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Abstract 

Internet of Drones (IoD) is an innovative technology that integrates mobile computing capabilities with drones, 

enabling them to process data at or near the location where it is collected. Federated learning can significantly 

enhance the efficiency and effectiveness of data processing and decision-making in IoD. Since federated learning 
relies on aggregating updates from multiple drones, a malicious drone can generate poisoning local model 

updates that involves erroneous information, leading to incorrect decisions or even dangerous situations. In this 
paper, a new data-independent model poisoning attack is developed to manipulate federated learning accuracy, 

which does not rely on training data at drones. The proposed attack leverages an adversarial graph neural 
network (A-GNN) to generate poisoning local model updates based on the benign local models overheard. 

Particularly, the A-GNN discerns the graph structural correlations between the benign local models and the 
features of the training data that underpin these models. The graph structural correlations are reconstructively 

manipulated at the malicious drone to crafts poisoning local model updates, where the training loss of the 
federated learning is maximized. 
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Abstract—Internet of Drones (IoD) is an innovative technol-
ogy that integrates mobile computing capabilities with drones,
enabling them to process data at or near the location where it
is collected. Federated learning can significantly enhance the
efficiency and effectiveness of data processing and decision-
making in IoD. Since federated learning relies on aggregating
updates from multiple drones, a malicious drone can gen-
erate poisoning local model updates that involves erroneous
information, leading to incorrect decisions or even dangerous
situations. In this paper, a new data-independent model
poisoning attack is developed to manipulate federated learning
accuracy, which does not rely on training data at drones.
The proposed attack leverages an adversarial graph neural
network (A-GNN) to generate poisoning local model updates
based on the benign local models overheard. Particularly, the
A-GNN discerns the graph structural correlations between the
benign local models and the features of the training data that
underpin these models. The graph structural correlations are
reconstructively manipulated at the malicious drone to crafts
poisoning local model updates, where the training loss of the
federated learning is maximized.

Index Terms—Internet of Drones (IoD), Federated learning,
Adversarial Graph Neural Networks (A-GNN), Poisoning
attack, Mobile computing

I. INTRODUCTION

Internet of Drones (IoD) is an innovative technology

that integrates mobile computing capabilities with drones,

enabling them to process data at or near the location where

it is collected [1]. By combining the mobility and flexi-

bility of drones with the power of mobile computing, this

approach allows for real-time data analysis and decision-

making in the air, significantly reducing the latency and

bandwidth issues associated with transmitting data to dis-

tant cloud servers [2]. This is particularly beneficial for

applications requiring immediate response and action, such

as disaster response, environmental monitoring, and urban

planning [3]. IoD transforms how we collect, process, and

leverage data from the skies, opening new possibilities for

more efficient, responsive, and intelligent systems [4].

Federated learning can significantly enhance the effi-

ciency and effectiveness of data processing and decision-

making [5]. Fig. 1 depicts federated learning in an IoD

scenario, where each drone can be equipped with sensors

and computing units, collecting data from its environment.

Instead of sending all this raw data back to a central

server, which can be bandwidth-intensive and potentially

compromise privacy, each drone processes the data locally

to update a shared machine-learning model. These local

model updates are the only information exchanged between

the drones and a central server or amongst themselves.

Since federated learning relies on aggregating updates from

multiple drones, a malicious drone’s poisoning local model

updates can introduce erroneous information, leading to

incorrect decisions or even dangerous situations [6]. This

vulnerability is particularly critical in scenarios like disaster

response, environmental monitoring, or urban surveillance,

where the accuracy and reliability of data are paramount.

In this paper, we develop an innovative approach for

model poisoning attacks to manipulate federated learning

accuracy in IoD. Specifically, the malicious drone leverages

an adversarial graph neural network (A-GNN), which is

capable of creating poisoning local model updates by

analyzing and utilizing the characteristics of benign local

and global models. A malicious drone discreetly eavesdrops

the local models shared by benign drones and the global

model disseminated by the server. The A-GNN excels in

identifying and interpreting complex patterns and structures

found in data represented as graphs. Its proficiency lies in

compressing graph data into a compact, lower-dimensional

space, while maintaining the graph’s critical topological

attributes. The malicious drone then reconstructively mod-

ifies the graph’s structure, aiming to preserve the local

models’ structural traits and to increase the training loss

in federated learning. Subsequently, the malicious drone

crafts detrimental local models based on this altered graph

structure, aligning them with the data characteristics of



Fig. 1: Federated learning-enabled IoD, where the drone can be equipped with sensors and computing units, collecting

data from its environment. A machine learning model is trained at the drone to produce a local model update. The server

aggregates the local model updates from the drones to train a global model.

the benign local models. Consequently, the poisoning lo-

cal models can significantly undermine the integrity of

the global model, while maintaining compatibility of the

poisoning local model with the benign ones, which makes

the proposed A-GNN attack difficult to detect.

This paper presents several key contributions, including:

• The development of a new cyberattack for creating

data-independent, poisoning local models with the ma-

licious drone to minimize federated learning accuracy

in IoD. This design alters the correlations found in

benign local models while preserving their authentic

data characteristics.

• The investigation of a new A-GNN attack. This

framework is trained in conjunction with sub-gradient

descent techniques to deceptively regenerate the cor-

relations within the local models. This is achieved

while ensuring that the poisoning local models remain

undetected.

• The proposed A-GNN attack was implemented on a

Support Vector Machine (SVM) model, utilizing the

PyTorch framework version 1.12.1 and Python version

3.9.12. Based on MNIST datasets, performance shows

that the A-GNN attack markedly undermines federated

learning efficiency in IoD. This is evidenced by a

notable decrease in training accuracy, which dropped

below 50% on benign drones.

This paper is structured in the following manner: Sec-

tion II provides an overview of adversarial attacks and de-

fense models in IoD and federated learning. In Section III,

we explore system model of federated learning-enabled

IoD in the context of flight trajectories, communication

channel, along with a model of eavesdropping. The design

of our A-GNN attack is detailed in Section IV. We present

our performance evaluation in Section V. The paper is

concluded in Section VI.

II. RELATED WORK

In this section, we present the related work in terms of the

adversarial attacks and defense models in IoD and federated

learning.

A semidefinite relaxation framework aimed at identifying

and countering spoofing attacks on drones is studied in [7].

The detection of malicious drones is formulated as a

problem of localization feasibility, utilizing both reported

positions and distance measurements. The semidefinite re-

laxation framework transforms the inherently non-convex

problem of localization into a manageable semidefinite

program, which capitalizes on the spatial proximity of

neighboring drones to pinpoint and isolate the malicious

drones. Since offloaded information from drones to a server

could be compromised by an eavesdropper, an IoD with

energy harvesting is designed in [8]. A secure and energy-

efficient computational offloading model is developed for

improving the confidentiality of the computational offload-

ing from drones, which generates noise signals to hinder

eavesdropping by malicious drones. The authors in [9]

introduces an IoD where a legitimate drone is deployed to

monitor the flight of malicious drones, aiming to mitigate

safety and security risks. To obtain flight data from the

malicious drones, the legitimate drone employs a tactical

eavesdropping and jamming approach which intentionally

disrupts the malicious drones’ communication, compelling

it to lower its data transmission rate, in turn, increasing the

likelihood of successful eavesdropping. A tracking algo-

rithm is also developed for the legitimate drone to utilize the

data from the eavesdropped packets, along with the angle-

of-arrival and the received signal strength indicators from

the malicious drone.

The authors in [10] focus on categorization of federated

learning threats. Based on the specific goals, poisoning at-



tacks can be divided into two types: untargeted and targeted

poisoning attacks. Untargeted attacks aim to degrade the

overall performance of the system, while targeted attacks

focus on manipulating the system to produce specific er-

roneous outcomes. A overview of poisoning attacks and

corresponding defense strategies in federated learning is

provided in [11], where existing poisoning attacks are cat-

egorized based on the implementation methods and objec-

tives. The defense strategies for federated learning are clas-

sified into three categories: model analysis, which involves

scrutinizing the models for signs of tampering; Byzan-

tine robust aggregation, focusing on resilient aggregation

methods to counteract the influence of malicious models;

and verification-based strategies, where the emphasis is on

verifying the integrity and authenticity of the models before

they are aggregated. A collusive model poisoning attack

on federated learning is presented in [12], which allows

malicious participants to create untargeted poisoning local

models that adhere to specific distance constraints. The

collusion-based attack generates the malicious local models

aiming to reduce the convergence and accuracy of the

global model. A model poisoning attack is designed in [13],

which injects adversarial neurons into the redundant spaces

of a neural network to generate the malicious local model.

The redundant neurons play a crucial role in facilitating the

poisoning attack, yet they exhibit minimal correlation with

the primary task of the federated learning. As a result, the

model poisoning attack is designed in such a way that it

does not compromise the performance of the main task on

the shared global model. A defense framework is introduced

to guard against poisoning attacks in federated learning

systems [14]. The defense framework features a proof

generation method that enables participants to produce

verifiable proofs, determining whether their contributions

are malicious. An aggregation rule is designed to maintain

the training accuracy in the global model.

The poisoning attacks in the literature targeting federated

learning systems fall short in accounting for the subtle

interconnections among various local model updates. This

oversight can be identified by poisoning defense frame-

works that measure Euclidean distances among the local

model updates. Unlike existing approaches, the proposed

A-GNN attack in IoD introduced in this paper represents

a novel technique for model poisoning that operates in-

dependently of the data itself. This method specifically

targets the manipulation of correlations between various

data features in carefully chosen benign local models. At

the same time, the A-GNN attack maintains the authenticity

of the data features underlying these models. This strategy

ensures that the malicious drone’s poisoning local models

remain undetectable.

III. SYSTEM MODEL OF FEDERATED

LEARNING-ENABLED IOD

In this section, we study a federated learning training

process in IoD. A malicious drone generates and uploads

poisoning local model updates with the aim of gradually

poisoning the global model.

A. Local model training at the drone

There are I benign drones along with one authorized

yet malicious drone. For each benign drone i (∈ [1, I]),
it possesses a dataset of size Di. The variables xi

j and yij
represent, respectively, the input from captured data and the

output from the federated learning model on drone i, with

j ranging from 1 to Di [15]. The training loss function for

drone i is represented as fj(wi;x
i
j , y

i
j), which quantifies

the approximation errors based on the input xi
j and output

yij . The term wi indicates the weight parameter of the loss

function in the federated learning model under training.

For example, this function could adopt a linear regression

model, such as fj(wi;x
i
j , y

i
j) = 1

2
(wT

i x
i
j − yij)

2, or a

logistic regression model, like fj(wi;x
i
j , y

i
j) = yij log

ã

1+

exp
�

−wT
i x

i
j

�

;

− (1− yij) log
ã

1− 1

1+exp

�

�wT
i
xi
j

�

;

. The

notation (·)T is used to denote the transpose [16].

For drone i in each communication round of federated

learning, the local loss function, given the dataset size Di,

is expressed as:

Fi(wi) =
1

Di

Di
X

j=1

fj(wi;x
i
j ,y

i
j) + αN (wi), (1)

where N (·) is a regularizer function that represents the

effect of the local training noise, and α ∈ [0, 1] is a

coefficient [17].

B. Flight and channel model

The position of a drone can be represented by the

coordinates (U i
x, U

i
y, U

i
z). The drone operates in an altitude

hold mode, namely, the altitude U i
z remains constant. The

drone’s patrol velocity is given by vi, which is bound by

the minimum and maximum permissible velocities, Vmin

and Vmax, respectively, such that Vmin ≤ vi ≤ Vmax. ∆ti
is the time when the drone moves from (U i

x, U
i
y, U

i
z) to

the next position. The acceleration at (U i
x, U

i
y, U

i
z) can be

calculated as follows:

∆vi/∆ti = (v0i − vi)/∆ti, (2)

where v0i is the velocity at the next position and the

acceleration is constrained by the equation [18]:

0 ≤ ∆vi/∆ti ≤ Vmax/∆ti. (3)

When communicating with the server, the drone’s line-

of-sight (LoS) probability with the ground server is defined

as

PrLoS =
1

1 + a exp(−b[γi − a])
(4)

where a and b are parameters of the Sigmoid function [19].

γi represents the elevation angle between drone i and the



Fig. 2: Based on the benign local model updates overheard, the malicious drone conducts the A-GNN attack.

server. Additionally, the path loss between drone i and the

server can be determined by

Pi = PrLoS(γi)(φLoS − φNoS) + 20 log(Aγi)

+ 20 log(freq0) + 20 log(4π/vc) + φNoS

(5)

where A is the radius of the drone’s radio coverage. freq0
is the carrier frequency, and vc is the speed of light. φLoS

and φNoS stand for the excessive path loss of LoS and

non-LoS, respectively. The terms (φLoS, φNoS) represent

the excessive path loss for LoS and non-LoS conditions,

respectively. The pair of values for (φLoS, φNoS) may vary

as (0.1, 21), (1.0, 20), (1.6, 23), or (2.3, 34) depending on

the environmental context–suburban, urban, dense urban, or

highrise urban scenarios [20].

IV. THE PROPOSED ADVERSARIAL GRAPH NEURAL

NETWORK ATTACK

In this section, we study the threat model where the mali-

cious drone develops and dispatches poisoning local model

updates, with the strategic aim of gradually degrading the

integrity of the global model in the federated learning.

A. Threat model

Fig. 2 presents the threat model, where the malicious

drone conducts the A-GNN attack based on the benign

local model updates overheard. This involves crafting a

poisoning local model update that is transmitted to the

server. This poisoning local model is designed to manipu-

late the federated learning process in a contrary direction

(i.e., minimizing the accuracy), resulting in the corruption

of the local model updates from the benign drones. In

federated learning-enabled IoD operating within wireless

environments, this type of attack could be especially critical

because of the inherent broadcast characteristics of radio

communication [21].

The attacker could be a compromised legitimate drone

or a malicious drone, with the objective of maximizing the

training loss of federated learning. The malicious drone

methodically generates and uploads poisoning local models,

thereby incrementally poisoning the global model, denoted

as wg . This, in turn, adversely affects the local models of

benign drones, i.e., wi. In particular, wa is used to denote

the local model update of the malicious drone [22].

Without knowing the adversarial intentions of the ma-

licious drone, the server proceeds to aggregate the local

model updates from the drones. This mix includes both the

benign and the poisoning local model updates, inadvertently

leading to the formation of a manipulated global model,

which is denoted as wa
g . The data size is calculated by

D =
PI

i=1 Di + Da, where Da represents the reported

data size from the malicious drone. Consequently, the

formulation of the manipulated global model can be given

as

wa
g =

I
X

i=1

Di

D
wi +

Da

D
wa, (6)

B. A-GNN for poisoning federated learning accuracy

According to the loss function in (1) and the manipulated

global model wa
g in (6), the poisoning local model update

is generated to achieve max{F (wa
g )} at the server, while

the Euclidean distance between wa and wi (∀i ∈ [1, I])
is below a predetermined threshold ET . Particular, ET is

set to guarantee that the generated poisoning local model

update closely resembles the benign model in Euclidean

space. Reducing the Euclidean distance is crucial since the

poisoning model needs to evade detection by the server’s

defense mechanism.

The A-GNN attack solves w?
a = argmax{F (wa

g )}
by maintaining and strategically altering the correlations

between local model updates, with the aim of impeding

the convergence of the global model, as shown in Fig. 3.

Specifically, the A-GNN attack entails decomposing the

local model parameters of benign drones into two compo-

nents: a graph that captures the correlations or similarities



Fig. 3: The proposed A-GNN attack generates the optimal poisoning local models w?
a to achieve max{F (wa

g )}.

between the benign local model updates, and the spectral-

domain data features encapsulated by these local models.

Following this, A-GNN is designed to reconstruct the graph

in a manipulative fashion. After this reconstruction, we

proceed to construct poisoning local model updates by

integrating the altered graph with the original, authentic

data features.

The malicious drone generates wa without having access

to any data from the benign devices. As depicted in Fig. 3,

a graph, labeled as G(V, E ,F), is employed to represent

the local model updates of benign drones in IoD. In this

graph, V signifies the vertices, E denotes the edges, and

F corresponds to the feature matrix of the graph [23].

Moreover, we define F = [w1, · · · , wi, wa], which collects

the local model updates of the benign drones and the

malicious one. The proposed A-GNN can be comprised of

multiple input, output, and hidden layers. Let K represent

the total number of layers. Within the k-th layer, ηkV refers

to a learnable weight vector associated with the edges of

the vertices V . The hidden state of V can be given by

hk
V = Γ

k
ã

hk�1
V

⊕ Ω
k
ã

{hk�1
V0,E : (V,V 0) ∈ Ek}Ek2RE

;

; ηkV

;

,

(7)

where ⊕ defines the embedding summation operation. Γk(·)
represents a nonlinear activation function, examples of

which include tanh(·) or ReLU(·). The terms hV , hE , and

hV0 denote the representations of the vertex V , the edge E ,

and the neighbors of V , respectively. Ek encompasses the

edges present in the k-th layer. The notation R
E refers to the

hidden state dimension. Moreover, Ωk(·) is the aggregation

function at the k-th layer, which compiles neighborhood

information from various relations into a single vector. This

aggregation could take forms such as mean aggregation

or attention aggregation. The vertex feature vector hk
V can

initially be set as h0
V = V .

Referring to (7), the proposed A-GNN optimizes ηkV to

minimize a graph generation loss, represented as ζkG , which

Algorithm 1 Algorithm of the A-GNN attack on federated

learning in IoD

1: 1. Initialize: G(V, E ,F), I , J , Di, ET , wa
g , and wa.

Federated learning:

2: for Communication round δ = 1, 2, 3, ... do

3: for Local iterations t� = 1, 2, 3, ... do

4: With Di, benign drone i trains the local model

according to (1) → wi(t�).
5: end for

6: Benign drone i uploads wi(δ), i = 1, · · · , I to

the server, and the malicious drone overhears its

neighbor’s wi(δ).
The A-GNN attack:

7: Given G(V, E ,F), the malicious drone conducts the

proposed A-GNN to generate wa(δ), as follows.

8: for Vertex V ∈ VG do

9: for k = 1 to K do

10: For each vertex, (7) → hk
V(δ).

11: Based on (8), the graph generation loss, ζkG(δ)
is obtained.

12: ηkV is optimized to minimize Lk
G .

13: end for

14: end for

15: w?
a(δ) = argmax{F (wa

g (δ))} is achieved.

16: The malicious drone uploads the poisoning local

model update wa(δ) to the server.

17: According to (6), the server aggregates the local

model updates to formulate wa
g (δ) which is broad-

casted back to the drones.

18: Benign drones update their local models with the

global model, i.e., wi(δ) ← wa
g (δ), ∀i.

19: end for

is given as:

ζkG =
X

V2VG

− log
ã

Γ
k(Ψ(hk

V))
;

, (8)

where Ψ signifies a multilayer perceptron, which in this



Fig. 4: The federated learning accuracy under the A-GNN,

MP, or VAE-based attack, given 100 federated learning

communication rounds and five benign drones.

case uses tanh(·) as its activation function. The input to

Ψ at the k-th layer is the node embedding derived from

the previous layer. The output of Ψ is a scalar value that

subsequently passes through the Γ
k(·).

Algorithm 1 presents that the malicious drone conducts

the proposed A-GNN attack in IoD to generate poisoning

local model updates, and transmits them to the server for

federated learning.

V. PERFORMANCE EVALUATION

This section presents the performance analysis based on

MNIST datasets to assess the federated learning accuracy in

IoD. In particular, the MNIST dataset is a large collection

of handwritten digits widely used for training and testing in

the field of machine learning [24]. Standing for “Modified

National Institute of Standards and Technology,” it contains

70,000 grayscale images, divided into a training set of

60,000 examples and a test set of 10,000 examples. Each

image is a 28x28 pixel square (784 pixels in total), repre-

senting a digit from 0 to 9. For the purpose of training local

models on benign drones, 60,000 images are designated

as the training set. Meanwhile, a set of 10,000 images is

reserved for the server to conduct tests on the global model

following the completion of each communication round.

Moreover, the proposed A-GNN attack was implemented

on a Support Vector Machine (SVM) model, utilizing the

PyTorch framework version 1.12.1 and Python version

3.9.12. The A-GNN attack is compared with an existent

variational autoencoder (VAE)-based poisoning attack [25]

and a model poisoning (MP) attack [26]. We also present

the detection rate of the A-GNN attack. This rate is

determined by measuring the Euclidean distance between

the poisoning and benign local model updates.

Fig. 4 shows the federated learning accuracy given

5 benign drones. Specifically, the accuracy without any

poisoning attack converges gradually to 96% with the

(a) A-GNN

(b) MP

(c) VAE

Fig. 5: The Euclidean distances between the local model

updates of the five drones and the global model.

growth of the learning episodes. Under the proposed A-

GNN attack, the accuracy shows a gradual decline from

90% to 63%, and significant fluctuations. When subjected

to the MP attack, the overall accuracy falls from 92% to

80%. In addition, the VAE-based poisoning attack results

in a decrease from 94% to 83%. This can be attributed

to the A-GNN of reconstructing the correlation among the



benign local model updates, which considers the unique

features of each benign drone. Consequently, the malicious

drone manipulates the poisoning local model updates in

a way that maximizes the loss in federated learning, i.e.,

w?
a = argmax{F (wa

g )}.

To assess the invisibility of the proposed A-GNN at-

tack, Fig. 5 displays the Euclidean distances between the

collected local model updates (including the benign ones

and the poisoning one) and the global model. An obser-

vation from this figure reveals that, generally, the local

models trained with the MNIST dataset exhibit the shortest

Euclidean distance to the global model in comparison to

the other datasets used. This outcome aligns with expecta-

tions, considering the simplicity of recognizing or falsifying

handwritten digits in the MNIST dataset. Figs. 5(a), 5(b),

and 5(c) demonstrate that the Euclidean distances of the

poisoning local model, which is generated by the A-GNN

attack, are consistently lower than those of the benign

local models. This lower distance poses a challenge for the

server in identifying the malicious drone and effectively

countering the attack. In contrast, the MP and VAE-based

attacks tend to create a more substantial Euclidean distance

between the poisoning local model and the global model.

This larger distance makes the detection of the malicious

drone more feasible.

This comparison underscores a significant advantage of

the A-GNN attack. It is adept at crafting poisoning local

models by closely mirroring the feature correlations present

between the benign local and global models. Consequently,

the discrepancies between the poisoning and benign local

models become nearly imperceptible, enhancing the mali-

cious drone’s stealth.

Fig. 6 studies how the average accuracy of local model

updates changes as the number of benign drones I ranges

from 5 to 25. By default, there are 2 malicious drones (Ia).

If not specified, Ia scales in proportion to I , maintaining

a 2:5 ratio, which translates to 40% of the drones being

malicious. A notable decrease of approximately 20% in

average accuracy is observed as I increases from 5 to

25, underscoring the escalating efficacy and harmfulness of

the proposed A-GNN attack. With a constant Ia of 2, the

trend shows an incremental rise in the average accuracy of

federated learning while under attack, as I increases from 5

to 25. This pattern suggests that augmenting the number of

benign drones enhances the resilience of federated learning

against such attacks.

VI. CONCLUSION AND FUTURE RESEARCH

This paper focuses on poisoning federated learning ac-

curacy in IoD, where the machine learning model is trained

at the drone to produce a local model update, and the

server aggregates the local model updates from the drones

to train the global model. We developed a new data-

independent model poisoning attack on federated learning

in IoD, without depending on training data at drones. This

attack employs an A-GNN to create poisoned local model

Fig. 6: The average accuracy under the A-GNN attack,

where the number of benign drones, i.e., I , increases from 5

to 25. The number of malicious drones is Ia = 2 by default.

Otherwise, Ia increases proportionally according to Ia : I
= 2 : 5.

updates based on the benign local models overheard. The

A-GNN is adept at identifying and analyzing the structural

correlations within the graph that represent the benign

local models, as well as the features of the training data

supporting these models. By reconstructively altering these

graph structural correlations, the malicious drone is able to

craft the poisoning local model updates.

Future research on leveraging A-GNN for poisoning

federated learning accuracy in the IoD are poised to open

new frontiers in both offensive and defensive strategies.

The intrinsic capability of A-GNN to model complex

relationships and dependencies in data makes the proposed

attack an ideal tool for crafting sophisticated poisoning

attacks that are tailored to the unique topological structures

of IoD. Researchers are likely to explore how adversarial

information, disguised within the graph-based representa-

tions of drone communications or data sharing patterns, can

undermine the federated learning process more effectively

than traditional poisoning attacks, such as the MP and VAE-

based ones. On the defensive side, there’s a burgeoning

interest in developing new defense models to detect A-GNN

poisoning attacks by analyzing the graph’s properties for in-

consistencies or signs of tampering. This not only highlights

the arms race in securing federated learning environments

but also underscores the need for innovative approaches to

ensure the resilience and trustworthiness of collaborative

learning among drones, particularly in applications critical

to safety and security.
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