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Abstract 
The IEEE 802.15.4/ZigBee protocols are gaining increasing interests in both research and industrial 
communities as candidate technologies for Wireless Sensor Network (WSN) applications. In this paper, we 
present an open-source implementation of the IEEE 802.15.4/Zigbee protocol stack under the TinyOS 
operating system for the MICAz motes. This work has been driven by the need for an open-source 
implementation of the IEEE 802.15.4/ZigBee protocols, filling a gap between some newly released complex 
C implementations and black-box implementations from different manufacturers. In addition, we share our 
experience on the challenging problem that we have faced during the implementation of the protocol stack 
on the MICAz motes. We strongly believe that this open-source implementation will potentiate research 
works on the IEEE 802.15.4/Zigbee protocols allowing their demonstration and validation through 
experimentation. 

 

 



Open-ZB: an open-source implementation of  
the IEEE 802.15.4/ZigBee protocol stack on TinyOS 

André CUNHA1, Anis KOUBÂA1,2, Ricardo SEVERINO1, Mário ALVES1  

1 IPP-HURRAY! Research Group, Polytechnic Institute of Porto, Rua António Bernardino de Almeida, 431, 4200-072 Porto, Portugal 
2 Al-Imam Muhammad Ibn Saud University, Computer Science Dept., 11681 Riyadh, Saudi Arabia 

arec@isep.ipp.pt, akoubaa@dei.isep.ipp.pt, rars@isep.ipp.pt, mjf@isep.ipp.pt 

 
Abstract - The IEEE 802.15.4/ZigBee protocols are gaining 
increasing interests in both research and industrial 
communities as candidate technologies for Wireless 
Sensor Network (WSN) applications. In this paper, we 
present an open-source implementation of the IEEE 
802.15.4/Zigbee protocol stack under the TinyOS 
operating system for the MICAz motes. This work has 
been driven by the need for an open-source 
implementation of the IEEE 802.15.4/ZigBee protocols, 
filling a gap between some newly released complex C 
implementations and black-box implementations from 
different manufacturers. In addition, we share our 
experience on the challenging problem that we have faced 
during the implementation of the protocol stack on the 
MICAz motes. We strongly believe that this open-source 
implementation will potentiate research works on the 
IEEE 802.15.4/Zigbee protocols allowing their 
demonstration and validation through experimentation. 

1. Introduction 

The IEEE 802.15.4 protocol specifies the Medium 
Access Control (MAC) sub-layer and the Physical Layer 
of Low-Rate Wireless Private Area Networks (LR-
WPAN) [1]. Although this standard protocol was not 
specifically developed for Wireless Sensor Networks 
(WSNs), it provides enough flexibility for fitting 
different requirements of WSN applications by 
adequately tuning its parameters. In fact, low-rate, low-
power consumption and low-cost wireless networking 
are the key features of the IEEE 802.15.4 protocol, 
which typically fit the requirements of WSNs [2]. 
Moreover, the ZigBee specification [3] relies on the 
IEEE 802.15.4 Physical and Data Link Layers, building 
up the Network and Application Layers, thus defining a 
full protocol stack for LR-WPANs. 

The ZigBee Alliance - an organization with more than 
150 company members - has been working in 
conjunction with the IEEE Task Group 15.4 in order to 
specify a full protocol stack for low cost, low power, 
low data rate wireless communications, as well as to 
foster its worldwide use. The ZigBee specification, with 
a new release in December 2006, aims at the provision 
of a standard protocol that facilitates the interoperability 
between multiple hardware and software platforms from 
different providers. Fig. 1  shows the layered 
architecture of the IEEE 802.15.4/Zigbee protocol stack. 

 
Fig. 1. The IEEE 802.15.4/ZigBee protocol stack architecture 

The IEEE 802.15.4/Zigbee protocols have attracted 
several recent research works (e.g. [4-9]). Most of those 
research studies have typically focused on the 
evaluation/improvement of some characteristics of the 
standard protocols either analytically or by simulation. 
No experimental work has argued any of those research 
works due to the lack of a real open-source 
implementation of the IEEE 802.15.4/Zigbee protocol 
stack. This lack prevents from experimentally 
demonstrating the feasibility of the proposed approaches 
and from the accurate validation of the theoretical results 
of those studies, since simulation tools are usually not 
sufficient to evaluate the real behaviour of the protocols 
due to many abstractions in the simulation models. 

There is a tremendous motivation for developing an 
open-source implementation of IEEE 802.15.4/Zigbee 
for different sensor network platforms to (1) foster the 
development of research works focusing on the IEEE 
802.15.4/Zigbee protocol stack, (2) provide a means to 
validate, demonstrate and evaluate the real deployment 
of IEEE 802.15.4/Zigbee WPANs. 

In this paper, we propose Open-ZB [10], an open-
source implementation of the protocol stack under the 
TinyOS operating system. So far, the implementation 
has been made for the MICAz motes [11]. In addition, 
for the sake of a comparative evaluation between 
simulation and experimentation of the IEEE 
802.15.4/ZigBee protocol stack, we have also developed 
a simulation model using the OPNET simulator [12]. 
This simulation tool implements the Physical and the 
MAC Layers of the IEEE 802.15.4 protocol standard 
supporting the physical layer characteristics, the beacon 
enabled mode, the slotted CSMA/CA, the protocol frame 
formats and a battery module that computes the 



consumed and remaining energy levels for the MICAz 
motes. 

This implementation was developed in the context of 
the ART-WiSe Framework [13], which consists in 
providing real-time and reliable communication for 
WSNs using COTS (Commercial Off The Shelf) 
technologies. We expect that the line of work we have 
been following in the assessment, improvement and 
engineering of IEEE 802.15.4/ZigBee networks will 
have significant repercussions. IEEE 802.15.4 and 
ZigBee are emerging technologies with plenty of 
potentialities for WSN applications. Nevertheless, for 
these technologies to gain widespread use we believe it 
is important to provide open source implementations of 
these protocols, to act as common platforms for the 
scientific community to discuss, interact and contribute. 
Moreover, it is important for the scientific community to 
collaborate with the official working groups from IEEE 
and with the ZigBee Alliance in a way that our findings 
can contribute for improving the current protocol 
standards. 

The main contribution of the paper is the provision of 
a comprehensive description of our IEEE 
802.15.4/Zigbee implementation and demonstrating its 
importance in fostering the development of research 
work based on these standard protocols.  

The rest of the paper is organized as follows. Section 
2 highlights some relevant aspects of the IEEE 
802.15.4/ZigBee protocols. Some implementation 
details are shown in Section 3, namely general aspects 
of our development environment, a short overview of 
TinyOS[14] and nesC [15] programming language, the 
implementation structure and future challenges. In 
Section 4 we present some research achievements based 
on our implementation. 

2. Overview - IEEE 802.15.4/ZigBee protocols 

2.1 IEEE 802.15.4 Phy and Mac 

The IEEE 802.15.4 specification defines two different 
types of devices: the Full Function Devices (FFDs) that 
implement the full protocol stack and the Reduced 
Function Devices (RFDs) that only implement a subset 
of the protocol stack. The FFDs can have three different 
roles in the network: (1) the Personal Area Network 
(PAN) Coordinator: the principal controller of the PAN, 
identifying the network and its configurations; (2) the 
Coordinator: provides synchronization services through 
the transmission of beacons; this device should be 
associated to a PAN coordinator and does not create its 
own network; (3) the End Devices: do not implement 
the previous functionalities and should associate with a 
Coordinator before interacting with the network. 

The RFD is an end device operating with the minimal 
implementation of the IEEE 802.15.4 protocol. An RFD 

is intended for applications that are extremely simple, 
such as a light switch or a passive infrared sensor; they 
do not have the need to send large amounts of data and 
may only associate with a single FFD at a time. 

The IEEE 802.15.4 physical layer is responsible for 
data transmission and reception using a certain radio 
channel and according to a specific modulation and 
spreading technique. It offers three operational 
frequency bands: 2.4 GHz, 915 MHz and 868 MHz. 
There is a single channel between 868 and 868.6 MHz, 
10 channels between 902 and 928 MHz, and 16 channels 
between 2.4 and 2.4835 GHz. The protocol also allows 
dynamic channel selection, a channel scan function in 
search of a beacon, receiver energy detection, link 
quality indication and channel switching. 

Lower frequencies are more suitable for longer 
transmission ranges due to lower propagation losses. 
Low rate transmissions provide better sensitivity and 
larger coverage area. Higher rate means higher 
throughput, lower latency or lower duty cycles. All of 
these frequency bands are based on the Direct Sequence 
Spread Spectrum (DSSS) spreading technique.  

The IEEE 802.15.4 MAC protocol supports two 
operational modes that may be selected by the PAN 
Coordinator: (1) the non beacon-enabled mode, in which 
the MAC is simply ruled by non-slotted CSMA/CA, (2) 
the beacon enabled mode, in which beacons are 
periodically sent by the Coordinators to synchronize 
nodes that are associated with it, and to identify the 
PAN.  

In beacon-enabled mode, the PAN Coordinator defines 
a superframe structure (Fig. 2) which is constructed 
based on (1) the Beacon Interval (BI), defining the time 
between two consecutive beacon frames, (2) the 
Superframe Duration (SD), defining the active portion in 
the BI, being divided into 16 equally-sized time slots, 
during which frame transmissions are allowed. 
Optionally, an inactive period is defined if BI > SD. 
During the inactive period (if it exists), all nodes may 
enter in a sleep mode (to save energy). BI and SD are 
determined by two parameters, the Beacon Order (BO) 
and the Superframe Order (SO), respectively, as follows: 
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aBaseSuperframeDuration = 15.36 ms (assuming 250 
kbps in the 2.4 GHz frequency band) denotes the 
minimum duration of the superframe, corresponding to 
SO=0. During the superframe duration, nodes compete 
for medium access using slotted CSMA/CA in the 
Contention Access Period (CAP). 

As depicted in Fig. 2, low duty cycles can be 
configured by setting small values of SO as compared to 
BO, resulting in greater inactive periods. Additionally, 



the IEEE 802.15.4 protocol also provides real-time 
guarantees by using the Guaranteed-Time Slot (GTS) 
mechanism. This feature is quite attractive for time-
sensitive WSN applications. In fact, when operating in 
beacon-enabled mode, the IEEE 802.15.4 protocol 
allows the allocation/deallocation of GTSs in a 
superframe for nodes that require real-time guarantees. 

 
Fig. 2. IEEE 802.15.4 Superframe Structure 

The GTS allows the corresponding device to access 
the medium without contention in the CFP. The GTS is 
allocated by the Coordinator and is used only for 
communications between the Coordinator and a device. 
A single GTS may extend over one or more time slots. 
The Coordinator may allocate up to seven GTSs at the 
same time, provided that there is sufficient capacity in 
the superframe. Each GTS has only one direction: from 
the device to the coordinator (transmit) or from the 
coordinator to the device (receive). 

The GTS can be deallocated at any time at the 
discretion of the Coordinator or the device that 
originally requested the GTS. A device to which a GTS 
has been allocated can also transmit during the CAP. 
The Coordinator is the responsible for performing the 
GTS management; for each GTS, it stores the starting 
slot, length, direction, and associated device address. All 
these parameters are embedded in the GTS request 
command. Only one transmit and/or one receive GTS 
are allowed for each superframe. 

The IEEE 802.15.4 defines two modes of medium 
access. The slotted CSMA/CA in beacon enabled mode 
and the non slotted CSMA/CA in non-beacon enabled 
mode. The CSMA/CA mechanism is based on backoff 
periods (with the duration of 20 symbols). Three 
variables are used to schedule the access to the medium: 
(1) Number of Backoffs (NB), representing the number 
of failed attempts to access the medium; (2) Contention 
Window (CW), representing the number of backoff 
needed to be clear before starting transmission; (3) 
Backoff Exponent (BE), enabling the computation of the 
number of wait backoffs before attempting to access the 
medium again. 

Fig 3 depicts a flowchart describing the two modes of 
the CSMA/CA mechanism.The slotted CSMA/CA can 
be summarized in five steps: (1) initialization of the 
algorithm variables: NB equal to 0; CW equals to 2 and 

BE is set to the minimum value between 2 and a MAC 
layer constant definition (macMinBE); (2) after locating 
a backoff boundary, the algorithm waits for a random 
defined number of backoff before attempting to access 
the medium; (3) Clear Channel Accessment (CCA) to 
verify if the medium is idle or not. (4) The CCA returned 
a busy channel, the NB is incremented by 1 and the 
algorithm must start again in Step 2; (5) The CCA 
returned an idle channel, the CW is decremented by 1 
and if it reaches 0 then the message is transmitted 
otherwise the algorithm jumps to Step 3. 

 
Fig. 3. The CSMA/CA mechanism 

The non slotted mode of the CSMA/CA is very similar 
to the slotted version except the algorithm does not need 
to rerun (CW number of times) when the channel is idle. 

2.2 ZigBee Network Layer 

In ZigBee networks there are 3 types of devices: (1) 
ZigBee Coordinator (ZC): FFD, one for each ZigBee 
Network, initiates and configures the network formation, 
acts as an IEEE 802.15.4 PAN Coordinator and also as a 
ZigBee Router (ZR) once the network is formed; (2) 
ZigBee Router (ZR): FFD, associated with the ZC or 
with a previously associated ZR, acts a an IEEE 
802.15.4 PAN Coordinator, participates in multi-hop 
routing of messages; (3) ZigBee End Device (ZED): 
does not allow other devices to associate with it, does 
not participate in routing and may implement a reduced 
subset of the protocol stack (RFD). 



Throughout this document the names of the devices 
and the acronyms are used interchangeably 

  
a) star topology b) mesh topology 

 
c) cluster-tree topology 

Fig. 4. IEEE 802.15.4 network topologies 

The IEEE 802.15.4/ZigBee enables three network 
topologies – star, mesh and cluster-tree. 

In the star topology (Fig.4a), a unique node operates 
as a ZC. The ZC chooses a PAN identifier, which must 
not be used by any other ZigBee network in the vicinity. 
The communication paradigm of the star topology is 
centralized i.e., each device (FFD or RFD) joining the 
network and willing to communicate with other devices 
must send the data to the ZC, which dispatches it to the 
adequate destination. The star topology may not be 
adequate for traditional wireless sensor networks for two 
reasons. First, the sensor node selected as a PAN 
Coordinator will get its battery resources rapidly ruined. 
Second, the coverage of an IEEE 802.15.4 cluster is 
very limited while addressing a large-scale WSN, 
leading to a scalability problem. 

The mesh topology (Fig. 4b) also includes a ZC that 
identifies the entire network. However, the 
communication paradigm in this topology is 
decentralized - each node can directly communicate 
with any other node within its radio range. The mesh 
topology enables enhanced networking flexibility, but it 
induces an additional complexity for providing end-to-
end connectivity between all nodes in the network. 
Basically, the mesh topology operates in an ad-hoc 
fashion and allows multiple hops to route data from any 
node to any other node. In contrast with the star 
topology, the peer-to-peer topology may be more 
power-efficient and the battery resource usage is fairer, 
since the communication process does not rely on one 
particular node. 

The cluster-tree network topology (Fig. 4c) is a 
special case of a mesh network where there is a single 
routing path between any pair of nodes and there is a 
distributed synchronization mechanism (beacon-enabled 
mode). There is only one ZC which identifies the entire 
network and one ZR per cluster. Any of the FFD can act 

as a coordinator and provide synchronization services to 
other devices and coordinators. The nomination of new 
Coordinators is the role of the PAN Coordinator.  

3. Implementation Details  

3.1 General Aspects 

This implementation was developed under the TinyOS 
operating system version 1.1.15, for the MICAz [11] 
motes (16 MHz Atmel ATMega128L and a 2.4 GHz 
Chipcon CC2420 radio transceiver [16]). The MIB510 
was used to program the motes. This programming 
board is able to upload the applications to motes through 
the serial port (or COM port) and provides a debug 
mechanism by sending data through the COM port and 
reading it in a software listener (e.g. ListenRaw, 
provided with the TinyOS distribution, or Windows 
HyperTerminal). This debug mechanism raises a 
problem concerning the hardware operation because the 
relaying of data through the COM port blocks all the 
other mote operations, while this data is being sent. This 
can usually cause synchronization problems. In order to 
overcome the COM debug problems we use packet 
sniffers to track and display the packets being 
transmitted, which provides a better debugging 
mechanism by transmitting debug data in the packet 
payloads. We have used two different packet sniffer 
applications. The first is an IEEE 802.15.4/ZigBee 
packet sniffer provided by Chipcon - the CC2420 Packet 
Sniffer for IEEE 802.15.4 v1.0 [17] that provides a raw 
list of the packets transmitted. This application works in 
conjunction with a CC2400EB evaluation board and a 
CC2420 radio transceiver. We have also used the 
Daintree IEEE 802.15.4/ZigBee Network/Protocol 
Analyser [18] that provides more functionalities (e.g. 
graphical topology of the network, statistics, message 
flows, PAN information, association details, etc.). 

3.2 TinyOS and nesC 

TinyOS [14] is an operating system for embedded 
systems with an event-driven execution model. TinyOS 
is developed in nesC [15], a language for programming 
structured component-based applications. nesC has a C-
like syntax and is designed to express the structures of 
TinyOS. This includes the concurrency model and 
mechanisms for structuring, naming and linking together 
software components into embedded system 
applications. The component-based application structure 
provides a good flexibility in the process of the 
application design and development. nesC applications 
are built out of components and interfaces. The 
components define two areas: (1) the specification, a 
code block that declares the functions it provides 
(implements) and the functions that it uses (calls); (2) 
the implementation, a collection of the functions 



provided. The interfaces are a bidirectional collection of 
functions provided or used by a component. The 
interface commands are implemented by the providing 
component and the interface events are implemented by 
the component using them. The components are binded 
together by the means of interfaces and the overall set 
constitutes an application.  

TinyOS defines a concurrency model based on tasks 
and hardware event handlers/interrupts. The TinyOS 
tasks are synchronous functions that run without 
preemption until completion and their execution is 
postponed until they can execute. Hardware events are 
asynchronous events that are executed in response to a 
hardware interrupt and also run to completion. All the 
asynchronous tasks and events may preempt 
running/synchronous non-atomic code. 

3.3 Software architecture 

The Open-ZB implementation has three main TinyOS 
components: the Phy, the Mac and the NWL. The Phy 
component implements the following Physical Layer 
tasks: (1) activation  and deactivation of the radio 
transceiver; (2) energy detection within the current 
channel; (3) transceiver data management, Received 
Signal Strength Indication (RSSI) readings and channel 
frequency selection; (4) Clear Channel Assessment 
(CCA) procedure for the CSMA/CA mechanism; (5) 
data transmission and reception management. The Mac 
component provides the following functionalities: (1) 
beacon generation if the device is a coordinator; (2) 
synchronization services; (3) PAN association and 
disassociation procedures; (4) CSMA/CA as a 
contention access mechanism; (5) the GTS management 
mechanism. The NWL component provides the 
following functionalities: (1) definition of the network 
topology (by enabling the device operation as a ZC, ZR 
or ZED); (2) association mechanisms; (3) ZigBee 
addressing schemes; (4) maintenance of neighbour 
tables; (5) tree-routing. 

Fig. 5.a presents the layered view of the different 
TinyOS components and interfaces of our IEEE 
802.15.4/Zigbee protocol stack implementation. We 
have opted for a modular implementation i.e. the 
implementation is organized in different modules 
(NWLM, MacM and PhyM) where each module 
implements a protocol layer. The purpose of this 
modularity is to enable fast and easy extensions of our 
implementation by adding or updating new 
functionalities. Each of these modules makes use of 
auxiliary files used to implement some generic functions 
(e.g. functions for bit aggregation into variable blocks), 
constants declaration (e.g. layer constants), 
enumerations (e.g. data types, frame types, response 

status) and data structure definitions (e.g. frame 
construction data structures). 

In addition, we have developed an auxiliary module - 
the TimerAsync module - for the implementation of an 
asynchronous timer based on the hardware clock (used 
for the implementation of the beacon interval, 
superframe duration, time slots and backoffs). For the 
synchronous timers, used in non time critical operations 
(e.g application layer events), we use the standard 
TimerC module already provided by TinyOS. 

 
a) Protocol stack architecture 

 
b) TinyOS implementation diagram 

Fig. 5. Protocol Stack Software Architecture 

The interface files (Fig. 5.a right side) are used to bind 
the components and represent one Service Access Point 
(SAP). Each of these interfaces provides functions that 
are called from the higher layer module and are 
executed/implemented in the lower layer module. The 
interfaces also provide functions used by the lower layer 
modules to signal functions that are 
executed/implemented in the higher layer modules (e.g. 
the PD_DATA.nc interface is used by the MacM module 
to transfer data to the PhyM module, that is going to be 
transmitted, and also enables the signalling by the PhyM 
in the MacM of received data). 

Fig. 5b depicts the relations between different 
components of our IEEE 802.15.4/Zigbee protocol stack 
implementation. Note that some components used in our 



implementation are already part of the TinyOS operating 
system, namely the hardware components (e.g. the 
HPL<…>.nc modules).  
In our implementation, we did not interact directly with 
the hardware, in fact, TinyOS already provides hardware 
drivers forging a hardware abstraction layer used by our 
Phy component. In Fig. 5b, observe that the components 
highlighted in white are hardware components already 
provided by the TinyOS operating system.  
Refer to [19] for a detailed description of the 
implementation functions and protocol mechanisms. 

3.4 Implementation Challenges 

The main problems encountered while implementing 
the IEEE 802.15.4/Zigbee protocol stack are related to 
the hardware constraints. We believe that the MICAz 
motes that we are using (with 8 bits microcontroller and 
a Chipcon CC2420 transceiver) do not provide enough 
processing power and radio performance for an 
implementation that fully complies with the IEEE 
802.15.4 standard timing constraints, especially for 
small beacon orders (BO<2) and superframe orders 
(SO<2). In addition, the MICAz available memory size 
is rather scarce. Nevertheless, it is possible to achieve a 
reasonable operational behaviour with higher 
superframe configurations allowing the experimentation 
of several features of the protocol (e.g. tuning the 
CSMA/CA variables and other protocol parameters) and 
to implement new ones. 

The timing requirements of the IEEE 802.15.4 
protocol are quite demanding. In the beacon-enabled 
mode, all the devices must synchronize with the PAN 
Coordinator by receiving and decoding the beacon 
frames in order to align their superframes. If a device 
looses synchronization it will not be able to operate in 
the PAN. On the other hand, if it is not accurately 
synchronized with the entire PAN there is a possibility 
of collisions in the GTS, resulting from the overlap of 
the CAP with the CFP. From our experience in the 
implementation, the de-synchronisation can be caused 
by multiple factors: (1) the processing duration of 
beacon frames for high duty cycles, (2) the mote stack 
overflow that results in a freeze or a hard reset, (3) the 
unpredictable delays of the wireless communications, 
and (4) the low processing power of the microcontroller 
in conducting some of the protocol management tasks 
(e.g. creating the beacon frame, the management of GTS 
expiration and the indirect transmissions). 

The implementation of the CSMA/CA algorithms is 
also demanding concerning the timer precision. In fact, 
the IEEE 802.15.4 protocol imposes that each backoff 
corresponds to 20 symbols (one symbol is equal to 4 
bits), which is equivalent to 320 µs. A first difficulty in 
the implementation of the beacon-enabled mode was 

related to the TinyOS management of the hardware 
timers provided by the MICAz motes, which does not 
allow having the exact values as specified by the IEEE 
802.15.4 standard. 

To accomplish an accurate synchronization, we have 
developed a timer module (TimerAsync) based on the 
hardware clock (TinyOS HLPTimer2C component) with 
an asynchronous behaviour regarding the code execution 
that implements the events depicted in Fig 6. Two 
different types of timers have been implemented: (1) the 
synchronous timers, which are used in the 
implementation for events that do not need accuracy (2) 
and the asynchronous timers that are more precise due to 
their asynchronous behaviour. 

Fig 6 depicts the asynchronous timer events that we 
have implemented (TimerAsync Module). 

 
Fig. 6.   Asynchronous events 

The clock tick granularity (the minimum time unit of 
the clock) of the MICAz mote that best fits our 
requirements is equal to 69.54 ms, which approximately 
corresponds to four symbols (16 bits with 250 kbps). In 
fact, the four-symbol duration has a theoretical value of 
64 ms which leads to a cumulative effect on the 
discrepancy between the experimental and the 
theoretically values of the beacon interval, superframe 
durations and time slot duration for high superframe and 
beacon orders. For instance, a beacon interval BI=8 
corresponds to 245760 symbols, which theoretically 
corresponds to 3932.160 ms, but experimentally 
corresponds to 4266.588 ms, based on the MICAz clock 
granularity. This discrepancy, however, does not impact 
the correct behaviour of the implemented protocol. In 
fact, since we are using the same mote platform for 
every node, we experience a coherent network 
behaviour. 

The frequency of the asynchronous software events (as 
seen in Fig. 6) in addition to the hardware events, with 
precedence in their execution, and the low processing 
ability of the microprocessor, may lead to an insufficient 
processing power left to execute the remaining higher 
layer protocol tasks. 

The IEEE 802.15.4 protocol does not provide any 
reference regarding the implementation of the buffer 
mechanisms (e.g. receive, transmit, GTS, indirect 
transmissions). The way buffer are implemented impacts 
the performance of the protocol implementation. On the 
one hand, the protocol implementation must avoid 



excessive memory copy operations because it can 
jeopardize the synchronization (since these operations 
are very time consuming). On other hand, the buffers 
have to be small and efficiently managed because of the 
limitation of the device memory (the MICAz only has 
approximately 4 kbytes of RAM memory available and 
the maximum packet length is about 127 bytes; if we 
increase the buffer size the free memory will decrease 
rapidly). 

Another constraint of the IEEE 802.15.4 Physical 
Layer is the turnaround time of 12 symbols (192 µs), the 
time that the transceiver takes to switch from receive 
mode to transmit mode, and vice-versa, to acknowledge 
messages. Unfortunately, this is not possible to achieve 
in most IEEE 802.15.4-compliant radio transceivers 
including the Chipcon CC2420, which can take up to 
192 µs to switch between transmit and receive modes, 
leaving no time for data transitions between the MAC, 
the PHY layer and the chip transmit memory space. 

Moreover, TinyOS imposes some overheads [20] in 
the primitive operations (e.g. posting tasks, calling 
commands) that is considerable in order to comply with 
the most demanding operational modes of the IEEE 
802.15.4 protocol.  

4. Research work 

We have been characterizing the IEEE 802.15.4 
behaviour in several research works, both via analytical 
and simulation tools. In this section we overview our 
research work in which we use our Open-ZB 
implementation to validate our proposals and to assess 
some of the current functionalities proposed in the 
standards. We start by evaluating the CSMA/CA 
mechanism of the IEEE 802.15.4 comparing the 
practical experiment result with theoretical result from 
our IEEE 802.15.4 simulation model. Also in the GTS 
management we have implemented an implicit 
Guaranteed Time Slot allocation mechanism (i-GAME) 
proposed in [5]. Finally we have implemented a 
mechanism to overcome the problem of beacon collision 
in cluster-tree topologies. 

4.1 Evaluation of the CSMA/CA 

The performance of the IEEE 802.15.4 CSMA/CA 
protocol was recently evaluated in [21-23], however the 
impact of Beacon Order (BO), Superframe Order (SO) 
and Backoff Exponent (BE) was not addressed. In order 
to carry out this task, we have developed a simulation 
model for the IEEE 802.15.4 slotted CSMA/CA 
mechanism using the OPNET simulator [12]. Using this 
model, we have analyzed the performance limits of the 
slotted CSMA/CA mechanism for broadcast 
transmissions (e.g. without acknowledgements). This 
was done for different network settings, in order to 

understand the impact of the protocol attributes 
(superframe order, beacon order and backoff exponent) 
on the network performance, namely in terms of 
Throughput (S), Average Delay (D) and Probability of 
Success (Ps) as presented in [24]. The evaluation of the 
saturation throughput and the impact of the number of 
nodes and frame size on the performance of slotted 
CSMA/CA were also addressed and the simulation 
results are presented in [25]. 

Currently, we have been using the Open-ZB 
implementation in the MICAz motes with the purpose of 
analysing the performance of the slotted CSMA/CA and 
comparing it with the simulation results. In general, both 
the simulation and experimental scenarios consist of 
several nodes (MICAz) generating traffic at pre-
programmed inter-arrival times at the application layer 
and a packet analyzer capturing all the data for later 
processing and analysis. The packet analyzer used in the 
experimental evaluation process has been the Chipcon 
CC2420 Packet Sniffer [17]. It generates a text file with 
all the received packets and corresponding timestamps 
enabling us to retrieve all the necessary data with a 
parser application.  

 
Fig. 7.   The Network Throughput as a function of the Offered Load 

obtained through simulation and experimental work 

As an example of what has already been achieved, 
Fig.7 presents the results obtained by simulation and 
experimental evaluation for the Throughput as a function 
of the Offered Load. The network Throughput metric 
represents the fraction of traffic correctly received by the 
network analyzer normalized to the overall capacity of 
the network (250 kbps). The Offered Load, represents 
the amount of traffic passed to the MAC layer, again 
normalized to the overall network capacity. Note that 
low SO values lead to lower network Throughput. This 
is basically due to two factors. First, the overhead of the 
beacon frame is more significant for lower SO values, 
since beacons are more frequent. Second, CCA 
deference is also more frequent in case of lower SO 
values, leading to more collisions at the start of each 
superframe. This behaviour is observed both in the 
simulation and experimental analysis. Nevertheless, the 
Throughput values obtained through experiment are 



lower. We believe these differences are somewhat 
related to hardware constrains of the MICAz and some 
efforts are being carried out to minimize its impact in 
the results. 

4.2 i-GAME 

The IEEE 802.15.4 supports a GTS allocation, where 
a node explicitly allocates a number of time slots in each 
superframe for its exclusive use. The limitation of this 
mechanism is inherent to the maximum number of seven 
available GTS that can be allocated in each superframe, 
preventing other nodes to benefit from guaranteed 
service and resulting in a wasted bandwidth if the GTS 
is underutilized. The i-GAME approach is based on 
implicit GTS allocation requests, taking into account the 
traffic specifications and the delay requirements of the 
flows, therefore enabling the use of one GTS by several 
nodes, still guaranteeing that all their requirements 
(delay, bandwidth) are satisfied. In [5] the authors 
propose an admission control algorithm that decides 
whether to accept or reject a new GTS allocation. 

The i-GAME mechanism was implemented in the 
MAC and Network Layers defining a new service 
access point between these two layers, the MLME-
iGAME. A detailed standard-like description of the 
interfaces added to the Network layer and the 
enhancements to the MAC layer for supporting the i-
GAME mechanism is presented in [26]. 

Comparing with the standard IEEE 802.15.4, the i-
GAME mechanism in the MAC layer just needs to 
change the management of the beacon GTS descriptors, 
which have to be included in the beacon in a round robin 
sequence. The implicit GTS descriptors are managed by 
the i-GAME Admission Control by issuing the 
MLME_iGAME.response. This primitive is 
implemented in the MAC layer by updating the GTS 
descriptors (either by removing or adding). The MAC 
layer maintains a list with the descriptors characteristics. 

The i-GAME mechanism assumes that when a node 
wishes to allocate a time slot, it sends an implicit GTS 
request command (similar to the IEEE 802.15.4 GTS 
request command) that besides the current IEEE 
802.15.4 GTS characteristics (length, direction and type) 
also includes the desired flow specification, including 
the burst size, arrival rate and the delay requirements. 
The PAN Coordinator evaluates the acceptance of the 
GTS allocation by running the Admission Control 
algorithm with the requested flow specifications. The i-
GAME Admission Control algorithm manages the 
number of necessary GTS time slots in order to comply 
with the requests, and accepted, flow specifications. 
This is accomplished by managing the GTS descriptors 
of the beacon frame transmitted by the PAN 

Coordinator allowing the nodes that allocated a GTS to 
use them. 

Fig. 8 depicts an example of the usage of the GTS 
allocated time slots and the optimization of bandwidth 
that can be achieved with the i-GAME mechanism. 

 
Fig. 8. Number of nodes allocating a GTS with i-GAME versus the 

GTS length 

4.3 Time Division Beacon Scheduling 

The current IEEE 802.15.4/Zigbee specifications 
restrict the synchronization in the beacon-enabled mode 
to star-based networks, while it supports multi-hop 
networking using the peer-to-peer mesh topology, but 
with no synchronization. Even though both 
specifications mention the possible use of cluster-tree 
topologies, which combine multi-hop and 
synchronization features, the description on how to 
effectively construct such a network topology is missing. 

The Time Division Beacon Scheduling (TDBS) 
mechanism (without coordinator grouping), proposed in 
[27], can be implemented in a simple manner, with only 
minor add-ons to the protocol. In our implementation, 
the ZigBee Network Layer supports the network 
management mechanisms (e.g. association and 
disassociation) and the tree-routing protocol. The tree-
routing relies on a distributed address assignment 
mechanism that provides to each potential parent (ZC 
and ZRs) a finite sub-block of unique network addresses 
based on the maximum number of children, depth and 
the number of routers in the PAN. The ZC is the first 
node in the WSN to come to life and to broadcast 
beacons. Every ZigBee Router (ZR), after its association 
to the network, temporarily acts as a ZED and must be 
granted permission by the ZC before assuming ZR 
functionality and starting sending beacon frames. All the 
ZRs and ZC use the same Beacon Interval (BI). Each ZR 
must be active both during its Superframe Duration (in 
the cluster under its control) and also during the active 
period of its parent. 



The TDBS approach relies on a negotiation for beacon 
broadcasting. Upon success of the association to the 
network, the ZR (behaving as a ZED) sends a 
negotiation message to the ZC (routed along the tree) 
embedding the envisaged (BO, SO) pair requesting a 
beacon broadcast permit. Then, in the case of a 
successfully negotiation, the ZC replies with a 
negotiation response message containing a beacon 
transmission offset (the instant when the ZR starts 
transmitting the beacon). In case of rejection, the ZR 
must disassociate from the network.  

 
Fig. 9.  TDBS Implementation Architecture 

Fig. 9 depicts the architecture of the TDBS 
implementation in the IEEE 802.15.4/ZigBee protocol 
stack. The admission control algorithm is implemented 
in the Application Support Layer behaving as a service 
module of this layer. The TDBS requires minor changes 
to the Network Layer. Thus, it is necessary to add a 
StartTime argument in the MLME-START.request 
primitive, as already proposed in the ZigBee 
Specification [2], and to the NLME-START-
ROUTER.request primitive. 

 
Fig. 10. Experimental network configuration 

In our experimental work, we have considered the 
network scenario presented in Fig. 10. The cluster-tree 
network contains 15 cluster heads that consist of one ZC 
and 14 ZR. The Beacon Order (BO) is set to 8 for all 
coordinators, which gives a Beacon Interval of 245760 
symbols (4266.885 ms). Hence, we must have at least 
24=16 Beacon/Superframe time windows, each with 
duration of 15360 symbols (266.680 ms). This restricts 
the (maximum) Superframe Order (SO) to 4 (i.e. 
Superframe Duration (SD) = 15360 symbols). In our 
experimentation, we choose a SO=3 (SD=7680 symbols 
(133.340 ms)). The cluster-tree network parameters (for 
setting up the tree routing mechanism) consist in a 

maximum depth equal to maxDepth=3, a maximum 
number of child nodes per parent router equal to 
Nchild=6, and a maximum number of child routers per 
parent router equal to Nrouter=4. As shown in Fig. 10, 
the network comprises the ZC at depth 0, two ZR at 
depth 1, four ZR at Depth 2 and eight ZR at depth 3.     
A ZED (0x007d) was also considered for carrying out a 
message routing test. 

 
Fig. 11. Association and negotiation Example 

In Fig 11, marked as 1, is the beacon broadcast of the 
ZC containing the network configuration BO and SO, as 
seen in the Packet Type field. Note that the Time Delta 
(4266 ms) between beacons represents the beacon 
interval. The sequence of messages marked as 2 
represents the association procedure. The ZR with the 
extended address of 0x0000000200000002 sends an 
association request to the ZC (0x0000). The ZC 
acknowledges the reception of the request and informs 
the ZR that there is pending data (using the pending data 
field in the acknowledge frame). Then, the ZR sends a 
data request command frame requesting the pending 
data. The ZC replies with the association response 
command frame containing the status of the association 
(that in this case is successful) and the ZR is assigned 
the short address 0x0001. 

Now, the ZR is associated as a ZED and can therefore 
communicate in the network, but it still needs to request 
the ZC for a beacon broadcast transmission permit and a 
time window slot (transmission offset). The negotiation 
procedure is marked as 3. Until this point, and after the 
network association, the ZR behaves as a normal ZED. 
When the negotiation for beacon transmission finishes, 
the ZR starts to broadcast beacons in its assigned time 
window, as seen in Fig 11 marked as 4. Note that both 
the association and negotiation for beacon transmission 
took place during the ZC superframe. 

In Fig 12, marked as 1, the first transmission of the 
packet from the ZED 0x002d to its parent (ZR 0x0028) 
is shown. Note that this transmission is carried out 
during ZR 0x0028 superframe. The routing of the data 
frame from the ZR (0x0028) to its parent in the cluster-
tree (ZR 0x0020) is marked as 2. The multi-hop 
continues (Fig.12-3) with the routing of the frame from 
the ZR 0x0020 to the ZC (0x0000) and to ZR 0x005e. 



This transmission sequence is carried out during the ZC 
superframe. Then, ZR 0x005e routes the frame to its 
final destination, the ZR 0x0066 (Fig.12-4). The 
retransmission of the data frame (Fig.12-4) is due to the 
failure of the acknowledge transmission of ZR 0x0066. 

 
Fig. 12. Message Flow and Beacon Frames 

5. Concluding Remarks 

IEEE 802.15.4/ZigBee emerge as potential 
technologies for Wireless Sensor Networks. Thus, it is 
of paramount importance to analyse their adequateness 
for fulfilling the requirements of large-scale ubiquitous 
computing applications. In this context, we have 
triggered the ART-WiSe research line, which aims at the 
design of a communication architecture for large-scale 
critical applications based on COTS technologies, 
namely IEEE 802.15.4/ZigBee. For that purpose we 
have developed our own implementation of the protocol 
stack, which we are making available to the community 
as open-source. This has already triggered several 
relevant interactions with world-reputed researchers, 
companies and normalization bodies. 

This paper overviews the most important aspects of 
the implemented software, as well as a number of 
research work that builds on its use. 
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