pd

&
CISTER

Research Center in

Computing Systems

Technical Report

Response-Time Analysis of Synchronous
Parallel Tasks in Multiprocessor Systems

Claudio Maia*

Marko Bertogna

Luis Miguel Nogueira*
Luis Miguel Pinho*

*CISTER Research Center
CISTER-TR-141001
8 to 10, Oct, 2014

Technical Report CISTER-TR-141001 Response-Time Analysis of Synchronous Parallel Tasks in ...

Response-Time Analysis of Synchronous Parallel Tasks in Multiprocessor Systems

Claudio Maia*, Marko Bertogna, Luis Miguel Nogueira*, Luis Miguel Pinho*

*CISTER Research Center

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. Ant6nio Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: clrrm@isep.ipp.pt, Imn@isep.ipp.pt, Imp@isep.ipp.pt
http://www.cister.isep.ipp.pt

Abstract

Programmers resort to user-level parallel frameworks in order to exploit the parallelism provided by multiprocessor
platforms. While such general frameworks do not support the stringent timing requirements of real-time systems,
they offer a useful model of computation based on the standard fork/join, for which the analysis of timing
properties makes sense. Very few works analyse the schedulability of synchronous parallel real-time tasks, which
is a generalisation of the standard fork/join model. This paper proposes to narrow the gap by presenting a model
that analyses the response-time of synchronous parallel real-time tasks. The model under consideration targets
tasks with fixed priorities, composed of several segments with an arbitrary number of parallel and independent
units of execution.

We contribute to the state-of-the-art by analysing the response-time behaviour of synchronous parallel tasks. To
accomplish this, we take into account concepts previously proposed in the literature and define new concepts
such as carry-out decomposition and sliding window technique in order to compute the worst-case workload in a
window of interest. Results show that the proposed approach is significantly better than current approaches,
improving the state- of-the-art analysis of parallel real-time tasks.

© CISTER Research Center
www.cister.isep.ipp.pt

Response-Time Analysis of Synchronous Parallel Tasks in
Multiprocessor Systems

Claudio Maia
CISTER/INESC TEC, ISEP
Porto, Portugal

crrm@isep.ipp.pt

Marko Bertogna
University of Modena
Modena, Italy
marko.bertogna@unimore.it

Luis Nogueira
CISTER/INESC TEC, ISEP
Porto, Portugal

Imn@isep.ipp.pt

Luis Miguel Pinho
CISTER/INESC TEC, ISEP
Porto, Portugal

Imp@isep.ipp.pt

ABSTRACT

Programmers resort to user-level parallel frameworks in or-
der to exploit the parallelism provided by multiprocessor
platforms. While such general frameworks do not support
the stringent timing requirements of real-time systems, they
offer a useful model of computation based on the standard
fork/join, for which the analysis of timing properties makes
sense. Very few works analyse the schedulability of synchro-
nous parallel real-time tasks, which is a generalisation of the
standard fork/join model.

This paper proposes to narrow the gap by presenting a
model that analyses the response-time of synchronous par-
allel real-time tasks. The model under consideration tar-
gets tasks with fixed priorities, composed of several segments
with an arbitrary number of parallel and independent units
of execution.

We contribute to the state-of-the-art by analysing the
response-time behaviour of synchronous parallel tasks. To
accomplish this, we take into account concepts previously
proposed in the literature and define new concepts such as
carry-out decomposition and sliding window technique in
order to compute the worst-case workload in a window of
interest. Results show that the proposed approach is signifi-
cantly better than current approaches, improving the state-
of-the-art analysis of parallel real-time tasks.

Categories and Subject Descriptors

D.4.1 [Operating Systems]: Process Management—Schedul-
mng

General Terms
Design, Algorithms, Theory

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions @acm.org.

RTNS 2014 , October 8 - 10 2014, Versailles, France

Copyright 2014 ACM 978-1-4503-2727-5/14/10 ...$15.00.
http://dx.doi.org/10.1145/2659787.2659815.

Keywords
Parallel Task Model, Job-level Parallelism, Real-Time

1. INTRODUCTION

The real-time systems domain is currently facing the chal-
lenge of how to exploit the immense computing power of-
fered by the next-generation of many-core systems for time-
critical applications [1]. To this extent, several techniques
have already been proposed for scheduling real-time tasks in
multiprocessor systems [2]. However, the latest market re-
quirements and technology advancements require both pre-
dictability and performance from real-time applications.

In order to explore the inherently parallel computing power
available, new real-time computing models have recently
been proposed with a special focus on job-level parallelism or
intra-task parallelism [3, 4]. For example, in the synchronous
parallel task model proposed in [4] (depicted in Figure 1),
real-time jobs are composed of consecutive segments, each
containing a different number of independent sub-jobs. Dif-
ferent names are used in the literature to name these inde-
pendent sub-jobs, i.e, thread, sub-task, parallel job or, in
short, p-job. Segments have precedence constraints among
themselves, meaning that p-jobs belonging to a certain seg-
ment can only start their execution after all the p-jobs in the
previous segment have been completed. Moreover, there is
no restriction on the number of segments per job, neither on
the number of p-jobs executing in a segment. Such a model
is a generalisation of the fork/join model presented in [3] to
model Java Fork/Join [5] or OpenMP [6] constructs.

This paper focuses on the schedulability analysis of syn-
chronous parallel tasks in multiprocessor systems composed
of identical processors, where tasks have a fixed priority and
the structure of each task is known a priori. Our approach
improves over the work reported in [7], providing tighter
schedulability conditions and extending the analysis to fixed-
priority task systems. Tighter upper-bounds on the work-
load within a window of interest are derived by computing
the response-time upper bounds of the interfering jobs, sim-
ilarly to the technique proposed in [8] for sequential task
sets. However, there are subtle differences to consider when
dealing with parallel tasks. The analysis in [8] cannot be ap-
plied as it is, but needs to be properly modified to take into
account the different task structure in a predictable way.

S1

Figure 1: Example of a synchronous parallel task 7; com-
posed of three segments, with one, four and two p-jobs, re-
spectively.

Contributions: Our contributions are the following:

e We present a schedulability analysis for synchronous
parallel sporadic tasks scheduled with global Fixed Pri-
ority on identical multiprocessors. Existing schedula-
bility analyses are based on global Earliest Deadline
First [7], or consider partitioned approaches [9].

e We highlight the main issues in the response-time anal-
ysis of parallel tasks for deriving predictable upper
bounds on the interfering contributions in a window
of interest.

e We provide a pseudo-polynomial algorithm to compute
an upper bound on the response time of each parallel
task.

e We present an extensive set of experiments showing
that the proposed approach outperforms the state-of-
the-art schedulability techniques for parallel real-time
task systems.

The remainder of this paper is organised as follows. Sec-

tion II presents the state-of-the-art of parallel real-time tasks.

Section III describes the system model. Section IV intro-
duces some preliminary results based on the notion of crit-
ical interference. Using these results, Section V details the
schedulability analysis for fixed-priority synchronous par-
allel tasks. Section VI presents the simulation results ob-
tained from experiments conducted using synthetically gen-
erated task sets. Finally, section VII concludes the paper
and presents the future work.

2. RELATED WORK

Goossens and Berten [10] redefined a classification for dif-
ferent types of parallel tasks. In this classification, a job
may be classified as rigid, moldable or malleable. In a rigid
job, the number of processors assigned to each segment is
fixed and determined a priori, so that either all p-jobs of
a segment are executed, or none of them is scheduled for
execution. In a moldable job, the number of processors as-
signed to each segment is determined by the scheduler, but
cannot change once the segment starts executing. Finally,
a malleable job allows the number of processors assigned to
each segment to change dynamically.

The problem of multiprocessor scheduling of parallel real-
time tasks was covered by Han and Lin in [11] where the

authors prove that the problem of scheduling fixed-priority
parallel jobs is NP-Hard. Drozdowski [12] focuses on the
problem of scheduling parallel tasks with the objective of
minimizing the makespan.

Concerning rigid tasks, Goossens and Berten [10] pro-
posed a scheduling algorithm for parallel rigid real-time tasks
based on gang scheduling. Moldable tasks were studied by
Manimaran et al. [13] where they proposed a non-preemptive
Earliest Deadline First (EDF) approach that considers par-
allel real-time tasks. Kato and Ishikawa [14] proposed the
Gang-EDF algorithm, which applies EDF to the traditional
gang scheduling scheme.

Jansen [15], Collette et al. [16], and Korsgaard and Hend-
seth [17] studied malleable tasks. Jansen [15] focused on
minimizing the makespan but without considering real-time
constraints. Collette et al. [16] studied the problem of global
scheduling of sporadic task systems on multiprocessors con-
sidering job-level parallelism. Korsgaard and Hendseth [17]
proposed a schedulability test for malleable tasks scheduled
with global EDF.

Lakshmanan et al. [3] study the scheduling of periodic
fork/join real-time tasks on multiprocessor platforms. Each
task is divided into sequential and parallel segments. Paral-
lel segments must be preceded and followed by a sequential
segment. All parallel segments must have the same num-
ber of threads, and the number of threads cannot be greater
than the number of processors in the platform. In order
to schedule such tasks in a multiprocessor platform, the au-
thors propose the decomposition of fork/join tasks by apply-
ing a task stretch transform algorithm. Moreover, a resource
augmentation bound is derived for the decomposed task set
when partitioned deadline monotonic scheduling is used.

Saifullah et al. [4] generalise the fork/join model presented
in [3], named synchronous parallel task model. In this model,
parallel tasks may have any number of segments, and the
number of parallel threads within any segment can be greater
than the number of cores in the platform. In [4], the decom-
position of periodic parallel tasks into constrained-deadline
sequential tasks is proposed. For the decomposed task sets,
a resource augmentation bound is derived for global EDF
and partitioned deadline monotonic scheduling policies.

A schedulability condition for synchronous parallel tasks
scheduled with global EDF has been presented in [7], ex-
tending the traditional interference-based analysis for serial
task models. The authors introduce the concept of critical
interference to capture the interference of parallel threads.
In this paper, we will borrow the concept of critical interfer-
ence to propose tighter schedulability conditions based on
the response-time analysis of synchronous parallel tasks.

In [9], a worst-case response-time analysis is presented
for fork/join tasks under partitioned fixed-priority schedul-
ing. The analysis iterates over the segments of a fork/join
task, selecting the worst-case response time of each segment.
The authors show that fork/join tasks may present a larger
worst-case response time due to the interference of sequen-
tial tasks.

In [18], the Fork/Join OS (FJOS) is presented, an operat-
ing system based on Composite OS, comparing its behaviour
with the GOMP implementation on Linux. Moreover, the
schedulability analysis technique proposed in [9] is adapted
to include overheads based on real measurements in FJOS.
As in [9], this approach is also based on partitioned fixed-
priority scheduling.

3. SYSTEM MODEL

We consider the problem of scheduling synchronous paral-
lel real-time tasks with fixed priority on a system composed
of m identical processors with uniform memory access. In
our model, each task releases a sequence of jobs where each
job instance is allowed to execute in more than one core at
the same instant. Without loss of generality, all time inter-
vals and task parameters are assumed to be integer multiples
of the system clock.

Let 7 = {m1,...,7n} denote the set of n sporadic tasks.
Assume tasks are indexed in priority order, task 71 being the
highest priority one. Each task 7; in the task set 7 releases an
infinite sequence of jobs separated by at least T; time units.
Each task has a deadline D; < T; (i.e., constrained deadline
model), meaning that each of its jobs needs to complete its
execution at most D; time units after its release. Moreover,
each task 7; is characterised by a sequence of segments s; =
{oi,1,..., 045, }, where each segment o; ; is composed of a set
of m;,; parallel jobs (or in short p-jobs), {Jij,1, .., Ji,jm;; 1
each one having the same priority of the task that spawns
it. The parallel jobs are independent sequential threads that
can be executed in parallel, i.e., in different processors at the
same time instant (see Figure 1). Before a segment starts
executing any of its p-jobs, all the p-jobs of the preceding
segment (if any) must have been completed. Besides these
precedence constraints, parallel jobs are independent, and
there are no other shared resources than processing units.

To clarify, m; ; denotes the number of p-jobs within the
j-th segment of task 7. In this work, we allow the number of
p-jobs of a segment to be greater than the number of cores,
so that m; ; may be greater than m for some segment o; ;.
The maximum degree of parallelism of a task is denoted as
m; and is defined as m; = max;{m, ;}.

A fully preemptive system is assumed where any executing
p-job may be preempted and resumed later without any cost.
At any given instant, the m ready p-jobs with the highest
priority are the ones executing in the cores. Ties are broken
arbitrarily.

Each p-job instance J; ;i is characterized by a worst-case
execution time C} j x. The worst-case execution time of each
segment o; ; is given by:

mi

Cij; = Z Ci ik (1)
k=1

The overall worst-case execution time of a task 7; is then
defined as:

c.=%ci, @)
j=1

The above equations represent the time it takes to execute
a segment (Equation 1) or a task (Equation 2) in a dedicated
single processor platform, i.e., with no parallelism.

The mintmum worst-case execution time P; of a task 7;
is the time task 7; requires to execute when the number of
processing units m is infinite, i.e., the critical path length.
Formally, P; is defined as:

b = Z Pij, 3)
j=1

where P; ; represents the worst-case execution time of the

largest p-job(s) of segment o; ;. Formally,

Pij = mik {Ci i} (4)

The utilisation U; of task 7; is the ratio between the task’s
overall worst-case execution time and period, U; = %‘ For
the task set 7, the total utilisation is defined as U(r) =
2?21 Ui.

For implicit-deadline sequential task sets, a necessary and
sufficient condition for feasibility is U(7) < m ([19]). Nev-
ertheless, for fork/join tasks this condition is only neces-
sary [3], as it is for the synchronous parallel task model
adopted in this paper. Moreover, another necessary condi-
tion for schedulability of synchronous parallel tasks is P; <
D;.

It is important to note that with the synchronous task
model there may be feasible task sets in which some task
has a utilisation larger than 100%. Serialisation techniques
are not possible with such tasks, as the derived sequential
task would be clearly unschedulable.

The worst-case response-time of 7;, denoted as R;, is given
by the maximum amount of time that elapses between the
release time (7;) of any job of 7; and its completion time. For
parallel tasks, R; clearly depends on several factors such as
the inter-task and intra-task interferences; precedence con-
straints between the segments of the task itself; the degree
of parallelism of each region; and the number of cores in
the hardware platform. As it may be extremely difficult to
derive the exact worst-case response time of a task in the
addressed setting, a typical approach in the real-time litera-
ture is to compute an upper bound R*® on the response-time
of task 7.

Table 1 presents a summary of the important notation
defined and used throughout the paper for quick reference
and clarity.

4. CRITICAL INTERFERENCE OF PARAL-
LEL TASKS

We propose a global fixed-priority approach for synchro-
nous parallel tasks. In this approach, all the ready p-jobs
are inserted in a global queue, from where m processors
pick the m highest priority p-jobs. The proposed approach
considers for each job its worst-case execution time and the
interference that it suffers. If the system is schedulable, the
interference is bounded and the job execution time plus the
imposed interference is always less than or equal to the job’s
deadline.

Interference is an important concept widely used in real-
time systems. For traditional sequential task sets, the in-
terference a task 7 suffers over an interval of length L, de-
noted as I (L), is defined as the sum of all intervals of time
in which 74 is ready to execute but it cannot execute due to
the execution of other higher priority tasks in the system.
In particular, the interference of a higher priority task =;
over task 75 in an interval of length L is denoted as I; (L),
and is defined as the sum of all time-intervals in which 7;
is executing but 74 is not, even though it is ready to exe-
cute. Intuitively, the interference that a task suffers cannot
be greater than the total amount of workload of the higher
priority jobs.

When dealing with synchronous parallel tasks two types
of interference may occur: inter-task and intra-task inter-

Table 1: Summary of notation

Symbol | Description

m Number of processors in the platform

n Number of tasks in the task set

T Set of periodic or sporadic tasks

U, Utilisation of task 7, i.e., TZ

U(r) Total utilisation of the task set 7

T; Period of task ;

D; Relative Deadline of task 7;

C; Overall worst-case execution time requirement of
Ti

P; Minimum worst-case execution time of task 7;

Si Number of segments in task 7;

m; Maximum degree of parallelism of task 7;

Ci,j Overall worst-case execution time of segment o ;

P ; Minimum worst-case execution time of segment
03,5

mi,j Number of p-jobs within segment o; ;

Cijk Worst-case execution time of p-job J; j,k

T Release time of a job of task 7;

d; Absolute deadline of a job of task 7;

R; Worst-case response time of task 7;

R Upper-bound of R;

L Generic interval [rg, 7% + RiY)

I, (L) Critical interference on task 74 in any interval of
length L

I;x(L) | Critical interf. of 7; on 7% in any L

I?, (L) | Critical interf. of 7; on 75 with depth at least p in

7 any L

WP(L) | Workload of task 7; for at least p p-jobs in the

interval L

ference. Inter-task interference is the interference caused by
other higher priority tasks executing in the system. This
is the standard notion of interference widely used in tradi-
tional sequential models. Instead, intra-task interference is
peculiar to parallel task systems, and is defined as the self-
interference due to parallel jobs of the same task instance.

In order to compute the interference of a parallel task, we
adopt the concept of critical thread', as previously defined
in [7].

DEFINITION 1. A thread is critical if it is the last one to
complete among the threads belonging to the same segment.

For deriving the worst-case response time of a task, it is
then sufficient to characterise the interference imposed to
its critical threads, as they are the ones suffering the largest
interference.

DEFINITION 2. The critical interference I (L) on task 7%,
in any interval of length L, is defined as the cumulative time
in which a critical thread of task 1 is ready to execute but
it cannot due to the execution of other parallel jobs.

Given the above definitions, the following theorem simply
follows.

While we prefer using the term parallel job instead of
thread, we decided here to keep the name “thread” for ho-
mogeneity with the original definition. However, both terms
are interchangeably used in this paper.

THEOREM 1. Given a set of synchronous parallel tasks T
scheduled by any work-conserving® algorithm on m identical
cores, the worst-case response-time of each task T, can be
upper bounded by RY® if

Py + In(Ri) < R, (5)

ProOF. Consider the job of 74 that leads to the worst-
case response time Rj. Let ry be its release time. Within
a scheduling window [r, r, + RY’], Equation (5) guarantees
that all s; critical threads have sufficient time to execute
Pi time-units, while accommodating the interference suf-
fered from other threads, accounted for in Iy(RY). Since
the execution requirement of each critical thread cannot ex-
ceed the minimum worst-case execution time of the corre-
sponding segment, Equation (3) guarantees that all critical
threads complete their execution within the considered in-
terval, proving the theorem. [

The problem of the above theorem is that computing the
exact interference imposed on the considered task is difficult.
To sidestep this problem, a common approach is to express
the total interference as a function of individual task inter-
fering contributions, and upper bound such contributions
with the worst-case workload executed by each task in the
considered window.

DEFINITION 3. The critical interference I; (L) imposed
by task T; on task T in any interval of length L is defined as
the cumulative workload executed by p-jobs of task T; while a
critical thread of Ti is ready to execute but is not executing.

Differently from the sequential case, each task 7; may con-
tribute with different p-jobs at the same time to the indi-
vidual interference on a task 7. In the particular case when
1 = k, the critical interference I (L) may include the in-
terfering contributions of (non critical) p-jobs of task 7i on
itself, i.e., the intra-task interference.

The next lemma allows expressing the total interference
as a function of single task interferences.

LEMMA 1. For any work-conserving algorithm, the fol-
lowing relation holds:

I(L) = %lek(l/) (6)

Vi

PrOOF. From the work-conserving property of the con-
sidered scheduler, it follows that whenever a critical thread
of 71 is interfered, all m cores are busy executing other p-
jobs. Therefore, the total amount of workload executed by
p-jobs interfering with critical threads of 7, within the con-
sidered window is mIy(L):

> Lik(L) = mIi(L).
Vi

The lemma simply follows by rephrasing the terms. [

As previously mentioned, the individual interference I; 1, (L)
accounts for all p-jobs of 7; interfering with 7%, including p-
jobs that are executing at the same time. In order to capture
how many parallel jobs of 7, may simultaneously interfere

2A scheduling algorithm is said to be work-conserving if it
never idles a core when there is a ready task waiting to be
executed.

[w A u

[] other tasks

Figure 2: Task 7; interfering on task 7.

with task 7, we will borrow from [7] the concept of at least
p-depth critical interference®.

DEFINITION 4. The at least p-depth critical interference
of i on Tk in any interval of length L, denoted as If,k(L), 18
defined as the total amount of time in which a critical thread
of T is ready to execute but cannot execute while there are
at least p threads of task T; simultaneously erecuting in the
system.

To better understand the meaning of I?, (L), consider
the example in Figure 2, where a task 7; interferes 75, with
two threads for five time-units, one thread for seven time-
units, and three threads for three time-units. In this case,
I} (L) =15, I7 (L) = 8, and I}, (L) = 3.

Note that by definition (Definitions 2 and 4) the following
inequality holds: I7, (L) < Ix(L).

The following lemma allows establishing a relation be-
tween the overall critical interference on a task 7, and the
at least p-depth critical interference of each task 7; on 7.

LEMMA 2. For any work-conserving algorithm, the fol-
lowing relation holds:

(L) = %ZZI&(L). (7)

V1, p=1

ProoF. Considering each single interfering task 7;, the
amount of execution by all p-jobs of 7; interfering with 7
within the considered window equals » 7" | I}, (L). The
Lemma follows from Lemma 1. []

We will now extend to the parallel task model considered
in this paper two results proved in [8] for sequential tasks.

LEMMA 3.

ZZmin(Iﬁk(L),x)zmx & (L) > =z

Vr; p=1
PrROOF. If. We would like to prove that if Ix(L) > =z,

then 37, 377", min (Iﬁk(L),m> > maz.
For a given length L, let £ be the number of at least p-
depth critical interferences I fj » (L) > x, namely:

Yi,p

£= ‘{If,k([’) 2 f}

3Note that we are simplifying the analysis and notations
with respect to [7], without making use of the “exact” p-
depth interference, which, to our belief, is not needed for
the purposes of this paper. Also the theorems presented in
this section have therefore subtle differences from the cor-
responding ones in [7]. For instance, the case of Lemma 2,
which differs from a similar result proved in [7] in that the
notion of “at least p-depth critical interference” is used in-
stead of the “exact p-depth critical interference”.

If £ > m, then 37, 37" min (Iﬁk(L),x) > x> ma.
Otherwise, (m — §) > 0, and, using Lemma 2,

SO min (I (L),) =z + Y. Y. 17 (L)

V7 p=1 vy pzlﬁk<x
=& +ml(L) - > Y 1P (L)
N2 p:Ig),ka
> &x +mli(L) — €Ik(L)
=&x+ (m = &I(L)
>+ (m—&)x =mz.

[Lemma 2]
(17 (L) < In(L)]

[using I (L) > x]
Only if. From Lemma 2, we have

(L) = =SS (D)

V1, p=1

1 S I
EZme (Ii’k(L),x) > mE = .

V1, p=1

Y

O

THEOREM 2. Given a set of synchronous parallel tasks T
scheduled by any work-conserving algorithm on m identical
cores, the worst-case response-time of each task T, can be
upper bounded by RY® if

33 min (Igfk(sz), R™ _ P, + 1) <m(RY® — Py +1)

vr; p=1
ProoF. If the inequality holds, Lemma 3 gives
I (R < RY> — Py + 1.
Since an integral time model is used,
I(R") < R — Py
The theorem then follows from Theorem 1. [

In the following section, the above theorem will be used to
derive a sufficient schedulability test for synchronous parallel
task systems scheduled with global fixed priority algorithm.

S. RESPONSE-TIME ANALYSIS

In order to exploit the theorem proved in the previous
section to analyse the schedulabilty of a parallel task system,
it is necessary to compute the critical interference terms.
Since finding such terms is known to be a difficult problem
for multiprocessor systems, a common approach is to use
upper bounds that are easier to compute. An upper bound
on the interference of a task 7; in a window of length L is
given by the maximum workload that 7; can execute within
the considered window. However, computing the maximum
workload that can be executed by 7; in a generic window
is also a difficult task. To sidestep this problem, a typical
technique is to consider pessimistic scenarios in which the
workload in a given window cannot be smaller than in the
worst-case situation. We hereafter describe the pessimistic
scenario considered in this paper.

Consider a window of length L that spans the interval
[ri, i+ L] of a given (interfered) task 7i,. We call this inter-
val of time the window of interest. Within this window, we
provide an upper bound on the execution time of an inter-
fering task 7;. As commonly adopted in the literature, we

_

Ri- P; Carry-inJob

P,

Carry-out Job

Ri

Figure 3: Densest possible packing of threads within a win-
dow of interest.

will call “carry-in job” the first instance of 7; executing in the
window of interest, having a release time before and deadline
inside the window of interest. By contrast, the “carry-out
job” has its release time within (or before) and deadline af-
ter the window of interest. Note that, by convention, a job
that has both release time and deadline outside the window
is considered to be a carry-out job. All 7;’s instances whose
release time and deadline are entirely contained within the
considered window will be named “body jobs”.

As shown in [8], the densest possible packing of sequential
jobs of a task 7; is found when:

1. A job starts executing at the beginning of the window
of interest, and completes as close as possible to its re-
sponse time. In other words, the job starts executing
R; — P; time-units after its release time, in correspon-
dence to the beginning of the window of interest.

2. All subsequent jobs of 7; are executed as soon as pos-
sible after being released, i.e., respecting the period
T;.

Such a situation is depicted in Figure 3 for a parallel task 7;
in the window of interest.

5.1 Sliding window technique

An important observation to make is that the scenario
described above may not represent the worst-case workload
in the synchronous parallel task model considered in this
paper. This occurs because the parallel task structure is
characterized by precedence constraints that may affect the
densest possible packing of p-jobs. Consider the example in
Figure 3, where a task composed of three segments is con-
sidered in the above scenario. The carry-in job is fully con-
tained inside the window of interest L, while the carry-out
is only partially contained. Now, if the window of inter-
est is shifted right by one segment (as in the window L’),
the carry-in contribution decreases by one p-job, while the
carry-out contribution increases by three p-jobs, leading to
a larger task workload within the considered window.

In order to properly consider the worst-case workload con-
tribution of each task in a window of interest, we check all
different meaningful alignments of the window of interest
with respect to the task structure. Note that shifting right
the window of interest, the workload contribution has a dis-
continuity whenever one of the extreme points of the win-
dow coincides with a segment boundary. Therefore, we can

check all possible scenarios in which the window of interest
is shifted to the right from the original configuration, such
that either (i) the window starts at the beginning of a seg-
ment of the carry-in job, or (ii) the window ends at the end
of a segment of the carry-out job.

Formally, we consider the worst-case workload of a task 7;
in a window of length L, taking the maximum workload of
the considered task, over all possible configurations in which
the window is shifted right from the original configuration by
a € I'1UT'2, where I'y and I's are the sets of significant offsets
to check corresponding to scenario (i) and (ii), respectively
(see Figure 6).

Before deriving the formal offset values to check, let n;(a, L)
be the carry-out length for task 7; in a window of length L
and offset a. Then,

ni(a,L) =min (L, (L + R; — Pi+a) mod T3).

We note that the meaningful offsets to consider in sce-
nario (i) correspond to the best-case starting times of each
segment o;; of 7, ie., Zi:l P, .,Vj € [1,s;]. Moreover,
all offsets greater than P; — n;(0, L) can be ignored, since
they would cause the end of the window to fall beyond the
end of the carry-out job, resulting in a smaller workload.
Therefore,

J

=1

The offsets to consider in scenario (ii) correspond to the
difference (when positive) between the best-case starting
times of each segment o; ; and the original carry-out length
177;(0, L)7 i.e.,

I', = {max <07 ipl’x — 771(0,[1)> ,V‘] S [1,821} .

x=1

5.2 Decomposing the carry-out job

One last observation concerns predictability, as defined
in [20]*. A schedulability test needs to be predictable, in
that it should consider all possible execution times of a task
system, as long as they do not exceed the given worst-case
execution time. In other words, we would like the response-
time provided by our analysis to be sufficiently robust to con-
sider all possible execution requirements of the given tasks,
including when some segment o;; requires less than Cj ;
time-units, or when a task may skip some of the segments.
A schedulability test that does not properly consider sit-
uations when execution requirements are reduced is by no
means sufficiently robust for critical applications.

The problem with the above approach is that a larger
workload may fit the considered window if the carry-out
skips some segment. Consider the example in Figure 4. In
the upper scenario, the original situation is depicted, with
the carry-out job contributing to the workload in the win-
dow of interest with its first two segments. However, when
the second segment of the carry-out job is skipped, a worse
situation is found, as shown in the lower part of the fig-
ure, since a segment with a higher parallelism may enter the
window, resulting in a larger workload.

Considering all possible combinations of execution times
appears overly complicated as it requires a combinatorial

“In [21], a broader concept is defined, i.e., “sustainability”,
which generalizes the notion of predictability.

- >
Carry-out Job

- >
Carry-in Job

Figure 4: Densest possible packing of threads when a task
skips some segment.

Regular Job Decomposed Job

Figure 5: Example of a decomposed job

exploration of the possible segment instances of each task.
To solve this problem, by allowing our analysis to be suf-
ficiently robust, we will consider a pessimistic situation in
which the carry-out job is decomposed, re-aligning the paral-
lel segments such that the segments with higher parallelism
are shifted to the beginning of the job’s execution. Thus,
segments are ordered by their number of p-jobs following a
non-increasing pattern where segments with a higher num-
ber of p-jobs execute first, as depicted in Figure 5.

Replacing the original carry-out job by a decomposed job
results in placing the parallel segments with higher paral-
lelism within the window of interest, which allows us to ob-
tain a sound upper bound on the workload of the carry-out
job.

We are now ready to derive an upper bound of the work-
load that each task may impose on a window of length L.

5.3 Workload of a task within a window

Before presenting the analytical derivation of the workload
components, we introduce the notion of “at least p-depth
workload”.

DEFINITION 5. The at least p-depth workload of a task
7; in a window of length L, denoted as WF(L), is the sum
of all intervals in which at least p threads of T; execute si-
multaneously in parallel.

Note that the following relation holds by the definition of
I fi L(L):
17, (L) < WE(L).
The above relation, together with Theorem 2, gives the fol-

lowing lemma.

LEMMA 4. Given a set of synchronous parallel tasks T
scheduled by any work-conserving algorithm on m identical
cores, the worst-case response-time of each task T, can be
upper bounded by RY® if

33 min (W;’(R};”), R™ _ P, + 1) <m(RY — P +1)

Vr1; p=1

It now only remains to derive an upper bound on W7 (L).
We will compute such an upper bound by considering the
at least p-depth contributions of carry-in, body and decom-
posed carry-out of each task 7; in the worst-case scenario
summarized in Figure 6, for all significant offsets a € I'; UT's.

To compute the at least p-depth workload of the decom-
posed carry-out job, it is necessary to consider the first
ni(a, L) units of the decomposed carry-out job. The fol-
lowing function computes the at least p-depth workload ex-
ecuted within the first « units of a generic job of 7;.

0, ifz<0

;:Lmi_ij Pij+(z— Z;:l Pij), f0<z<P
and m; .41 > p

g5 (x) =
if0<z<P;

and m; .41 < p

z
Zj:l:mz,ij P’hJ?

Zv;‘:mi_j >p Pigs otherwise,

®)
where z represents the index of the last segment that is
fully included in the interval, so that (z + 1) is the index of
the segment that may execute partially within the carry-out
interval.

The number of body jobs of 7; executing in L is given by

L—‘y—Ri—PiJ 1

z ©)

Bi(L) = {

Note that B8;(L) does not depend on a because the range
in which a is varied never influences the number of body
jobs. The at least p-depth workload of the body jobs of 7;
executing in L is then given by

> Py (10)

b7 (L) = Bi(L)
Vjim; j>p

The carry-in length o;(a, L) can be derived as®
ai(a7 L) =L- 772‘(5% L) - Bl(L)II;

The at least p-depth carry-in contribution can then be de-
rived by computing the workload executed within the last
ai(a, L) units of the carry-in job. The following function
(from [7]) computes the at least p-depth workload executed
within the last units of a job of 7.

0, if 2 <0

Z;i:hl’ﬂbi’jzp Pij+(x =L, Py), f0<z<P
and mip—1 > p

fi(z) =

if0<ax <P

and mip—1 < p

S‘L .
S e on P

Zw:m” >p P;j, otherwise,
(11)

where h represents the index of the earliest segment that is
fully included in the interval, so that (h — 1) is the index of

SWhen R; = P; and L > T;, the first job of 7; executing in
the window of interest is accounted for in the carry-in and
not in the body contribution despite it has both release time
and deadline within the window.

©
A

7

NN
N\
|
A

N\
N
A\

N

\\

N

A

L
N

NN\

\
\

N
\
NN\
NN
N
N
N
A\
A\
N\
\
A\

N

N

Pi

M

N
N\
A\
\\

N\
AN

NN
.
\\\\\k

7

.

7
L

N\
\

N

N
.
NN
AN
N\
N
N\
NN
NN
N\

W
\
\
\\\\
\
\Q\
N
\\
AN

\

NN
N
\
\
N\

N\
N
N\
N\
AN
N\
N\
N\
N
N\
N\
N\
A\
N\
N

Decomposed
Carry-out Job

M

Figure 6: Response-time analysis details

the segment that may execute partially within the carry-in
interval.

Considering Equation 8, Equation 10 and Equation 11,
an upper bound on the at least p-workload of a task 7; in a
window of length L and offset a is given by:

o~

Wip(Lva) = fip(ai(a7 L)) + bf(L) + §f(7h‘(a» L))? (12)

where § denotes that the function g is applied to the de-
composed job. An upper bound on the worst-case workload
of 7, with depth at least p in a window of length L is then
derived as

WP(L)= max {WP(L,a)}, (13)

i .
acl'1 U’y

where I'; denotes that the offsets in this set are computed,
again, considering the decomposed job.

Note that the above expression can be used to bound the
inter-task workload from interfering tasks.

Before applying Lemma 4, a bound should also be pro-
vided to the intra-task interference, accounting for the work-
load of p-jobs from the same task. An upper bound on the
intra-task workload of task 7, with depth at least p can be
given by:

wr= Y P, (14)

Viimy, j>p+1

where the sum is extended over all segments with parallelism
at least p + 1 instead of p since the p-jobs of the critical
threads do not contribute to the critical interference.

5.4 Schedulability condition

Given the worst-case inter-task and intra-task workloads
presented in the previous sections, we are now in a position
for deriving an upper bound on the worst-case response time
of a parallel task.

LEMMA 5. Given a set of synchronous parallel tasks T
scheduled by any work-conserving algorithm on m identical
cores, the worst-case response-time of each task T, can be

upper bounded by R if

3 Z min (Wf(R};”), R — P+ 1)

VTik P=1

mg
+3 min (W,f,R};b — P+ 1)

p=1
<m(Ry — P, +1).

PrOOF. The proof simply follows from Lemma 4, using
the derived upper bounds instead of the real p-depth work-
load, and extending the p-indexed sum over the maximum
number of p-jobs of each task®. [

For the special case of global fixed-priority scheduling, the
interfering workload may be limited to the set of tasks hav-
ing higher priority than 7. The following theorem can then
be used to derive R in a fixed priority setting.

THEOREM 3. Given a set of synchronous parallel tasks T
scheduled by global fized-priority on m identical cores, an
upper bound RY® on the worst-case response-time of a task
Tk can be derived by the fixed-point iteration of the following
expression, starting with RY® = P:

Vi<k p=1

+ min (/V[?,S,R’;b P +1) >J
p=1
PRrROOF. If the iteration ends before Ry’ reaches Dy, it

is easy to see that the condition of Lemma 5 is satisfied,
proving the theorem. []

A similar theorem holds for general work-conserving schedul-
ing algorithms, extending the outer sum to all tasks 7.
A schedulability test for systems scheduled with global
fixed-priority is easily derived by computing Ry’ for each
task Ty in priority order, starting from the highest priority

5Asin [7], we are not taking advantage of the fact that carry-
in and carry-out contributions may be less dense than in the
considered scenario when there is some segment o; ; with a
parallelism m; ; greater than the number of processors m.

one, and checking whether R¥® < D, for all tasks. If not, the
test is not able to guarantee the schedulability of the system.
Note that, updating response time upper bounds in priority
order allows optimally exploiting Theorem 3, since every
task can use the most updated response times of the higher
priority tasks, leading to smaller inter-task interferences.

5.5 Complexity

The complexity of the proposed response-time analysis is
pseudo-polynomial in the task parameters, as is the origi-
nal response-time analysis for sequential task sets presented
in [8]. However, with respect to the sequential analysis, an
additional s; term has to be considered to account for the
sliding window technique that repeats the workload com-
putation for all segment starting times of the carry-in and
carry-out jobs.

To obtain a faster analysis, a simple method is to consider
the complete execution of the carry-in and carry-out job
instances. To do that, it is sufficient to replace /Wf (L) in
Theorem 3 with the following term:

W;’(L)zq%’:gho S Py (15)

Vijimg j>p

As we will show in the experimental section, this method
allows obtaining a faster worst-case response time computa-
tion without significant schedulability losses.

6. EVALUATION

This section presents the simulation results to evaluate
the behaviour of our schedulability analysis, comparing it to
other approaches existing in the literature. We only show
the results for the implicit deadline case, which are however
representative of the general behaviour. Concerning the sim-
ulation environment, we use a similar setting as in [7]. We
start by generating a task set with m tasks, creating new
task sets by adding a new task to the previous one until
the task set utilization exceeds the number of processors.
The above procedure is repeated until 40,000 task sets are
generated.

The percentage of parallel tasks in the task set is con-
trolled by a parameter that generates a random number from
0% to 100%. Periods of sequential tasks are uniformly gen-
erated in [100,1000], with C; uniformly chosen from [1, T3].
For parallel tasks, the number of segments s; is uniformly
generated in [1,5]; the number of threads per segment m; ;
is uniformly generated in the interval [1,3m/2]; the worst-
case execution times of the threads in each of the segments
is uniformly chosen in the interval [1,T;/s;]; periods are uni-
formly generated in [100, 10000].

For the generated task sets, we compare the number of
schedulable task sets detected by our analysis (PAR-RTA)
with the approach proposed in [7], denoted as PAR-EDF. In
the same paper, the authors compare their test with other
existing approaches that use a decomposition technique to
schedule parallel tasks, and show that PAR-EDF outper-
forms all of them. We also show the performance of the
faster method (PAR-RTA-UP) presented in Section 5.5 that
uses the workload upper bound in Equation (15).

Figure 7a shows the results for m = 4. Both our ap-
proaches clearly outperform PAR-EDF, detecting 230% more
schedulable task sets. Interestingly, the faster method using
the simplified upper bound has a performance very similar

to the complete method (within 1%)”. Increasing the num-
ber of processors, the situation is similar. Figure 7b shows
the case with m = 8. While the number of schedulable task
sets detected by all tests decreases, the relative performances
remain the same.

7. CONCLUSION

Parallel task models are becoming important in the real-
time systems community due to the recent shift to multi and
many-core architectures, as well as the increase in the ubig-
uity of parallel programming models and frameworks. This
paper contributes by filling the schedulability gap of syn-
chronous parallel tasks by presenting an improved schedula-
bility analysis for globally scheduled fixed-priority systems.

More specifically, a response-time analysis has been pro-
posed for work-conserving schedulers, detecting the worst-
case scenarios leading to the largest possible interference. A
first test based on a sliding window technique and carry-out
decomposition has been proposed. Then, a simplified test
has been presented with a smaller computational complex-
ity and comparable performance. Both tests are shown to
significantly improve over the state of the art, in terms of
number of schedulable task sets detected among randomly
generated workloads.

Different future works are foreseen. We believe that the
analysis could be refined by reducing the number of carry-in
instances to consider, exploiting techniques presented in [22]
for the sequential task model. Also, we intend to extend the
response-time analysis framework presented in this paper
to other task models (DAG-based, arbitrary deadlines, etc.)
and scheduling policies, including global EDF.

8. ACKNOWLEDGMENTS

This research work was partially supported by National
Funds through FCT (Portuguese Foundation for Science and
Technology) and by ERDF (European Regional Develop-
ment Fund) through COMPETE (Operational Programme
"Thematic Factors of Competitiveness’), within projects Ref.
FCOMP-01-0124-FEDER-037281 (CISTER), ref. FCOMP-
01-0124-FEDER-020447 (REGAIN); by the European Union,
under the Seventh Framework Programme (FP7/2007-2013),
grant agreement n° 611016 (P-SOCRATES); also by FCT
and by ESF (European Social Fund) through POPH (Por-
tuguese Human Potential Operational Program), under PhD
grant SFRH / BD / 88834 / 2012.

9. REFERENCES

[1] K. Asanovic et al., “The landscape of parallel
computing research: A view from berkeley,” EECS
Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2006-183, Dec 2006. [Online].
Available: http://www.eecs.berkeley.edu/Pubs/
TechRpts/2006/EECS-2006-183.html

[2] R. L. Davis and A. Burns, “A survey of hard real-time
scheduling for multiprocessor systems,” ACM Comput.
Surv., vol. 43, no. 4, pp. 35:1-35:44, Oct. 2011.

[3] K. Lakshmanan, S. Kato, and R. R. Rajkumar,
“Scheduling parallel real-time tasks on multi-core

"We found a similar result for sequential task sets, compar-
ing the test in [8] with a pessimistic version that accounts
for a complete carry-out contribution.

So0

a00

o0

EO0

G00

400

Feasible task sets

300

200

100

=

Schedulability Resultst m = 4, task sets = 40000
T

FOR-EDF
E i — -+~ PAR-RTF-UP
F* *-PAR-RTA

Feazible task sets

EO0

500

400 -

w

=

2
T

n

2

2
T

100

Schedulability Results: m = 8, task sets = 40000
T T T T T

% PRR-EDF
- + = PAR-RTA-UP
y F * -
w4 PER-RTH

!

Utilization

(a)m=14

A
i ot I I !
2 3 4 5 B 7 a

Utilization

(b) m =38

Figure 7: Number of schedulable task sets detected by the considered tests.

processors,” in Proceedings of the 2010 31st IEEE
Real-Time Systems Symposium, ser. RTSS 10, 2010,
pp. 259-268.

A. Saifullah, K. Agrawal, C. Lu, and C. Gill,
“Multi-core real-time scheduling for generalized
parallel task models,” Real-Time Systems Symposium,
IEEE International, vol. 0, pp. 217-226, 2011.

D. Lea, “A java fork/join framework,” in Proceedings
of the ACM 2000 conference on Java Grande, ser.
JAVA ’00, 2000, pp. 36-43.

OpenMP, “Openmp,” http://openmp.org/, Apr. 2014.
H. S. Chwa, J. Lee, K.-M. Phan, A. Easwaran, and

I. Shin, “Global EDF schedulability analysis for
synchronous parallel tasks on multicore platforms,” in
ECRTS, 2013, pp. 25-34.

M. Bertogna and M. Cirinei, “Response-time analysis
for globally scheduled symmetric multiprocessor
platforms,” in Real-Time Systems Symposium, 2007.
RTSS 2007. 28th IEEE International, 2007, pp.
149-160.

P. Axer et al., “Response-time analysis of parallel
fork-join workloads with real-time constraints,” in
Real-Time Systems (ECRTS), 2013 25th Euromicro
Conference on, July 2013, pp. 215-224.

J. Goossens and V. Berten, “Gang FTP scheduling of
periodic and parallel rigid real-time tasks,” CoRR, vol.
abs/1006.2617, 2010.

C.-C. Han and K.-J. Lin, “Scheduling parallelizable
jobs on multiprocessors,” in IEEE Real-Time Systems
Symposium, 1989, pp. 59-67.

M. Drozdowski, “Real-time scheduling of linear
speedup parallel tasks,” Inf. Process. Lett., vol. 57,
no. 1, pp. 35-40, Jan. 1996.

G. Manimaran, C. S. R. Murthy, and

K. Ramamritham, “A new approach for scheduling of
parallelizable tasks in real-time multiprocessor
systems,” Real-Time Syst., vol. 15, no. 1, pp. 39-60,
Jul. 1998.

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

S. Kato and Y. Ishikawa, “Gang EDF scheduling of
parallel task systems,” in Proceedings of the 2009 30th
IEEFE Real-Time Systems Symposium, ser. RTSS ’09,
2009, pp. 459-468.

K. Jansen, “Scheduling malleable parallel tasks: An
asymptotic fully polynomial-time approximation
scheme,” in Proceedings of the 10th Annual European
Symposium on Algorithms, ser. ESA ’02, 2002, pp.
562-573.

S. Collette, L. Cucu, and J. Goossens, “Integrating job
parallelism in real-time scheduling theory,” Inf.
Process. Lett., vol. 106, no. 5, pp. 180-187, May 2008.
M. Korsgaard and S. Hendseth, “Schedulability
analysis of malleable tasks with arbitrary parallel
structure,” Real-Time Computing Systems and
Applications, International Workshop on, vol. 1, pp.
3-14, 2011.

Q. Wang, , and G. Parmer, “Fjos: Practical,
predictable, and efficient system support for fork/join
parallelism,” in Proceedings of the 2014 IEEE 20th
Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2014.

W. A. Horn, “Some simple scheduling algorithms,”
Nawval Research Logistics Quarterly, vol. 21, no. 1, pp.
177-185, 1974.

R. Ha and J. Liu, “Validating timing constraints in
multiprocessor and distributed real-time systems,” in
Proceedings of 14th IEEE International Conf.
Distributed Computing Systems, June 1994, pp.
162-171.

S. Baruah and A. Burns, “Sustainable scheduling
analysis,” in Proceedings of the IEEE Real-time
Systems Symposium, December 2006.

N. Guan, M. Stigge, W. Yi, and G. Yu, “New response
time bounds for fixed priority multiprocessor
scheduling,” in Real-Time Systems Symposium, 2009,
RTSS 2009. 30th IEEE, 2009, pp. 387-397.

