\ \
.
Real-Time Support in the

Proposal for Fine-Grained
Parallelism in Ada

U Real-time parallel models are now common
O But little exists on fine-grained parallelism within
real-time languages and runtimes

(1 Ada is a language of choice for reliable
real-time systems
Q It incorporates models of computation which are
amenable for real-time analysis
0 Ada 2012 supports many real-time multiprocessor
scheduling schemes, global and partitioned

d Existent multiprocessor support in Ada follows a

coarse-grained model
O It needs to be augmented with lightweight fine-grained
parallelism.

Luis Miguel Pinho Brad Moore
CISTER (Portugal) General Dynamics (Canada)

Stephen Michell S. Tucker Taft
Maurya Software Inc (Canada) AdaCore (USA)

Adar202X¢fine:grainediparallelism

1 Definition of a parallel non-schedulable unit (Tasklet)
O Explicit or implicit parallelization
0 Ada Tasks execute graphs of Tasklets

task body My Task is

begin
-— Code of A
parallel A
-—- Code of B
for I in parallel Some Rage loop *
-- D, E
end loop; C
and T v
-— Code of C
end; D E|f .
-- A again + * *
parallel
-- Code of F Y
and
-— Code of G * ¥ v
= Cod £ H i < H
-- Code o
end; v v v
Code;,
-- A again

end;

ExecutionModel

Application Task Application Task

Application

Runtime
Executor Executor Executor Executor

. J
\4 A\ 4 \ 4 Y
(N
- (0 3 -
_ /

U Tasklets are executed by Executors
O E.g. OS threads, but can be bare metal entities

U Limited form of run-to-completion
O A tasklet is mapped to one executor, except if blocking
O Executor might be scheduled in a preemptive, global or
partitioned scheduling

[Allocation of tasklets to executors, and of executors

to cores is left to the implementation
L Models are defined to guarantee safeness and progress,
even with potential blocking operations

JU grant nr. 621429 | ARTEMIS/0001/2013
Co-financed by

MEEIFUINE ISSNES

L Each Ada task (or priority) is provided with a specific

executor pool
0 All executors carry the same priority/deadline of the task
O Does not support graph decomposition techniques

U Maps to a synchronous fork-join model
O for which analysis already exists

Al o %
gD 6 0
E A

| e 0

O Important open issues
O Supported scheduling models, such as limited preemption
O Run-to-completion and tasklet (work-)stealing
O Parallel models in languages introduce additional issues
QO (e.g. integration with task abortion, exceptions, etc.)

<

