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Abstract—Measurement-Based Probabilistic Timing Analysis
(MBPTA) produces Probabilistic Worst-Case Execution Times
(pWCETs), i.e., WCET estimates associated with known low
exceedance probabilities. Despite applicability and goodness-of-
fit tests being used within MBPTA, any method based on the
sampling of a population is subject to a degree of uncertainty.
The acceptance of MBPTA in industrial engineering processes de-
pends on obtaining enough evidence that the produced pWCETs
are indeed reliable. In this paper we propose a statistical
hypothesis test to check the reliability of pWCET estimates, done
at a specified significance level. We assume as null hypothesis that
the pWCET estimate is reliable, and as alternative hypothesis that
it is optimistic. Both Type I and Type II errors are considered.
The reliability test is based on a binomial experiment and it
is complementary to applicability and goodness-of-fit tests. We
evaluated the test using multiple synthetic and real-hardware
execution time samples, and applied it on 20 pWCET estimates
generated for each of them. The combined use of the proposed
reliability test with applicability and goodness-of-fit tests could
detect most of the knowingly unreliable estimates on synthetic
samples. Similar behaviour was observed for real-hardware
samples, evidencing the test’s usefulness for selecting pWCET
estimates with increased confidence.

Index Terms—Real-time systems, timing analysis, worst-case
execution time, embedded software.

I. INTRODUCTION

Real-Time Systems (RTS) are subject to timing constraints,

and vary greatly in scale, complexity and criticality. Timing

constraints in these systems are represented as deadlines for

completing software tasks, which must be met even in the

worst-case scenario. A fundamental design step is to calculate

upper-bound estimates of the longest possible time taken by

the target hardware to execute each task, i.e., to determine the

tasks’ Worst-Case Execution Time (WCET).

Multiple methods exist for the determination of WCET upper

bounds [1]. Static analysis generates reliable results through

a detailed inspection of the task’s code and of the hardware

architecture, but the low time composability of current programs

executing on complex modern processor architectures may

exclude its use in practice.

This work has been partially supported by CAPES, The Brazilian Agency
for Higher Education, project PrInt CAPES-UFSC “Automation 4.0”, and
by FCT/MCTES (PIDDAC), The Portuguese Foundation for Science and
Technology, with CISTER Research Unit Base Funding (UIDB/04234/2020).

Measurement-based methods analyse tasks’ execution times

effectively yielded at run time, hence reducing analysis efforts

and being potentially applicable to complex architectures. But

these methods require setting safety margins to account for

possibly unobserved timing events.

Measurement-Based Probabilistic Timing Analysis (MBPTA)

determines WCET upper bounds based on the statistical

analysis of execution time measurements [2]. It applies Extreme

Value Theory (EVT), a statistical framework designed for

estimating the probability of unusual events by modelling

extreme deviations from the typical behaviour of the analysed

phenomena [3]. MBPTA produces Probabilistic Worst-Case

Execution Times (pWCETs), i.e., WCET estimates that have

a probability of being exceeded and that probability can, in

principle, be set to arbitrarily low values.

For instance, the electric power industry and the automotive

industry use mission-critical equipment whose correct timing

behaviour is usually assessed only by conventional testing. Due

to the complexity of the hardware and software involved, it

may not be feasible to use classic static timing analysis. But the

use of MBPTA in such scenarios might be feasible if sufficient

evidence of its correctness is provided.

The application of EVT in the context of MBPTA requires

fitting an adequate extreme value distribution to the maximum

execution times measured while the task is executed on the

target hardware platform. This distribution is then used for

determining a pWCET (ǫ), where ǫ represents an associated

target exceedance probability. The proper application of EVT re-

quires the measurements to present certain statistical properties.

Also, the fitted model distribution must pass goodness-of-fit

tests regarding its adjustment to the actual measurements [3].

Despite the applicability and goodness-of-fit tests, any

method based on the sampling of a population is subject to a

degree of uncertainty. The acceptance of MBPTA in industrial

engineering processes depends on obtaining enough evidence

that the resulting pWCET is indeed reliable.

In this paper we define a statistical hypothesis test to check

the reliability of the resulting pWCET (ǫ). We assume that

proper applicability and goodness-of-fit tests were applied and

passed, so the null hypothesis is that pWCET (ǫ) is reliable,

i.e., the actual exceedance probability is lower than or equal

to ǫ. The alternative hypothesis is that pWCET (ǫ) is optimistic,



i.e., the actual exceedance probability is greater than ǫ.

The reliability test is based on modelling the exceedance of

a concrete pWCET (ǫ) estimate as a binomial experiment with

a validation sample. Our test is complementary to applicability

and goodness-of-fit tests. The test is done at a specified

significance level, which defines the probability of Type I error,

i.e., the probability of rejecting as unreliable a pWCET (ǫ) that

is actually reliable. The power of the test and the probability

of Type II error are also described.

The usefulness of the reliability test proposed in this paper is

illustrated with both synthetic and real-hardware examples. As

synthetic data we used 5 samples drawn from EVT-compliant

distributions [4], and generated 20 pWCET (ǫ) estimates for

each of them. The combined use of the reliability test with

applicability and goodness-of-fit tests could eliminate most

estimates that were known to be unreliable. When applied to

real-hardware measurements, the same evaluation procedure led

to similar behaviour regarding the pWCET estimates produced

using MBPTA, evidencing that the proposed test is useful for

selecting pWCET (ǫ) estimates with increased confidence for

use in engineering projects.

As an additional benefit, the proposed reliability test can

also be incorporated into the product for continuous execution

during the product’s lifetime within an early fault detection

system. To the best of the authors’ knowledge, this is the

first time that a statistical hypothesis test is used to assess the

reliability of pWCET estimates.

The remainder of the paper is organized as follows. Sec-

tion II presents the background of MBPTA and EVT and the

corresponding related work. Section III introduces statistical

hypothesis testing and its terminology and methods. Section IV

presents our core contribution, i.e., the use of a binomial

experiment to support a reliability test of pWCET estimates.

Section V introduces a second contribution, which is the use of

the statistical power of the test to characterize the probability

of the proposed test rejecting unreliable pWCET estimates.

Sections VI and VII validate the proposed approach on synthetic

tasks and on concrete functions executing on actual hardware.

Finally, Section VIII presents the concluding remarks.

II. BACKGROUND

MBPTA is a timing analysis technique that aims at de-

termining probabilistically reliable WCET bounds for real-

time tasks, through the statistical analysis of execution time

measurements. MBPTA applies EVT to measurements of the

execution time of the task running on its target environment. An

asymptotic distribution of extreme values is then adjusted to the

measurements and used to produce the bounds (see the surveys

[5] and [6]). WCET bounds produced by MBPTA – known

as pWCET (ǫ) – are composed of both an upper-bounding

value and a probability ǫ of that value being exceeded in any

individual execution of the task [5].

To apply EVT, observed execution times must be amenable to

representation as independent and identically distributed (i.i.d.)

random variables. Recent work [7] supports EVT applicability

as long as the measurements come from a stationary and

identical distribution and there is extremal independence.

The assumptions for EVT applicability can be tested using

several techniques ( [8], [9], [10] and [11]), such as:

• WW: Wald-Wolfowitz test of independence.

• TP: Turning Point test of randomness.

• LB2: Ljung-Box test of absence of correlation between

observed values with a lag of 2.

• LB10: Ljung-Box test with a lag of 10.

• KS: Kolmogorov-Smirnov test of identical distribution.

• AD1: Anderson-Darling test of identical distribution,

version 1 (adjusts for possibly different sample sizes).

• AD2: Anderson-Darling test of identical distribution,

version 2 (focuses on tail differences).

These tests are expected to produce so-called p-values

distributed in [0, 1], with failure indicated by a tendency to low

values (e.g., < 0.05). Results are presented as box and whisker

plots highlighting quantiles 0%, 5%, 50%, 95% and 100%.

The two main EVT approaches to sample extremes are Block

Maxima (BM) and Peaks over Threshold (POT), neither of

them dominating the other. In our work we use Block Maxima.

The application of EVT in the context of MBPTA using the

BM approach requires the following steps:

1) Measuring the execution time of several runs of the task.

2) Providing evidence that EVT can be applied.

3) Dividing the sample into identically sized blocks and

retaining only each block’s largest value.

4) Fitting a Generalized Extreme Value GEV(µ, σ, ξ) distri-

bution to the measurements by estimating its parameters

location (µ), scale (σ) and shape (ξ).

5) Testing goodness-of-fit between the measurements and

the fitted distribution, using e.g. plots or statistical tests.

6) Using the fitted model to obtain a pWCET (ǫ) value

with the desired exceedance probability ǫ (or vice-versa).

The uncertainty of any method based on sampling is

usually dealt with in statistical approaches by using confidence

intervals and confidence levels. Regarding MBPTA, the testing

of applicability conditions may leave lingering doubt [4].

Moreover, many fitting methods provide confidence intervals

for the parameters of the adjusted model distribution with

a confidence level that can be arbitrarily set, but which is

usually fixed to 95%. The actual value of those parameters

can occasionally fall outside the confidence interval. Also,

several statistical tests are affected by the sample size [12].

These factors may lead such methods to yield unreliable,

i.e. optimistic, pWCET estimates. In an RTS, a pWCET (ǫ)
estimate is reliable when its estimated exceedance probability

ǫ is equal to or greater than the actual (unknown) probability

of the analysed task yielding longer execution times.

When EVT is applied to natural phenomena, such as river

levels and rain volumes [13], the available data is limited

and the reliability of the exceedance probabilities of worst-

case estimates can be evaluated only with the passage of

time. However, it is possible to obtain much larger samples

with computing systems than what is achievable with natural



phenomena. Part of these samples can hence be used to assess

the reliability of a concrete pWCET (ǫ). Large samples have

been used before to evaluate the variability of pWCET estimates

[2], to assess pessimism [14] and to evaluate the impact of

block sizes and of POT thresholds [10].

The work in [15] evaluated the reliability of pWCET

estimates comparing the estimates with the known real WCET

of synthetic tasks executed on a controlled abstract platform.

The subsequent works in [16]–[18] evaluated reliability by

comparing pWCET (ǫ) with the HWM (High-Water Mark)

of a validation sample with n measurements, i.e., the highest

execution time value observed in a large sample. Although

a valid method, the reliability test described in this paper is

superior in the sense that, depending on the values of ǫ and

n, the observance of a few exceedances may not be sufficient

to deem a pWCET (ǫ) unreliable. Taking that into account,

the work in [19] defines an Exceedance Density Metric by

comparing the frequencies of exceedances to their expected

average value. In this paper we use a similar principle but

propose, instead, a proper statistical hypothesis test, explicitly

considering both Type I and Type II errors (Section III).

The work described in [4] analysed and compared statistical

tests for verifying the applicability requirements of EVT. In [20]

the authors present the statistical power estimation of several

goodness-of-fit tests for EVT distributions. Differently from

those two works, in this paper we test the final product of

MBPTA, i.e., pWCET estimates, and not the applicability

requirements or the goodness-of-fit of the model distribution.

The reliability test presented in this paper is complementary to

already established MBPTA applicability tests, e.g., stationarity,

independence, and goodness-of-fit tests.

Recent works [21] aim at leveraging the application of

MBPTA in the context of critical systems, a scenario in which

reliability tests such as the one proposed in this work may

prove particularly useful.

III. STATISTICAL HYPOTHESIS TESTS

A statistical hypothesis is a claim (assumption) about an

unknown parameter of a population [22]. H0 denotes the null

hypothesis, which is assumed to be true before the test. The

alternative hypothesis is denoted by H1 and it contradicts the

null hypothesis. The test is a decision rule used to decide

whether sufficient evidence exists on a sample to reject the

null hypothesis H0 in the population.

In statistical hypothesis testing we select a random sample

of the population, compute a sample statistic related to the

population parameter of interest, and then judge its consistency

with H0. The statistic computed for the sample is called the

test statistic. We compare the test statistic of the sample with

what would be expected in case H0 was actually true. H0

is rejected when it is very unlikely to observe such sample

statistic value if H0 is actually true.

Hypotheses are always statements about the population under

study, not statements about the sample. The truth or falsity

of a particular hypothesis can never be known with certainty

unless we can examine the entire population. For this reason,

hypothesis testing provides evidence, not certainty.

Two errors are inherent to statistical hypothesis tests:

• Reject H0 when it is actually true (Type I error).

• Do not reject H0 when it is actually false (Type II error).

We use α to represent the probability of Type I error in a

statistical hypothesis test, i.e., the probability of rejecting H0

when it is actually true. α is also called significance level. β

represents the probability of Type II error in a hypothesis test,

i.e., the probability of not rejecting H0 when it is actually false.

The power of the test is defined as (1−β). Table I summarizes

the error types in statistical hypothesis tests.

TABLE I
ERROR TYPES IN STATISTICAL HYPOTHESIS TESTS

Decision H0 True, H1 False H0 False, H1 True

Do Not Correct Decision Type II Error
Reject H0 (1− α) (β)

Reject H0

Type I Error Correct Decision
(α) (1− β)

The choice of α is always a decision of the analyst and it

reflects in part the confidence the analyst has in H0 before the

test. Let’s suppose the analyst has great confidence that H0

is true, due to previous experience and tests. The analyst will

reverse that belief and reject H0 if the hypothesis test provides

strong evidence that H0 is actually false, only. In this case, it is

appropriate to use a small α, such as 1%, 0.1% or even smaller

values. The analyst will reject H0 only if the test outcome has

a probability of, say, 0.1% or less of being observed, was H0

true. That will be the probability of rejecting a true H0, i.e.,

the probability of Type I error. At the same time, being α set

to such low values makes it easy failing to reject a false H0,

since the rejection requires very strong evidence.

Now let us suppose the analyst believes H0 is true, but with

a limited level of confidence. In this case, it is appropriate to

use the typical value of 5% for α. The analyst will reject H0

when the test outcome has a probability of 5% or less of being

observed, was H0 true. Now it becomes more likely to reject

a false H0, because the rejection criterion is less demanding.

In the context of RTS and MBPTA, when H0 is “pWCET (ǫ)
is reliable”, to reject a true H0 is undesirable but safe. On the

other hand, not rejecting a false H0 is unsafe. In this case an

α of 5% is more appropriate than, say, 0.1% or even 1%.

A statistical hypothesis test is called unilateral when the

rejection comes from the sample statistic being too big, or

being too small, but only one of them. Such test is also referred

to as one-tailed or one-sided. It is called a bilateral test when

the rejection comes from the sample statistic being either too

big or too small, any one will do. Such test is also referred to

as two-tailed or two-sided.

Let E(m) denote the random variable that represents the

test statistic, where m is some parameter used in the test. e is

a random variate, i.e., a particular outcome, of E(m). There

are two approaches to hypothesis testing.

The classic approach includes the following steps:



1) Define the significance level α.

2) Compute the critical value c, so there is a probability α

of obtaining a sample statistic at least as extreme as the

critical value c, assuming that the null hypothesis is true

(right-tailed test): α = P (E(m) ≥ c | H0).
3) Compute the statistic value e for the sample.

4) Compare e with the critical value c in order to decide

whether H0 should or should not be rejected.

5) We reject H0 when e ≥ c.

6) We do not reject H0 when e < c.

7) The critical region corresponds to the set of all values

of the sample statistic E(m) that will lead to rejection

of H0 at significance level α.

The p-value approach includes the following steps:

1) Define the significance level α.

2) Compute the statistic value e for the sample.

3) Compute the p-value, which consists of the probability

of obtaining a sample statistic at least as extreme as e,

assuming the null hypothesis is true (right-tailed test):

p-value = P (E(m) ≥ e | H0).
4) Compare the p-value with α in order to decide whether

H0 should or should not be rejected.

5) We reject H0 when p-value ≤ α.

6) We do not reject H0 when p-value > α.

7) We reject H0 when the obtained p-value is too small in

relation to α, i.e., when it is unlikely we would observe

that sample statistic value if H0 was true.

Both hypothesis testing approaches are equivalent, since

they lead to the same decision under the same conditions.

Throughout this work we use the p-value approach, because it

seems easier for the reader to understand its semantics.

A. Binomial Experiment

A statistical experiment is called a binomial experiment if

(i) it consists of n independent trials, (ii) each trial can lead

only to two possible outcomes: a success or a failure, and

(iii) the probabilities of a success and of a failure are given

respectively by p and q, such that p+ q = 1 [22].

In a binomial experiment, the probability of exactly k

successes being observed in n trials, assuming p and q are in

fact respected, can be calculated using the probability mass

function of the binomial distribution given by:

pmf(k, n, p) =

(

n

k

)

pk(1− p)n−k

Similarly, the probability of at most k successes being

observed in n trials can be calculated using its cumulative dis-

tribution function given by cdf(k, n, p) =
∑k

i=0
pmf(i, n, p).

Since the Binomial Distribution is discrete, we must observe

that cdf(k, n, p) = cdf(k − 1, n, p) + pmf(k, n, p).
The binomial experiment theory can be used to model and

reason about numerous phenomena, from which we use as

example the 100-year flood [23]. The 100-year flood is a flood

event whose probability of being equalled or exceeded in any

year is 0.01 (i.e. its exceedance probability is 1%). In this

regard, a very common misunderstanding that can be clarified

using the binomial experiment theory is that a 100-year flood

is likely to occur only once in every period of 100 years.

Despite it is correct to affirm that 100-year floods occur in

average once in every period of 100 years, by modelling the

phenomenon as a binomial experiment it can be shown that

the probability of at least one 100-year flood being observed

within a randomly chosen period of 100 years is actually

1− cdf(0, 100, 0.01) ≈ 63.40%. Moreover, the probability of

at least two of such events occurring within a 100-year window

is of approximately 26.42%. If we reject a 100-year flood

estimate just because it was exceeded twice in a period of 100

years, the chance of being wrong (Type I error, i.e. rejecting a

true null hypothesis) would be of 26.42%.

IV. RELIABILITY TEST BASED ON A

BINOMIAL EXPERIMENT

Assume pWCET ∗(ǫ) denotes the actual pWCET of a task

with an exceedance probability of ǫ, which is a value usually

unknown. Let pWCET j(ǫ) denote the j-th estimate of the

task’s pWCET with a target exceedance probability of ǫ, which

is obtained through the application of MBPTA. The superscript

j can be omitted when there is a single estimate.

Given the nature of the fitting process, it is unlikely that it

will produce an estimate pWCET (ǫ) that is exactly the value

of pWCET ∗(ǫ). Without loss of generality, let’s assume that

the actual exceedance probability of pWCET (ǫ) is ω, i.e.,

pWCET (ǫ) = pWCET ∗(ω). Observe that, by the definition

of pWCET, ω > ǫ ⇒ pWCET ∗(ω) < pWCET ∗(ǫ) and that

ω < ǫ ⇒ pWCET ∗(ω) > pWCET ∗(ǫ).
We say pWCET (ǫ) is optimistic (unreliable) when the

estimate is smaller than the actual value, i.e., pWCET (ǫ) <
pWCET ∗(ǫ). In this case we have pWCET (ǫ) =
pWCET ∗(ω) < pWCET ∗(ǫ) and ω > ǫ.

We say pWCET (ǫ) is reliable when the estimate is

greater than or equal to the actual value, i.e., pWCET (ǫ) ≥
pWCET ∗(ǫ). In this case we have pWCET (ǫ) =
pWCET ∗(ω) ≥ pWCET ∗(ǫ) and ω ≤ ǫ.

For example, suppose the execution times of a task are such

that there is a probability of 10−9 of it being greater than 1000

clock cycles, and a probability of 10−8 of it being greater

than 900 clock cycles, i.e., pWCET ∗(10−9) = 1000 and

pWCET ∗(10−8) = 900. These values are usually unknown.

Assume we are interested in the target exceedance probability

of ǫ = 10−8, so we applied MBPTA to this task and

obtained an estimate pWCET (10−8) = 1000. We say this esti-

mate is reliable because pWCET (10−8) ≥ pWCET ∗(10−8).
We also have pWCET (10−8) = pWCET ∗(10−9) ≥
pWCET ∗(10−8) and ω = 10−9 ≤ ǫ = 10−8.

In this paper we define a statistical test for the reliability

of pWCET (ǫ), where ǫ represents the targeted exceedance

probability. A pWCET estimate is considered reliable when its

targeted exceedance probability ǫ is higher than or equal to the

actual (unknown) probability ω of the task under analysis

yielding longer execution times. We assume the estimate

pWCET (ǫ) was obtained through a careful application of

EVT and that proper applicability and goodness-of-fit tests



were applied and passed. So, the null hypothesis H0 is that

pWCET (ǫ) is reliable:

H0: pWCET (ǫ) = pWCET ∗(ω), ω ≤ ǫ

H1: pWCET (ǫ) = pWCET ∗(ω), ω > ǫ

The alternative hypothesis H1 is that pWCET (ǫ) is opti-

mistic and the actual exceedance probability is greater than

ǫ. The rejection of pWCET (ǫ) comes only from it being too

small, so this is a unilateral test.

The pWCET exceedance problem can be modelled as a

binomial experiment, in which each trial is associated with an

individual execution of the task and is considered successful

(regarding the binomial experiment) if and only if pWCET (ǫ)
is exceeded in that particular execution. The experiment’s

success probability p hence equals the intended exceedance

probability ǫ of the pWCET estimate pWCET (ǫ).
By using a validation sample V of n measurements and

comparing each one with pWCET (ǫ), we have a set of n

independent trials of the experiment. Let e denote the number

of measurements that exceed pWCET (ǫ) in V . e is the test

statistic, i.e., the outcome of E(pWCET (ǫ)) for the test.

The proposed test’s p-value, explained in Section III, comes

from the right tail of the cumulative distribution function of a

Binomial Distribution with n trials and success probability ǫ,

considering e and greater values. It hence consists of the prob-

ability of observing at least e exceedances in n executions of

the analysed task assuming that pWCET (ǫ) = pWCET ∗(ǫ),
i.e. that pWCET (ǫ) is reliable. Formally:

p-value = P (E(pWCET (ǫ)) ≥ e | H0)

The probability of exactly e pWCET exceedances being

observed purely by chance in a sample of n execution times,

assuming that the exceedance probability p = ǫ is indeed

respected, can be calculated using pmf(e, n, p). Consequently,

the probability of at least e exceedances being observed purely

by chance under the same assumptions, i.e. the p-value of the

reliability test, is given numerically by:

p-value = 1− cdf(e− 1, n, p)

A. Definition of H0

The reliability test described in this paper associates H0

with “pWCET (ǫ) is reliable” and searches for evidence that

it is actually unreliable. One could ask why not defining H0

the other way around, that is “pWCET (ǫ) is unreliable,” and

then to search for evidence that it is actually reliable. There

are two reasons to define H0 as “pWCET (ǫ) is reliable.”

First, the reliability test is applied to a pWCET estimate

obtained through EVT after appropriate testing of the require-

ments, i.e., stationarity and identical distribution, extremal

independence, and goodness-of-fit. At this point, previous

experience indicates the pWCET (ǫ) estimate is indeed reliable,

so this should be the null hypothesis.

Secondly, typical exceedance probabilities targeted in real-

time systems are very small, such as 10−10. If we define H0 as

“pWCET (ǫ) is unreliable,” in order to reject it (and to produce

evidence that it is actually reliable) it would be necessary to

observe extremely large samples with a number of exceedances

much smaller than the predicted.

For instance, when testing an estimate pWCET (10−10) with

a validation sample of 108 measurements, the probability of

observing zero exceedances is 99%. In this case, in order to

reject “pWCET (ǫ) is unreliable,” it is necessary to observe

much less than zero exceedances, which is impossible. For

the test to be useful we would need a much greater validation

sample, but notice that 108 measurements already represents

a huge measurement effort. On the other hand, since the

target exceedance probability is very small, observing a few

exceedances in a relatively small validation sample is enough

to reject the hypothesis “pWCET (ǫ) is reliable.”

The reliability test described in this paper assumes that the

pWCET estimate was obtained through careful application of

EVT, passing all requirements’ tests, so there is reason to

believe it is reliable. The reliability test works as a safeguard

to assess and reinforce the safety of the pWCET estimate,

which is a crucial factor to the acceptance of MBPTA in the

development process of critical RTS. In this sense, the reliability

test described in this work is complementary to the testing of

EVT applicability requirements.

B. Numerical Examples

Assume we applied MBPTA to task τ using two different

samples and obtained two estimates of pWCET ∗(10−10),
denoted by pWCET 1(10−10) and pWCET 2(10−10). We are

going to apply the reliability test with a significance level

of 5%, i.e., α = 0.05. We compare both estimates to each

execution time of a validation sample of size n = 108.

Estimate pWCET 1(10−10) was exceeded e1 = 2 times. The

p-value for pWCET 1(10−10) is:

1− cdf(e1 − 1, 108, 10−10) = 0.00005

This means that observing at least 2 exceedances in a sample

of size n = 108, when the average rate of one exceedance every

1010 is indeed being respected, is associated with a probability

of 0.005%. Thus, we must reject pWCET 1(10−10) with a

significance level of 5%. We would actually reject it even at a

much lower significance level, such as 0.1%.

Estimate pWCET 2(10−10) was exceeded e2 = 0 times. The

p-value for pWCET 2(10−10) is:

1− cdf(e2 − 1, 108, 10−10) = 1

We cannot reject pWCET 2(10−10) at a significance level

of 5%, neither at any useful significance level.

Table II considers the case of ǫ = 10−10 and shows

the probability of observing at least a certain number of

exceedances (from 1 to 5, in each line) in a validation sample

of a certain size (from 107 to 1011). For example, in a

sample of 1010 measurements there is a probability of 8%

of observing at least 3 exceedances. In other words, if we

reject pWCET (10−10) because there are three exceedances in

a sample of 1010 measurements, the probability of rejecting a



reliable pWCET (10−10) is 8% (Type I error). One can easily

compute tables like this for any value of ǫ.

TABLE II
PROBABILITY OF OBSERVING EXCEEDANCES FOR pWCET (10−10)

Number of Probability by Validation sample size

exceedances 107 108 109 1010 1011

≥ 1 0.001 0.010 0.095 0.632 > 0.999
≥ 2 < 10−6 < 10−4 0.005 0.264 > 0.999
≥ 3 < 10−9 < 10−6 < 0.001 0.080 0.997
≥ 4 < 10−13 < 10−9 < 10−5 0.019 0.990
≥ 5 < 10−17 < 10−12 < 10−7 0.004 0.971

As already referred, assuming EVT was carefully applied,

and the fitting process passed all applicability and goodness-

of-fit tests, there is reason to believe the estimated pWCET is

reliable. Notwithstanding, given the importance of the pWCET

for the safety of the designed system, we apply the reliability

test with a significance level of 5%, expressing a limited level

of confidence on its factual reliability.

Table III shows the critical value of the test statistic, i.e., the

minimum number of exceedances one must observe in order

to reject the pWCET estimate with a significance level of 5%.

Each line shows a different value for ǫ and each column a

different value for n (validation sample size). For example,

it shows that pWCET (10−10) can only be rejected with a

significance level of 5% when we observe at least 4 exceedances

in a validation sample of size 1010.

TABLE III
CRITICAL VALUES AT 5% SIGNIFICANCE LEVEL

pWCET(ǫ)
Critical value by Validation sample size

106 107 108 109 1010

pWCET (10−7) 2 4 16 118 1053
pWCET (10−8) 1 2 4 16 118
pWCET (10−9) 1 1 2 4 16
pWCET (10−10) 1 1 1 2 4
pWCET (10−11) 1 1 1 1 2
pWCET (10−12) 1 1 1 1 1

V. STATISTICAL POWER OF THE TEST

The statistical power of a hypothesis test is the probability

of the test rejecting the null hypothesis H0 when it is false

and the alternative hypothesis H1 is true.

There are several factors that improve the power of the test:

• The amount by which the null hypothesis is false.

• The larger the sample size, the larger the power.

• The larger the significance level, the larger the power.

• A one-tailed hypothesis puts a larger rejection region on

the side of the true state of the world, increasing power.

Let ω be the actual value of the population parameter,

which is usually unknown. In our case, ω represents the

actual exceedance probability of the estimated pWCET (ǫ):
pWCET (ǫ) = pWCET ∗(ω) < pWCET ∗(ǫ), with ω > ǫ.

Recall that ω > ǫ ⇒ pWCET ∗(ω) < pWCET ∗(ǫ).
Since ω is usually unknown, we describe the power of the

test as B(ω), i.e., the probability of rejecting H0 when H1

is true and the true exceedance probability of our estimate

is ω. We can plot B(ω) against ω in order to visualize the

probability of rejecting a false H0 depending on how “far” ω

is from ǫ. The Type II error is given by β(ω) = 1−B(ω).
In order to compute B(ω) we first compute the critical value

c, so that the probability of obtaining a sample statistic at least

as extreme as c is less than or equal to α, assuming H0 is true.

This is the usual rejection criterion:

P (E(pWCET ∗(ǫ)) ≥ c | H0) ≤ α

We can compute B(ω) for various values of ω using:

B(ω) = P (E(pWCET (ǫ)) ≥ c |

pWCET (ǫ) = pWCET ∗(ω)) (1)

which is the probability of rejecting H0 given that

pWCET (ǫ) = pWCET ∗(ω) < pWCET ∗(ǫ), i.e., H1 is true.

For example, assume we applied MBPTA to task τ and

obtained an estimate pWCET (ǫ), ǫ = 10−10, which was

pWCET (10−10) = 52000. We are going to apply the

reliability test with a significance level of 5%, i.e., α = 0.05.

We compared the estimate to a validation sample of size

n = 108, where the maximum measurement was 50000.

pWCET (10−10) was exceeded e = 0 times.

The critical value is c = 1, since for n = 108 we have that

P (E(pWCET ∗(10−10)) ≥ 1) ≤ 0.05 from Table III. So, we

cannot reject H0 for pWCET (10−10) = 52000.

Since ǫ = 10−10, let’s analyse the power of the test for

ω = 10−9. Assuming pWCET (10−10) = pWCET ∗(10−9)
and using Equation 1 we have that:

B(10−9) = P (E(pWCET ∗(10−9)) ≥ 1)

= 1− cdf(0, 108, 10−9)

= 0.09516

In this scenario, the probability of rejecting a false H0 is

≈ 9.5%. We can repeat the process for other probabilities ω >

10−10, e.g., B(10−8) = 0.63212 and B(10−7) = 0.99995.

The probability of rejecting a false H0 is 99.995% if in this H0

we have pWCET (10−10) = pWCET ∗(10−7). Fig. 1 shows

B(ω) against ω for n = 108 and α = 0.05.

One can ask the question the other way around and determine

which value of n will result in a probability of, say, 99% for

rejecting a false H0 if in that H0 we have pWCET (10−10) =
pWCET ∗(10−9), i.e. if the pWCET (10−10) estimate is in

fact exceeded with a probability of 10−9. The value of n

affects both the critical value c and the power of the test,

but the resulting problem can be solved iteratively. Assuming

α = 0.05, ǫ = 10−10 and ω = 10−9, we need n = 1.005×1010

to obtain B(ω) = 0.99. With a sample size of n = 3 × 109

we have B(ω) = 0.80 in the same conditions.

VI. EXAMPLE WITH SYNTHETIC DATA

In order to illustrate the application of the proposed reliability

test, we consider synthetic time samples from five hypothetical

tasks. The execution time measurements are actually random
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Fig. 1. Power of the Test B(ω) for n = 108 and α = 0.05

numbers from EVT-compliant distributions [4], i.e., they are

known to be independent and identically distributed. We use

the following synthetic tasks:

• τp: Poisson distribution with expected value 10000;

• τn1: Normal distribution with µ = 10000 and σ = 200;

• τn2: Normal distribution with µ = 10000 and σ = 1000;

• τg1: Gamma distribution with shape 10000 and scale 1;

• τg2: Gamma distribution with shape 10000 and scale 3.

We used the Block Maxima approach with a GEV dis-

tribution fitted, using the L-moments method [24], to the

measurements’ maxima selected from blocks of size 100. The

use of blocks of size 100 is common in pWCET literature,

it has been shown adequate in previous work [17], and the

maxima obtained from our samples passed MBPTA tests.

We collected a modelling sample of 200,000 measurements

for each task. Then we made 20 fittings for each task, using

for each fitting a different subsample of 10,000 measurements.

Although there is an ongoing debate about which method to

use when applying EVT in the context of RTS, the method and

sample size used in this paper are similar to other works in the

literature. Note that the purpose of the evaluations presented

in this section is illustrating the application and highlighting

the effectiveness and usefulness of the proposed reliability

test. No focus is hence given to more general aspects of

MBPTA application, such as the choice of sample size or

of the probabilistic models to be used.

As an example, throughout this section we employ pWCET

estimates with exceedance probability ǫ = 10−10, a validation

sample with n = 108 measurements, and α = 0.05. Since the

conclusions are similar for all tasks, for the sake of simplicity

we present detailed results only for tasks τg2, τp and τn2.

Table IV shows the dispersion of pWCET j(10−10), ob-

tained from 20 different samples of τg2. Values of pWCET

are presented in ascending order for ease of reading, but they

could be obtained in any order. For each fitting of τg2 it shows

the pWCET (10−10), the number e of measurements in the

validation sample that exceed each pWCET estimate, and the

p-values obtained from the two versions (AD1 and AD2) of the

Anderson-Darling test implemented in the kSamples package

of the R statistical software, which we use as goodness-of-fit

(GOF) test [11]. Using a significance level of 5%, all 20 fittings

would pass the GOF test. Throughout the paper we mark in

bold when the p-value from the GOF test would result in the

fitting being rejected at a significance level of 5%.

We applied the reliability test described in Section IV to the

20 fittings of τg2. Since all fittings passed the GOF test, for

each one we have as null hypothesis that it is reliable. Table IV

also shows, for each fitting of τg2, the p-value obtained when

applying the reliability test. For instance, using a significance

level of 5%, the null hypothesis would be rejected for fittings 1
to 9. Throughout the paper we mark in bold when the p-value

from the reliability test results in the null hypothesis being

rejected at a significance level of 5%. In this case we assume

the alternative hypothesis, i.e., that their associated pWCET

estimates are not reliable. Since no exceedance was observed

for fittings 10 to 20, their p-value is 1 and we do not reject the

null hypothesis (enough unreliability evidence was not found).

TABLE IV
P-VALUES FOR EACH FITTING OF τg2

# pWCET(10−10)
Obs.Ex.

AD1 AD2 p-value
(108)

1 31269 1479 0.762 0.748 0
2 31274 1378 0.383 0.376 0
3 31319 703 0.953 0.952 0
4 31428 133 0.224 0.228 0
5 31527 29 0.436 0.450 < 10−35

6 31567 13 0.892 0.901 < 10−35

7 31655 1 0.313 0.320 0.010
8 31665 1 0.923 0.923 0.010
9 31674 1 0.935 0.935 0.010
10 31710 0 0.601 0.606 1
11 31854 0 0.862 0.863 1
12 31924 0 0.428 0.428 1
13 31952 0 0.619 0.616 1
14 32039 0 0.148 0.148 1
15 32192 0 0.276 0.272 1
16 32244 0 0.734 0.734 1
17 32380 0 0.261 0.270 1
18 32818 0 0.476 0.472 1
19 36723 0 0.204 0.200 1
20 37549 0 0.773 0.765 1

Fittings 7, 8 and 9 are interesting cases. In these cases

we observed a single exceedance of pWCET (10−10) in a

validation sample of 108 measurements. There is a probability

of only 1% of pWCET (10−10) to be exceeded one or

more times in a validation sample of 108 measurements

(p-value=0.01), so we must reject the null hypothesis since we

adopted a significance level of 5%.

We should notice the importance of the reliability test.

Although all 20 fittings for τg2 passed the GOF test, we were

able to reject nine of them with a significance level of 5%,

indicating that a GOF test alone is not sufficient to assure the

reliability of pWCET estimates produced by MBPTA.

Since we generated the execution times of τg2 from a known

distribution Gamma(10000,3), we know that the real value of

pWCET ∗(10−10) equals 31948. The test was able to reject

all unreliable estimates but fittings 10, 11 and 12. It rejected

fitting 9, that is only 274 clock cycles lower than the actual



pWCET value. A larger validation sample should also reject

fittings 10, 11 and 12.

Using again the fact that we know the actual measurement

distribution, we can compute the true exceedance probability of

fitting 10: 31710 = pWCET ∗(1.08×10−8). The critical value

for ǫ = 10−10, n = 108 and α = 0.05 is 1. The power of the

reliability test in this scenario, considering ω = 1.08× 10−8,

is 0.6608 (Eq. 1). It means in this scenario the test has a

probability of 66.08% of rejecting pWCET (10−10) = 31710.

We also applied the reliability test to pWCET estimates with

greater exceedance probabilities ǫ, using again a validation

sample of 108 measurements. Table V shows the dispersion of

pWCET j(ǫ) regarding τg2 using exceedance probabilities of

10−6 and 10−8, together with the respective observed number

of exceedances and p-value from the reliability test. Since we

generated the execution times of τg2 from a known distribution,

we know that the real value of pWCET ∗(10−6) equals 31447.

Only fittings 1 to 5 are unreliable and they were indeed rejected

by the reliability test. All reliable fittings were approved by the

reliability test, that had a perfect match in this case. The actual

value of pWCET ∗(10−8) equals 31714. In this case fittings 1
to 10 are unreliable, and the reliability test rejected fittings 1
to 7, but did not reject fittings 8 to 10. The results corroborate

the usefulness of the proposed test, since it detected potentially

unreliable estimates in all considered scenarios. It also makes

clear the superiority of the proposed test in relation to HWM-

based pWCET reliability evaluation approaches, since it takes

into account both the size of the validation sample and the

target exceedance probability.

TABLE V
P-VALUES FOR SEVERAL EXCEEDANCE PROBABILITIES OF τg2

#
pWCET(10−6) pWCET(10−8)

pWCET Obs.Ex. p-value pWCET Obs.Ex. p-value

1 31235 2381 0 31259 1682 0
2 31240 2212 0 31264 1584 0
3 31273 1400 0 31305 868 0
4 31358 406 0 31405 205 0
5 31433 127 0.005 31494 49 0
6 31450 97 0.631 31524 31 0
7 31495 47 1 31598 5 0.004
8 31531 28 1 31611 3 0.080
9 31533 26 1 31621 2 0.264
10 31550 19 1 31649 1 0.632
11 31630 2 1 31763 0 1
12 31665 1 1 31823 0 1
13 31675 1 1 31830 0 1
14 31743 0 1 31916 0 1
15 31806 0 1 32024 0 1
16 31831 0 1 32062 0 1
17 31923 0 1 32178 0 1
18 32036 0 1 32438 0 1
19 33117 0 1 34631 0 1
20 33124 0 1 34878 0 1

Since we know the actual distribution of the execution time of

the synthetic tasks, we can plot the complementary cumulative

distribution function (CCDF or 1−CDF ) of its execution time

together with the CCDF of the 20 GEV functions obtained

via EVT for the different fittings. Fig. 2 shows such plot for

task τg2. We can see that some of the fitted model curves are

optimistic in relation to the actual curve (those that are below),

while others are clearly pessimistic (those that are above).

The plot highlights the intrinsic variability of probabilistic

models produced by EVT, and consequently also clarifies the

importance of the proposed test for assessing the execution

time bounds produced using them.
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Fig. 2. 1-CDF of task τg2 and several GEV fittings

We repeated the experiments for all five synthetic

tasks described earlier. Table VI shows the dispersion of

pWCET j(10−10), obtained from 20 different samples of τp.

Values of pWCET are presented in ascending order for ease

of reading, but they could be obtained in any order. For each

fitting of τp it shows the pWCET (10−10), the number e

of measurements in the validation sample that exceed each

pWCET estimate, the p-values obtained from the two versions

(AD1 and AD2) of the Anderson-Darling test, and finally the

p-value obtained when applying the reliability test.

Since we generated the execution times of τp from a known

distribution Poisson(10000), we know that the real value of

pWCET ∗(10−10) is 10643 and that therefore fittings 1 to 13
are indeed unreliable. Among these the proposed reliability

test was able to reject fittings 1 to 7, while all fittings that are

in fact reliable were not rejected by the test.

Table VII shows the pWCET estimate, the number of

observed exceedances and the respective p-value for estimations

regarding τp using exceedance probabilities of 10−6 and 10−8.

Since we generated the execution times of τp, we know that

the real value of pWCET ∗(10−6) equals 10479. Only fittings

1 to 6 are unreliable and they were indeed rejected by the

reliability test, and no reliable fitting was rejected. The actual

value of pWCET ∗(10−8) equals 10566. In this case fittings

1 to 10 are unreliable, and the reliability test rejected fittings

1 to 7, but did not reject fittings 8 to 10.

Table VIII shows the dispersion of pWCET j(10−10),
obtained from 20 different samples of τn2. Values of pWCET

are presented in ascending order for ease of reading. For each



fitting of τn2 it shows the pWCET (10−10), the number e

of measurements in the validation sample that exceed each

pWCET estimate, the p-values obtained from the two versions

(AD1 and AD2) of the Anderson-Darling test, and finally the

p-value obtained when applying the reliability test.

Since we generated the execution times of τn2 from a known

distribution Normal(10000,1000), we know that the real value

of pWCET ∗(10−10) equals 16361. Fittings 1 to 11 are actually

unreliable and the reliability test indeed rejected fittings 1 to

10. Although being unreliable, fitting 11 was not rejected. No

reliable fitting was rejected by the test.

Table IX shows the pWCET estimate, the number of

observed exceedances and the respective p-value for estimations

regarding τn2 using exceedance probabilities of 10−6 and

10−8. The execution times of τn2 were generated from a

known distribution so we know that the actual value of

pWCET ∗(10−6) equals 14753. Fittings 1 to 7 are in fact

unreliable and they were all rejected by the proposed reliability

test, and no reliable fitting was rejected by the test. The actual

value of pWCET ∗(10−8) is 15612. In this case fittings 1 to

10 are unreliable, and the reliability test rejected fittings 1 to

9, but did not reject fitting 10.

TABLE VI
PWCET ESTIMATES, EXCEEDANCE AND P-VALUES FOR τp

# pWCET(10−10)
Obs.Ex.

AD1 AD2 p-value
(108)

1 10379 8061 0.072 0.065 0
2 10381 7470 0.034 0.030 0
3 10399 3633 0.400 0.388 0
4 10440 613 0.322 0.305 0
5 10440 613 0.845 0.842 0
6 10442 563 0.020 0.018 0
7 10530 9 0.070 0.065 < 10−24

8 10563 0 0.220 0.210 1
9 10569 0 0.037 0.033 1
10 10581 0 0.096 0.089 1
11 10591 0 0.151 0.141 1
12 10604 0 0.239 0.231 1
13 10641 0 0.874 0.901 1
14 10730 0 0.899 0.923 1
15 10762 0 0.063 0.058 1
16 10789 0 0.986 0.984 1
17 10810 0 0.849 0.840 1
18 10818 0 0.423 0.411 1
19 11524 0 0.074 0.069 1
20 11613 0 0.505 0.538 1

VII. EXAMPLE WITH REAL HARDWARE

In this section we illustrate the application of the proposed

reliability test with tasks bsort, matmult, fdct and fir from the

Mälardalen WCET Benchmarks suite [25], as representatives

of scenarios in which real code is executed on hardware.

The execution times were obtained from a time-randomized

dual-core processor with a simple five-stage pipeline that

implements the MIPS instruction set and runs at 50MHz on

an FPGA. It employs 512-byte 2-way set-associative private

cache memories with modulo placement, write-through update,

and randomized replacement policies. It uses an arbitration

policy for its separate data and instruction memory buses that

TABLE VII
P-VALUES FOR SEVERAL EXCEEDANCE PROBABILITIES OF τp

#
pWCET(10−6) pWCET(10−8)

pWCET Obs.Ex. p-value pWCET Obs.Ex. p-value

1 10375 9399 0 10378 8373 0
2 10376 9054 0 10380 7764 0
3 10392 4802 0 10398 3788 0
4 10424 1277 0 10435 763 0
5 10425 1215 0 10435 763 0
6 10427 1094 0 10438 661 0
7 10493 44 1 10517 13 0
8 10505 21 1 10544 3 0.080
9 10516 13 1 10545 3 0.080
10 10518 12 1 10556 1 0.632
11 10533 8 1 10569 0 1
12 10546 3 1 10582 0 1
13 10559 1 1 10608 0 1
14 10600 0 1 10673 0 1
15 10616 0 1 10697 0 1
16 10625 0 1 10714 0 1
17 10635 0 1 10731 0 1
18 10637 0 1 10733 0 1
19 10865 0 1 11165 0 1
20 10920 0 1 11237 0 1

TABLE VIII
PWCET ESTIMATES, EXCEEDANCE AND P-VALUES FOR τn2

# pWCET(10−10)
Obs.Ex.

AD1 AD2 p-value
(108)

1 13853 5656 0.196 0.197 0
2 13976 3341 0.825 0.833 0
3 14253 1047 0.136 0.138 0
4 14495 352 0.194 0.197 0
5 14650 166 0.568 0.568 0
6 14845 62 0.177 0.177 < 10−35

7 15093 9 0.710 0.701 < 10−24

8 15148 7 0.218 0.222 < 10−18

9 15389 2 0.218 0.221 < 10−5

10 15627 1 0.453 0.448 0.010
11 16036 0 0.611 0.613 1
12 16691 0 0.168 0.168 1
13 16795 0 0.775 0.774 1
14 16964 0 0.748 0.761 1
15 17264 0 0.298 0.300 1
16 17611 0 0.127 0.129 1
17 18909 0 0.036 0.037 1
18 19188 0 0.028 0.028 1
19 20142 0 0.136 0.137 1
20 27039 0 0.785 0.794 1

determines the next core to be served in a purely random

manner. A distinct instance of the measured task is exclusively

executed on each core of the processor, without operating

system, and measurements used are obtained from the one

running at Core#0. Tasks’ inputs are fixed, such that a single

execution path is exercised and therefore timing variability

stems exclusively from the time-randomized hardware. We

also configure the processor’s ALU to produce maximum

(data-independent) latencies during measurements, and fully

reset the processor before starting each execution of the tasks.

These measures are employed to eliminate dependency between

measurements due to hardware state retention.

We collected a modelling sample of 200,000 measurements



TABLE IX
P-VALUES FOR SEVERAL EXCEEDANCE PROBABILITIES OF τn2

#
pWCET(10−6) pWCET(10−8)

pWCET Obs.Ex. p-value pWCET Obs.Ex. p-value

1 13817 6634 0 13845 5875 0
2 13911 4444 0 13959 3570 0
3 14153 1620 0 14225 1203 0
4 14366 630 0 14457 421 0
5 14446 445 0 14585 224 0
6 14571 239 0 14751 99 0
7 14687 140 0 14943 30 0
8 14841 64 1 15042 12 0
9 14853 55 1 15243 5 0.004
10 14985 21 1 15299 3 0.080
11 15321 3 1 15751 0 1
12 15655 1 1 16298 0 1
13 15831 0 1 16345 0 1
14 15879 0 1 16502 0 1
15 15956 0 1 16690 0 1
16 16236 0 1 17009 0 1
17 16595 0 1 17800 0 1
18 16874 0 1 18092 0 1
19 17188 0 1 18693 0 1
20 19044 0 1 22574 0 1

and made 20 fittings for each task, using different samples of

10,000 measurements. The Block Maxima approach was used,

and a GEV distribution was fitted using the L-moments method

[24] to the measurements’ maxima selected from blocks of size

100. We checked the applicability of EVT to our execution time

measurements using the statistical tests described in Section II.

Fig. 3 shows the box-and-whisker plots of those tests applied to

tasks bsort, matmult, fdct and fir. The p-values are acceptable,

since they are distributed in the range [0, 1] and do not present

any clear tendency to low (< 5%) values.
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Fig. 3. i.i.d. tests for real-hardware samples’ maxima

Throughout this section we consider pWCET estimates with

exceedance probability ǫ = 10−10, we use α = 0.05, and

employ a validation sample with n = 108 measurements.

Table X shows the estimates of pWCET j(10−10), obtained

from 20 different samples of bsort. Values of pWCET are

presented in ascending order for ease of reading, but they could

be obtained in any order. For each fitting of bsort it shows the

pWCET (10−10) estimate, the number e of measurements in

the validation sample that exceed each pWCET estimate, and

the p-values obtained from the two versions (AD1 and AD2)

of the Anderson-Darling test used as goodness-of-fit (GOF)

test [11]. Using a significance level of 5%, only fittings 15
and 16 would be rejected by the GOF test. We highlight in

bold when the p-value from the GOF test results in the fitting

being rejected at that significance level.

We applied the reliability test described in Section IV to the

fittings of task bsort. The null hypothesis “pWCET estimate is

reliable” is considered to hold only for those fittings that passed

the GOF test. Notwithstanding, we applied the reliability test

to all 20 fittings. Table X also shows, for each of the 20 fittings

of bsort, the p-value obtained when applying the reliability test.

Using a significance level of 5%, the null hypothesis would

be rejected for fittings 1 to 11. We highlight in bold when

the p-value from the reliability test results in the fitting being

rejected at that significance level. In those cases we assume

the alternative hypothesis, that is, the pWCET estimate is not

reliable. Since no exceedance was observed for fittings 12 to

20, their p-value is 1 and we do not reject the null hypothesis,

i.e., enough unreliability evidence was not found.

TABLE X
P-VALUES FOR EACH FITTING OF bsort

# pWCET(10−10)
Obs.Ex.

AD1 AD2 p-value
(108)

1 25249 11709 0.275 0.331 0
2 25265 1252 0.369 0.364 0
3 25267 925 0.114 0.090 0
4 25268 786 0.309 0.348 0
5 25270 576 0.907 0.958 0
6 25270 576 0.340 0.430 0
7 25273 361 0.294 0.288 0
8 25275 260 0.813 0.828 0
9 25280 125 0.070 0.094 0
10 25298 3 0.366 0.446 < 10−6

11 25303 2 0.647 0.672 < 10−4

12 25306 0 0.326 0.320 1
13 25309 0 0.487 0.429 1
14 25315 0 0.146 0.177 1
15 25358 0 0.037 0.048 1
16 25368 0 0.031 0.040 1
17 25390 0 0.400 0.473 1
18 25392 0 0.587 0.534 1
19 25412 0 0.792 0.808 1
20 25450 0 0.595 0.686 1

This example with bsort makes clear the proposed reliability

test is complementary to the EVT applicability tests and that

both should be used, whenever possible. Considering the 20
fittings done, we would reject fittings 15 and 16 due to the

goodness-of-fit test. We should also reject fittings 1 to 11 due

to the reliability test. For the sake of safety, only the remaining



fittings (12 to 14 and 17 to 20) should be considered in the

development process of an RTS.

Table XI shows the estimates of pWCET (10−10) obtained

from 20 different samples of matmult, the number e of

measurements in the validation sample that exceed each

pWCET estimate, the p-values obtained from the two versions

(AD1 and AD2) of the Anderson-Darling test used as goodness-

of-fit (GOF) test [11], and the p-value produced when applying

the proposed reliability test to each of the fittings. Using a

significance level of 5%, fittings 5, 8, 11 and 15 would be

rejected by the GOF test. The null hypothesis of the proposed

reliability test would be rejected for fittings 1 to 13, for which

we assume the alternative hypothesis, that is, the pWCET

estimates are not reliable. Tables XII and XIII present the same

outcomes of the analysis for tasks fdct and fir, respectively,

and both lead to similar conclusions.

Regarding the power of the test, differently from Section

VI, in the case of real-hardware tasks we don’t know the

real value of pWCET ∗(10−10), naturally. For this reason, we

cannot compute the exact power of the test. However, we can

rely on Equation 1 in Section V to obtain the power of the

test assuming different values for ω > 10−10. Also, Fig. 1 in

Section V was built for a sample size of 108 and α = 0.05
and it shows the power of the test assuming different values

for ω > 10−10 and pWCET (10−10) = pWCET ∗(ω).

TABLE XI
PWCET ESTIMATES, EXCEEDANCE AND P-VALUES FOR matmult

# pWCET(10−10)
Obs.Ex.

AD1 AD2 p-value
(108)

1 49960 9093 0.423 0.492 0
2 49964 5413 0.987 0.998 0
3 49968 3151 0.594 0.516 0
4 49977 942 0.120 0.154 0
5 49987 210 0.002 0.003 0
6 49990 121 0.482 0.603 0
7 50000 26 0.855 0.842 < 10−35

8 50000 26 0.004 0.005 < 10−35

9 50002 16 0.231 0.259 < 10−35

10 50004 12 0.252 0.307 < 10−32

11 50013 2 0.063 0.048 < 10−4

12 50018 1 0.501 0.443 0.010
13 50019 1 0.951 0.971 0.010
14 50027 0 0.161 0.215 1
15 50032 0 0.050 0.067 1
16 50057 0 0.980 0.982 1
17 50060 0 0.843 0.861 1
18 50063 0 0.170 0.224 1
19 50073 0 0.063 0.082 1
20 50242 0 0.075 0.100 1

VIII. CONCLUSION

In this paper we described a statistical hypothesis test, based

on the binomial experiment theory, to test the reliability of

pWCET estimates obtained through MBPTA. We illustrated its

use with synthetic measurements of hypothetical tasks whose

execution times come from EVT-compliant distributions, which

is an artificially favourable scenario to MBPTA applicability.

These synthetic examples showed the potential value of using

a reliability test even when both applicability and GOF tests

TABLE XII
PWCET ESTIMATES, EXCEEDANCE AND P-VALUES FOR fdct

# pWCET(10−10)
Obs.Ex.

AD1 AD2 p-value
(108)

1 57442 9124 0.760 0.771 0
2 57442 9124 0.371 0.388 0
3 57461 4050 0.197 0.210 0
4 57469 2781 0.183 0.195 0
5 57475 2113 0.217 0.204 0
6 57481 1633 0.163 0.173 0
7 57495 846 0.977 0.986 0
8 57500 679 0.967 0.964 0
9 57504 562 0.288 0.272 0
10 57524 203 0.959 0.974 0
11 57542 87 0.172 0.181 < 10−35

12 57589 7 0.061 0.067 < 10−17

13 57593 6 0.427 0.411 < 10−14

14 57618 3 0.998 0.999 < 10−6

15 57644 2 0.477 0.505 < 10−4

16 57672 0 0.732 0.761 1
17 57703 0 0.733 0.750 1
18 57740 0 0.135 0.126 1
19 57807 0 0.547 0.536 1
20 57836 0 0.014 0.016 1

TABLE XIII
PWCET ESTIMATES, EXCEEDANCE AND P-VALUES FOR fir

# pWCET(10−10)
Obs.Ex.

AD1 AD2 p-value
(108)

1 50508 4005 0.097 0.106 0
2 50551 887 0.356 0.368 0
3 50560 631 0.696 0.712 0
4 50588 210 0.394 0.403 0
5 50616 68 0.336 0.353 < 10−35

6 50623 46 0.359 0.345 < 10−35

7 50637 18 0.490 0.525 < 10−35

8 50664 7 0.985 0.984 < 10−17

9 50686 2 0.004 0.004 < 10−4

10 50691 1 0.001 0.001 0.010
11 50797 0 0.892 0.888 1
12 50843 0 0.883 0.888 1
13 50942 0 0.970 0.972 1
14 51016 0 0.725 0.754 1
15 51107 0 0.405 0.429 1
16 51186 0 0.134 0.127 1
17 51331 0 0.900 0.886 1
18 52232 0 0.336 0.354 1
19 52597 0 0.027 0.024 1
20 53409 0 0.442 0.436 1

pass. Then we applied the reliability test to actual hardware

measurements, showing how the reliability test effectively

complements the MBPTA applicability and GOF tests to detect

potentially unreliable pWCET estimates.

EVT-based MBPTA is subject to uncertainty with respect to

the estimated parameters of the probabilistic models it employs.

This is intrinsic to any method that operates on data samples

with significant variability, which is undoubtedly the case for

MBPTA. For this reason, any result yielded by MBPTA carries

a certain amount of error (in the statistical sense), which

can cause it to produce either reliable/pessimistic or unre-

liable/optimistic pWCET estimates. The paper’s contribution

is a hypothesis test formulation for testing the reliability of

pWCET estimates under such conditions, which can be used for



increasing the confidence that the use of unreliable/optimistic

pWCET estimates is avoided.

The experiments presented in Section VI showed, using

synthetic measurements from hypothetical tasks with known

pWCETs, that the proposed test is capable of detecting

unreliable estimates that passed the applicability and GOF tests.

For instance, 12 of the 20 pWCET (10−10) estimates produced

for a task with execution times from a Gamma distribution

were known to be in fact unreliable. Although all 20 were

approved by the GOF test used, our test rejected 9 of them

using a validation sample of 108 measurements. For samples

with Poisson and Normal distributions, from the 20 fittings

produced in the experiments, 13 and 11 of the 20 estimates in

each scenario were known to be in fact unreliable, respectively.

While only 3 and 2 did not pass the GOF tests used, the

proposed reliability test rejected 7 and 10, respectively.

The experiments also showed the proposed test is more

effective in accurately detecting unreliable fittings for larger

exceedance probabilities. With a validation sample of 108

measurements, it was more accurate in detecting unreliability

for pWCET (10−8) than for pWCET (10−10), and produced

ideal results for pWCET (10−6) estimates. This is expected

as explained in Section V regarding the power of the test.

The reliability test presented in this paper uses two counts,

only: the number n of task executions and the number e of

execution times that exceeded a constant and off-line computed

pWCET estimate. It is possible to include two counters per

task in the final system, to continuously track the test statistic.

The permanent execution of the reliability test could detect

whether varying execution conditions through the lifetime of

the product affect the reliability of pWCET estimations defined

during development. This approach could be used as part of

an early fault detection strategy for real-time systems.

There are several open questions regarding MBPTA for

real-time systems [5] [6], but the benefits of its use could

be enormous. Some MBPTA-based tools are already being

developed, such as WOMBAT (Worst-Case Measurement-

Based Statistical Tool), that targets avionics applications

executed on embedded COTS multi-core processors [26].

For MBPTA based on EVT to be accepted into engineering

processes, it is necessary to provide evidence of its reliability.

The reliability test based on a binomial experiment described

in this paper is a contribution in that direction.
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