
 CISTER Research Centre/INESC-TEC

ISEP, Polytechnic Institute of Porto

Rua Dr. Antº Bernardino de Almeida, 431

4200-072 PORTO Portugal

tel: +351-228340502

fax: +351-228340509

http://www.cister.isep.ipp.pt

cister-info@isep.ipp.pt

Response-Time Analysis of Fork/Join Tasks in

Multiprocessor Systems

Cláudio Maia, Luís Nogueira, Luis Miguel Pinho, and Marko Bertogna

{clrrm, lmn, lmp}@isep.ipp.pt, {marko.bertogna}@unimore.it

• Schedulability analysis of fork/join tasks considering the largest

interference possible

• Extend previous analysis to consider the following restrictions

• Multicore platforms and intra-task parallelism

• Most multiprocessor real-time scheduling results are focused on

sequential tasks

• Parallel models are still restrictive in nature (static, less general)

• Task decomposition enables the application of known schedulability

analysis techniques, but parallelisation is not supported by default

• Schedulability analysis of fork/join tasks from a response-time

perspective

• Capture real-time behaviour of parallel applications which can be

modelled as real-time fork-join tasks

• Scheduling of tasks that inherently present a parallel behaviour

CISTER, project FCOMP-01-0124-FEDER-022701

REGAIN, project FCOMP-01-0124-FEDER-020447

SENODs, project FCOMP-01-0124-FEDER-012988

PhD Grant SFRH/BD/88834/2012

Co-financed by:

• Emerged as a promising technique for parallel

programming

• Programmers may divide applications into smaller

blocks that can be assigned to CPUs

• A job is a sequence of several regions - sequential

and parallel

• There is no restriction on the number of parallel

blocks in a parallel region

• Decompose the parallel task into a set of threads

• The main thread (Th1) is composed of all the sequential parts and the

worst-case parallel part of each level Li

• The remaining threads (Th2 and Th3) are composed of sets of parallel

jobs belonging to different levels in the graph

• Once the task decomposition into different threads is accomplished,

classical methods to bound the interfering contribution of each

sequential thread can be applied

• Slack can be used to refine the computation of the worst-case interfering

workload for other tasks

• By examining the response-time of each parallel stage of a task it is

possible to achieve a tighter estimation of the interference imposed by such

a task

• Extend work to strict fork/join tasks where nested parallelism is

allowed as well as other general parallel task models

• Precedence constraints among tasks

• Migration costs and preemption costs

