

Response-Time Analysis of Fork/Join Tasks
in Multiprocessor Systems

Technical Report

CISTER-TR-130701

Version:

Date: 07-09-2013

Cláudio Maia

Luís Nogueira

Luis Miguel Pinho

Marko Bertogna

Technical Report CISTER-TR-130701 Response-Time Analysis of Fork/Join Tasks in Multiprocessor Systems

© CISTER Research Unit
www.cister.isep.ipp.pt 1

Response-Time Analysis of Fork/Join Tasks in Multiprocessor Systems
Cláudio Maia, Luís Nogueira, Luis Miguel Pinho, Marko Bertogna

CISTER Research Unit

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail:

http://www.cister.isep.ipp.pt

Abstract
This paper proposes a model to analyse the response-time of parallel real-time tasks. The presented model is
based on the fork/join model which is internally used by user-level frameworks to exploit the parallelism provided
by the underlying architecture. The model considers tasks with fixed priorities and allows real-time jobs to
generate an arbitrary number of parallel threads. Each parallel thread is scheduled at runtime by taking into
account the timing properties of the job that spawns it.

Response-Time Analysis of Fork/Join Tasks in Multiprocessor Systems

Cláudio Maia, Luís Nogueira, Luis Miguel Pinho
CISTER-ISEP / INESC-TEC

Porto, Portugal

Email:{crrm, lmn, lmp}@isep.ipp.pt

Marko Bertogna
University of Modena

Modena, Italy

Email:{marko.bertogna}@unimore.it

Abstract—This paper proposes a model to analyse the

response-time of parallel real-time tasks. The presented model

is based on the fork/join model which is internally used by user-

level frameworks to exploit the parallelism provided by the

underlying architecture. The model considers tasks with fixed

priorities and allows real-time jobs to generate an arbitrary

number of parallel threads. Each parallel thread is scheduled

at runtime by taking into account the timing properties of the

job that spawns it.

Keywords-Parallel Task Model, Job-level Parallelism, Real-

Time

I. INTRODUCTION

Nowadays most of the computer devices (e.g. PC, tablet,
mobile phone) rely on multiple processors, and future gen-
erations of processors are expected to integrate thousands
of simple processors into a single chip [1]. The turning
point in the computer industry begun in 2001 when Sun
Microsystems and IBM (in a separate effort) produced the
dual-core processors, and later on in 2006 this type of
processors became a mainstream technology powered by
Intel and AMD.

The causes behind the paradigm shift are mostly con-
cerned with the physical limitations of computer chips as
an increase in the operating frequencies of the chips leads
to an increase in power consumption as well as temperature.
Therefore, and to overcome such limitations, instead of
increasing the operating frequencies of the chips, chip manu-
facturers increased the number of computing units operating
in parallel at lower frequencies.

The real-time and embedded systems domain was no
exception to this shift. Industries such as automotive,
aerospace, and avionic, design complex systems that require
powerful hardware capable of supporting their functional
and non-functional software requirements. It is therefore ex-
tremely important for each of these industries to incorporate
new and state-of-the-art multiprocessor architectures in their
products, not only because of the added computing capacity
but also due to the size, weight, and power constraints of
the hardware itself.

Traditional real-time applications are scheduled in a mul-
tiprocessor system by well-studied approaches, as it has been
shown in a recent survey [2]. Nonetheless, the paradigm shift

Figure 1. Job tree (DAG) of a job of Task ⌧i

revealed, among others, that the problem of scheduling real-
time tasks is no longer a problem of scheduling sequential
tasks (i.e. without intra-task parallelism). New models for
computing real-time tasks that consider job-level parallelism

or intra-task parallelism should be employed to maximise
the performance of the applications, and therefore the utili-
sation of the available processing capacity.

Frameworks such as Java Fork/Join [3] or OpenMP [4]
help the application programmer divide the applications into
sets of blocks which can then be scheduled in parallel in a
multiprocessor architecture. Nevertheless, such parallelisa-
tion brings problems when application’s timing constraints
are considered, mainly because existing models are still
restrictive (e.g. [5] and [6] transform a parallel task into
a sequential task in order to apply well-known techniques
used in traditional models).

The fork/join model is a model used by the above-
mentioned frameworks to divide the applications into small
blocks. In its basic form, the job of a task is composed
of two sequential parts and a parallel part, as depicted in
Figure 1. The first sequential part spawns several smaller
units of execution that can be executed in parallel in order
to exploit the inherent parallelism offered by multiprocessor
architectures (in this paper these units are named parallel

jobs or p-jobs). The number of parallel parts can be arbitrary
large, as long as each parallel part is preceded by a sequential
part and succeeded by another sequential part.

In this paper, the schedulability analysis of fork/join tasks
from a response-time perspective is covered. We propose the

decomposition of a fork/join task into threads of execution,
in order to improve the computation of the interference
of each task on itself and on lower priority tasks. The
proposed task model is composed of fixed-priority tasks
where each real-time task can be a fork/join task, or a
traditional sequential real-time task. The model assumes the
graph of each task is known a priori, and the number of
parallel jobs generated by each task can be greater than the
number of cores in the platform.

The remainder of this paper is organised as follows.
Section II presents the state of the art of parallel real-time
tasks. Section III describes the system model. Section IV
presents the possible approaches to perform response-time
analysis of fork/join tasks. Finally, section V concludes the
paper and presents the future work.

II. RELATED WORK

Instead of considering a pure sequential task model,
we consider the execution of parallel real-time tasks, i.e.
job-level parallelism is allowed. In the domain of job-
level parallelism, Goossens and Berten in [7] redefined a
classification for different types of parallel tasks. Following
this classification a job may be classified as rigid, moldable
or malleable. A job is said to be rigid if the number
of processors assigned to it is determined a priori, and
this number does not change throughout job execution. A
job is said to be moldable if the number of processors
assigned to it is determined by the scheduler, but cannot
change dynamically. Finally, a job is said to be malleable
if the number of processors assigned to it is determined by
the scheduler at runtime, and can change during the job’s
execution. Hence, a task is said to be: rigid if all of its
jobs are rigid; moldable if all of its jobs are moldable; and
malleable if all of its jobs are malleable. According to this
classification, the parallel task model presented in this paper
is considered to be composed of malleable tasks.

Malleable tasks were covered by Jansen [8], Collette et al.
[9], and Korsgaard and Hendseth [10]. Jansen [8] focused on
minimizing the makespan but without considering real-time
constraints. Collette et al. [9] studied the problem of global
scheduling of sporadic task systems on multiprocessors
considering job-level parallelism. Korsgaard and Hendseth
[10] proposed a sustainable schedulability test for malleable
tasks scheduled with global Earliest Deadline First (EDF).

More recently, Lakshmanan et al. [5] and Saifullah et
al. [6] focused on the study of scheduling fork/join tasks.
Lakshmanan et al. [5] studied the scheduling of periodic
real-time tasks that follow a fork-join structure on multipro-
cessor systems. In their proposed model, each parallel task
is divided into a series of sequential and parallel segments,
where all parallel segments must have the same number of
threads and this number cannot be greater than the number
of processors in the system. Moreover, the authors propose
the task stretch transform algorithm in order to schedule

fork/join tasks using traditional techniques. Saifullah et al.
[6] present a synchronous task model for the scheduling of
parallel real-time tasks with a fork-join structure. This model
does not have any limitations on the number of parallel
threads per segment and therefore is more general than
[5]. The authors also proposed an algorithm to decompose
the tasks into sequential tasks in order to use traditional
schedulability analysis approaches.

III. SYSTEM MODEL

We consider the problem of scheduling independent jobs
on a system that comprises m identical processors with
uniform memory access. In our model, a job is allowed to
execute in more than one core at the same instant. A fully
preemptive system is assumed where any job executing may
be preempted at any instant and resumed later without any
cost. At any given instant, the jobs with the highest priority
among the ready jobs are the ones executing in the cores.

Let ⌧ = {⌧1, ⌧2, ..., ⌧n} denote the set of n periodic tasks.
Each task ⌧i in the task set ⌧ is characterised by a period Ti,
a worst-case execution time requirement Ci, and a relative
deadline Di. Each task releases an infinite sequence of jobs
at periodic time intervals separated by at least Ti time units.
Each job has an implicit deadline equal to Di = Ti and a
worst-case execution time requirement equal to Ci.

During execution, a job of ⌧i may spawn a set of k

"sub-jobs", denoted by parallel jobs or p-jobs, pJi =
{pJi,1, pJi,2, ..., pJi,k}. The parallel jobs are sequential
threads that decompose the job’s workload so that its ex-
ecution can be performed in parallel, therefore having the
advantage of being executed in different processors in the
same time instant (see Figure 1). Thus, each job has a set
of instructions that are executed sequentially, and may have
a set of instructions that can be executed in parallel upon m

processors, i.e. a sequential part and a parallel part.
Note that the worst-case execution time Ci is equivalent to

the time it takes to execute a job of ⌧i in a single processor
without preemption, i.e. executing all p-jobs sequentially.
Let CSeq

i,s be the sequential worst-case execution time of the
s-th sequential part of task ⌧i, and C

Par
i,p be the worst-case

execution time of the p-th p-job spawned by task ⌧i . Then,
Ci =

Ph
s=1 C

Seq
i,s +

Pk
p=1 C

Par
i,p , where h and k are the

number of sequential and parallel parts of ⌧i, respectively.
Each p-job instance pJi,p inherits the timing properties

from the job that spawns it. Thus, the p-th instance of a
p-job is characterised by the same period Ti and relative
deadline Di of the parent job. In this model, parallel jobs
are independent, and with the exception of the processors,
there are no other shared resources or critical sections.

The task structure is represented by a directed acyclic
graph (DAG), denoted as Gj = (V,E), as depicted in
Figure 1. Each element in the set of vertices V represents
the sequential parts of a job and the p-jobs spawned during

the execution. Each vertex has an associated worst-case ex-
ecution time. Each element in the set of edges E represents
the communication path between two vertices, vi and vj in
the set V , i.e. vi, vj 2 V . The proposed model does not take
into account any communication cost between any two nodes
in the graph. Nevertheless, a partial order in the execution
is imposed which is deemed correct from the relation that
exists between a job and its spawned p-jobs.

The minimum execution time Pi of a job j is defined to
be the longest execution path in the task graph from the root
vertex to the leaves, i.e. the critical path length. Formally, Pi

is defined as Pi =
P

v2Ll
max(Ci,v), l = 0, 1, ..., L, where

v represents the v

th vertex that is part of level Ll and L
denotes the number of levels in the graph (see Figure 1).

The utilisation ui of task ⌧i is the ratio between the task’s
execution time and period, ui = Ci

Ti
. For the task set ⌧ ,

the total utilisation factor is defined as U(⌧) =
Pn

i=1
Ci
Ti

.
For implicit-deadline sequential task sets, a necessary and
sufficient condition for feasibility is U(⌧)  m ([11]).
Nevertheless, for fork/join tasks this condition is only neces-
sary [5]. It is important to mention that the fork/join model
allows a task to have a utilisation larger than 100% while
assuring that the cumulative utilization of the task set is no
greater than m. This property prevents the serialisation of
certain task sets to the implicit-deadline sequential case, as
it would deem these task sets unschedulable.

IV. RESPONSE-TIME ANALYSIS

The response-time of a job is the amount of time that
elapses between the release of the job and its completion
time. From a real-time systems perspective, guaranteeing
that the response-time of the tasks in the task set does not
exceed their deadlines for all possible arrivals of the tasks,
assures that the system is schedulable.

Lakshmanan et al. [5] analyse fork/join tasks from a
feasibility perspective and provides the best-case and worst-
case fork/join task structure. The best-case task structure is
composed of m p-jobs which can be executed in parallel by
fully utilising the m cores provided by the platform, with a
cumulative utilisation of the task set that does not exceed m.
The worst-case structure is based on infeasible task sets with
a cumulative utilization closer to 100%, regardless of the
number of processors present in the platform. An example
of such task sets is given by taking a fork/join task with an
implicit deadline equal to the minimum execution time and a
short parallel region spanning all the cores in the platform;
when this task is scheduled along with a sequential task with
an arbitrarily small utilization and a deadline equal to the
parallel region of the fork/join task, a deadline can be missed
with a cumulative utilisation close to 100%.

From a response-time analysis perspective, the worst-case
response-time of a fork/join task does not only depend on the
interference caused by other higher priority jobs, but also on
the precedence constraints between serial and parallel stages

Figure 2. Decomposition approach example

of the task itself, as well as on the degree of parallelism of
each stage and of the architecture.

In this paper we propose a global fixed-priority approach
for fork/join tasks in which all the ready jobs/p-jobs are
inserted in a global queue from where m processors pick
the highest priority m jobs/p-jobs. In order to perform
the response-time analysis of such tasks, we propose two
possible approaches. The first approach considers for each
job its execution time and the interference that it suffers
from higher priority tasks. If the system is schedulable, the
interference is bounded and the job execution time plus the
imposed interference is always less than or equal to the job’s
deadline. If a job finishes its execution before its deadline,
the available slack, given by the difference between the
deadline Di and the response time Ri, can be used to refine
the computation of the worst-case interfering workload for
other tasks, similarly to the method presented for sequential
task sets in [12]. Moreover, a further refinement for fork/join
tasks can be given by examining the response-time of each
parallel stage of a task, allowing a tighter estimation of the
interference imposed by such a task.

A second approach to response-time analysis is to con-
sider a novel decomposition approach of a fork/join task,
as depicted in Figure 2. In this approach, the fork/join task
is decomposed into a set of threads of execution. There is
a main thread of execution (Th1 in the example) which
is composed of all the sequential parts and the worst-case
parallel part of each level Li with an execution time of Pi.
The remaining threads of execution (Th2 and Th3 in the
example) are composed of sets of parallel jobs belonging to
different levels in the graph, picking one parallel job from
the remaining ones in each level Li. The total number of
threads of execution is given by the maximum out degree
of all the sequential nodes in the graph. The algorithm that
performs the decomposition is depicted in Algorithm 1.

Once the task decomposition into different threads is
done, classic methods to bound the interfering contribution
of each sequential thread can be applied, e.g., limiting the
carry-in contributions to at most m�1 threads [13], limiting
each thread interference to a task ⌧i to at most Di �Pi +1
time-units [14], etc.

V. CONCLUSION

In this paper, we presented a model to analyse the
response-time of fixed-priority fork/join tasks. Different

Algorithm 1 Task decomposition algorithm
vi RootV ertex(Gj)
function COMPUTE THREADS(vi)

Create new list

backtrackNode vi

if vi not visited then

vi visited

add vi to list

V isitedNodes V isitedNodes+ 1
end if

for each vj in Gj such that vi, vj is an edge

and vj is ordered in nonincreasing order by WCET

do

if vj not visited then

add vj to list

vj visited

vi vj

V isitedNodes V isitedNodes+ 1
else

if inDegree of vj > 1 then

vi vj

end if

end if

end for

if V isitedNodes < |V | then

Compute threads (backtrackNode)
end if

end function

methods are proposed to improve the response-time analysis
of such task systems, including the decomposition of each
fork/join task into sequential threads of execution. Future
work includes a complete schedulability analysis of such
tasks, considering the worst-case situations that lead to the
largest possible interference for each task. Moreover, we
believe the proposed model can be easily adapted to support
strict fork/join tasks, where nested parallelism is allowed,
and other general parallel task models.

ACKNOWLEDGMENT

This work was partially supported by National Funds
through FCT (Portuguese Foundation for Science and Tech-
nology) and by ERDF (European Regional Development
Fund) through COMPETE (Operational Programme ’The-
matic Factors of Competitiveness’), within projects Ref.
FCOMP-01-0124-FEDER-022701 (CISTER), ref. FCOMP-
01-0124-FEDER-020447 (REGAIN) and ref. FCOMP-01-
0124-FEDER-012988 (SENODS); also by FCT and by
ESF (European Social Fund) through POPH (Portuguese
Human Potential Operational Program), under PhD grant
SFRH/BD/88834/2012.

REFERENCES

[1] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis,
P. Husbands, K. Keutzer, D. A. Patterson, W. L. Plishker,
J. Shalf, S. W. Williams, and K. A. Yelick, “The landscape
of parallel computing research: A view from berkeley,”
EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2006-183, Dec 2006. [Online].
Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/
EECS-2006-183.html

[2] R. I. Davis and A. Burns, “A survey of hard real-time
scheduling for multiprocessor systems,” ACM Comput. Surv.,
vol. 43, no. 4, pp. 35:1–35:44, Oct. 2011.

[3] D. Lea, “A java fork/join framework,” in Proceedings of the

ACM 2000 conference on Java Grande, ser. JAVA ’00, 2000,
pp. 36–43.

[4] OpenMP, “Openmp,” http://openmp.org/, Jun. 2011.

[5] K. Lakshmanan, S. Kato, and R. R. Rajkumar, “Scheduling
parallel real-time tasks on multi-core processors,” in Proceed-

ings of the 2010 31st IEEE Real-Time Systems Symposium,
ser. RTSS ’10, 2010, pp. 259–268.

[6] A. Saifullah, K. Agrawal, C. Lu, and C. Gill, “Multi-core
real-time scheduling for generalized parallel task models,”
Real-Time Systems Symposium, IEEE International, vol. 0,
pp. 217–226, 2011.

[7] J. Goossens and V. Berten, “Gang ftp scheduling of periodic
and parallel rigid real-time tasks,” CoRR, vol. abs/1006.2617,
2010.

[8] K. Jansen, “Scheduling malleable parallel tasks: An asymp-
totic fully polynomial-time approximation scheme,” in Pro-

ceedings of the 10th Annual European Symposium on Algo-

rithms, ser. ESA ’02, 2002, pp. 562–573.

[9] S. Collette, L. Cucu, and J. Goossens, “Integrating job paral-
lelism in real-time scheduling theory,” Inf. Process. Lett., vol.
106, no. 5, pp. 180–187, May 2008.

[10] M. Korsgaard and S. Hendseth, “Schedulability analysis of
malleable tasks with arbitrary parallel structure,” Real-Time

Computing Systems and Applications, International Workshop

on, vol. 1, pp. 3–14, 2011.

[11] W. A. Horn, “Some simple scheduling algorithms,” Naval

Research Logistics Quarterly, vol. 21, no. 1.

[12] M. Bertogna and M. Cirinei, “Response-time analysis for
globally scheduled symmetric multiprocessor platforms,” in
Real-Time Systems Symposium, 2007. RTSS 2007. 28th IEEE

International, 2007, pp. 149–160.

[13] N. Guan, M. Stigge, W. Yi, and G. Yu, “New response time
bounds for fixed priority multiprocessor scheduling,” in Real-

Time Systems Symposium, 2009, RTSS 2009. 30th IEEE, 2009,
pp. 387–397.

[14] M. Bertogna, M. Cirinei, and G. Lipari, “Improved schedula-
bility analysis of edf on multiprocessor platforms,” in Real-

Time Systems, 2005. (ECRTS 2005). Proceedings. 17th Eu-

romicro Conference on, 2005, pp. 209–218.

