Non Preemptive Scheduling of Periodic Mixed Criticality Real-Time Systems

Jasdeep Singh, Luca Santinelli, Federico Reghenzani Konstantinos Bletsas, Zhishan Guo

THE FRENCH AEROSPACE LAB

- Real-time systems
- Probabilistic Real-time systems
- Mixed criticality systems
- Graph and Tree model
- Schedule

Worst Case Evaluation

Real-Time applications

- System of tasks to be executed on processors with resources
- Require real-world timing guarantees
- Done through scheduling: Arrange task execution in time
- Scheduling uses task WCET
- Real execution time is Rarely equal to WCET

Probabilistic R/T systems

- Practically, execution time is rarely equal to WCET
- Instead of WCET => pWCET (probabilistic worst case execution time)
- pWCET: worst case probability distribution of various possible execution times
- pWCET is assumed given

Probabilistic of quantification of wCET! pessimism in WCET!

Mixed Criticality Systems

- MC Systems: Tasks with different criticalities
- Each criticality corresponds to system criticality
- Task takes more time than 'expected'=> system HI mode
- Lower and Upper WCET
- System HI mode => All LO tasks are dropped; schedulability of HI ensured peterministic
- Model represents clear line between processor demands

Graph and Tree Model

- Mix of tasks with three level criticality
- Each has a probability

The Schedule

- Graph -> Tree
- Available paths: all jobs
- Valid paths: no job misses deadline (evaluate response time)
- Dangerous path: no job misses deadline in higher criticalities
- Schedule: Optimize (Tree minus non-valid and dangerous paths)
- Optimize: Allowing maximum jobs to execute, independent of job entering high criticality

- No System-wide mode switch
- Ensured that no job misses deadline, in any criticality
- Schedule adjusts if job enters high criticality, drops only necessary ones, at lower criticalities, maximum utilization
- Schedule is a tree and knows which branch to take at which event
- Complexity is reduced by checking for deadline miss while tree construction
- Quantify the probability of system entering higher criticalities (we can only quantify)

Evaluation: Response Time

- Convolution has hidden assumption: task/jobs arrive at same time
- Convolution safe but pessimistic
- We propose:

Now Response the time gives the time gives the probability of task entering HI!

Propositions for Mixed Criticality

- Response time for MC: System HI mode is a run-time information
- Probability and Schedule: Probability comes into play, schedule can depend on the probability
- Schedule for optimal Probability: Probability from response time now depends on schedule
- Be prepared for worst case: execution scenarios upper bounded, schedule adapts for system entering higher mode; Previous model to upper bound

Thank you!

