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Abstract 

XDense is a novel wired 2D-mesh grid sensor network system for application scenarios that benefit from 
denselydeployed sensing (e.g. thousands of sensors per square meter). Itwas conceived for closed-loop cyber-
physical systems (CPS) thatrequire real-time actuation, like active flow control (AFC) onaircraft wing surfaces. 
XDense communication and distributedprocessing capabilities are designed such that they enable toextract 
complex features within bounded time and in a responsivemanner. In this paper we tackle the issue of 
deterministic behaviorof XDense. We present a methodology that uses traffic shapingheuristics to guarantee 
bounded communication delays and thefulfillment of memory requirements. We evaluate the model forvaried 
network configurations and workload, and demonstratethe effectiveness of running real-time applications 
supported onXDense. 
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Abstract—XDense is a novel wired 2D-mesh grid sensor net-
work system for application scenarios that benefit from densely
deployed sensing (e.g. thousands of sensors per square meter). It
was conceived for closed-loop cyber-physical systems (CPS) that
require real-time actuation, like active flow control (AFC) on
aircraft wing surfaces. XDense communication and distributed
processing capabilities are designed such that they enable to
extract complex features within bounded time and in a responsive
manner. In this paper we tackle the issue of deterministic behavior
of XDense. We present a methodology that uses traffic shaping
heuristics to guarantee bounded communication delays and the
fulfillment of memory requirements. We evaluate the model for
varied network configurations and workload, and demonstrate
the effectiveness of running real-time applications supported on
XDense.

I. INTRODUCTION

As Moore’s law remains valid, single embedded computers
equipped with sensing, processing and communication capa-
bilities are tending to be minimally priced. This makes it
economically feasible to densely deploy sensor networks with
very large quantities of computing nodes. Accordingly, it is
possible to take very large number of sensor readings from
the physical world, perform computation on sensed quantities
and make decisions from the results. Very dense networks
offer information about the physical world with greater res-
olution and therefore offer better opportunities in detecting
the occurrence of an event; this is of paramount importance
for a number of applications with high-spatial sensing (and
actuation) resolution requirements.

Such densely instrumented systems pose however huge
challenges in terms of interconnectivity and timely data pro-
cessing. It is important to note that the need for high spatial
and temporal resolutions are often contradictory requirements,
which are often not easily simultaneously fulfilled.

To further motivate our approach, let us consider an
aerospace application scenario that may benefit from such
dense CPS. The drastic increase in demand for air transporta-
tion, naturally motivates measures to reduce its environmen-
tal impact. The reduction of fuel consumption is obviously
important regarding both environmental effects and cost effi-
ciency. It is known from the Breguet range equation [1] that
improvements in aerodynamics, engines, and structure have
major importance, and efforts in that direction aim at reducing
aircraft drag and weight of the aircraft. In fact aerodynamic

(a)

Fig. 1: (a) Conceptual deployment of XDense for active flow
control (AFC). (b) 3 × 3 XDense network prototype using
COTS.

drag due to skin friction is known to be one of the relevant
factors contributing to increased aircraft fuel consumption,
what constitutes approximately one half of the total drag for
a typical long range aircraft at cruise conditions [2].

A significant part of this skin friction is due to turbulent1

airflow over the wing [4]. Turbulence can be highly undesir-
able, as it increases drag and noise. Additionally, it causes loss
of energy [5], and an important goal is to minimize this loss.
Figure 1 exhibits an example in which homogeneous laminar
airflow transits to turbulent along the wing.

Several solutions have been proposed already to reduce
turbulence. Cattafesta et al. [6] have surveyed the state-of-the-
art actuation mechanisms used to reduce turbulent skin friction.
The weakness of most approaches is in not relying on sensors
to detect and trace turbulent flows, and hence offering only
open loop actuation. This compromises the efficiency of active
flow control (AFC), leading to waste of energy resources when
there is no turbulent flow or when the turbulence lies outside
the actuators’ control field.

Therefore, implementing AFC implies that physical quanti-
ties are tracked through sensors (for example, pressure, tem-
perature and vibration sensors), which are deployed with some
high density (eventually a few centimeters apart). Figure 1
shows an envisioned deployment of such sensing/detecting
infrastructure on a wing surface to detect the occurrence of
turbulent airflows.

1Turbulent airflow is composed of coherent structures of chaotic temporal
evolution, such as vortices. Turbulent airflow causes an increase in interaction
between the air and the wing (and the fuselage, in general), and consequently
an increase in the total skin friction [3].
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Fig. 2: (a) The XDense 2-D mesh network; (b) nodes use four
bidirectional links to connect with neighbors located in the
four cardinal directions (North, South, East, West); (c) node
internals: processor (P), router (R), net-device (ND) and sensor
(S); (d) net-device’s architecture includes at the output port, a
queue (Q) and a traffic shaper (TS).

XDense was developed to deal with the key challenges re-
lated to eXtremely Dense deployments of sensors [7]. XDense
has a network architecture composed of regular structures
(nodes) interconnected in a 2D-mesh network (see Figure 2(a)).
This resembles common Network-on-Chip (NoC) architec-
tures [8] and there are also similarities in routing schemes and
distributed computing capabilities [9]. XDense exploits low-
cost local communication and distributed processing strategies
to enable distributed feature detection/extraction. For example,
in [7], targeting AFC, we proposed algorithms to enable
distributed turbulence detection in airflow computational fluid
dynamics (CFD) data.

The practicality of XDense for efficient feature detection
and extraction is a necessary but not sufficient condition. We
also need to provide execution time guarantees and bounds
on the resource utilization. Timeliness is important for real-
time applications like AFC for which timeliness guarantees are
essential to achieve closed loop actuation. Providing bounds
on resource utilization is also crucial to correctly dimension
the network, to avoid overload and consequent data loss. These
are factors that have great influence on hardware requirements,
cost and consequently on the applicability XDense. These two
properties are therefore the focus of this paper.

In this work, we extend XDense with real-time capabilities,
by implementing traffic shapers in every node such that the
network traffic is predictable and analyzable. Further, we pro-
pose an analysis framework to accurately model the network
in terms of communication delay characteristics and memory
requirements. Specifically, the paper makes the following two
contributions: (i) propose three heuristics to shape the traffic in
the network; (ii) develop a mathematical framework to model
and analyze the application and network and provide upper-
bounds on communication delays, application execution time,
and maximum buffer requirements.

The remainder of this paper is organized as follows. Sec-
tion II introduces the basics of the XDense architecture;
Section III formalizes our XDense model for real-time appli-
cations; Section IV evaluates the model; Section V discusses
the related works and Section VI concludes the paper along
with comments on potential future research directions.

II. XDENSE ARCHITECTURE AND PRINCIPLES OF

OPERATION

A. Architecture and topology of XDense

XDense is a 2-D mesh network whose topology and node
architecture are inspired from traditional Network-on-Chip

(NoC) designs. Despite its similarities with NoCs, XDense
differs in its size and node count. XDense is meant to be
deployed on large surfaces (like aircraft wings) and deliver
high-precision and very localized measurements, thereby re-
quiring a high number of sensors/nodes (in contrast to the few
tens of interconnected nodes in modern NoCs).

Figure 2 illustrates the components of an XDense network
at different levels of abstraction. Each node is composed of a
sensor (S), a processor (P) and a router (R) and is connected
to its neighboring nodes located in the four cardinal directions
using bidirectional communication ports; termed networking
devices (ND). Because they are bidirectional ports, we refer to
their input and output independently as the input ports and the
output ports. The sensor is specified according to the nature of
the phenomena to be monitored. For example, to enable high-
precision AFC, pressure and temperature sensors can jointly
provide better sensing of the airflow [10].

The processor runs the application layer. It interfaces with
the sensor and implements high level application-specific pro-
tocols for data sharing and processing. The router arbitrates
the exchange of data. It can receive and transmit packets in
parallel, from/to the processor and networking devices. Net-
working devices are full-duplex serial communication ports2.
Each one has a queue (Q) and a traffic shaper (TS) (see
Figure 2(d)). Input packets are directly delivered to the router
whereas output packets are first queued (in FIFO order) at
the target output port before they are dequeued by the traffic
shaper to be then transmitted serially over the network. All
network transfers are non-preemptive and packet-switched, and
all packets have a fixed and equal size.

The purpose of the traffic shaper is to provide determinism
to the output traffic, and consequently make it amenable to
real-time analysis. Its function is two-fold: it implements a
release offset to the output packets and makes the transmission
periodic. Shaping the traffic enables us to formulate the output
traffic as a linear cumulative function of the input traffic.
We will discuss our traffic shaping techniques in detail in
Section III.

For realizing the above, a custom design integrated circuit
(IC) obviously provides the best-fit solution. But, this reduces
design flexibility and might become a single application so-
lution. For this reason, we use a microcontroller and other
COTS to prototype the XDense node and network, as shown in
Figure 1(b). to a limited number of candidate microcontrollers,
especially concerning the minimum number of Nodes have
five high-speed serial ports, each one equipped with dedicated
Direct Memory Access (DMA) channel. More details on
developed node hardware prototype using COTS are available
in [11].

It is important to remark that for this work, we ignore
the internal delays of the nodes and focus exclusively on the
communication delays. Delays are normalized and quantified
in terms of Transmission Times Slots (TTS), which is the time
required to transmit a single packet.

2We use serial links as they are widely available in COTS micro-controllers
and provide low complexity and low footprint at low cost (compared to
parallel links found in NoC[8]). These are pragmatic decisions regarding the
envisioned deployment scale.
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Fig. 3: Example 45 × 45 network, with a single central sink. In this case, with nradius = 2. Application phases: (a) φ1 – Sink
requests data from cluster-heads; (b) φ2 – Cluster heads in turn send a multicast request to nodes in their cluster; (c) φ3 – Nodes
send sensor data back to their respective cluster-head; (d) φ4 – Cluster heads process received data and send result to sink.

B. Principles of XDense Operation

Consider the AFC use-case depicted in Figure 1 as a
working example. The objective is to collect information on
the nature of the airflow and identify whether it is laminar or
turbulent by quantifying its characteristics along the wingspan.

A naive solution to this problem is to request each node to
continuously sense information about the airflow and send it
back to a sink. The information collected from the sink can
then be used to compute the airflow’s properties. Clearly, this
approach generates a tremendous load on the network, requires
large buffers in each node, and leads to significant delays
between the time at which the information is requested and the
time at which it is eventually processed (sensed information
may have a maximum lifetime).

Instead, we use XDense to efficiently build a global picture
of the airflow by organizing the nodes in clusters and perform
local data processing. In each cluster, one node serves as
the cluster head node. It performs data aggregation within its
cluster and is responsible for processing (and/or compressing)
the data locally to send only meaningful information to the
sink. Another example of utilization is to program the cluster
heads to inform the sink only upon the occurrence of mean-
ingful events (e.g., airflow changes from laminar to turbulent
and conversely). The routing protocols elected should ideally
exploit the network topology to avoid congestion. It is also
required to define application protocols to allow coordination
of clusters by the sink.

To tackle the challenge of analyzing and computing upper-
bounds on the application execution time and the buffer
requirements of the nodes through distributed processing,
XDense uses three operative principles: (1) the nodes are
clustered and one node in each cluster (cluster head) is in
charge of aggregating and pre-processing the data; (2) the
execution of the application is divided logically in subsequent
phases; (3) the network implements routing schemes which
guarantees spatial isolation between the clusters.

1) Clustering nodes: The reason for grouping the nodes
into clusters is obviously to reduce the load on the network
by performing in-cluster data pre-processing at the selected
cluster heads. Our tested solution implements non-overlapping
“square” clusters – the network topology being a 2D grid of
X times Y nodes, all clusters are non-overlapping and of size
nsize × nsize, with nsize ≤ X and nsize ≤ Y . nsize must

be a positive odd number and the cluster head is the node
located at the “center” of the square. The cluster size nsize is
defined through the system parameter nradius that denotes the
maximum distance from the cluster head to the farthest node in
the cluster (considering rectilinear distance, a.k.a. Manhattan
distance). Figure 3 shows a scenario with nradius = 2.

The purpose of local in-cluster processing is to extract
high level aerodynamic information of the airflow, which is
transmitted in a smaller number of packets (when compared
to the number of packets required to transmit the raw data).
The pre-processing and compression algorithms to be used are
application-specific and are not in the scope of this paper. We
have though discussed application specific issues in previous
works (see [7] for a discussion on this topic).

2) Executing application in phases: The execution of the
application is logically divided in to a set of four consecutive
phases φ1, φ2, φ3 and φ4. The first phase starts when the sink
requests data from the cluster heads. Every successive phase
starts when the previous one ends. Specifically, the four phases
are:

• Phase φ1. The sink requests the cluster heads of all
clusters to send the processed data;

• Phase φ2. On receiving the request from the sink, the
cluster heads in turn request the nodes of their respective
clusters to send their data;

• Phase φ3. Every node of every cluster transmits its sensed
data to its cluster head;

• Phase φ4. The cluster heads process the received data and
transmit the result back to the sink.

Note that the clusters may not always be in sync with respect
to the phase of their execution. The second phase (φ2) for
instance, may start in each cluster with a different time offset
(this offset being proportional to the distance between the
cluster head of each cluster and the sink). Also, note that the
sink and cluster heads serve as regular sensing node as well.
The sink is the only node to act as the gateway with the outside
world and has a backhaul link (for example, a wireless link).
Figures 3(a) to 3(d) show the four phases in a chronological
order.

3) Spatial isolation through routing schemes: The four
phases described above require spatial isolation so that packets
do not compete with each other for network resources when
traversing it. We use the well-known dimension-order routing
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algorithms known as X-Y and Y-X routing protocols [8]. In
X-Y routing (resp, Y-X), packets are first routed along the X
(resp, Y) dimension and then along the Y (resp, X) dimension.
These protocols always find the shortest path between the
source and destination nodes (again, in terms of the Manhattan
distance) and are proven to be deadlock-free [12].

Phases φ1 to φ3 use one of the following two routing
algorithms, sometimes called Counterclockwise Dimension
Routing (see Figures 3(a)-(c)). The starting dimension (X
or Y) depends on the quadrant in which the destination
node is, relatively to the origin of the packet. For phase φ4

we propose another routing protocol hereafter referred to as
Shifted Clockwise Dimension Routing. This protocol adds an
initial change in dimension on the first hop and then uses a
regular clockwise routing (see Figure 3(d)).

The nodes aligned with the sink are not part of any cluster.
They provide an exclusive route for packets of φ4, sent by
the cluster head to the sink. This routing scheme results in
flows from phase φ4 to travel orthogonal to the flows from
phases φ1, φ2 and φ3 and therefore they do not compete for
the same output port at any node on the way. This enables
spatial isolation between the flows from the different phases.

III. EXTENDING XDENSE WITH REAL-TIME

APPLICATION CAPABILITIES

We endow XDense with real-time capabilities by shaping
the traffic at every output port of every node in the network.
In simple terms, by controlling how and when packets are
sent by each node, we are able to compute the maximum
buffer requirement and determine precise upper-bounds on the
application execution time.

A. Model of computation

The real-time application deployed on the network is charac-
terized by a set Φ = {φ1, φ2, . . . , φn} of n consecutive event-
triggered phases (communication and processing primitives)
that constitute the logical part of the application execution. In
this work, we assume n = 4 (as explained in the previous
section) but the approach can be extended to any arbitrary
number n of phases. Every phase φi ∈ Φ, with i ∈ [1, n], is
characterized by a set Fi of mi ≥ 1 communication traffic
flows exchanged between the nodes involved in phase φi.
Each flow fi,j ∈ Fi, with i ∈ [1,mi], consisting of one
or more packets, has an unique source node from which the
communication is initiated, and may have multiple destination
nodes. Formally, a flow fi,j is modeled as:

fi,j = {Oi,j , σi,j , βi,j} (1)

The offset Oi,j is a constant delay before the sending of the
first packet of flow fi,j . The message size σi,j is the number of
packets that are sent in each flow fi,j and the burstiness βi,j ∈
[0, 1] represents the rate at which those packets are released.
A burstiness of 0 means that no packets are transmitted, and
a burstiness of x ∈ ]0, 1] means that a packet is transmitted
every 1

x
TTS. These three parameters together describe a finite

constant-rate flow with an initial offset. The notations σ and β
are used to allow modeling application scenarios with different
data sampling requirements. A couple of example flows are
illustrated below.

Example 1 (3D accelerometer). Consider a 3-axis acceleration
sensor whose data has to be transmitted as three separate
packets in a single flow (one packet for each acceleration axis).
In this case, we want the data for the 3 axis to be transmitted
together. Therefore, we set β = 1 with σ = 3 for that flow.

Example 2 (Pressure sampling). Consider a use-case in which
ten samples of pressure data need to be transmitted, using
one packet per sample. We are interested in having periodic
sampling, equally distributed in time. By setting the burstiness
to 1

20 for instance, one packet will be sent every 20 TTS.

Therefore, for that flow we set β = 1
20 and σ = 10.

B. Shaping flows and traffic throughout the network

As discussed above, the sending of all packets are shaped
at the source node of the corresponding flow f through its
parameters (O, σ, β); these three parameters allow for a precise
timing and sending rate at the source node of f . Note that for
simplicity, we shall use hereafter the symbol f to denote a
flow. We will mention the indexes i and j that indicate the
phase and flow indexes respectively only if necessary.

Although the flows are shaped at their source node, when
multiple flows (say, f in

1 , f in
2 , . . . , f in

k ) traverse the network at
the same time, pass through the same router, and compete for
the same output port, the resulting output flow fout at that port
is a superposition of all these competing flows. As such, fout

has an irregular packet-release pattern and a rate that can no
longer be modeled using the three parameters (O, σ, β). This
can be seen in the example illustrated in Figure 4(b), in which
four flows f in

1 , f in
2 , f in

3 , and f in
4 interfere with each other when

competing for a same output port. Each of these input flows
f in
k starts at time Ok and has a duration defined as ℓk = σk

βk
.

That is, flow fk sends all its packets during these ℓk TTS.
As seen in the upper part of the graphic (Figure 4(a)), the
number of packets to be sent over time from the output port
depends on the starting time and duration of all the competing
input flows, and the resulting curve can no longer be modeled
using the simple linear model (O, σ, β). It is thus difficult to
estimate the delay induced at every output port because of the
competing flows and hence to provide timing guarantees on
the end-to-end communication time between all the nodes.

To make the network amenable to timing analysis, we
shape the traffic at every output port of every node and
make it fit the linear model (O, σ, β). That is, at every output
port of every node in the network, we first identify the set
of input flows f in

k (with k = 1, 2, . . .) and based on the
respective parameters (Ok, σk, βk) of these flows, we compute
the parameters (Oout, σout, βout) that are used to shape the
resulting output flow at that output port. Note that it has been
proven in [13] that to calculate optimal shaping parameters in
a multihop scenario can be computationally intractable, and
thus finding a solution at runtime is not feasible.

The computation of (Oout, σout, βout) of every output port
of every node in the network is therefore performed interac-
tively, starting at the source node of every flow and iterating,
one port at the time, throughout the network until a shaper
is defined for all the output ports. We make two important
assumptions regarding the flows and their routing.

Assumption 1. In every node, all the packets entering by a
given input port are assumed to exit through a single output
port.
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using the proposed heuristics; time-line showing offset and
duration of (b) arriving flows and (c) departure flows.

Assumption 2. There are no circular dependency between
the flows. For any output port, say p1, the computation of the
parameters of its traffic shaper requires each of its competing
input flows to be modeled already by the three parameters
(O, σ, β). If any of these input flows, say f in

k , comes from the
output port (say p2) of an upstream router, it is required that
the parameters (Oin

k , σin
k , βin

k ) of the shaper of that upstream
output port p2 have been computed already. Similarly, this
requirement must be satisfied for all the input flows competing
for p2, and interactively it must be satisfied as well for all the
output ports of the upstream routers till the traffic shaper at the
source nodes of all the interfering flows. Therefore, for the it-
erative process of computing the parameters (Oout, σout, βout)
of every traffic shaper to eventually terminate. In simple terms,
there cannot be a flow f1 competing for an output port with a
flow f2 that competes for an output port with a flow f3, and
so on until reaching a flow fk that competes for an output port
with f1.

Assuming no cyclic dependencies between the flows, the
parameters (Oout, σout, βout) of every traffic shaper may be
computed in many different ways for a same set of interfering
input flows. In the next section, we propose three different
methods of computation.

C. Shaping output traffic at a single output port

We propose three heuristics to compute the parameters
(Oout, σout, βout) of the shaper used at a given output port.
Let F in denote the set of input flows that compete for the
output port under analysis. Every f in

k ∈ F in is characterized
by the three parameters (Oin

k , σin
k , βin

k ). For each f in
k ∈ F in,

we define the function Sin
k (t) as

Sin
k (t) =







0 t ≤ Oin
k

βin
k × (t−Oin

k ) Oin
k < t < Oin

k + ℓk
σin
k t ≥ Oin

k + ℓk

Broadly speaking, every function Sin
k (t) represents the number

of packets sent by the flow f in
k at a given time t (TTS). When

t is earlier than the starting instant Oin
k of the flow, the function

returns 0 since the flow has not sent a packet yet; For t larger

than the finishing time of the flow (Oin
k + ℓk), the function

returns the total number σin
k of packets sent by f in

k ; Between
these two bounds Oin

k and Oin
k + ℓk, the function increases

steadily from 0 to σin
k with a constant slope of βin

k .

Let S(t) =
∑

f in

k
∈F in S

in
k (t) be the sum of the functions

Sin
k (t) of all the input flows f in

k . This function S(t) is depicted
in Figure 4(a). Informally, S(t) gives the number of packets
that arrive at the considered input port in a time window of
length t (TTS). We further denote by T = {t1, t2, . . . , tm} the
finite set of time-instants (sorted in chronological order) corre-
sponding to the discontinuity points of the function S(t). These
discontinuity points are denoted as p1, p2, . . . , pm in Figure 4.
With these new notations, we can introduce our three heuristics
for the computation of the parameters (Oout, σout, βout) of the
shaper used at the analyzed output port.

For a given shaper (Oout, σout, βout) represented by a
straight line Lout of slope βout and passing through the
point (Oout, 0), the vertical distance dvoutj between a point

(tj , S(tj)) ∈ S(t), ∀tj ∈ T , and the line Lout represents the
number of packets being buffered at time t at that output port.
The horizontal distance dhoutj between a point (tj , S(tj)) ∈
S(t), ∀tj ∈ T and Lout represents the delay (induced by the
shaper) that all the packets that have arrived at that output port
at time tj will incur because of the shaper.

We start by computing the output flow size σout that is the
same for all the heuristics proposed. Since the shaper is not
allowed to drop any packet, it is naturally the sum of the size
of all the input flows f in

k , i.e.

σout =
∑

f in

k
∈F in

σin
k

In the remainder of this section we discuss the intuition
behind each heuristic and explain how they derive the two
other flow parameters, Oout and βout.

1) Minimum offset (Min-O): This first heuristic aims at
avoiding bursty traffic while coping as much as possible
with the bandwidth demand of the input flows. This traffic
shaper forwards the first packet as soon as it can, i.e. one
TTS after the packet has arrived, at time Oout = t1 + 1
TTS, and forwards all the subsequent packets at the highest
admissible rate; that is, with the highest burstiness βout such
that the number of packets sent at any time t ≥ Oout never
exceeds S(t). This burstiness corresponds to the highest slope
among the slopes of all the lines passing through the point
(t1+1, 0) such that, for every tj ∈ T , the point of x-coordinate
tj in the line has an y-coordinate ≤ S(t) – In simple terms,
the line is “below” the function S(t), ∀t ≥ 0. This slope is
simply given by

βout =

[

min
tj∈T

(

S(tj)

tj − (t1 + 1)

)]1

0

where [x]zy = max(min(x, z), y). Note that by definition of

t1, we have t1 = minf in

k
∈F in(Oin

k ). Figure 4(a) shows Min-O

departure curve with βout as βMin-O.
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2) Maximum slope (Max-S): The second heuristic aims at
not consuming any bandwidth for as much time as possible and
then send all the packets in a burst. Similarly to the Min-O
heuristic, the Max-S approach selects one “anchor” point of
S(t) and computes the maximum slope βout such that the line
with slope βout passing through the selected point is “below”
the function S(t). In Min-O, we selected the anchor point
(t1 + 1, 0) whereas Max-S selects the point (tm, S(tm)). The
maximum admissible slope such that the line remains below
S(t) is given by:

βout = max
tj∈T

(

S(tm)− S(tj)

tm − tj

)

(2)

Figure 4(a) shows Max-S departure curve with βout as βMax-S.
The offset Oout in Max-S is simply set to the X-intercept of
the line of slope βout and passing through the anchor point
(tm, S(tm)) to which we add 1 TTS, to make sure that packets
are not forwarded before the first packet arrives (like we did
in Min-O), i.e.

Oout = tm −
S(tm)

βout
+ 1

After computing the offset Oout, it is now safe to readjust

the slope as βout = [βout]
1
0 to model the fact that the shaper

cannot forward a negative number of packets and neither it
can forward more than one packet at a time. Note that this re-
adjustment must be performed after computing Oout as doing
it before would in some cases allow a packet to be forwarded
before it even arrived, that is, the line would not be completely
below the function S(t).

Figure 4(a) shows the departure line of Max-S, initially
calculated with a slope > 1 as a result of Equation 2. That
slope is then adjusted to βout = 1 as depicted on that Figure.
As seen, after adjusting its slope, the line corresponding to the
parameters of the Max-S traffic shaper does not intersect with
the function S(t) – It seems to be “too much shifted to the
right”. An easy patch to reduce this gap between S(t) and the
shaper is to set its offset to the minimum offset such that the
line remains below all the points of S(t). That is,

Oout = min
t≥0







t such that βout ≤ min
tj∈T

tj>t

(

S(t)− S(tj)

t− tj

)







(3)

Note that this value of Oout can be computed easily by
positioning the line of slope βout on every point (tj , S(tj)),
∀tj ∈ T , and retaining the maximum X-intercept of all these
lines.

3) Least-square regression (LQ): The intuition behind this
third heuristic is to minimize both the queue size and the
delay by finding the line Lout that minimizes the distance
between every point (tj , S(tj)) ∈ S(t), ∀tj ∈ T and Lout.
This line is commonly known as the regression line of the
points (tj , S(tj)) ∈ S(t). Using the least-squares method,
which is the most common method for fitting a regression

line, the slope of that line is given by

βout = r ×

√

√

√

√

1

m

∑

tj∈T

(S(tj)− S̄)2

√

√

√

√

1

m

∑

tj∈T

(tj − t̄)2

where

t̄ =
1

m

∑

tj∈T

tj

S̄ =
1

m

∑

tj∈T

S(tj)

and r is the correlation coefficient computed as

r =

∑

tj∈T

(tj − t̄)(S(tj)− S̄)

√

∑

tj∈T

(tj − t̄)2
∑

tj∈T

(S(tj)− S̄)2

Once we have computed the slope, we choose the smallest
offset Oout such that the line of slope βout and passing through
(Oout, 0) is never above any point (t, S(t)), ∀t ≥ 0. This is
done using Equation 3.

D. Worst-case per-hop delays and maximum queue sizes

Having stated the heuristics, we can now apply them to all
the phases of the application. We perform this in a hop-by-hop
strategy, starting from the output ports of the nodes for which
the parameters (Oin

k , σin
k , βin

k ) of all the interfering flows f in
k

are known. For each such output port, the resulting output flow
fout is shaped using the same model (Oout, σout, βout) that is
then propagated as the input flow in the next hop. The process
continues until the parameters of the shaper of every output
port of all the nodes of the network are defined (the output
ports that no flows ever traverse and that are thus unused are
naturally ignored). As mentioned earlier, we assume that there
are no cyclic dependencies between the flows at any output
port, which implies that the process eventually terminates.

After that step, we can now compute at each output port
the maximum transmission delay caused by its traffic shaper
(Oout, σout, βout), as well as its maximum queue size. To ease
the explanation, we shall use the same visual representation as
that used in the previous section for the shaper and the function
S(t). The shaper is represented by a straight line of slope βout

that intersects with the x-axis at the point (Oout, 0). We denote
this line Lout and write its equation as

Lout(t) = βoutt− βoutOout (4)

We define S(t) as in the previous section and keep the
notations T = {t1, t2, . . . , tm} to express the finite set of
time-instants (sorted in chronological order) corresponding to
the discontinuity points of the function S(t).

As explained previously, the number of packets buffered
at the output port at any time-instant t is given by the
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vertical distance dvoutj between the point (t, S(t)) and the

point (t, Lout(t)) on the line Lout. This vertical distance is
simply equal to:

dvoutj = S(t)− Lout(t)

and thus the maximum number MaxQueue of packets buffered
at that output port is given by:

MaxQueue = max
t≥0

(

S(t)− Lout(t)
)

Since S(t) is a continuous piecewise function for which
every sub-function is linear, it can easily be showed that the
maximum of the previous equation can be found by looking
only at the time-instants tj ∈ T rather than at all t ≥ 0, i.e.,

MaxQueue = max
tj∈T

(

S(tj)− Lout(tj)
)

(5)

This holds true because every sub-function of S(t) is a
segment that is either:

• parallel to Lout. In this case, all the points on that
segment are at the same distance from Lout, including
its two extremities that are discontinuity points with an
x-coordinate included in T .

• converging towards Lout. In this case, the leftmost point
on the segment (whose x-coordinate is an instant tj ∈ T )
is the furthest to Lout.

• diverging from Lout. In this case, the rightmost point on
the segment (whose x-coordinate is an instant tj ∈ T ) is
the furthest to Lout.

Similarly, the transmission delay at any time-instant t is
given by the horizontal distance dhoutj between the point

(t, S(t)) and the point of y-coordinate S(t) on the line Lout.
According to Equation 4, that point of y-coordinate S(t) ∈
Lout has an x-coordinate x such that S(t) = βoutx−βoutOout

and thus x = S(t)
βout + Oout. The horizontal distance is then

simply given by:

dhoutj =
S(t)

βout
+Oout − t

and thus the maximum delay MaxDelay at that output port is:

MaxDelay = max
t≥0

(

S(t)

βout
+Oout − t

)

For the same reasons as those mentioned for MaxQueue, the
maximum delay MaxDelay can be computed by looking only
at the points tj ∈ T , i.e.,

MaxDelay = max
tj∈T

(

S(tj)

βout
+Oout − tj

)

Note that the transmission delay is an interesting parameter to
analyze the end-to-end delay or per-hop delays of individual
packets. However, in this paper we rather focus on estimating
upper-bounds on the execution time of the phases and thus of
the overall real-time application.

To compute the execution time of a given phase, we must
know exactly when the phase start and when it ends. However,
phases may overlap in time and happen simultaneously. For
instance, for the application scenario considered in this paper,
a cluster head located close to the sink may enter phase φ2

long before a cluster head that is far from the sink (since it
receives the request from phase φ1 sooner). For simplicity, we
assume in this work that a phase ends when a given node has
received all the packets sent to it. For example, the time at
which all the cluster heads have received their requested data
marks the end of phase φ3 and the time at which the sink
has received all the processed data marks the end of phase
φ4. As such, we compute the execution time of a phase as
the relative time-instant at which all the four input flows of
that given node – a cluster head for phase φ3 and the sink for
phase φ4 – terminate, i.e. the four flows coming from the north,
south, east, and west input ports of that node. the execution
time of a phase is thus given by

ExecTime = max
card∈[↑,↓,→,←]

(

Oin +
σin

βin

)

(6)

where for each cardinal direction ↑, ↓,→, and← (north, south,
east, and west), the flow f in characterized by (Oin, σin, βin)
is the input flow coming from that cardinal direction.

IV. EVALUATION OF TRAFFIC SHAPING HEURISTICS

Application use-case: To evaluate the proposed heuristics,
we consider the application scenario introduced in Section II.
Remember that the execution of this application is divided
logically in four consecutive phases φ1, φ2, φ3 and φ4. In
the first phase φ1, the unique sink node requests all the
cluster heads to send their data; in phase φ2, the cluster heads
performs another request to all the nodes of their respective
cluster; in phase φ3, the nodes reply to the cluster heads by
sending them the sensed data; and in phase φ4, the cluster
heads process the data received and transmit the result back to
the sink. Since there is no network congestion in phases φ1 and
φ2 – because all the packets sent from the sink to the cluster
heads and then from the cluster heads to the sensing nodes have
their own private route to their destination – these two phases
are neither affected by a modification of the cluster size, nor by
changing the number of clusters, nor by altering the burstiness
of the traffic shapers. We shall therefore focus only on phases
φ3 and φ4 in which network congestion does occur and for
which a modification of the aforementioned parameters has an
impact on the performance.

Network setup: The network is organized as a square grid
of 45 × 45 = 2025 nodes with an unique sink located at the
center of the grid. Figure 3 depicts a closeup on the sink.
In that figure we can also see the central row and central
column of nodes in the middle that are dedicated only to the
communication between the cluster heads and the sink, the
overall cluster organization, and the routes taken by the flows
in the different phases. Based on an integer parameter nradius

that we vary in our experiments, we define every cluster as
a square grid of (2nradius + 1)2 nodes with the cluster head
at the center of the grid. As such, nradius defines both the
cluster size and the number of clusters (the smaller the clusters,
the more clusters in the network, and reversely). Because of
our routing algorithms and network symmetry assumptions
(position of sink in the center of the network and cluster-head
in the center of their cluster), the workload observed in each
quadrant around the sink or cluster-heads will be identical.
This makes it sufficient to analyze a single quadrant of the
network or cluster.
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Shaping heuristics: We evaluate the performance of the
three proposed heuristics Min-O, Max-S, and LQ against the
performance of a cycle-accurate network simulator that we
call BE.3 The simulator does not implement any traffic shaper
and thus it delivers the best effort (BE) performance overall.
However, the congestion scenarios at the bottlenecks of the
network (mostly at the sink and cluster heads) are so complex
that they are hardly analyzable and hinder the development of
an analytical framework to provide real-time guarantees.

Evaluation criteria and methodology: For each of the
three heuristics Min-O, Max-S, LQ, we evaluate the maximum
queue sizes and the end-to-end execution time of the phases
φ3 and φ4. For BE, maximum queue sizes and the end-to-
end execution time are measured in the simulator. We do so
for different cluster sizes and flow burstiness. Specifically, we
compute this metrics for in a network with 45 × 45 nodes
divided in clusters with size nradius set to 1, 2, 3, 4 and 5. For
each of these cluster sizes, we analyze the variation of this
metrics when we vary the burstiness β of all the flows at their
source node from 0 to 1 by step of 0.02.

The message size σ differs for each phase. For phases φ1

and φ2, a single packet is generated at the sink and cluster
head, whereas σ = 1. At phase φ3, each sensing node outputs
a flow with message size σ = 4. At the end of φ3, the cluster
head receives in total four packets per each node on its cluster
plus 4 of its own sensed data. In turn, each cluster head outputs
a flow with message size σ, as the sum of all these packets
times ⌈1−CR⌉. The term CR aims at reproducing the effect of
data aggregation by the cluster head. For this work we define
this as a fixed value equal to CR = 80%, which was shown in
previous work [7] to be a reasonable ratio, depending on the
data of interest.

A. Maximum queue size

For each of the three heuristics Min-O, Max-S and LQ, we
first derive the parameters (O, σ, β) of all the traffic shapers
in the network. Then we use Equation 5 on every shaper to
compute the maximum queue size of the corresponding node
and finally, we retain the maximum queue size of all the nodes
in the network. As we can see in Figure 5(a) and (b), in phase
φ3 the queues are smaller for smaller clusters (nradius). This is
expected since smaller clusters contain less nodes and therefore
there are less packets exchanged within each cluster, and thus
less congestion.

The opposite scenario would be expected for phase φ4 since
using smaller clusters means more clusters in the network,
and thus more cluster heads transmitting packets to the sink.
Yet, this is not observed in Figure 5(c) and (d). That is,
smaller clusters do not imply longer queues. The reason for
this counter-intuitive result can be unveiled by looking at the
utilization of the four input links of the sink. We define the
utilization of a link as the number of packets sent to that link in
a given phase (here, phase φ4) divided by the time (number of
TTS) it takes for all those packets to traverse it. An utilization
of 1 means that the link is never idle during the considered
phase whereas an utilization of 0 means that the link is not
used. As seen in Figure 6(c) and (d), smaller clusters yield a
better utilization of the input links of the sink. This is because
the number of packets sent to the sink does not depend on

3More details on the implementation of our simulator can be found in [24]
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(d) φ4, nradius = 5

Fig. 5: Maximum queue size computed for our three traffic
shaping heuristics against the maximum queue size measured
during simulation (we display here only the results for the
phases φ3 and φ4 and for nradius set to 1 and 5).
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Fig. 6: Link utilization computed for our three traffic shaping
heuristics against the Link utilization measured during simu-
lation (we display here only the results for the phases φ3 and
φ4 and for nradius set to 1 and 5).

the cluster size and with more (and smaller) clusters, the input
links of the sink spent less time idle waiting for the packets to
arrive from longer distances. In other words, with fewer (but
bigger) clusters, cluster heads are farther from the sink and thus
its input links spend more time idle waiting for the packets to
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traverse the intermediate hops. Greater utilization for a same
number of packets means that there is less congestion in the
network and thus smaller queue at the individual hops.

It is worth noticing that in some scenarios, the maximum
queue size obtained when using traffic shaping is smaller
than the maximum queue size without traffic shaping. This
is evidenced in Figure 5(d), for β ∈ [0.4, 0.6], where the
maximum queue size of Max-S and LQ is smaller than that
of BE. This result is due to the offset O of the traffic shapers
in the initial hops. The offsets have for effect to distribute in
time the load on the network and thus decrease the overall
congestion.

Another interesting observation is for the method Min-O,
the maximum queue size gets smaller for increased burstiness.
This is very counter-intuitive since we would expect that by
injecting more traffic in the network, the congestion would
increase. However, this phenomena can be easily explained
mathematically: it is due to the way the method Min-O is
defined. Looking at Figure 4, the flows duration defined as σ

β

are longer for lower burstiness β and thus for low values of β,
the first points ∈ T (depicted by p1, p2, etc.) are farther from
the origin. Since Min-O selects a point close to the origin as
“anchor” point, its slope must be small so that the line remains
below the function S(t). With a low slope, it is likely that the
vertical distance between the function S(t) and the line will be
high (in particular if S(t) increases quickly). These phenomena
can already be observed, to a limited extent, in Figure 4.

To conclude, the heuristics Max-S and LQ have an average
performance close to that of BE that does not use traffic
shaping. This means that our heuristics are able to provide
accurate timing estimates and yet suffer very little loss of
performance as compared to a best-effort solution.

B. Phase execution time

We compare the execution time of the phases φ3 and φ4 in
Figure 7, again for the two cluster sizes defined by nradius = 1
and 5 and varying the burstiness of the initial flows from 0 to
1 by step of 0.03. The execution times are computed by using
Equation 6. As seen in all graphics of Figure 7, increasing
the burstiness considerably reduces the execution time of the
phases (note that the plots are in logarithmic scale) up to
a point it remains constant. This point is reached only for
high burstiness in Figure 7(a) whereas it is reached almost
immediately in Figure 7(b). This threshold beyond which the
execution time cannot be further reduced can be explained
by looking at the utilization of input link of cluster heads
(for phase φ3) and the sink (for phase φ4). Those thresholds
correspond to specific values of the burstiness for which the
links saturate and therefore, any further increase in burstiness
only results in longer queues but not in reduced execution time.

V. RELATED WORK

In this section, we briefly discuss the differences between
XDense and other sensor networks tailored to dense sensing
and we go through a few systems that use similar mesh-
grid network architectures. Then, we discuss some seminal
works on real-time communication in multi-hop networks and
traffic shaping to provide communication bounds for real-time
applications.
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(c) φ4, nradius = 1
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(d) φ4, nradius = 5

Fig. 7: Execution time of phases φ3 and φ4 computed for our
three traffic shaping heuristics against their execution times
recorded during simulation.

A multi-modal sensor network was proposed in [14], as
a scalable sensor network with up to hundreds of nodes per
square meter. However, due to the wireless nature of the links
(infrared), contentions and collisions substantially increase the
cost of communication. Their research leans more towards
wireless sensor networks whose performance does not suit the
application scenarios we focus on. Instead of wireless links,
in [15], the authors use wired links to deploy few sensors
in a grid network, to act as an electronic skin. Nodes are
interconnected using shared buses, approach that differs from
ours.

More recently, the authors of [16] presented a modular and
dense sensor network in a form factor of a tape, tailored
to wearables. In these cases though, master-slave buses are
used to interconnect nodes (through SPI or I2C), regardless
of the shape of the network. Not only shared buses drastically
decrease the opportunity for distributed processing due to their
finite bandwidth that do not scale along with the number of
nodes, but they also constraint the number of nodes due to
limited address space and related electrical limitations. They
are therefore not a scalable solution.

XDense uses a 2D mesh network architecture that resembles
common NoC architectures [8], [17]. Numerous works to
achieve real-time guarantees have been proposed for NoCs.
For instance, the authors of [18] proposed a worst-case analysis
technique for priority-preemptive, wormhole switched NoCs.
This approach was later extended in [19], in which an end-
to-end schedulability analysis was proposed for many-core
systems. However, wormholing is tailored to parallel links,
where very high bandwidth is required, and for large amount
of data transfer between cores. Because XDense relies on
non-prioritized packet switched serial communication, this
approach does not apply to our network architecture.

More in line with our approach, real-time communication
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for multi-hop networks addresses the issue of guaranteeing
the delivery of messages with time constraints, in networks
with multiple nodes and point-to-point interconnection. This
solution is based on a linear bounded arrival process, initially
proposed by Cruz [20]. Later in [21], the authors propose
a channel establishment scheme for computing worst-case
response times. This problem has also been addressed by
Cidon et al. [22] where FIFO scheduling is used to obtain
an upper-bound on the network delay in each node. They
also limit buffer sizes, aiming at maximizing throughput while
keeping a low probability of packet loss.

Traffic shaping to achieve tighter and deterministic bounds
has also been investigated already. For example, in [13] the
authors use rate controlled Earliest Deadline First scheduling in
conjunction with per-hop traffic shaping to provide determin-
istic end-to-end delay guarantees. They identify the shaping
parameters that result in maximal network utilization. This has
also been studied for NoCs in [23] for worst-case response
guarantees and buffer space optimization.

VI. CONCLUSIONS AND FUTURE WORK

The proposed traffic shaping heuristics enable us to endow
XDense networks with real-time capabilities. We showed that
on average, the performance of XDense is very similar with
and without traffic shaping. This means that the proposed traf-
fic shaping techniques allow for accurate timing and memory
requirement estimates to be derived while imposing minor
performance overheads.

Although it has not been discussed in the paper, the analysis
framework that we propose can also serve as a basis to reason
on the dimensioning of the system (choosing the network size,
the cluster configuration, etc.).

Improvements to the model can be made along many dimen-
sions. One would be to incorporate applications with heteroge-
neous flows sources, in which case our heuristics may perform
differently. Another would be to bring in computational fluid
dynamics data to analyze the performance of the model vs
synthetic data. The model can also be improved with more
accurate portrayal of hardware (for example, internal delays).
One way to do this is to measure delays on real hardware and
incorporate it. We have already made some progress along
these lines [24].
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