

Open-ZB: an open-source implementation
of the IEEE 802.15.4/ZigBee protocol stack
on TinyOS

André Cunha

Anis Koubaa

Ricardo Severino

Mário Alves

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-070409

Version: 1.0

Date: 09-04-2007

Technical Report HURRAY-TR-070409

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

Open-ZB: an open-source implementation of the IEEE 802.15.4/ZigBee
protocol stack on TinyOS

André Cunha, Anis Koubaa, Ricardo Severino, Mário Alves

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: arec@isep.ipp.pt akoubaa@dei.isep.ipp.pt rars@isep.ipp.pt mjf@isep.ipp.pt

http://www.hurray.isep.ipp.pt

Abstract
The IEEE 802.15.4/ZigBee protocols are gaining increasing interests in both research and industrial
communities as candidate technologies for Wireless Sensor Network (WSN) applications. In this paper, we
present an open-source implementation of the IEEE 802.15.4/Zigbee protocol stack under the TinyOS
operating system for the MICAz motes. This work has been driven by the need for an open-source
implementation of the IEEE 802.15.4/ZigBee protocols, filling a gap between some newly released complex
C implementations and black-box implementations from different manufacturers. In addition, we share our
experience on the challenging problem that we have faced during the implementation of the protocol stack
on the MICAz motes. We strongly believe that this open-source implementation will potentiate research
works on the IEEE 802.15.4/Zigbee protocols allowing their demonstration and validation through
experimentation.

Open-ZB: an open-source implementation of
the IEEE 802.15.4/ZigBee protocol stack on TinyOS

André CUNHA1, Anis KOUBÂA1,2, Ricardo SEVERINO1, Mário ALVES1

1 IPP-HURRAY! Research Group, Polytechnic Institute of Porto, Rua António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
2 Al-Imam Muhammad Ibn Saud University, Computer Science Dept., 11681 Riyadh, Saudi Arabia

arec@isep.ipp.pt, akoubaa@dei.isep.ipp.pt, rars@isep.ipp.pt, mjf@isep.ipp.pt

Abstract - The IEEE 802.15.4/ZigBee protocols are gaining
increasing interests in both research and industrial
communities as candidate technologies for Wireless
Sensor Network (WSN) applications. In this paper, we
present an open-source implementation of the IEEE
802.15.4/Zigbee protocol stack under the TinyOS
operating system for the MICAz motes. This work has
been driven by the need for an open-source
implementation of the IEEE 802.15.4/ZigBee protocols,
filling a gap between some newly released complex C
implementations and black-box implementations from
different manufacturers. In addition, we share our
experience on the challenging problem that we have faced
during the implementation of the protocol stack on the
MICAz motes. We strongly believe that this open-source
implementation will potentiate research works on the
IEEE 802.15.4/Zigbee protocols allowing their
demonstration and validation through experimentation.

1. Introduction

The IEEE 802.15.4 protocol specifies the Medium
Access Control (MAC) sub-layer and the Physical Layer
of Low-Rate Wireless Private Area Networks (LR-
WPAN) [1]. Although this standard protocol was not
specifically developed for Wireless Sensor Networks
(WSNs), it provides enough flexibility for fitting
different requirements of WSN applications by
adequately tuning its parameters. In fact, low-rate, low-
power consumption and low-cost wireless networking
are the key features of the IEEE 802.15.4 protocol,
which typically fit the requirements of WSNs [2].
Moreover, the ZigBee specification [3] relies on the
IEEE 802.15.4 Physical and Data Link Layers, building
up the Network and Application Layers, thus defining a
full protocol stack for LR-WPANs.

The ZigBee Alliance - an organization with more than
150 company members - has been working in
conjunction with the IEEE Task Group 15.4 in order to
specify a full protocol stack for low cost, low power,
low data rate wireless communications, as well as to
foster its worldwide use. The ZigBee specification, with
a new release in December 2006, aims at the provision
of a standard protocol that facilitates the interoperability
between multiple hardware and software platforms from
different providers. Fig. 1 shows the layered
architecture of the IEEE 802.15.4/Zigbee protocol stack.

Fig. 1. The IEEE 802.15.4/ZigBee protocol stack architecture

The IEEE 802.15.4/Zigbee protocols have attracted
several recent research works (e.g. [4-9]). Most of those
research studies have typically focused on the
evaluation/improvement of some characteristics of the
standard protocols either analytically or by simulation.
No experimental work has argued any of those research
works due to the lack of a real open-source
implementation of the IEEE 802.15.4/Zigbee protocol
stack. This lack prevents from experimentally
demonstrating the feasibility of the proposed approaches
and from the accurate validation of the theoretical results
of those studies, since simulation tools are usually not
sufficient to evaluate the real behaviour of the protocols
due to many abstractions in the simulation models.

There is a tremendous motivation for developing an
open-source implementation of IEEE 802.15.4/Zigbee
for different sensor network platforms to (1) foster the
development of research works focusing on the IEEE
802.15.4/Zigbee protocol stack, (2) provide a means to
validate, demonstrate and evaluate the real deployment
of IEEE 802.15.4/Zigbee WPANs.

In this paper, we propose Open-ZB [10], an open-
source implementation of the protocol stack under the
TinyOS operating system. So far, the implementation
has been made for the MICAz motes [11]. In addition,
for the sake of a comparative evaluation between
simulation and experimentation of the IEEE
802.15.4/ZigBee protocol stack, we have also developed
a simulation model using the OPNET simulator [12].
This simulation tool implements the Physical and the
MAC Layers of the IEEE 802.15.4 protocol standard
supporting the physical layer characteristics, the beacon
enabled mode, the slotted CSMA/CA, the protocol frame
formats and a battery module that computes the

consumed and remaining energy levels for the MICAz
motes.

This implementation was developed in the context of
the ART-WiSe Framework [13], which consists in
providing real-time and reliable communication for
WSNs using COTS (Commercial Off The Shelf)
technologies. We expect that the line of work we have
been following in the assessment, improvement and
engineering of IEEE 802.15.4/ZigBee networks will
have significant repercussions. IEEE 802.15.4 and
ZigBee are emerging technologies with plenty of
potentialities for WSN applications. Nevertheless, for
these technologies to gain widespread use we believe it
is important to provide open source implementations of
these protocols, to act as common platforms for the
scientific community to discuss, interact and contribute.
Moreover, it is important for the scientific community to
collaborate with the official working groups from IEEE
and with the ZigBee Alliance in a way that our findings
can contribute for improving the current protocol
standards.

The main contribution of the paper is the provision of
a comprehensive description of our IEEE
802.15.4/Zigbee implementation and demonstrating its
importance in fostering the development of research
work based on these standard protocols.

The rest of the paper is organized as follows. Section
2 highlights some relevant aspects of the IEEE
802.15.4/ZigBee protocols. Some implementation
details are shown in Section 3, namely general aspects
of our development environment, a short overview of
TinyOS[14] and nesC [15] programming language, the
implementation structure and future challenges. In
Section 4 we present some research achievements based
on our implementation.

2. Overview - IEEE 802.15.4/ZigBee protocols

2.1 IEEE 802.15.4 Phy and Mac

The IEEE 802.15.4 specification defines two different
types of devices: the Full Function Devices (FFDs) that
implement the full protocol stack and the Reduced
Function Devices (RFDs) that only implement a subset
of the protocol stack. The FFDs can have three different
roles in the network: (1) the Personal Area Network
(PAN) Coordinator: the principal controller of the PAN,
identifying the network and its configurations; (2) the
Coordinator: provides synchronization services through
the transmission of beacons; this device should be
associated to a PAN coordinator and does not create its
own network; (3) the End Devices: do not implement
the previous functionalities and should associate with a
Coordinator before interacting with the network.

The RFD is an end device operating with the minimal
implementation of the IEEE 802.15.4 protocol. An RFD

is intended for applications that are extremely simple,
such as a light switch or a passive infrared sensor; they
do not have the need to send large amounts of data and
may only associate with a single FFD at a time.

The IEEE 802.15.4 physical layer is responsible for
data transmission and reception using a certain radio
channel and according to a specific modulation and
spreading technique. It offers three operational
frequency bands: 2.4 GHz, 915 MHz and 868 MHz.
There is a single channel between 868 and 868.6 MHz,
10 channels between 902 and 928 MHz, and 16 channels
between 2.4 and 2.4835 GHz. The protocol also allows
dynamic channel selection, a channel scan function in
search of a beacon, receiver energy detection, link
quality indication and channel switching.

Lower frequencies are more suitable for longer
transmission ranges due to lower propagation losses.
Low rate transmissions provide better sensitivity and
larger coverage area. Higher rate means higher
throughput, lower latency or lower duty cycles. All of
these frequency bands are based on the Direct Sequence
Spread Spectrum (DSSS) spreading technique.

The IEEE 802.15.4 MAC protocol supports two
operational modes that may be selected by the PAN
Coordinator: (1) the non beacon-enabled mode, in which
the MAC is simply ruled by non-slotted CSMA/CA, (2)
the beacon enabled mode, in which beacons are
periodically sent by the Coordinators to synchronize
nodes that are associated with it, and to identify the
PAN.

In beacon-enabled mode, the PAN Coordinator defines
a superframe structure (Fig. 2) which is constructed
based on (1) the Beacon Interval (BI), defining the time
between two consecutive beacon frames, (2) the
Superframe Duration (SD), defining the active portion in
the BI, being divided into 16 equally-sized time slots,
during which frame transmissions are allowed.
Optionally, an inactive period is defined if BI > SD.
During the inactive period (if it exists), all nodes may
enter in a sleep mode (to save energy). BI and SD are
determined by two parameters, the Beacon Order (BO)
and the Superframe Order (SO), respectively, as follows:

 0 14
2

2

BO

SO
for SO BO

BI aBaseSuperframeDuration

SD aBaseSuperframeDuration
≤ ≤ ≤

= ⋅

= ⋅





 (1)

aBaseSuperframeDuration = 15.36 ms (assuming 250
kbps in the 2.4 GHz frequency band) denotes the
minimum duration of the superframe, corresponding to
SO=0. During the superframe duration, nodes compete
for medium access using slotted CSMA/CA in the
Contention Access Period (CAP).

As depicted in Fig. 2, low duty cycles can be
configured by setting small values of SO as compared to
BO, resulting in greater inactive periods. Additionally,

the IEEE 802.15.4 protocol also provides real-time
guarantees by using the Guaranteed-Time Slot (GTS)
mechanism. This feature is quite attractive for time-
sensitive WSN applications. In fact, when operating in
beacon-enabled mode, the IEEE 802.15.4 protocol
allows the allocation/deallocation of GTSs in a
superframe for nodes that require real-time guarantees.

Fig. 2. IEEE 802.15.4 Superframe Structure

The GTS allows the corresponding device to access
the medium without contention in the CFP. The GTS is
allocated by the Coordinator and is used only for
communications between the Coordinator and a device.
A single GTS may extend over one or more time slots.
The Coordinator may allocate up to seven GTSs at the
same time, provided that there is sufficient capacity in
the superframe. Each GTS has only one direction: from
the device to the coordinator (transmit) or from the
coordinator to the device (receive).

The GTS can be deallocated at any time at the
discretion of the Coordinator or the device that
originally requested the GTS. A device to which a GTS
has been allocated can also transmit during the CAP.
The Coordinator is the responsible for performing the
GTS management; for each GTS, it stores the starting
slot, length, direction, and associated device address. All
these parameters are embedded in the GTS request
command. Only one transmit and/or one receive GTS
are allowed for each superframe.

The IEEE 802.15.4 defines two modes of medium
access. The slotted CSMA/CA in beacon enabled mode
and the non slotted CSMA/CA in non-beacon enabled
mode. The CSMA/CA mechanism is based on backoff
periods (with the duration of 20 symbols). Three
variables are used to schedule the access to the medium:
(1) Number of Backoffs (NB), representing the number
of failed attempts to access the medium; (2) Contention
Window (CW), representing the number of backoff
needed to be clear before starting transmission; (3)
Backoff Exponent (BE), enabling the computation of the
number of wait backoffs before attempting to access the
medium again.

Fig 3 depicts a flowchart describing the two modes of
the CSMA/CA mechanism.The slotted CSMA/CA can
be summarized in five steps: (1) initialization of the
algorithm variables: NB equal to 0; CW equals to 2 and

BE is set to the minimum value between 2 and a MAC
layer constant definition (macMinBE); (2) after locating
a backoff boundary, the algorithm waits for a random
defined number of backoff before attempting to access
the medium; (3) Clear Channel Accessment (CCA) to
verify if the medium is idle or not. (4) The CCA returned
a busy channel, the NB is incremented by 1 and the
algorithm must start again in Step 2; (5) The CCA
returned an idle channel, the CW is decremented by 1
and if it reaches 0 then the message is transmitted
otherwise the algorithm jumps to Step 3.

Fig. 3. The CSMA/CA mechanism

The non slotted mode of the CSMA/CA is very similar
to the slotted version except the algorithm does not need
to rerun (CW number of times) when the channel is idle.

2.2 ZigBee Network Layer

In ZigBee networks there are 3 types of devices: (1)
ZigBee Coordinator (ZC): FFD, one for each ZigBee
Network, initiates and configures the network formation,
acts as an IEEE 802.15.4 PAN Coordinator and also as a
ZigBee Router (ZR) once the network is formed; (2)
ZigBee Router (ZR): FFD, associated with the ZC or
with a previously associated ZR, acts a an IEEE
802.15.4 PAN Coordinator, participates in multi-hop
routing of messages; (3) ZigBee End Device (ZED):
does not allow other devices to associate with it, does
not participate in routing and may implement a reduced
subset of the protocol stack (RFD).

Throughout this document the names of the devices
and the acronyms are used interchangeably

a) star topology b) mesh topology

c) cluster-tree topology

Fig. 4. IEEE 802.15.4 network topologies

The IEEE 802.15.4/ZigBee enables three network
topologies – star, mesh and cluster-tree.

In the star topology (Fig.4a), a unique node operates
as a ZC. The ZC chooses a PAN identifier, which must
not be used by any other ZigBee network in the vicinity.
The communication paradigm of the star topology is
centralized i.e., each device (FFD or RFD) joining the
network and willing to communicate with other devices
must send the data to the ZC, which dispatches it to the
adequate destination. The star topology may not be
adequate for traditional wireless sensor networks for two
reasons. First, the sensor node selected as a PAN
Coordinator will get its battery resources rapidly ruined.
Second, the coverage of an IEEE 802.15.4 cluster is
very limited while addressing a large-scale WSN,
leading to a scalability problem.

The mesh topology (Fig. 4b) also includes a ZC that
identifies the entire network. However, the
communication paradigm in this topology is
decentralized - each node can directly communicate
with any other node within its radio range. The mesh
topology enables enhanced networking flexibility, but it
induces an additional complexity for providing end-to-
end connectivity between all nodes in the network.
Basically, the mesh topology operates in an ad-hoc
fashion and allows multiple hops to route data from any
node to any other node. In contrast with the star
topology, the peer-to-peer topology may be more
power-efficient and the battery resource usage is fairer,
since the communication process does not rely on one
particular node.

The cluster-tree network topology (Fig. 4c) is a
special case of a mesh network where there is a single
routing path between any pair of nodes and there is a
distributed synchronization mechanism (beacon-enabled
mode). There is only one ZC which identifies the entire
network and one ZR per cluster. Any of the FFD can act

as a coordinator and provide synchronization services to
other devices and coordinators. The nomination of new
Coordinators is the role of the PAN Coordinator.

3. Implementation Details

3.1 General Aspects

This implementation was developed under the TinyOS
operating system version 1.1.15, for the MICAz [11]
motes (16 MHz Atmel ATMega128L and a 2.4 GHz
Chipcon CC2420 radio transceiver [16]). The MIB510
was used to program the motes. This programming
board is able to upload the applications to motes through
the serial port (or COM port) and provides a debug
mechanism by sending data through the COM port and
reading it in a software listener (e.g. ListenRaw,
provided with the TinyOS distribution, or Windows
HyperTerminal). This debug mechanism raises a
problem concerning the hardware operation because the
relaying of data through the COM port blocks all the
other mote operations, while this data is being sent. This
can usually cause synchronization problems. In order to
overcome the COM debug problems we use packet
sniffers to track and display the packets being
transmitted, which provides a better debugging
mechanism by transmitting debug data in the packet
payloads. We have used two different packet sniffer
applications. The first is an IEEE 802.15.4/ZigBee
packet sniffer provided by Chipcon - the CC2420 Packet
Sniffer for IEEE 802.15.4 v1.0 [17] that provides a raw
list of the packets transmitted. This application works in
conjunction with a CC2400EB evaluation board and a
CC2420 radio transceiver. We have also used the
Daintree IEEE 802.15.4/ZigBee Network/Protocol
Analyser [18] that provides more functionalities (e.g.
graphical topology of the network, statistics, message
flows, PAN information, association details, etc.).

3.2 TinyOS and nesC

TinyOS [14] is an operating system for embedded
systems with an event-driven execution model. TinyOS
is developed in nesC [15], a language for programming
structured component-based applications. nesC has a C-
like syntax and is designed to express the structures of
TinyOS. This includes the concurrency model and
mechanisms for structuring, naming and linking together
software components into embedded system
applications. The component-based application structure
provides a good flexibility in the process of the
application design and development. nesC applications
are built out of components and interfaces. The
components define two areas: (1) the specification, a
code block that declares the functions it provides
(implements) and the functions that it uses (calls); (2)
the implementation, a collection of the functions

provided. The interfaces are a bidirectional collection of
functions provided or used by a component. The
interface commands are implemented by the providing
component and the interface events are implemented by
the component using them. The components are binded
together by the means of interfaces and the overall set
constitutes an application.

TinyOS defines a concurrency model based on tasks
and hardware event handlers/interrupts. The TinyOS
tasks are synchronous functions that run without
preemption until completion and their execution is
postponed until they can execute. Hardware events are
asynchronous events that are executed in response to a
hardware interrupt and also run to completion. All the
asynchronous tasks and events may preempt
running/synchronous non-atomic code.

3.3 Software architecture

The Open-ZB implementation has three main TinyOS
components: the Phy, the Mac and the NWL. The Phy
component implements the following Physical Layer
tasks: (1) activation and deactivation of the radio
transceiver; (2) energy detection within the current
channel; (3) transceiver data management, Received
Signal Strength Indication (RSSI) readings and channel
frequency selection; (4) Clear Channel Assessment
(CCA) procedure for the CSMA/CA mechanism; (5)
data transmission and reception management. The Mac
component provides the following functionalities: (1)
beacon generation if the device is a coordinator; (2)
synchronization services; (3) PAN association and
disassociation procedures; (4) CSMA/CA as a
contention access mechanism; (5) the GTS management
mechanism. The NWL component provides the
following functionalities: (1) definition of the network
topology (by enabling the device operation as a ZC, ZR
or ZED); (2) association mechanisms; (3) ZigBee
addressing schemes; (4) maintenance of neighbour
tables; (5) tree-routing.

Fig. 5.a presents the layered view of the different
TinyOS components and interfaces of our IEEE
802.15.4/Zigbee protocol stack implementation. We
have opted for a modular implementation i.e. the
implementation is organized in different modules
(NWLM, MacM and PhyM) where each module
implements a protocol layer. The purpose of this
modularity is to enable fast and easy extensions of our
implementation by adding or updating new
functionalities. Each of these modules makes use of
auxiliary files used to implement some generic functions
(e.g. functions for bit aggregation into variable blocks),
constants declaration (e.g. layer constants),
enumerations (e.g. data types, frame types, response

status) and data structure definitions (e.g. frame
construction data structures).

In addition, we have developed an auxiliary module -
the TimerAsync module - for the implementation of an
asynchronous timer based on the hardware clock (used
for the implementation of the beacon interval,
superframe duration, time slots and backoffs). For the
synchronous timers, used in non time critical operations
(e.g application layer events), we use the standard
TimerC module already provided by TinyOS.

a) Protocol stack architecture

b) TinyOS implementation diagram

Fig. 5. Protocol Stack Software Architecture

The interface files (Fig. 5.a right side) are used to bind
the components and represent one Service Access Point
(SAP). Each of these interfaces provides functions that
are called from the higher layer module and are
executed/implemented in the lower layer module. The
interfaces also provide functions used by the lower layer
modules to signal functions that are
executed/implemented in the higher layer modules (e.g.
the PD_DATA.nc interface is used by the MacM module
to transfer data to the PhyM module, that is going to be
transmitted, and also enables the signalling by the PhyM
in the MacM of received data).

Fig. 5b depicts the relations between different
components of our IEEE 802.15.4/Zigbee protocol stack
implementation. Note that some components used in our

implementation are already part of the TinyOS operating
system, namely the hardware components (e.g. the
HPL<…>.nc modules).
In our implementation, we did not interact directly with
the hardware, in fact, TinyOS already provides hardware
drivers forging a hardware abstraction layer used by our
Phy component. In Fig. 5b, observe that the components
highlighted in white are hardware components already
provided by the TinyOS operating system.
Refer to [19] for a detailed description of the
implementation functions and protocol mechanisms.

3.4 Implementation Challenges

The main problems encountered while implementing
the IEEE 802.15.4/Zigbee protocol stack are related to
the hardware constraints. We believe that the MICAz
motes that we are using (with 8 bits microcontroller and
a Chipcon CC2420 transceiver) do not provide enough
processing power and radio performance for an
implementation that fully complies with the IEEE
802.15.4 standard timing constraints, especially for
small beacon orders (BO<2) and superframe orders
(SO<2). In addition, the MICAz available memory size
is rather scarce. Nevertheless, it is possible to achieve a
reasonable operational behaviour with higher
superframe configurations allowing the experimentation
of several features of the protocol (e.g. tuning the
CSMA/CA variables and other protocol parameters) and
to implement new ones.

The timing requirements of the IEEE 802.15.4
protocol are quite demanding. In the beacon-enabled
mode, all the devices must synchronize with the PAN
Coordinator by receiving and decoding the beacon
frames in order to align their superframes. If a device
looses synchronization it will not be able to operate in
the PAN. On the other hand, if it is not accurately
synchronized with the entire PAN there is a possibility
of collisions in the GTS, resulting from the overlap of
the CAP with the CFP. From our experience in the
implementation, the de-synchronisation can be caused
by multiple factors: (1) the processing duration of
beacon frames for high duty cycles, (2) the mote stack
overflow that results in a freeze or a hard reset, (3) the
unpredictable delays of the wireless communications,
and (4) the low processing power of the microcontroller
in conducting some of the protocol management tasks
(e.g. creating the beacon frame, the management of GTS
expiration and the indirect transmissions).

The implementation of the CSMA/CA algorithms is
also demanding concerning the timer precision. In fact,
the IEEE 802.15.4 protocol imposes that each backoff
corresponds to 20 symbols (one symbol is equal to 4
bits), which is equivalent to 320 µs. A first difficulty in
the implementation of the beacon-enabled mode was

related to the TinyOS management of the hardware
timers provided by the MICAz motes, which does not
allow having the exact values as specified by the IEEE
802.15.4 standard.

To accomplish an accurate synchronization, we have
developed a timer module (TimerAsync) based on the
hardware clock (TinyOS HLPTimer2C component) with
an asynchronous behaviour regarding the code execution
that implements the events depicted in Fig 6. Two
different types of timers have been implemented: (1) the
synchronous timers, which are used in the
implementation for events that do not need accuracy (2)
and the asynchronous timers that are more precise due to
their asynchronous behaviour.

Fig 6 depicts the asynchronous timer events that we
have implemented (TimerAsync Module).

Fig. 6. Asynchronous events

The clock tick granularity (the minimum time unit of
the clock) of the MICAz mote that best fits our
requirements is equal to 69.54 ms, which approximately
corresponds to four symbols (16 bits with 250 kbps). In
fact, the four-symbol duration has a theoretical value of
64 ms which leads to a cumulative effect on the
discrepancy between the experimental and the
theoretically values of the beacon interval, superframe
durations and time slot duration for high superframe and
beacon orders. For instance, a beacon interval BI=8
corresponds to 245760 symbols, which theoretically
corresponds to 3932.160 ms, but experimentally
corresponds to 4266.588 ms, based on the MICAz clock
granularity. This discrepancy, however, does not impact
the correct behaviour of the implemented protocol. In
fact, since we are using the same mote platform for
every node, we experience a coherent network
behaviour.

The frequency of the asynchronous software events (as
seen in Fig. 6) in addition to the hardware events, with
precedence in their execution, and the low processing
ability of the microprocessor, may lead to an insufficient
processing power left to execute the remaining higher
layer protocol tasks.

The IEEE 802.15.4 protocol does not provide any
reference regarding the implementation of the buffer
mechanisms (e.g. receive, transmit, GTS, indirect
transmissions). The way buffer are implemented impacts
the performance of the protocol implementation. On the
one hand, the protocol implementation must avoid

excessive memory copy operations because it can
jeopardize the synchronization (since these operations
are very time consuming). On other hand, the buffers
have to be small and efficiently managed because of the
limitation of the device memory (the MICAz only has
approximately 4 kbytes of RAM memory available and
the maximum packet length is about 127 bytes; if we
increase the buffer size the free memory will decrease
rapidly).

Another constraint of the IEEE 802.15.4 Physical
Layer is the turnaround time of 12 symbols (192 µs), the
time that the transceiver takes to switch from receive
mode to transmit mode, and vice-versa, to acknowledge
messages. Unfortunately, this is not possible to achieve
in most IEEE 802.15.4-compliant radio transceivers
including the Chipcon CC2420, which can take up to
192 µs to switch between transmit and receive modes,
leaving no time for data transitions between the MAC,
the PHY layer and the chip transmit memory space.

Moreover, TinyOS imposes some overheads [20] in
the primitive operations (e.g. posting tasks, calling
commands) that is considerable in order to comply with
the most demanding operational modes of the IEEE
802.15.4 protocol.

4. Research work

We have been characterizing the IEEE 802.15.4
behaviour in several research works, both via analytical
and simulation tools. In this section we overview our
research work in which we use our Open-ZB
implementation to validate our proposals and to assess
some of the current functionalities proposed in the
standards. We start by evaluating the CSMA/CA
mechanism of the IEEE 802.15.4 comparing the
practical experiment result with theoretical result from
our IEEE 802.15.4 simulation model. Also in the GTS
management we have implemented an implicit
Guaranteed Time Slot allocation mechanism (i-GAME)
proposed in [5]. Finally we have implemented a
mechanism to overcome the problem of beacon collision
in cluster-tree topologies.

4.1 Evaluation of the CSMA/CA

The performance of the IEEE 802.15.4 CSMA/CA
protocol was recently evaluated in [21-23], however the
impact of Beacon Order (BO), Superframe Order (SO)
and Backoff Exponent (BE) was not addressed. In order
to carry out this task, we have developed a simulation
model for the IEEE 802.15.4 slotted CSMA/CA
mechanism using the OPNET simulator [12]. Using this
model, we have analyzed the performance limits of the
slotted CSMA/CA mechanism for broadcast
transmissions (e.g. without acknowledgements). This
was done for different network settings, in order to

understand the impact of the protocol attributes
(superframe order, beacon order and backoff exponent)
on the network performance, namely in terms of
Throughput (S), Average Delay (D) and Probability of
Success (Ps) as presented in [24]. The evaluation of the
saturation throughput and the impact of the number of
nodes and frame size on the performance of slotted
CSMA/CA were also addressed and the simulation
results are presented in [25].

Currently, we have been using the Open-ZB
implementation in the MICAz motes with the purpose of
analysing the performance of the slotted CSMA/CA and
comparing it with the simulation results. In general, both
the simulation and experimental scenarios consist of
several nodes (MICAz) generating traffic at pre-
programmed inter-arrival times at the application layer
and a packet analyzer capturing all the data for later
processing and analysis. The packet analyzer used in the
experimental evaluation process has been the Chipcon
CC2420 Packet Sniffer [17]. It generates a text file with
all the received packets and corresponding timestamps
enabling us to retrieve all the necessary data with a
parser application.

Fig. 7. The Network Throughput as a function of the Offered Load

obtained through simulation and experimental work

As an example of what has already been achieved,
Fig.7 presents the results obtained by simulation and
experimental evaluation for the Throughput as a function
of the Offered Load. The network Throughput metric
represents the fraction of traffic correctly received by the
network analyzer normalized to the overall capacity of
the network (250 kbps). The Offered Load, represents
the amount of traffic passed to the MAC layer, again
normalized to the overall network capacity. Note that
low SO values lead to lower network Throughput. This
is basically due to two factors. First, the overhead of the
beacon frame is more significant for lower SO values,
since beacons are more frequent. Second, CCA
deference is also more frequent in case of lower SO
values, leading to more collisions at the start of each
superframe. This behaviour is observed both in the
simulation and experimental analysis. Nevertheless, the
Throughput values obtained through experiment are

lower. We believe these differences are somewhat
related to hardware constrains of the MICAz and some
efforts are being carried out to minimize its impact in
the results.

4.2 i-GAME

The IEEE 802.15.4 supports a GTS allocation, where
a node explicitly allocates a number of time slots in each
superframe for its exclusive use. The limitation of this
mechanism is inherent to the maximum number of seven
available GTS that can be allocated in each superframe,
preventing other nodes to benefit from guaranteed
service and resulting in a wasted bandwidth if the GTS
is underutilized. The i-GAME approach is based on
implicit GTS allocation requests, taking into account the
traffic specifications and the delay requirements of the
flows, therefore enabling the use of one GTS by several
nodes, still guaranteeing that all their requirements
(delay, bandwidth) are satisfied. In [5] the authors
propose an admission control algorithm that decides
whether to accept or reject a new GTS allocation.

The i-GAME mechanism was implemented in the
MAC and Network Layers defining a new service
access point between these two layers, the MLME-
iGAME. A detailed standard-like description of the
interfaces added to the Network layer and the
enhancements to the MAC layer for supporting the i-
GAME mechanism is presented in [26].

Comparing with the standard IEEE 802.15.4, the i-
GAME mechanism in the MAC layer just needs to
change the management of the beacon GTS descriptors,
which have to be included in the beacon in a round robin
sequence. The implicit GTS descriptors are managed by
the i-GAME Admission Control by issuing the
MLME_iGAME.response. This primitive is
implemented in the MAC layer by updating the GTS
descriptors (either by removing or adding). The MAC
layer maintains a list with the descriptors characteristics.

The i-GAME mechanism assumes that when a node
wishes to allocate a time slot, it sends an implicit GTS
request command (similar to the IEEE 802.15.4 GTS
request command) that besides the current IEEE
802.15.4 GTS characteristics (length, direction and type)
also includes the desired flow specification, including
the burst size, arrival rate and the delay requirements.
The PAN Coordinator evaluates the acceptance of the
GTS allocation by running the Admission Control
algorithm with the requested flow specifications. The i-
GAME Admission Control algorithm manages the
number of necessary GTS time slots in order to comply
with the requests, and accepted, flow specifications.
This is accomplished by managing the GTS descriptors
of the beacon frame transmitted by the PAN

Coordinator allowing the nodes that allocated a GTS to
use them.

Fig. 8 depicts an example of the usage of the GTS
allocated time slots and the optimization of bandwidth
that can be achieved with the i-GAME mechanism.

Fig. 8. Number of nodes allocating a GTS with i-GAME versus the

GTS length

4.3 Time Division Beacon Scheduling

The current IEEE 802.15.4/Zigbee specifications
restrict the synchronization in the beacon-enabled mode
to star-based networks, while it supports multi-hop
networking using the peer-to-peer mesh topology, but
with no synchronization. Even though both
specifications mention the possible use of cluster-tree
topologies, which combine multi-hop and
synchronization features, the description on how to
effectively construct such a network topology is missing.

The Time Division Beacon Scheduling (TDBS)
mechanism (without coordinator grouping), proposed in
[27], can be implemented in a simple manner, with only
minor add-ons to the protocol. In our implementation,
the ZigBee Network Layer supports the network
management mechanisms (e.g. association and
disassociation) and the tree-routing protocol. The tree-
routing relies on a distributed address assignment
mechanism that provides to each potential parent (ZC
and ZRs) a finite sub-block of unique network addresses
based on the maximum number of children, depth and
the number of routers in the PAN. The ZC is the first
node in the WSN to come to life and to broadcast
beacons. Every ZigBee Router (ZR), after its association
to the network, temporarily acts as a ZED and must be
granted permission by the ZC before assuming ZR
functionality and starting sending beacon frames. All the
ZRs and ZC use the same Beacon Interval (BI). Each ZR
must be active both during its Superframe Duration (in
the cluster under its control) and also during the active
period of its parent.

The TDBS approach relies on a negotiation for beacon
broadcasting. Upon success of the association to the
network, the ZR (behaving as a ZED) sends a
negotiation message to the ZC (routed along the tree)
embedding the envisaged (BO, SO) pair requesting a
beacon broadcast permit. Then, in the case of a
successfully negotiation, the ZC replies with a
negotiation response message containing a beacon
transmission offset (the instant when the ZR starts
transmitting the beacon). In case of rejection, the ZR
must disassociate from the network.

Fig. 9. TDBS Implementation Architecture

Fig. 9 depicts the architecture of the TDBS
implementation in the IEEE 802.15.4/ZigBee protocol
stack. The admission control algorithm is implemented
in the Application Support Layer behaving as a service
module of this layer. The TDBS requires minor changes
to the Network Layer. Thus, it is necessary to add a
StartTime argument in the MLME-START.request
primitive, as already proposed in the ZigBee
Specification [2], and to the NLME-START-
ROUTER.request primitive.

Fig. 10. Experimental network configuration

In our experimental work, we have considered the
network scenario presented in Fig. 10. The cluster-tree
network contains 15 cluster heads that consist of one ZC
and 14 ZR. The Beacon Order (BO) is set to 8 for all
coordinators, which gives a Beacon Interval of 245760
symbols (4266.885 ms). Hence, we must have at least
24=16 Beacon/Superframe time windows, each with
duration of 15360 symbols (266.680 ms). This restricts
the (maximum) Superframe Order (SO) to 4 (i.e.
Superframe Duration (SD) = 15360 symbols). In our
experimentation, we choose a SO=3 (SD=7680 symbols
(133.340 ms)). The cluster-tree network parameters (for
setting up the tree routing mechanism) consist in a

maximum depth equal to maxDepth=3, a maximum
number of child nodes per parent router equal to
Nchild=6, and a maximum number of child routers per
parent router equal to Nrouter=4. As shown in Fig. 10,
the network comprises the ZC at depth 0, two ZR at
depth 1, four ZR at Depth 2 and eight ZR at depth 3.
A ZED (0x007d) was also considered for carrying out a
message routing test.

Fig. 11. Association and negotiation Example

In Fig 11, marked as 1, is the beacon broadcast of the
ZC containing the network configuration BO and SO, as
seen in the Packet Type field. Note that the Time Delta
(4266 ms) between beacons represents the beacon
interval. The sequence of messages marked as 2
represents the association procedure. The ZR with the
extended address of 0x0000000200000002 sends an
association request to the ZC (0x0000). The ZC
acknowledges the reception of the request and informs
the ZR that there is pending data (using the pending data
field in the acknowledge frame). Then, the ZR sends a
data request command frame requesting the pending
data. The ZC replies with the association response
command frame containing the status of the association
(that in this case is successful) and the ZR is assigned
the short address 0x0001.

Now, the ZR is associated as a ZED and can therefore
communicate in the network, but it still needs to request
the ZC for a beacon broadcast transmission permit and a
time window slot (transmission offset). The negotiation
procedure is marked as 3. Until this point, and after the
network association, the ZR behaves as a normal ZED.
When the negotiation for beacon transmission finishes,
the ZR starts to broadcast beacons in its assigned time
window, as seen in Fig 11 marked as 4. Note that both
the association and negotiation for beacon transmission
took place during the ZC superframe.

In Fig 12, marked as 1, the first transmission of the
packet from the ZED 0x002d to its parent (ZR 0x0028)
is shown. Note that this transmission is carried out
during ZR 0x0028 superframe. The routing of the data
frame from the ZR (0x0028) to its parent in the cluster-
tree (ZR 0x0020) is marked as 2. The multi-hop
continues (Fig.12-3) with the routing of the frame from
the ZR 0x0020 to the ZC (0x0000) and to ZR 0x005e.

This transmission sequence is carried out during the ZC
superframe. Then, ZR 0x005e routes the frame to its
final destination, the ZR 0x0066 (Fig.12-4). The
retransmission of the data frame (Fig.12-4) is due to the
failure of the acknowledge transmission of ZR 0x0066.

Fig. 12. Message Flow and Beacon Frames

5. Concluding Remarks

IEEE 802.15.4/ZigBee emerge as potential
technologies for Wireless Sensor Networks. Thus, it is
of paramount importance to analyse their adequateness
for fulfilling the requirements of large-scale ubiquitous
computing applications. In this context, we have
triggered the ART-WiSe research line, which aims at the
design of a communication architecture for large-scale
critical applications based on COTS technologies,
namely IEEE 802.15.4/ZigBee. For that purpose we
have developed our own implementation of the protocol
stack, which we are making available to the community
as open-source. This has already triggered several
relevant interactions with world-reputed researchers,
companies and normalization bodies.

This paper overviews the most important aspects of
the implemented software, as well as a number of
research work that builds on its use.

References
[1] IEEE-TG15.4, "Part 15.4: Wireless Medium Access Control
(MAC) and Physical Layer (PHY) Specifications for Low-Rate
Wireless Personal Area Networks (LR-WPANs)," IEEE standard for
Information Technology, 2003.
[2] A. Koubâa, M. Alves, and E. Tovar, "IEEE 802.15.4: a
Federating Communication Protocol for Time-Sensitive Wireless
Sensor Networks," in Sensor Networks and Configurations:
Fundamentals, Techniques, Platforms, and Experiments, N. H.
Mahalik, Ed., 2007.
[3] ZigBee Specification 2006, http://www.zigbee.org/
[4] A. Koubâa, M. Alves, and E. Tovar, "GTS Allocation Analysis in
IEEE 802.15.4 for Real-Time Wireless Sensor Networks," in 14th

International Workshop on Parallel and Distributed Real-Time
Systems (WPDRTS 2006). Rhodes Island (Greece): IEEE, 2006.
[5] A. Koubâa, M. Alves, and E. Tovar, "i-GAME: An Implicit GTS
Allocation Mechanism in IEEE 802.15.4," in Proceedings of the
Euromicro Conference on Real-Time Systems (ECRTS 2006), 2006.
[6] J. Misic and V. B. Misic, "Access delay for nodes with finite
buffers in IEEE 802.15.4 beacon enabled PAN with uplink
transmissions," Computer Communications, vol. 28, pp. 1152-1166,
2005.
[7] J. Misic, S. Shafi, and V. B. Misic, "Modeling a beacon enabled
802.15.4 cluster with bidirectional traffic," Lecture Notes in
Computer Science, vol. 3462, pp. 228-239, 2005.
[8] L. Hwang, "Grouping Strategy for Solving Hidden Node Problem
in IEEE 802.15.4 LR-WPAN," in 1st International Conference on
Wireless Internet (WICON'05). Budapest (HUNGARY): IEEE, 2005.
[9] A. Koubaa, M. Alves, and E. Tovar, "Modeling and Worst-Case
Dimensioning of Cluster-Tree Wireless Sensor Networks," in
Proceedings of the 27th IEEE Real-Time Systems Symposium
(RTSS'06), Rio de Janeiro (Brazil), 2006.
[10] Open-ZB - Open Source Toolset for IEEE 802.15.4 and ZigBee.
http://www.open-zb.net
[11] Crossbow, "MICAz datasheet," http://www.xbow.com, 2004.
[12] OPNET, "OPNET Simulator, v 11, http://www.opnet.com."
[13] The ART-WiSe Framework, www.hurray.isep.ipp.pt/art-wise/
[14] TinyOS, http://www.tinyos.net, 2007.
[15] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D.
Culler, "the nesC Language: A Holistic Approach to Networked
Embedded Systems," in Proceedings of the Programming Language
Design and Implementation, 2003.
[16] Chipcon, "CC2420 transceiver datasheet,"
http://www.chipcon.com, 2004.
[17] Chipcon, "Chipcon Packet Sniffer for IEEE 802.15.4," 2006.
[18] Daintree Networks, "Sensor Network Analyser,"
www.daintree.net, 2006.
[19] A. Cunha, M. Alves, and A. Koubaa, "An IEEE 802.15.4
protocol implementation (in nesC/TinyOS): Reference Guide v1.1,"
IPP-HURRAY Technical Report, http://www.open-zb.net 2006.
[20] J. Hill, R. Szewczyk, A.Woo, S. Hollar, D. Culler, K. Pister,
“System Architecture Directions for Networked Sensors”, ASPLOS
2000, Cambridge, November 2000.
[21] J. Mišic, and V. B. Mišic, "Duty Cycle Management in Sensor
Networks Based on 802.15.4 Beacon Enabled MAC", Ad Hoc and
Sensor Wireless Networks Journal, Old City Publishing, 1(3):207-
233, 2005.
[22] J. Mišic and V. B. Mišic, "Access Delay and Throughput for
Uplink Transmissions in IEEE 802.15.4 PAN", Elsevier Computer
Communications Journal, 28(10):1152-1166, Jun. 2005.
[23] J. Mišic, S. Shafi, and V. B. Mišic, "The Impact of MAC
Parameters on the Performance of 802.15.4 PAN", Elsevier Ad hoc
Networks Journal, 3(5):509–528, 2005.
[24]A. Koubaa, M. Alves, E. Tovar, “A Comprehensive Simulation
Study of Slotted CSMA/CA for IEEE 802.15.4 Wireless Sensor
Networks”, In IEEE WFCS 2006, Torino (Italy), June 2006.
[25] A. Koubâa, M. Alves, E. Tovar, "On the Performance Limits of
Slotted CSMA/CA in IEEE 802.15.4 for Broadcast Transmissions in
Wireless Sensor Networks", IPP-HURRAY Technical Report,
HURRAY-TR-060202, Feb. 2006.
[26] A. Cunha, A. Koubâa, and M. Alves, "Implementation of the i-
GAME Mechanism in IEEE 802.15.4 WPANs," IPPHURRAY
Technical Report, TR060702, July 2006.
[27] Anis KOUBAA, Andre CUNHA, Mário ALVES, “A Time
Division Beacon Scheduling Mechanism for IEEE 802.15.4/Zigbee
Cluster-Tree Wireless Sensor Networks”. to be presented in
Euromicro Conference on Real-Time Systems (ECRTS 2007),
Pisa(Italy), July 2007

