nodes are
typically placed within a same single broadcast domain
(SBD). The problem is that in most of the data gathering
protocols, the time-complexity depends heavily on the
number of nodes. In particular, the performance of those
approaches is limited by the fact that nodes in the same
broadcast domain cannot transmit in parallel. This results
in a very high required time for collecting the information
of all nodes and obtaining the required set of
measurements. As it is known, feedback control requires
that the inputs are measured periodically, and low duty-
cycles may imply poor control.

As already mentioned, the recent proposal to use a
dominant-based MAC for quantity aggregation opened the
possibility of devising faster and more efficient methods
for gathering data from sensor readings. In this family of
novel distributed algorithms, communications and
computations are tightly coupled with the physical
environment (an important feature of Cyber-Physical
Systems - CPS). Notably, the aggregate quantities can be
computed with a time-complexity that is independent of
the number of sensor nodes [6, 7]. This is important for
dense networks with many sensor nodes.

3.1. Basic Aggregate Quantities

In (wireless) sensor networks each sensor should send
its reading to the sink periodically, after detecting an event
or after receiving queries from the sink. In contention free
medium access protocols such as Time Division Multiple
Access (TDMA), the required time for accessing the
channel and sending the messages will depend on the
network topology and also on the number of nodes. The
Dominance-based (or simply DOM) MAC protocol is a
non-destructive (because there is in fact a collision)
contention MAC protocol.

However, in WiDom or CAN, nodes still have to
participate in the arbitration before accessing the medium.
Therefore, this approach brings no timing advantage as

compared to other naive solutions. On the other hand if
nodes use the value of their sensor reading instead of an
arbitrary priority, the node winning the contention for
medium will be the one with the minimum (MIN) of the
sensed values [6, 7]. By this approach, it is possible to
aggregate some specific basic quantities from a single
broadcast domain in a very short time as compared to any
other protocol. Importantly it can be done and in a way
that is not dependent on the number of nodes in that
broadcast domain. The minimum value (MIN) and the
maximum value (MAX) can be obtained with this method
with a time-complexity of O(npriobits), where npriobits is
the number of bits used to represent the data. It is also
shown in [10] that more complex aggregated quantities
such as MEDIAN, COUNT (an estimation of the number
of nodes), and Interpolation can also be obtained
elaborating on the basic principle of obtaining MIN.

3.2. Approximate Interpolation

Interpolating the distribution of physical quantities of
the physical environment is another interesting possibility
of this DOM-based approach. The accuracy of the
interpolation and its time-complexity are dependent on a
user defined parameter, k, which determines the number of
nodes used for estimating the approximate interpolation
the value of the physical quantity.

The idea of obtaining MIN out of the readings of many
sensors within a single broadcast domain with “one shot”
ignites the use of this method for other more sophisticated
quantities with space information as well; such as the case
of approximate interpolation of sensors’ data over a
geographical area.

Estimating the distribution of monitored parameters by
doing interpolation on sensors’ data needs obviously much
less time than receiving data from all individual sensors.
Obtaining interpolation of data using DOM-based MAC
protocols was proposed for the first time in [7], and some
additional improvements / developments were performed
later [11, 12].

The basic principle is described in [7]. The algorithm
works as follows. To have an interpolation of sensor
readings, it is needed that nodes know their location.
Assume this is given by Cartesian coordinates (xi, yi) for
node Ni. Let f(x,y) be the function which interpolates the
sensor data, si be the sensor reading and ei be the
magnitude of interpolation error at node Ni. Therefore:

�� � |�� � �	
� , ��
| (1)

and the global error would be:

� � max��� .. � �� (2)

4

where n is the number of nodes. For calculating the
interpolation using the DOM-based MAC, nodes send
their calculated ei in the arbitration phase. The node with
maximum value for ei wins the arbitration and continues
the transmission by sending its coordinates and measured
value, si. This node is added to S and the interpolated
signal is updated in all participating nodes based on the
points in S.

To have a more accurate interpolation, f(x,y) should
minimize e. To track physical quantities that change
quickly, the computational time of f in each point and also
the requiring time for obtaining f from the various sensor
readings should be low. Moreover, the interpolation
should be updated periodically.

In previous works which used the DOM-based MAC
for interpolation (e.g., [7]), weighted-average interpolation
(WAI) [13, 14] is used. This function for S, a set of nodes
used for interpolation, is defined as follows:

f(x, y) = � 0 �� � � ��� �� � �� � � �
� �
 ∧ �� � �∑ � .! 	",#
 �$ ∑ ! 	",#
 �$ %&'�()��� * (3)

where weights wi(x, y) are given by

wi(x, y)=
�	" + "
,- 	# + #
, (4)

This method provides an adjustable accuracy for the
user based on the smoothness of sensed parameters,
changeability of the environment due to time and the
tolerable delay and error for each application.

The pseudo code for the approach is presented in
Algorithm 1. It computes (on line 5) the error. This error is

concatenated with the identifier of the node (together this
forms the priority of the message) ensuring that all
priorities are unique. All nodes send their messages in
parallel (on line 9) and exactly one will win the
contention. When nodes call send_and_rcv, then both
the priority of the winner and the data transmitted by the
winner are returned to the application on every node. This
packet is added (on line 10) to the set S, which keeps track
of all received packets related to the problem of creating
an interpolation.

Figures 2 illustrates the operation of interpolation
scheme. It can be seen that the interpolation result is
smooth and that it tracks well the original signal.
However, performing weighted average interpolation with
6 randomly selected nodes gives poor interpolation. This
is illustrated in Figure 2d.

Algorithm 1 Basic (Normal) Interpolation algorithm [7]
Require: All nodes start Algorithm 1 simultaneously.
Require: k denotes the desired number of interpolation points.
Require: A node Ni knows xi,yi and si.
Require: The code below is executed by every node. A node can read
the variable i and obtain its node index.
 1: function find nodes() return a set of packets
 2: S ← ∅
 3: for q ← 1 to k do
 4: Calculate f(xi,yi) in Equation 3 and assign it to the variable
“myinterpolatedvalue”
 5: error ← abs(si - to integer(myinterpolatedvalue))
 6: temp_prio ← error × (MAXNNODES + 1) + i
 7: prio ← (MAXP+1) - temp prio
 8: snd pack ←< si,xi,yi>
 9: <winning_prio, rcv pack> ← send_and_rcv(prio, snd_pack)
 10: S ← S ∪ { rcv pack }
 11: end for
 12: return S
 13: end function

4. Quantity aggregation in Control Loops
One important feature of a NCS is that it efficiently

tights communications and computations with the physical
world. By featuring efficient data sharing among the
various controllers, NCS are able to easily fuse global
information to make intelligent decisions over large
physical spaces.

However, the insertion of the communication network
in the feedback control loop makes the analysis and the
design of a NCS a complex issue. Shared networking
imposes additional time delays in control loops and
increased possibility of data loss. Depending on the
application, time-delays can impose severe degradation on
the system performance.
 To reduce the required time for gathering information
from nodes in dense networked control systems, we
propose to use quantity aggregation methods and
approximate interpolation algorithms.

Interpolating physical parameters by receiving
Figure 2. Interpolation example [7]

5

information from only few sensing nodes produces an
overall image of the network in a fast and efficient way.

In the following sub-sections we will discuss the effect
of various design / operational options on the quality of
control. In particular, we will assess the suitability of the
currently available approaches to be used in control loops
where the input signal changes very fast. Additionally, in
Section 4.3 we will introduce a novel algorithm, which we
show is able to perform better by the changes over time of
the input signal within the process of obtaining an
approximate interpolation.

4.1. Evaluating the Basic Interpolation Algorithm

The basic interpolation algorithm, which was described
in Section 3.2, does not take into account the changes over
time of the input signal for obtaining an interpolation. The
quality of this method is evaluated in this section in terms
of computation delay and interpolation error. The goal is
to find out the effect of changing parameters such as WAI
function and k on the accuracy of the interpolation. k is the
number of points which is used in each round for
constructing the interpolated image.

Average Interpolation Error (AIE) and Maximum
Interpolation Error (MIE) are defined as follow:

./0 � ∑ 1���� � ∑ /����2 (5)

where VSi is the measured value of sensor i, ISi is the
calculated value in the geographical position of sensor
node i by the interpolation method and n is the number of
sensor nodes.

To compare the computation time of the various
algorithms, we use a timing function available from the C
language, since we are interested in the relative, not the
absolute value, of the computation time. Those absolute
values will obviously depend on the actual real sensor
platforms in which the algorithms may run.

We studied the effect of changing the WAI function on
reducing the interpolation error. Changing the power of
the denominator in the weighting function (Eq. (4)) shows
that power value of ‘1.1’ results in the lowest error which
is slightly better (0.04%) than the result of power value ‘1’
(Figure 4). Therefore, power ‘1’ (as in Eq. 4) is used in
simulation results due to simpler computation.

For a sample signal as illustrated in Figure 3, the
simulation results for Algorithm 1 are presented in Figures
5 to 7. The amplitude of Signal in Figure 3 has values
between zero and one across the domain. The results of
the simulation show that, by increasing k, the computation
time of interpolation is linearly increased. This is more or

less a obvious result since the computation time of each
round is proportional to the number of interpolation
points.
However, the maximum and average interpolation errors
are not reduced considerably for large values of k. The
number of nodes with interpolation error more than a
threshold (18 percent in Figure 7) keeps decreasing. But,
after a specific value of k (for example 25) this number
remains approximately constant (Figure 7). Therefore,
increasing k would not necessarily improve the accuracy
of interpolation, while the time complexity would increase
unnecessarily.

One improvement to the basic interpolation algorithm
was proposed in [11]. In that variation, for interpolating
the value of each point, only the closest control points to
that point are considered. The simulation results show that
based on the shape of the signal, that version of the
algorithm may or may not decrease the interpolation error.
However, the computation delay is increased due to search
for closest control points to each point.

3/0 � max��� .. �	1�� � /��
 (6)

Figure 3. An example signal

Figure 4. Average error for different WAI function

6

4.2. Evaluating the Incremental Interpolation

In [7, 11] it is assumed that sensor readings do not
change much during an interpolation round. For these
static signals even by considering noise, the average
interpolation error would be less than 10 percent for k >10

and it keeps decreasing slightly by increasing k.
But, the reality is that signals change over time. Even

with two percent change in signal per interpolation
iteration (each k) and without considering noise, the
average error is more than 10 percent and keeps rising by
incrementing k (Figure 8). Higher computation delay for
bigger ks causes the interpolation algorithm to not follow
the changes in physical quantities appropriately.

The explanation for this behavior is intuitive as well.
When a point is added into the set of interpolation points,
S, the one that was added previously may be already
measuring a very different value. Accordingly, the basic
Interpolation algorithm cannot track the changes in signal
appropriately. For the interpolation method to be
applicable for control applications, changes in physical
quantities should be taken into account. In other words,
the interpolation algorithm should be able to interpolate
signals that change with respect to time during one
interpolation round. This need is more acute in very
dynamic physical quantities.

A modified algorithm which was proposed in [12]
provides an Incremental interpolation. This algorithm was
designed especially for dynamic signals. The aim of this
algorithm was to react fast to changes in the physical
quantity being tracked. The normal interpolation algorithm
obtains an interpolation from scratch every time it is
executed. Conversely, the Incremental algorithm uses the
information of the previous rounds to improve the
interpolated signal step by step (incrementally). After the
completion of the startup phase, old control points are
replaced by new ones and the interpolation is updated
iteratively. Removing and adding control points is done
with the rational that the least recent nodes in S contribute
the least to a faithful representation of the physical world.
The pseudo-code of this algorithm is presented in
Algorithm 2.

The algorithm works as follows. First, Algorithm 1 is
called and this gives us a set S with the elected data points.
Then the algorithm executes lines 4-17 periodically; it is
assumed that the execution of lines 4-17 is initiated
periodically. The execution of lines 4-17 differs from the
one in Algorithm 1 in only two respects. First, only one
data point is selected instead of k data points. Second, the
computation of lines 4-17 begins by removing one element
in S (done at lines 5-6) and then a new element is added
(done at line 17).

The incremental algorithm was not implemented before
and its performance was not evaluated. The simulation
results show that removing old nodes from S has a worse
effect on the interpolation results since those nodes have
the most contribution in constructing the interpolation.
Removing them can thoroughly distort the interpolated
signal. Not removing the old nodes from S causes more
computation complexity and not necessarily better
accuracy, similarly to the effect in the basic algorithm

Figure 5. Computation Delay for a static signal

Figure 7. Number of Nodes with High Error

Figure 6. Interpolation Error for a static signal

7

when increasing unnecessarily the value of k.

4.3. A New Interpolation Algorithm

For better coping with fast changing physical signals, a
new interpolation algorithm is proposed in this paper. This
algorithm uses some information from the system about
the type of changes in the physical quantities. For the sake
of simplicity (other variants can be further elaborated), we
consider that the changes in a signal are monotonous, and
therefore by calculating the Differential once at the
considered points and updating the value at the referred
point at each iteration k of the interpolation, the
approximate interpolation results much better.

For a monotonous increment / decrement change,
Algorithm 3 describes the proposed approach. All the
nodes execute the same algorithm in which they are aware
that after receiving each new control point, the previously
taken one will resend its new sensed value. In the other
words, in each iteration (except for the first one), after
receiving the information of new Control point, the
previous considered node sends its value again (line 15).
Then, it is possible for all the nodes to measure the
approximate Differential of changes in that control point
(line 16). This information will be applied in the next
iterations for obtaining the interpolation as follows:

f(x, y) = � 0 �� � � ��� �� � �� � � �
� �
 ∧ �� � �∑ 	� -4
.! 	",#
 �$ ∑ ! 	",#
 �$ %&'�()��� * (7)

where gi is the Differential of i th interpolation point and
the other parameters are as described previously for Eq. 3.

Simulation results show a great improvement in
interpolation of the signal by using Algorithm 3
(Differential algorithm) instead of Algorithm 1 (Basic
Algorithm). The results are presented in two categories.
Figure 8 and 9 show average error of both algorithms
when the rate of change in signal is limited (up to 4%) in
each interpolation round. With random changes in the
signal, the basic algorithm is unable to follow the signal
by elapsing time. Increasing the interpolation points means
increasing the time of interpolation. However, the
Differential algorithm has less than 10% error in
interpolating the signal (Figure 8). When the rate of
changes is constant, the Differential algorithm has slightly
better result while the basic algorithm gets worst result
(Figure 9).

The second category is presenting the change in error
percentage for different rates of change in signal for a
constant number of interpolation rounds (Figure 10, 11).
Increasing the rate of change leads to small rise in the
percentage of error for Differential algorithm whereas for
the basic algorithm average error keeps increasing. For the
random scenarios, the presented results are the average of
100 runs of the algorithms.

Algorithm 2 Incremental Interpolation [12]
Require: All nodes start Algorithm 2 simultaneously.
Require: k denotes the desired number of interpolation points.
Require: A node Ni knows xi,yi and si.
Require: The code below is executed by every node. A node can read
the variable i and obtain its node index.
1: all nodes take sensor readings; the sensor reading at computer node
 Nj is sj .
2: call find nodes (in Algorithm 1) and let S denote the set that is returned
3: while (true) do begin
4: all nodes take sensor readings; the sensor reading at computer node
Nj is sj .
5: for each element in S, there is a time when it most recently
 became a member in S, pick the element with the earliest
 such time and call it OLDNODE
6: S ← S \ OLDNODE
7: if Ni ∈ S then
8: Calculate f(xi,yi) in Equations 3 and 4 based on S \ {Ni} and assign
it to the variable “myinterpolatedvalue”.
9: else
10: Calculate f(xi,yi) in Equations 3 and 4 based on S and assign it to
the variable “myinterpolatedvalue”.
11: end if
12: error ← abs(si - to integer(myinterpolatedvalue))
13: temp_prio ← error * (MAXNNODES + 1) + i
14: prio ← (MAXP+1) – temp_prio
15: snd_pack ←< si,xi,yi>
16: <winning_prio, rcv_pack> ← send_and_rcv(prio, snd_pack)
17: S ← S ∪ { rcv_pack }
18: end while

Algorithm 3 Improved Interpolation Algorithm
Require: All nodes start Algorithm 3 simultaneously.
Require: k denotes the desired number of interpolation points.
Require: A node Ni knows xi,yi and si.
Require: The code below is executed by every node. A node can read
the variable i and obtain its node index.

 1: function find nodes() return a set of packets
 2: S ← ∅
 3: for q ← 1 to k do
 4: gq ← 0
 5: end for
 6: for q ← 1 to k do
 7: Calculate f(xi,yi) in Equation 7 and assign it to the variable
“myinterpolatedvalue”
 8: error ← abs(si - to integer(myinterpolatedvalue))
 9: temp_prio ← error × (MAXNNODES + 1) + i
 10: prio ← (MAXP+1) – temp_prio
 11: snd_pack ←< si,xi,yi>
 12: <winning_prio, rcv_pack> ← send_and_rcv(prio, snd_pack)
 13: S ← S ∪ { rcv_pack }
 14: if q ≠ 1 then
 15: the new sensed data of (q-1)th control point is received.
 16: gq ← the change in value of the control point
 17: end if
 18: end for
 19: return S
 20: end function

8

Note however that each round of Interpolation in
Algorithm 3 is longer than the round of interpolation in
Algorithm 1 since there is a re-sending of data during each
iteration. If the arbitration takes x time units and sending
data takes y time units, the communication time of each

iteration in Algorithm 3 last (x + 2 * y) time units
compared to (x + y) in Algorithm 1.

The computation time is also longer in Algorithm 3 due
to recalculating the interpolated values at each iteration k.
In the “normal” approach for the interpolation, by adding
new control points, some terms were added to nominator
and denominator of interpolated values. Conversely, in
Algorithm 3 in each iteration the Eq. 7 should be
recalculated from scratch since the values in set S of
previous iteration may have changed.

5. Implementation Issues
We performed a brief analysis of the time to compute

Basic Algorithm and Differential Algorithm in real-world
sensor network platforms. This was done by implementing
Differential Algorithm for the MicaZ platform. The code
was implemented making use of basic hardware
abstraction code such that the code running on the
platform was reduced to a minimum and we had total
control over the code being executed. The code was
compiled with no compiler optimizations and the
execution time was measured using a microcontroller real-
time clock. The results are presented in Figure 12. For
Differential Algorithm, we considered that each node had
to compute the differential and also computed the
interpolated value at all iterations, which is the worst-case
computation scenario. As we can see, the execution time
of Differential Algorithm increases much faster. This is
because it needs to recompute Equation 7 at each iteration.
These are important results to bear in mind when
developing new interpolation schemes and models of the
physical phenomena. However, they are seen as
preliminary results, since we believe the implementation
of the algorithm can be improved. One possible approach
is to change the implementation such that we avoid
computing all terms of Equation 7 by maintaining the
partial sums in the numerator and denominator of

Figure 8. Average Error of Basic and Differential algorithms
with random (up to 4%) change in signal per interpolation round

Figure 10. Average Error of Basic and Differential algorithms
versus Random rate of change in signal for k= 12

Figure 9. Average Error of Basic and Differential algorithms
with constant (4%) change in signal per interpolation round

Figure 11. Average Error of Basic and Differential algorithms
versus constant rate of change in signal for k= 12

9

Equation 7. This is possible assuming the Differential is
constant after inserted in S.

Other improvements such as addressing specific
limitations of the platform can be considered and we will
be working on developing better implementations.

6. Conclusion and Future works
In this paper we discuss a few aspects of using the basic

building block of MIN (MAX) in DOM-based quantity
aggregation in feedback control in networked control
systems. Based on information of few points, an
interpolated signal is constructed which enables estimating
the information (about some physical quantity) of all
points in a distributed geographical area. This approximate
interpolation can be used as the input data in feedback
control systems. Previous interpolation algorithms could
not perform well in terms of both accuracy and latency. In
this paper we propose a novel algorithm that considers
simple predictors on how the physical signal changes
during computation of the input (an approximate
interpolation function) of the physical signal.

This is the beginning of a set of research efforts which
attempt to minimize the error of the DOM-based
interpolation approach while maintaining low time-
complexity. We are starting to consider more sophisticated
approaches, such as using Kalman filters, to further
improve the overall performance of the algorithm. Next
step will be implementing Algorithm 3 and having a set of
benchmarking tests able to prove the usefulness of such
type of improvements.

References
[1] J.P. Hespanha, P. Naghshtabrizi, Y. Xu, “A Survey of Recent

Results in Networked Control Systems,” Proceedings of the IEEE,
Vol. 95, No. 1, January 2007.

[2] G. C. Goodwin, D. E. Quevedo, and E. I. Silva, “An introduction to
networked control systems,” in Proc. Asian Control Conference,
Bali, Indonesia, 2006.

[3] X. Liu and A. Goldsmith, “Wireless Medium Access Control in
Networked Control Systems,” Proc. IEEE American Control
Conference, June 2004.

[4] L. Becchetti, P. Korteweg, A. Marchetti-Spaccamela, M. Skutella,
L. Stougie, and A. Vitaletti. Latency Constrained Aggregation in
Sensor Networks. In Proc. European Symposium on Algorithms
(ESA), pages 88–99, 2006.

[5] “Fly-by-Wireless: A Revolution in Aerospace. Architectures for
instrumentation and Control,” NASA/CANEUS Workshop.
NASA/JSC/ES6/George Studor.

[6] N. Pereira, R. Gomes, B. Andersson, and E. Tovar, “Efficient
aggregate computations in large-scale dense WSN,” in 15th IEEE
Real-Time and Embedded Technology and Applications
Symposium (RTAS’09), San Francisco, CA, USA, 2009.

[7] B. Andersson, N. Pereira, W. Elmenreich, E. Tovar, F. Pacheco,
and N. Cruz, “A scalable and efficient approach to obtain
measurements in CAN-based control systems,” in IEEE
Transactions on Industrial Informatics, vol. 4, May, 2008, pp. 80–
91.

[8] A. K. Mok and S. Ward, “Distributed broadcast channel access,”
Computer Networks, vol. 3, pp. 327–335, 1979.

[9] Bosch GmbH, Stuttgart, Germany. CAN Specification, ver. 2.0,
1991.

[10] N. Pereira, B. Andersson, and E. Tovar, “WiDom: A dominance
protocol for wireless medium access,” IEEE Transactions on
Industrial Informatics, vol. 3(2), May 2007.

[11] E. Tovar, B. Andersson, N. Pereira, M. Alves, S.Prabh and F.
Pacheco, “Highly Scalable Aggregate Computations in Cyber-
Physical Systems: Physical Environment Meets Communication
Protocols,” Proceedings of the 7th International Workshop on Real-
Time Networks (RTN'08), Prague, Czech Republic, July 1, 2008.

[12] B. Andersson, N. Pereira, E. Tovar and R. Gomes, “Using a
Prioritized Medium Access Control Protocol for Incrementally
Obtaining an Interpolation of Sensor Readings,” Intelligent
solutions in Embedded Systems, Seventh Workshop on 25-26 June
2009, Page(s): 29-36

[13] D. Shepard, “A two-dimensional interpolation function for
irregularly-spaced data,” in Proceedings of the 1968 23rd ACM
national conference, 1968, pp. 517 – 524.

[14] M. Sharifzadeh and C. Shahabi, “Supporting spatial aggregation in
sensor network databases,” in Proceedings of the 12th annual ACM
international workshop on Geographic information, 2004, pp. 166 –
175.

[15] N. Pereira, R. Gomes, B. Andersson, E. Tovar, "Efficient
Aggregate Computations in Large-Scale Dense WSN," Proceedings
of the 2009 15th IEEE Symposium on Real-Time and Embedded
Technology and Applications, 2009. pp: 317-326.

Figure 12. Execution time as a function of k for Basic and
Differential algorithms in a real-world platform.

