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Intermediate-Level Protocols to Provide  
Quality of Service in  

Master/Slave Communication Infrastructures 
 

Abstract 

 
Industrial communication networks have suffered a dramatic change over the last 
decades. There has been a proliferation of “traditional” fieldbuses and other more 
application-specific networks, such as the ones relying on power-line communications. 
Industrial Ethernet solutions have gained a significant market share too. Due to the 
stringent quality-of-service (QoS) requirements of industrial monitoring and control 
applications, most of the protocols for this type of applications rely on a master/slave 
paradigm where one or more master stations control the access to the communication 
medium, granting medium access to slave stations. 

This Thesis was developed in synergy with the RFieldbus and REMPLI European 
Union projects. Although operating at opposite network scales, they share one main 
characteristic: a master/slave network was enhanced with communication features 
previously unavailable. 

In the context of the RFieldbus framework, a standard fieldbus network was 
extended to support multimedia services and wireless/mobility capabilities. These 
multimedia services run over the TCP/IP stack that in turn runs over the fieldbus low 
layers network protocols. Since these multimedia services and the “traditional” control 
traffic converge in the use of the same communication medium, appropriate admission 
control and scheduling mechanisms were conceived to introduce different traffic classes, 
in such a way that real-time control traffic is not affected by multimedia traffic which in 
some cases is typically of best-effort type. 

The REMPLI approach is based on a power-line communication protocol that was 
enhanced with additional capabilities such as the ability of supporting large-scale 
deployments - both in terms of number of network stations and in terms of geographical 
area under coverage - and new metering-focused end-to-end services. This required a 
rethinking of the Data Link, Network and Transport Layer protocols in a cross-layered 
perspective that had end-to-end QoS requirements in mind. 

The initial hypothesis was that providing add-ons to existing protocols to achieve 
the required level of QoS and additional functionalities would present major advantages 
over all-new network protocols or using stripped-down versions of existing network 
protocols. This hypothesis is confirmed through experimental and simulation validations. 

 
Keywords: Real-time Systems, Master/Slave Networks, Quality-of-Service, Fieldbus, 
Power-Line Communications, Network middleware, Cross-Layered Design 
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Protocolos de Nível Intermédio para Conferir 
Qualidade de Serviço a Infra-estruturas de 

Comunicação Baseadas em Protocolos Mestre/Escravo 

Resumo 

As redes de comunicação industrial passaram por uma mudança extraordinária nas 
últimas décadas, observando-se uma proliferação de redes “tradicionais” e outras redes 
mais específicas, tais como as baseadas em comunicação pela rede de energia eléctrica. 
A chamada Ethernet Industrial também conquistou uma representatividade significativa 
em poucos anos. Os rigorosos requisitos de qualidade de serviço (QoS) das aplicações 
industriais de controlo e monitorização levaram a que muitas destas soluções se 
baseassem no paradigma mestre/escravo, segundo o qual, uma ou mais estações mestre 
controlam o acesso ao meio de comunicação, concedendo então acesso às estações 
escravo. 

Esta Tese foi desenvolvida em sinergia com os projectos europeus RFieldbus e 
REMPLI. Embora de certa forma situados em extremos opostos do espectro das redes de 
dados, as redes utilizadas no âmbito desses dois projectos possuem uma característica 
comum: redes com controlo do acesso ao meio baseado no paradigma mestre/escravo 
foram utilizadas como base para a introdução de novas funcionalidades de comunicação. 

Na abordagem RFieldbus, uma rede de comunicação industrial normalizada foi 
actualizada com mecanismos inovadores que permitiram suportar serviços multimédia e 
funcionalidades de rede sem fios/mobilidade. Os serviços multimédia operam sobre a 
pilha de protocolos TCP/IP que por sua vez opera sobre os protocolos de nível baixo da 
rede de comunicação industrial. Tendo em conta que estes novos serviços e o tráfico de 
controlo “tradicional” convergem na utilização de um mesmo meio de comunicação, foi 
necessário desenvolver mecanismos de controlo de admissão e escalonamento de tráfego 
apropriados de modo a introduzir diferentes classes de tráfico, permitindo assim que o 
tráfego de controlo tempo-real não seja afectado pelo tráfico multimédia. 

A abordagem REMPLI foi baseada num protocolo de comunicação de dados pela 
rede de energia eléctrica, o qual foi complementado com funcionalidades adicionais 
adequadas ao suporte de redes de grande dimensão – quer em termos de número de 
estações de rede, quer em termos de distribuição em área geográfica – e novos serviços 
focados na gestão da distribuição de energia. Estes melhoramentos obrigaram a um 
reequacionar dos diversos níveis da pilha protocolar numa perspectiva holística e tendo 
em conta os requisitos de QoS entre os pontos de disponibilização dos serviços. 

A hipótese validada por esta tese é a de que estendendo os protocolos existentes de 
forma a atingir os níveis requeridos de qualidade de serviço e de funcionalidades, resulta 
em vantagens relevantes quando comparado com soluções alternativas baseadas em 
sistemas de rede desenhados de raiz ou usando versões reduzidas de redes de 
comunicação existentes. A hipótese foi confirmada através de validação experimental e 
simulação. 

 
Palavras-chave: Sistemas de Tempo-real, Redes mestre/escravo, Qualidade de serviço, 
Serviços de comunicação de dados, software de nível intermédio para redes de dados. 
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Protocoles de Niveau Intermédiaire pour offrir 
Qualité du Service en Infrastructures 

Maître/Esclave de Communication 
Résumé 

Les réseaux de communication industriels ont connu une évolution notable durant ces 
dernières années du fait de la prolifération de réseaux traditionnels et d’autres 
applications réseaux spécifiques tels que celles basées sur les réseaux électriques. Les 
solutions Ethernet industrielles ont également remporté un gain significatif du marché au 
sein de quelques années. 

Toutefois, les exigences strictes de qualité de services (QdS) pour les applications 
de contrôle industriel ont notamment conduit à un grand nombre de solutions reposant 
sur le paradigme Maître/ Esclave. De ce fait, un ou plusieurs machines Maître stations 
contrôlent l'accès aux moyens de communication, tout en garantissant un accès aux 
stations de type Esclave. 

Cette thèse a été développée en collaboration avec les projets Européens RFieldbus 
et REMPLI. Bien que ces réseaux soient situés à l’extrémité opposée de la gamme de 
réseaux ordinaires de données, ils ont une caractéristique en commune présentée par 
l’amélioration des réseaux Maître/ Esclave par des configurations de communication 
précédemment invalides. 

Dans le Project RFieldbus, un réseau de communication industriel normalisé a été 
étendu pour le support des services multimédia et des fonctionnalités réseaux sans fil/ 
mobilité. Les services multimédia fonctionnent sous TCP/IP qui, à son tour, fonctionne 
sur le réseau de communication industrielle. 

Etant donné que ces nouveaux services et le trafic de contrôle "traditionnel" 
existant dans le même moyen de communication, il s’avère important de concevoir et de 
mette en place des mécanismes appropriés de commande et d’ordonnancement 
d'admission pour définir différentes classes du trafic, de telle manière que le trafic de 
contrôle temps réel ne soit pas affecté par le trafic de multimédia de meilleur-effort. 

Le projet REMPLI, construit sur la base d'un protocole de communication de 
données pour le réseau électrique, a été complété par des fonctionnalités 
supplémentaires. A travers ces nouveaux fonctionnalités, de nouveaux services axés sur 
la gestion de la distribution d'énergie ainsi que le support des déploiements à grande 
échelle que ce soit en termes de nombre de stations du réseau, que en termes de 
répartition par une vaste zone géographique ont été mis en place. 

Ceci a exigé une révision des couches liaison de données, réseau et transport dans 
une perspective multi-couche tout en tenant compte des conditions de QdS bout en bout. 
L'hypothèse initiale était  l’extension des protocoles existants pour atteindre le niveau 
exigé de QdS et les fonctionnalités additionnelles présenteraient des avantages 
importants par rapport aux nouveaux protocoles ou à ceux existants. Cette hypothèse a 
été confirmée par des validations expérimentales et des simulations. 
 
Mots-clés: Réseaux Maître/Esclave, Qualité de Service, Services de Réseaux de 
Communications 
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 Chapter 1  
Overview 

There is a growing trend in industrial computer networking to incorporate new 
services and to provide adequate levels of Quality-of-Service (QoS) as an added-
value to the users. This is in some way defines some of the technological context 
of this Thesis..This chapter presents the context, defines the hypothesis, 
summarises the main contributions and provides a view of the overall organization 
of this Thesis. 

1.1 Introduction 

In the last few decades, there has been a proliferation of fieldbus and other application-
specific communication networks. Due to the quality-of-service (QoS) requirements 
usually imposed by industrial monitoring/control applications, namely timeliness, most 
of these network protocols rely on master/slave paradigms, where one or more master 
stations control medium access, granting other stations (namely slaves) permission to 
acknowledge or to respond to master station’s requests. 

In many situations, it is preferable to extend an existing network technology to 
support additional services/functionalities, rather than designing new solutions from 
scratch. This idea forms the baseline for this Thesis. 

In this Thesis, two distinct industrial communication frameworks were re-designed 
to support functionalities that were previously unavailable, in a way that the original 
applications quality of service requirements would still be respected.  

Firstly, a well-known fieldbus protocol – Profibus2 (PROFIBUS, 2008) – was 
redesigned and extended to support multimedia TCP/IP (Transport Control Protocol / 
Internet Protocol) applications, without interfering with the timeless requirements of the 
control traffic. That research framework is described in Section 1.2 of this chapter. 

Secondly, a power-line communication-based energy management system was also 
re-designed, extended and adapted to be able to provide end-to-end quality of service in 
large-scale deployments. That research framework is briefly described in Section 1.3. 

In this chapter the Hypothesis is stated in Section 1.4, and the contributions of this 
research work are summarized in Section 1.5.  

                                                           
 
2 The official representation is “PROFIBUS”, all caps. In this thesis, we will in 

most cases a more text-friendly version with only the capital “P” to refer to the same 
standard. 
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1.2 Factory Automation Scenario 

The factory-floor looks rather hermetic to innovative technologies, eluding the 
widespread usage of the so-called gadgets in everyday such as cellular phones, personal 
data assistants and digital cameras, even with less technological-aware users.  

After the fieldbus revolution on the 80’s in the last century, the factory-floor has 
seen an increased use of more and more powerful programmable logic controllers and 
user interfaces, but the way they are used remains almost the same. Too many times the 
“new” graphical user interfaces are simple copies of the previous synoptic boards with 
light bulbs and buttons replaced by pixels on a screen. We believe (Pacheco and Tovar, 
2002) however that new user-computer interaction techniques, including multimedia and 
augmented reality combined with now affordable technologies such as wearable 
computers and wireless networks, can change the way the factory personal work together 
with the machines and the information system on the factory-floor. This new age is 
already in place with innovative uses of communication networks on the factory-floor 
either using "standard" networks (Pokam et al., 1995) or through enhanced industrial 
networks with multimedia (Tovar et al., 2001) and wireless capabilities (Pereira et al., 
2001). 

The RFieldbus project (RFieldbus Project, 2008) aimed at facilitating the use of 
these solutions by enabling TCP/IP usage over traditional factory-floor fieldbus 
networks, without detrimental side effects on the original (control-oriented) network 
usage.  

 

 

Figure  1.1: Example of a System TCP/IP services coexisting with fieldbus services 

To illustrate some of the concepts and challenges, consider Figure  1.1. In the 
system described, two video cameras are connected to the fieldbus network and 
eventually the video streams generated by them are then used by a remote video 
monitoring system in a network station connected to the Ethernet network. Therefore, 
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there will be video streams eventually “circulating” in the fieldbus network. While these 
may not impose end-to-end time guarantees, they cannot jeopardize the timeliness 
guarantees required for the time critical control traffic in the fieldbus network. This 
imposes some careful design options on how to support this multimedia type of traffic 
with the fieldbus network.  

Also typically, the remote video monitoring applications will use standard TCP/IP 
Application Program Interfaces (APIs) to communicate. This is a natural application 
productivity requirement. Per se it poses and important challenge into the system design: 
IP applications are typically symmetric in the sense that any IP network node can have 
communication assess while in typical fieldbus networks some nodes (e.g., slaves) will 
not have communication initiative.  

Also important, typical fieldbus networks are optimized for short messages related 
to sensor reading or actuation. Conversely, multimedia information such as video or 
audio involves higher amounts of bytes in simple transactions.   

Another functionality that should be supported and is illustrated in Figure  1.1 is a 
high-level Control Application connected via TCP/IP to a Gateway and the latter 
connected via a fieldbus to a Programmable Logic Controller (PLC). The time-critical 
control may be performed within the fieldbus level between the PLC and I/O stations but 
eventually also through the Gateway between the Control Application and the PLC using 
TCP/IP over Ethernet and the fieldbus. 

Both solutions are possible in the RFieldbus architecture, thus enabling a much 
greater flexibility at the factory-floor. The I/O stations can be common fieldbus stations 
that are “unaffected” by the TCP/IP traffic at the fieldbus level. 

1.3 Energy Distribution Management Scenario 

Like discrete manufacturing companies, utility providers (energy, water, heating, etc.) 
have also considered using emerging technologies to optimise and improve the set of 
offered services and at the same time to reduce costs.  

One service considered strategic by utility companies is to have cost-effective 
remote meter reading technologies. Utility companies benefit from these technologies by 
obtaining detailed information about how energy is consumed by the end-users. They 
can even take corrective measures since the data can be gathered in real-time (although 
this can limit the scalability of the system).  

In addition, remote metering technologies can also be used to harvest 
information about the status of the energy distribution grid itself. Based on the 
availability of fine-grained energy consumption data at the end-users site, the energy 
flow is easier to control and leakages detected more efficiently. In particular, peak load 
situations can be better managed with extreme benefits for both the utility providers and 
the consumers given the fact (Rowlands, 2007) that in peak situations a very small 
increase in load can have a dramatic effect in the energy cost to the utility company. 
Additional services such as the remote switching or termination of the supply of energy 
can also be supported, if required for either management services or services not yet 
generally available in the market (e.g., pre-paid systems or time-bounded uses).  
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This type of systems could also be used to provide additional information such 
as monthly energy cost on the actual metering device and make new interactive services 
available like user-selectable alternative billing services. 

This is the context of the Real-time Energy Management via Power-Lines and 
Internet (REMPLI) European project (Pacheco et al., 2005a). The project aimed at 
designing and implementing a communication infrastructure for real-time distributed 
data acquisition and control operations, exploiting the power-line as the communication 
medium; therefore exploiting a Power-Line Communication (PLC) system.  

According to the overall project goals, the primary usage of this infrastructure is 
remote meter reading and remote control. Besides that, the communication platform is 
open to various types of add-on services. Figure  1.2 illustrates the architecture of the 
communication network. 

 

 

Figure  1.2: Energy Management System 
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There are diverse systems available to access remote information on meters using 
telephony, radio frequency and satellite communications technologies. However, PLC 
systems have the clear advantage in the electrical utility market that the medium is 
available in all client sites.  

There is however a number of challenges that needed to be tackled in order to 
attain such a system. Most of them result from the fact that power-line communications 
are typically based on robust time-slotted master-slave communication paradigms 
(Sebeck and Bumiller, 2000) while electrical networks may have rather non-linear and 
multi-tiered topologies as will be explained in Chapters 3 and 7 of this thesis. 

1.4 Hypothesis 

The main hypothesis in this thesis is that providing add-ons to existing protocols to 
achieve the required level of quality of service and additional functionalities would 
present major advantages over all-new network protocols or using stripped-down 
versions of existing network protocols.  

Taking into account the research and technological context briefly presented in the 
previous sections, the approach was to devise in fact the appropriate solutions to network 
ensembles built upon existing and proved low-level master-slave communication 
network mechanisms. As can be inferred from the rest of this Thesis, this hypothesis is 
confirmed through the design of novel architectures that are validated through actual 
implementations and simulations. 

1.5 Research Contributions 

This thesis contains a number of important contributions. As it will become clear in 
Section 1.6, this thesis is organised into two main parts, one related to the contributions 
for factory communications and another related to power-line communication systems. 
Therefore, the contributions are organized according these to main parts.  

Concerning factory communications, the main contributions are the following: 
1. The specification of a dual stack architecture that provides traffic independence 

between TCP/IP applications and native Profibus applications. This 
architecture also provides transparent access of both types of applications to the 
network allowing for rapid deployment of mixed systems. 

2. A system that provides TCP/IP traffic selection and system-wide scheduling 
capabilities. Traffic generated by TCP/IP applications can be divided in best 
effort or in several classes with diverse quality of service parameters. These 
levels of service are guaranteed even if the TCP/IP application resides on a 
slave (Profibus) station. 

3. A methodology for determining the parameters for setting up a RFieldbus-like  
network. The correct operation of a RFieldbus-like system relies on the proper 
setting of several configuration parameters that influence the timeliness 
properties and overall performance of the system. 
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4. The definition of a test system architecture for the contributions listed above 
providing validation of the results. 

Regarding the energy management communication system, the main contributions 
of this thesis are the following: 

5. The design of a dual-level network architecture that is easily deployed in the 
last two voltage levels of most electrical power distribution grids. This 
architecture provides transparent access to stations regardless of their location 
in the grid. 

6. The definition of a set of utility-oriented services that are scalable not only 
concerning the number of stations reachable but also concerning the 
deployment over large geographical areas. Features like a flat address space, a 
run-time editable mapping mechanism between stations and the address space 
and the close integration of the base network services enable an end-to-end set 
of services focused on metering applications not only for electrical power but 
also on other utilities.    

7. The deployment of a distributed traffic-selection mechanism. The base system 
forwards remote queue and link quality information to the network entry points. 
This “global view” of the network is then used to select the best route for 
requests. The scheduler can be easily upgraded and tested using the 
simulation/emulator tools developed within the timeframe of the project.  

8. The definition of a development/simulation architecture where the same 
transport layer code can be used for simulation tests and end-device execution 
enables not only an easier deployment but also future developments and 
research. 

1.6 Structure of the thesis 

This thesis is structured as follows.  
There are essentially 4 parts. The first part is devoted to research context. It 

includes Chapter 1 (Overview), Chapter 2 (Related Work on Factory Communications) 
and Chapter 3 (Related Work on Power-Line Communication Systems).  

Chapter 2 provides a description and discussion of research issues and technology 
related to the factory communications research framework developed in this thesis. 
Besides a general background on fieldbus networks and issues related to the 
interoperability of these with TCP/IP networks, the chapter provides, with some 
emphasis, details on Profibus networks. In fact, Profibus is used as the basis for the 
RFieldbus approach. 

Chapter 3 provides also research and technology context for energy management 
communication systems. Likewise the previous chapter, related work is described and 
discussed. Emphasis is given to the base power-line network used as the building block 
for the wider approach. Intended services to provide to higher layers by the transport 
layer are discussed as well. Finally, since most of the approach is validated also through 
simulation, the OMNeT++ simulation system, over which the transport layer 
development was built and validated, is briefly presented. 
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The second part (Part II) of this thesis is devoted to the contributions related to the 
factory communications framework. It includes Chapter 4 (Protocol Stack Architecture), 
Chapter 5 (Other Design and Implementation Issues) and Chapter 6 (Validation). 

In Chapter 4, the main concepts of the (dual) protocol stack are presented, 
including the various sub-layers (IP Mapper, DP Mapper, IP ACS, and the DP/IP 
Dispatcher) used to achieve the required functionalities at the required qualities of 
service. The slave initiative mechanism, traffic classes, IP fragmentation, scheduling, 
routing and other mechanisms that allow the coexistence of Profibus and (tunnelled) IP 
traffic in the same bus are discussed, proposed and detailed.  

Chapter 5 deals with implementation specificities of the concepts and mechanisms 
described and proposed in Chapter 4.  

Finally, to close Part II, Chapter 6 describes a pilot implementation and field trial 
tests that used to validate the proposed system. The results of the tests and respective 
conclusions are discussed accordingly. 

The contributions related to the energy management communication system 
framework of this thesis are organized in Part III, which has basically the same chapter 
organization of Part II.  

Therefore, in Chapter 7 the main concepts related to the transport layer is discussed 
and novel solutions are proposed. The routing and network topology information 
gathering system is described, followed by a specific solution for the slave initiative 
issues and the distributed scheduling mechanisms. The alarm service, due to its 
specificity is also discussed in that chapter.  

In Chapter 8 the main implementation-related issues are dealt with, including the 
base network services and the mixed simulation/development system based on 
OMNeT++. Fragmentation issues are given additional emphasis stress the difficulties 
resulting from the limited resources available in the stations and network that occur 
typically with the extreme range of packet lengths therefore leading to very specific 
PDU header structures. Implementation options of the algorithms for the main services 
provided by the transport layer are discussed.  

Finally, Chapter 9 deals with the validation of the system done via simulation 
scenarios. Several tests and related results are presented and discussed. 

The thesis concludes with Part IV, that summarizes, in Chapter 10, the various 
contributions, and, on Chapter 11, potential future work.  
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 Chapter 2  
Related Work on Factory 

Communications 

An overview of technologies related to factory automation networks is provided in 
this chapter. The first section presents the historic context of fieldbus networks 
followed by details on the diverse standards available and the Profibus protocol in 
particular.  

2.1 Overview of fieldbus networks 

Since one of the research frameworks of this thesis is factory communication systems 
based on a fieldbus network, we first start with a historic perspective of the area. 

Typically a computer-controlled system can be decomposed into a set of three 
subsystems: the controlled object; the computer system; and the human operator 
(Kopetz, 1997). The job of the computer system is to react to stimuli from the controlled 
object or the operator. The computer system should be able to accept status data of the 
controlled object, compute new instructions according to the references provided by the 
user, and transmit those new commands to actuators. 

A computer-controlled system can have a centralised architecture, with the field 
devices (e.g., sensors and actuators) connected to the computer system via point-to-point 
analogue or digital links. In traditional systems, there was a main control box in a central 
location and wires were connected to each sensor and actuator using analogue signals. 
The analogue signals had problems with limited distance, wire-to-wire noise and lack of 
unified protocols. The usage of digital links made it possible to cover much larger 
distances and reduce the noise problems dramatically. It also made much easier to use 
digital processing units on the central location. However, the protocol problem remained 
since each manufacturer had its own digital protocol making device integration from 
different manufacturers difficult or even impossible. 

In addition, the wiring issue was not solved: even with digital links, there where 
still end-to-end wires connecting each device to the central box. After the digital end-to-
end link, the obvious leap was to use a digital bus network. The main advantages 
(Thomesse, 2005) include lower installation and maintenance costs, bidirectional 
communication, more accurate information, easier interface to the data (possible using 
handheld devices on the field), and easier expansion due to the modular nature of the 
network. The ability to support distributed control algorithms is another advantage 
achievable by the use of field level networks.  
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Most computer-controlled systems are also real-time systems, e.g. systems that 
must react within a pre-defined maximum delay. In general, the issue of guaranteeing 
real-time requirements is one of checking, prior to run-time, the feasibility of the 
system’s task set; that is, checking if the worst-case response time of the tasks is smaller 
than their admissible response time. In distributed computer-controlled systems, where 
some of the application tasks are also communicating tasks, one has to take into account 
the transmission delays when considering the real-time characteristics of the system. 

The timing constraints needed to guarantee real-time characteristics in fieldbus 
networks have, however, some drawbacks that should be taken into account when using 
them. First, there is the planning problem: even the most complex real-time networking 
protocol will fail if it is overloaded with traffic not planned adequately. Secondly, there 
are the efficiency issues: in order to guarantee the maximum delays, packets have to be 
limited in length; and this leads to a significant overhead when using the fieldbus 
network to send large data payloads. Scheduling and dispatching techniques help on the 
first point making it easier to guarantee that the planned traffic does not affect the real-
time characteristics of the network. The second point is not normally taken into account 
since these networks where designed precisely to send very small packets very quickly. 
However, new applications are pushing the networks to the limit and efficient solutions 
for this issue are possible. 

A solution that has very low cable costs is a “bus network”: all stations are 
electrically interconnected to the data wires of the network. The physical layout of a bus 
network is normally very flexible improving even further the cabling costs including 
line, star and tree topologies. In a bus network, Protocol Data Units (PDUs) are 
transmitted from a source station to destination station(s) via the shared communication 
medium. As in any broadcast network, it is necessary to control – using a Medium 
Access Control (MAC) mechanism – the situations where two or more stations attempt 
to send PDUs via the shared medium at about the same time.  

Considering this scenario there are several solutions for the MAC that can be used: 
Time-Division Multiple Access (TDMA), Carrier Sense Multiple Access/Bitwise 
Arbitration (CSMA/BA) and master/slave systems are some of the most used.  

On a TDMA network, the bus is divided into time “slots” and the system 
guarantees that each slot is used by, at most, one network station. Besides the obvious 
issue of guaranteeing the time synchronization between stations, the assignment of the 
slots and their duration is a problem with multiple solutions from the simple fixed 
allocation scheme to complex systems with dynamic allocation of slots in runtime. One 
of the dynamic allocations schemes is the Timed Token (Malcom and Zhao, 1994), 
where a token is rotated between stations with timing limitations to guarantee 
responsiveness and bandwidth usage to each station.  

CSMA/BA networks, such as the CAN (Controller Area Network) fieldbus, use 
another approach: the physical layer has the capability to accept simultaneous 
transmission of bits and guarantee that one of the logical levels is “dominant” over the 
other. If two (or more) stations send the same bit, all the receiving stations (including the 
ones transmitting) receive the bit correctly. However, if the bits are different then the 
result is always the “dominant” bit. This enables a bit-wise priority mechanism where 
lower-priority stations will back-off when they detect that their bit transmissions where 
changed by a dominant bit sent by another station. With the adequate planning, this 
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protocol guarantees (Tindell and Burns, 1994) real-time message response in the 
network. 

On the other hand, master/slave networks are simple in their approach: one station 
controls all the communications on the bus and decides when to contact the other 
stations and if they have or not the chance to send a PDU back. With appropriate timing 
constrains it is relatively simple to implement a real-time network with this paradigm. 
Some fieldbus networks extend the basic master/slave concept with extensions enabling 
multiple-master capability, dynamic network configuration and slave-initiative PDUs 
under controlled circumstances 

2.2 Fieldbus standards 

In the beginning of the 1980s several national fieldbus projects where initiated 
(Thomesse, 2005). In 1982 with the support of the French government the FIP fieldbus, 
now known as WorldFIP, was presented. In Denmark a set of institutions were involved 
in the development of P-NET, while in Germany it was the same concerning the 
Profibus project (PROFIBUS Nutzerorganisation e.V., 1992) in 1984. In terms of 
industry players,  Bosch developed the specifications (Robert Bosch GmbH, 1991) of the 
Controller Area Network (CAN) in 1983, which was initially targeted to in-vehicle (e.g., 
cars) applications. 

Then, the international level process started within the TC65 of the International 
Electrotechnical Committee (IEC) that was supported as well by the Instrument Society 
of America group SP50. However, only in 1993 the physical layer specification was 
approved (IEC DIS 1158-2) and it did not include the de facto standards Profibus and 
WorldFIP. In 1996, CENELEC decided that it was better to have three standards than no 
standards at all and soon the European standard (EN 50170) was approved containing 
three different profiles: part 1 for P-NET (Danish national standard), part 2 for Profibus-
FMS (German national standard) and part 3 for WorldFIP (Franch national standard). In 
2000 the EN 50170 had an addendum to include Foundation Fieldbus, ControlNet and 
Profibus-PA.  

In 1996, CEN and CENELEC started preparing the EN 50254 under the title high 
efficiency communication subsystems for small data packages. This was approved in 
1998 also as a multi-profile document that included Interbus, Profibus-DP and 
WorldFIP. 

In March 1998 part 3 (Data Link Service Definition), part 4 (Data Link Protocol 
Specification) and parts 5 and 6 (Application Layer Service and Protocol) of IEC FDIS 
61158 were submitted to a vote and not approved. However, 6 of the negative votes were 
later discarded due to being justified by general, not technical opinions and merely 
untrue statements (Instrument Society of America, 1999), and so the document was 
approved in November 2000. On this standard there where 8 Types of non-interoperable 
link layer networks (defined in parts 3 and 4): Type 1 – Proposed compromise 
(Foundation Fieldbus based); Type 2 – ControlNet; Type 3 – Profibus (including DP, PA 
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and FMS); Type 4 - P-NET; Type 5 - Fieldbus Foundation3's High-Speed Ethernet 
(HSE); Type 6 – SwiftNet; Type 7 – WorldFIP; Type 8 – Interbus. In addition to these 
eight Types, there are two additional Types for the Application Layer standard (defined 
in parts 5 and 6): Type 9 – Foundation Fieldbus H1 and Type 10 – PROFInet. 

Outside the IEC 61158 are sensor networks that were included in the IEC 62026 
standard including DeviceNet, SDS, CANOpen and AS-i. On Europe EN 50325 
included also profiles derived from the CAN protocol (DeviceNet, SDS, CANOpen) and 
EN 50295 defines the actuator and sensor protocol (AS-i), 

 

 

Figure  2.1: IEC 61784-1 (2nd Ed.) and -2 (1st Ed.) communication profiles 

One issue with the IEC 61158 standard was that each fieldbus could have features 
in each layer assigned to different types. The solution for this problem was the EN 61784 
where Communication Profile Families (CPF) specifies the complete stack of each 
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fieldbus based on the technical data in IEC 61158. The first part EN 61784-1 covers 
“current” CPFs and was approved in 2003, for example, the Foundation Fieldbus is CPF 
1, with H1 specified in CPF 1/1, and HSE specified in CPF 1/2. In mid-2003 the work 
started on IEC 61784-2 that includes “new” CPFs including PROFInet, EtherCAT, etc. 

IEC 61158 was revised in March 2003 with adjustments on existing Types, new 
Type 6, 9 and 10. The 3rd edition of IEC 61158-2 follows this changes (April-May 2003) 

IEC 61158-1 had a 2th edition (November 2007) with removal of Type 6 
(SwiftNet), inclusion of Types 11 to 20; generalization of Type 1 radio and sub-division 
of parts 3, 4, 5 and 6 (e.g. IEC 61158-6-2, etc); IEC 61158-2 4th edition follows this 
changes (December 2007)  

IEC 61784-1 2nd edition (December 2007) synchronizes this standard with 
61158:2007 including the addition of new Types: CPF 8 (CC-Link, IEC 61158 Type 18), 
9 (HART, IEC 61158 Type 20) and 16 (SERCOS, IEC 61158 Type 16). Also in 
December 2007, functional safety is included in part 3, and installation issues in part 5. 

With the “pulverization” of the fieldbus standards by IEC, it is no surprise that IEC 
itself provides a CD-ROM with the title “Industrial Communication Networks – 
Fieldbus – The complete collection” (January 2008), a pack that contains 79 standards 
covering 15 Communication Profile Families and 20 Types. These include IEC 61158-1, 
IEC 61158-2, IEC 61158-3-* (DLL Service Specification for Types 1, 2, 3, 4, 7, 8, 11, 
12, 13, 14, 16, 17, 18, 19), IEC 61158-4-* (DLL Protocol Specification for Types 1, 2, 3, 
4, 7, 8, 11, 12, 13, 14, 16, 17, 18, 19), IEC 61158-5-* (Application Layer Service 
Specifications for Types 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20), IEC 
61158-6-* (Application Layer Protocol Specification for Types 2, 3, 4, 5, 6, 7, 8, 10, 11, 
12, 13, 14, 15, 16, 17, 18, 19, 20), IEC 61784-1 (CPF introduction), IEC 61784-2 
(Additional CPF), IEC 61784-3 (General rules for functional safety, and Additional 
specifications for CPF 1, 2, 3, 6), IEC 61784-5 (Installation profiles for CPF 2, 3, 6, 10, 
11) and IEC 61918 (Installation in industrial premises). 

The 15 Communication Profile Families in the latest version of IEC fieldbus 
standards are (see Figure  2.1): 1. Foundation Fieldbus; 2. CIP; 3. PROFInet; 4. PNET; 5. 
WorldFIP; 6. Interbus; 8. CC-Link; 9. HART; 10. Vnet/IP; 11. TCnet; 12. EtherCAT; 
13. Ethernet Powerlink; 14. EPA; 15. MODBUS-RTPS and 16. SERCOS. 

Some of these Communication Profile Families share characteristics like same 
physical layer interface, however most Communication Profiles vary greatly in several 
other characteristics including: 

• Specification Availability – Some fieldbuses have their specifications available for 
free or for very small fees, this contrasts with the usual cost of an IEC standard (the 
collection for each CPF costs typically from to 550 EUR to 1800 EUR, the full 
fieldbus collection costs 7500 EUR). 

• Industrial Property Protection – some CPs are covered by patents and other 
industrial property protection mechanisms and cannot be commercialized without 
prior licensing. 

• Detail – some CPs are defined in almost every detail from physical layer up to 
functional details, others still have space for big interoperability issues. 

• Market share/target – in raw numbers some CPs have huge market shares when 
compared to others, however this comparisons do not reveal the true “success” of 
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each fieldbus. They do not take into account different market targets and the fact 
that some CPs are targeted for specific levels of the industrial process (from 
factory-wide control to more local/simple station interconnections). Some CPs are 
targeted for specific areas of the industry (e.g. P-Net in shipbuilding, SERCOS in 
drives…) or even regionally bounded (EPA documentation was only available in 
Chinese until recently). Other issue here is that there is a huge difference in market 
phases of the several CPs: some are well established with multiple products from 
multiple vendors, others do not have a single implementation in the market. 

• National or Regional Standards – from the first 3 European-based national 
standards there is now an extended collection of standards including national 
standards from USA (CIP), China (EPA), Japan (TCnet, Vnet/IP). 

• Physical Layer – Some CPs are built over TCP/IP stacks, others use dual-stack 
architectures over Ethernet, some use specific changes in Ethernet MAC, and some 
use their own physical layer. 

• Real-Time characteristics vs. standard MAC chipset – some CPs are designed for 
very fast and time-guaranteed responses using specific chipsets (cycle time less 
than 100 µs for EtherCAT, jitter less than 1 µs for some flavors of SERCOS and 
PROFInet), others have less stringent response times (around 10ms) but are built 
over garden-variety Ethernet chipsets. 

• Application level – features available for applications also vary greatly… solutions 
range from the application-controlled station poling mechanism to a system-
managed subscriber-consumer model and even high-level station profiles. 

 
The Profibus organization announced (PROFIBUS & PROFINET International, 

2008a) that more than 1.1 million PROFInet stations where installed by the end of 2007, 
this value does not include infrastructure devices like switches. It also informed that 4.7 
million Profibus stations where sold in 2007 bringing the total number of Profibus 
stations in the field up to 23 million. In 2004 there where “only” 10 million Profibus 
stations in the field (2008). 4 million Profibus stations in 2002 (Calandrini, 2003). 

On the other hand, Fieldbus Foundation stated in February 2008 (Process 
Engineering, 2008) that it has 68% of market share in sales values in the “Process 
Industries” against 27% of Profibus. It also stated that about 1 million stations were 
installed. The market share in 2006 was the same (Fieldbus Foundation, 2007b) in value.  

According to ARC Report in 2006, the market of fieldbus in Process Industries was 
831 million USD and forecasted a 2280 million USD for 2011 in a total for Automation 
Systems of 30 billion USD in 2006 and forecasted 57 billion in 2011 (ABB, 2008) 

In 2005 there where 625000 Foundation Fieldbus stations and 10000 systems 
worldwide (Fieldbus Foundation, 2006), in 2004 there where 500000 stations and 8000 
systems (Fieldbus Foundation, 2005). 

2.3 Profibus overview 

Profibus (PROFIBUS Nutzerorganisation e.V., 1992) was the selected base fieldbus for 
the factory communication system framework. Like other fieldbuses, it uses a 
master/slave paradigm for medium access control. There are two distinct stations in the 
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network: masters that control the access to the medium, and slaves that respond to 
master requests.  

Profibus uses a timed token passing mechanism that supports also multi-master 
networks. The Profibus-DP standard does not however require inter-master user data 
communication support. In practice a Profibus-DP network behaves like separated 
logical networks each with its own master and, if properly configured, without 
interferences between them. 

 

 

Figure  2.2: Example Profibus data exchange 

The token, that represents the right to access the bus, circulates in a logical ring 
composed by the masters (see Figure  2.2).  

Profibus allows distinguishing between high priority and low priority PDUs. The 
latter can further be divided into three subtypes: cyclic low priority PDU cycles (Poll 
Cycle), that represent the execution of the requests contained in the poll-list; acyclic low-
priority PDU cycles, which comprise application and remote management services; and 
gap maintenance cycles, that are actions taken to determine the status of the others 
station in order to support dynamic changes in the network. 

The medium access control protocol,, the data transfer services as well as the 
management services are defined according to the standards DIN 19 241-2, IEC 995, 
ISO 8802-2, ISO/IEC JTC 1/SC 4960 and the all-encompassing IEC 61784 and IEC 
61158 standard families, in particular CPF 3/1 (IEC 61784) and Type 3 (IEC 61158) 
define Profibus-DP stack details. In order to provide transmission synchronism and some 
redundancy, some characters are encoded in the UART character format: 11 bits with 
start-stop synchronisation, one data octet and a parity bit. 
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One important concept on the timing characteristics of Profibus is the Message 
Cycle that includes the Action Frame sent by the initiator (always a master) and the 
corresponding Acknowledge or Response Frame sent by the responder. After the 
transmission of the action frame, the initiator waits for a response during the Slot Time 
(TSL). If no response is received within that time span then the initiator tries again a 
number of times up to max_retry_limit times. 

Profibus has a mechanism to query and update a list of sensors and actuators 
automatically using a Poll List. The processing of the requests in this list is a Poll Cycle. 
The Poll Cycle requests are processed after the High Priority PDUs and before the 
acyclic Low Priority PDUs. A Poll Cycle may span several token visits, however only 
one Pool Cycle is allowed per token visit. 

As for the token management, the token is simply passed to the next master in 
rising address order. The highest address master sends the token to the lowest address 
one.  

In a mono-master network, the token is just passed back to the master, enabling the 
usage of the same PDU processing mechanisms of multi-master networks. Profibus has 
also procedures to detect token transmission errors and changes in the number of master 
stations connected to the network. 

 

 

Figure  2.3: Profibus Low Priority traffic affects High Pri ority traffic  

When the token arrives, the master computes the Token Holding Time (TTH), the 
time available to perform message cycles. This time is the difference between the Token 
Target Rotation Time (TTR), the time that the token is expected to take to visit all 
masters, and the Token Real Rotation Time (TRR), the effective time measured from the 
last visit. The master sends one high-priority PDU even if the TTH is negative. The 
remaining high-priority PDUs are processed until TTH expires.  
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Message Cycles in Profibus are never interrupted, if TTH expires after the cycle 
start all the retry processing carries on as usual. After the high-priority PDU queue is 
empty, then the Poll Cycle requests are processed and, finally, the low-priority acyclic 
PDUs. 

The processing of PDUs in Profibus is simple but leads to some unforeseen results 
when used in practice even in mono-master networks. Since a message cycle is never 
interrupted, if TTH expires then the token will be late in the next visit… this in turn means 
that only one high-priority PDU can be sent. If we have a burst of high-priority PDU the 
network has (Monforte et al., 2000) a awkward pattern like {token, 1 high-priority PDU, 
token, n high-priority PDUs} until all the high-priority PDUs are exhausted. 

In addition, it must be noted that if a high-priority PDU is queued right after the 
token arrival and there are many low-priority PDUs, then the PDU can be delayed more 
than TTH. For multi-master networks if one of the masters expires TTH then all (Tovar and 
Vasques, 1999a) the remaining masters see a late token until the token is received again 
by the master that expired TTH  (see Figure  2.3). 

In order to prevent the priority inversion, a constrain on the low-priority traffic is 
proposed by (Tovar and Vasques, 1999b) that avoids late tokens without changing the 
Profibus MAC. The idea is that if one limits the maximum low-priority traffic at each 
master station and the TTR is set accordingly, then the token is never late due to low-
priority PDUs, and so the high-priority traffic is not affected by the low-priority traffic in 
the network. 

Regarding Profibus services, the Fieldbus Data Link (FDL) provides the functions 
for sending and receiving data over the network (Data Link Layer functionality). 
Protocol Data Units (PDU) are packaged, delivered and checked. Acknowledgements, 
responses, retries and timeouts are used to guard against Line Protocol Errors (e.g., 
frame, overrun and parity) and Transmission Protocol Errors (e.g., start and end 
delimiters, frame check, frame length and response times). 

A Profibus PDU data payload is restricted to 246 bytes. For most industrial 
applications, the PDU data size should not exceed 32 bytes to reduce transmission 
delays. In addition to the data, a PDU of variable length contains an 8-byte header; a 
PDU of fixed length (8 bytes) has a 6-byte header. Various acknowledgement and 
response frames are also defined (see Figure  2.4). 

The Profibus FDL offers three acyclic and one cyclic data transfer service: Send 
Data with Acknowledge (SDA); Send Data with No Acknowledge (SDN); Send and 
Request Data with Reply (SRD) and Cyclic Send and Request Data with Reply (CSRD). 

The SDA service allows the initiators to send a PDU and immediately receive the 
confirmation. The responder can either acknowledge the received data or respond 
sending data itself. The SDN is an unacknowledged service. Therefore, it is mainly used 
for multicast or broadcast transmissions.  

Finally, the SRD is based on a reciprocal connection between an initiator and a 
responder, and requires either an acknowledgement or a response. Using this service, the 
initiator sends data in the request and it receives data from the addressed station in the 
response. 
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Figure  2.4: Profibus most used frame formats 

The Profibus FDL layer also offers a cyclic service (based on the acyclic SRD). 
This service is Cyclic Send and Request Data with reply (CSRD), and is used to poll 
simple field stations, such as sensors and I/O racks. The list of the stations to be polled is 
called the Poll List.  

Stations may have addresses from 0 up to 125; additionally address 127 is used to 
broadcast PDUs. The eighth bit of the Address Field can be used for an extended 
addressing mechanism used in networks with multiple segments. The FDL supports 
optional Service Access Points identification, which provides similar functionality of the 
TCP/IP port numbers and station addressing. 

2.4 Wired/Wireless Profibus Networks 

Systems like RFieldbus extend Profibus not only with new services but also with a new 
transmission medium: wireless radio. In RFieldbus, the wireless medium has different 
data rates as compared to wired Profibus. Rfieldbus also introduces additional headers 
and trailers for the wireless messages. The RFieldbus includes also a mobility support 
functionality that introduces some time overhead. These aspects are discussed in detail in 
(Alves, 2003) and are briefly presented in the rest of this sub-section.  

In terms of interconnection between heterogeneous medium (wired/wireless), the 
RFieldbus solution is a physical-level one, using repeater-like interlinking devices. There 
are alternative approaches such as the ones proposed in (Ferreira, 2005), which use 
higher-level solutions but then requiring some modifications to the standard operation of 
the stations. 
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Figure  2.5: Profibus UART frame 

 
Profibus specifies that master stations must leave the medium unused between 

message cycles (see Figure  2.6) for a minimum Idle Time (TID1) that is given by: 
 

 ),min,max( SDISDRSMSYN1ID TTTTT +=  ( 2.1) 

where:  
− TSYN is the synchronisation time, the minimum time interval during which 

each station must receive idle state from the physical medium (33 bits); 
− TSM is a safety margin; 
− min TSDR is the minimum station delay of responders 
− TSDI is the station delay of the initiator. 

 

 

Figure  2.6: Profibus Idle Times and Slot Time 
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 )min,max( SDRSMSYN2ID TTTT +=  ( 2.2) 

The values of TID1 and TID2 are set in a per-station (master) basis. 
Another important parameter is the Slot Time (TSL): after the master sends the last 

bit of a confirmed request to a slave it waits for the response until TSL expires, if it 
expires then the retry mechanism is started.  

In more formal terms, there are two components for this value, TSL1 is used for 
confirmed requests and is defined as follows: 

  SMUARTSDRTD1SL TTTT2T +++⋅= max  ( 2.3) 

where TTD is the line transmission delay and TUART is the time needed to detect a 
character (11 bits, see Figure  2.5) 

TSL2 is used for Token transmission, and its value is defined as follows: 

 SMUART1IDTD2SL TTTT2T +++⋅= max  ( 2.4) 

 
The final value of TSL is: 

 ),max( 2SL1SLSL TTT =  ( 2.5) 

This value is configured in all master stations of the network since it is a parameter 
of the token passing mechanism. 

It is clear that these parameters have to be adjusted when using a hybrid 
(wired/wireless) network since the reaction times are different when the PDU is 
forwarded between the different physical domains.  

It is also necessary to avoid queuing delays (e.g. when one PDU is not forwarded 
immediately because another one is still being transmitted) or else we cannot guarantee 
the real time characteristics of the network. Since both request and responses are also 
forwarded between multiple physical domains and not only the segments including the 
master and the slave, it is then necessary (see Figure  2.7) to have an Inserted Idle Time. 

 

 

Figure  2.7: Profibus Inserted Idle Time 
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transmissions and for unacknowledged PDUs. This means that in hybrid networks there 
will be higher values of TID1 and TID2 on the master stations and these values can be 
different on each station depending on the PDU sizes and characteristics of the stations it 
interacts with. Further details are available in (Alves, 2003). 

2.5 Connecting Fieldbuses to TCP/IP and Ethernet networks 

One of the objectives is to allow transparent interconnection between the TCP/IP and 
fieldbus realms. There are diverse solutions and technologies used for this purpose.  

TCP/IP and fieldbus interconnection solutions include IDA (Interface for 
Distributed Automation), Ethernet/IP (DeviceNet based), Modbus/TCP (Modbus based) 
and HSE - High Speed Ethernet (Foundation Fieldbus based). 

These solutions enable remote control even over the Internet using standard 
TCP/IP hardware and software including Virtual Private Network (VPN) tunnelling if 
needed (Hoon et al., 2002). 

For instance, Modbus/TCP (Modbus IDA, 2007) follows a Client/Server model 
and exchanges data using TCP connections in port 502. Each Modbus/TCP PDU has a 
header that is different from serial Modbus. Modbus/TCP header (see Figure  2.8) starts 
with a 2-byte Transaction Identifier to support multiple open client requests to a 
particular server; a 2-byte Protocol Identifier that enables multiple protocol support (for 
Modbus/TCP this is always 0). The header has also a 2-byte Length field; this is required 
since in TCP a single request in the source can be split into several blocks on destination. 
It has also a 1-byte Unit Identifier that is used for intra-system routing like when a 
Modbus/TCP server is used to connect several serial Modbus stations to the TCP 
network. Since TCP guarantees the integrity of the data, no check information is needed 
on the Modbus/TCP PDUs and so the Serial Modbus CRC field is not used. 

 

 

Figure  2.8: Modbus/TCP and Modbus Serial PDU 
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since there are obvious overheads not only on the network with the physical layer 
overhead and IP plus higher layer headers but also in the software stacks used. 

PROFInet (Profibus based) and EtherCAT have Ethernet-specific capabilities using 
specialized hardware (or embedded software) that aim to overcome these issues and even 
beat traditional fieldbuses in terms of reaction time (Prytz, 2008). The economic cost 
penalty of these solutions is small since the Ethernet MAC (see Figure  2.9) and 
respective supporting hardware is standard. Both solutions support other Ethernet traffic 
(e.g. TCP/IP) in the same network and can even have stations with fieldbus-protocol 
capabilities and TCP/IP stacks. Both protocols also support standard IP communication. 

 

 

Figure  2.9: EtherCAT Ethernet PDU 

The EtherCAT shows another possible solution: slave stations have two Ethernet 
connectors, when data is forwarded from connector A to connector B an EtherCAT-
specific Field-Programmable Gate Array (FPGA) reads and changes specific bits on the 
EtherCAT Ethernet PDU, non-EtherCAT PDUs are forwarded unmodified. This 
forwarding is very fast and this justifies the quick cycle times of 11µs for 256 bits of 
data up to 300µs for 12000 bits of data (that fit a single Ethernet frame). The last station 
on a branch puts data back on the connector A. PDUs on this "back-channel" using 
Ethernet full duplex capability are forwarded until the master station. The master station 
has a standard Ethernet card and the duplex capability can be used to realize a double 
ring topology using two Ethernet cards on the master station. In case of a break in one 
cable, the system forwards PDUs over the two open branches of the ring. 

2.6 Multimedia content over fieldbus and automotive on-board networks 

Outside the RFieldbus project, Profibus has been shown to be capable of sending image 
data with limited capabilities (image data of 17 Mbps reduced by compression to 800 
kbps) without impairing the control traffic (Sempere and Silvestre, 2003), careful 
configuration of the Profibus network is also important as shown in (Silvestre et al., 
2002). These solutions have in common the fact that each implements its own method of 
transferring the multimedia content over the network and interoperability issues where 
not addressed. 

A technology similar to RFieldbus in the multimedia capabilities is Interbus TCP, a 
system that enables the transmission of TCP/IP data over an Interbus-S fieldbus. In a 
500 kbps Interbus network this service provides a TCP/IP bandwidth equivalent to a 
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14.4 kbps modem (Volz, 2001). Interbus TCP uses (Burmann et al., 2004) the Point-to-
Point Protocol (Simpson, 1994) to serialize the data on the Interbus link, and has 
mechanisms to guarantee interoperability between TCP and non-TCP capable stations in 
operations like software transfer using gateway stations. This solution relies on the serial 
point-to-point capabilities of Interbus system and adds 2- to 10-byte overhead to each IP 
packet.  

 

  

Figure  2.10: MOST Frame Structure 

The Media Oriented Systems Transport (MOST) bus is a multimedia capable 
system for automobile distributed applications normally used over plastic optical fibber 
with ring topology, but supports other topologies and cabling. It features data rates of 25 
Mbps (MOST25) and 50 Mbps (MOST50) shared by asynchronous and synchronous 
(sampling rates from 30 kHz to 50 kHz) data. Up to 64 stations can be interconnected. In 
practice MOST25 supports 15 simultaneous stereo CD quality uncompressed audio 
streams at a typical sampling rate of 44100 samples per second, or one 5.1 surround 24 
bit uncompressed audio stream, but cannot handle uncompressed video streams, however 
multiple MPEG compressed video streams are possible (SMSC, 2006). MOST50 
supports up to 29 stereo channels of CD quality uncompressed audio at a typical sample 
rate of 48000 samples per second.  

The MOST technology specifies (MOST Cooperation, 2006) not only the physical 
layer but also all the layers up to the application layer in order to provide interoperability 
between different manufacturer stations. 

MOST PDUs have pre-defined sizes and a variable boundary that divides stream 
(synchronous) data and packet data (asynchronous) inside the “general data” payload of 
a particular PDU (see Figure  2.10). In MOST25 networks, this boundary is fixed once 
the network is setup and at most 60% of the bandwidth can be used for asynchronous 
data. For MOST50 networks this boundary can be changed on the fly and so bandwidth 
can be divided by asynchronous and synchronous data at will (in, fact to be precise, at 
least one byte of synchronous data must be sent in a frame). 
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Figure  2.11: MOST data structures 

Besides the general multimedia data, MOST reserves a small section of the PDU 
for control data (e.g. turn on/off devices, volume adjustment, etc…). MOST25 data 
PDUs are 64 bytes long with 60 of general data plus 2 bytes of control data, while 
MOST50 data PDUs are 128 bytes long with 117 bytes of general data plus 4 bytes of 
control data (see Figure  2.11). 

The synchronous capabilities of the MOST networks are guaranteed by a Timing 
master station, and accurate synchronization is vital for the network in order to avoid the 
need of buffering in MOST stations than handle synchronous data flows. The 
management of the synchronous/asynchronous bandwidth is also done by the Timing 
Master. 

In MOST25, data can be grouped in blocks of 16 PDUs of 64 bytes each, totalling 
1024 bytes. In MOST50 data can be grouped in blocks of variable size. 

MOST also supports packaging of Ethernet frames into the asynchronous payload 
(MOST Cooperation, 2003), the packaging is straightforward with the Ethernet MAC 
14-byte header information converted to 4 bytes, 2 bytes are used in the MOST MAC 
destination address, and the other 2 bytes are sent as asynchronous data of MOST. 
Additional 4 bytes are used for packaging management resulting in a usable MTU of 
1008 bytes. Using the packaging presented, real data rates of 800 kbps have been 
recorded sending IP packets with 8000 bytes and using 28 bytes of the 60 bytes available 
for general data in a MOST25 frame. 
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 Chapter 3  
Related Work on Power-Line 

Communication Systems 

The energy management communication architecture is built integrating power-
line communications (PLC) with higher level protocols. This chapter first provides 
a brief introduction of the main PLC concepts relevant to the architecture and then 
the overall description of the supported services and internal architecture is 
provided. 

3.1 The DLC1000 Power-Line Communication System 

For the energy management system framework the communication services are based on 
the DLC1000 Power-Line Communication System. The DLC1000 system provides time-
slotted master-slave communication (Sebeck and Bumiller, 2000) in single-voltage 
networks. In DLC1000 systems, multiple networks may be supported in the same 
medium using frequency division and/or time division.  

In a frequency division solution, each network is assigned a particular frequency 
range and there is no support to any type of inter-network communication. It is possible 
for a station to “move” from one frequency band to another, but this operation takes 
some time and results in loss of connectivity with the previous network (and thus loss of 
the previous communication streams). 

In a time-division solution (see Figure  3.1), different networks share the same 
frequency band and other physical layer parameters. Masters in the network must be 
synchronized and they manage the medium access via fixed pre-programmed time slots 
cycles. A station may be in several time-division networks in the same frequency band, 
being each time-division network accessed by a particular Network Unit on the station. 

 

 

Figure  3.1: DLC1000 Network Layer time division 
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It is possible to mix these two solutions into one same system, with frequency 
division used first to divide domains, and time-division used independently in each 
domain. 

In a particular DLC1000 network, a station is always either a master or a slave; 
however a station with two network interfaces may be master in a network and a slave in 
a different network. 

 

Figure  3.2: DLC1000 Network Layer timing 

A particular feature of this medium, and a consequence of hardware processing 
delays, is that slave responses are time-interleaved in logical channels. With a time-
interleave of four slots − depicted in Figure  3.2 − the master sends four requests to slaves 
in consecutive slots, and the slave responses (or forwarding PDUs) are expected four 
slots after the request. This mechanism provides much better network bandwidth 
utilization in a simple master/slave network. A side effect of this method is that from the 
application point of view the system behaves as if it had parallel communication 
channels (4 in the example above). The interleave factor is configurable with a minimum 
value of three due to hardware processing delays. 

In order to extend the network range it is possible to use slave stations as 
forwarding agents to remote slaves. The master reserves several slots for a particular 
request, and, in the additional slots, intermediate slaves forward the request to the final 
destination slave.  

DLC1000 supports two different forwarding mechanisms: in the pre-existent 
Network Management System (NMS) mode (Bumiller, 2001) the master builds a map of 
the slave routes, and when a request needs routing it is sent to a particular slave with the 
routing information embedded in the request header. This solution is simple to 
implement on the slave stations, but uses additional bandwidth for routing data. On the 
master side, the resources needed for route calculation grow exponentially with the 
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number of slave stations. For these reasons, the number of hops in NMS is limited to 
two. 

An alternative forwarding mode, identified as “Single Frequency Network” or SFN 
(Le Phu Do et al., 2005), uses specific hardware to build a forwarding “wave” of 
requests: the master sends a request with a particular destination signalling the number 
of hops needed; all the slaves that receive the request forward simultaneously back to the 
network decrementing the hop-count. The process goes on until hop-count reaches zero. 
This latter process is much simpler in terms of software management and uses less 
network resources than the former process, but timing synchronization of the stations 
may limit the forwarding capability in general networks. 

SFN can also be used in very long network lines (that have only one station on 
each end) with several requests flowing at the same time in different points of the line. 
Two different frequency bands are used in this solution, one for master-to-slave and the 
other in the opposite direction. Due to its advantages, SFN was selected and developed 
within the context of the REMPLI project. 

The services that the system supports are thus highly dependent of the underlying 
communication medium. The data services for a master station include Unicast 
Unconfirmed Request; Multicast (or broadcast) Unconfirmed Request; Unicast 
Confirmed Request and Data Arrival. 

Automatic retry of Confirmed Requests is configurable if needed. Multicast and 
Broadcast requests are supported using an 8-bit Group Address: each slave is configured 
with a list of the groups it belongs to, with all slaves belonging to group 255 (broadcast). 
Unicast requests use 12-bit Network Layer Addresses that are assigned at the station’s 
login to the network. 

On a slave station, the main data services are Confirmed Request Data Arrival; 
Unconfirmed Request Data Arrival; Multicast Request Data Arrival and Send Data 
Request. 

The Send Data simply puts the data in the slave output queue. It is not possible to 
guarantee that the data is sent in response to a particular Confirmed Request. Due to the 
network timing (and specially the time needed for the encoding and decoding of frames), 
it is challenging to generate the Send Data Request in response of the Confirmed 
Request Data Arrival event in time for the data to be usable. Using a larger interleave 
factor would help on this matter, but then response times would be worsen for other 
services. Since it is expected that the delay needed to query sensors connected to the 
slave station are much larger than the request/response capabilities this is not a critical 
issue to the system design. However, if packets have multiple fragments, then they 
should be delivered as efficiently as possible. 

The main reason for this efficiency-urge is that with the medium access 
implementation used in REMPLI, automatic additional Confirmed Requests are 
generated to empty the queues of each slave without the intervention of higher protocol 
layers. Out-of-band information is sent by the lower level layer on the slave to inform on 
the current queue state. 

Data services requests are queued in priority queues; there are three priority queues 
for masters and two for slaves. In the simplest implementation, higher-priority queues 
are emptied before lower-priority queues are served. However, the system is built such 
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that other more complex scheduling algorithms can be later incorporated in particular 
scenarios.  

There are also special services for managing the status of the network. These 
support services include login/logout notifications, link quality information and the 
Status Pool service. The Status Pool service automatically queries each slave on the 
network for its 8-byte Status Information; it provides a simple way to keep at the master 
an image of slowly changing information of each slave. 

When a slave station is activated, it starts by scanning the configured frequency 
bands. When it finds an active frequency it tries to synchronize with it: the master sends 
periodic special Physical Layer Configuration Packets for this feature. Afterwards, the 
slave tries to logon to a master; once again the master sends special packets to enable 
new slaves to start the logon process. This process involves exchanging Unique Serial 
Numbers between master and slave, and assigning a 12-bit Network Layer Address 
(NLAddr) for each newly connected slave. A slave may be connected to several masters 
using one or more times slots in each cycle. The NLAddr of a slave is specific to each 
master connection. The master keeps track of the link quality of each logged on slave 
automatically pooling the station if needed. 

3.2 The REMPLI System Services 

The REMPLI communication infrastructure connects several Application servers (on a 
Private Network) and devices in the power distribution grid providing end-to-end 
connectivity (Figure  3.3). It consists of: low-voltage segments, which cover groups of 
energy consumers (for example, a segment can span across one staircase of apartments 
within an apartment block, or cover a single production branch); medium-voltage 
segments between the primary and secondary transformer stations; TCP/IP or IEC 60870 
based segments between the primary transformer stations and the Application server(s); 
and TCP/IP communication between the Application Servers and their clients. The 
interfaces provided by the Application Servers can be available only within the Private 
Network or also by Internet clients (e.g., SCADA server/client communication). 

The bottom-level of the communication infrastructure is comprised of REMPLI 
Nodes, each coupled with a PLC interface (usually a low-voltage PLC modem, in certain 
cases it can have a medium-voltage PLC modem). A Node is usually installed at the 
consumer site, e.g., inside an apartment or apartment block, and has a number of 
metering inputs (such as S0, for electrical energy meters). Nodes are also equipped with 
digital outputs that allow switching off and on electrical/heat/gas/water supply for a 
particular consumer, upon commands from the utility company.  

At the top-level of the infrastructure is the TCP/IP-based REMPLI Private 
Network, where Application Servers of utility companies are connected. Application 
Servers perform dedicated functions, such as metering, billing or SCADA. Special 
Application Servers can also offer access to data, collected and processed by the 
REMPLI system, to end-user clients, located in the open Internet, or even to wireless 
terminals. 
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All Application Servers access Nodes in the PLC network via a REMPLI Access 
Point (AP) – a station that interconnects TCP/IP and PLC-based segments and, 
optionally, implements a number of additional services. 

 

 

Figure  3.3: REMPLI Upper Layer Functionality (“outside” vi ew) 

The software architecture of a Node allows running different types of applications, 
each provided with an interface to the PLC environment. Any application running at the 
Node is “visible” on the other side of the communication system. Hence, Application 
Server(s) can access data collected by a Node application (e.g., retrieve metering values) 
or provide inputs into the application (configure the application itself, or control 
peripheral devices – such as relays – via the application). 

A power-line network can contain other PLC stations (i.e. non-REMPLI) as well, 
not represented in Figure 3.3. These stations are equipped with the same type of PLC 
interface as REMPLI Nodes; however, they run different software and perform different 
functions, whilst sharing the available PLC bandwidth with the REMPLI communication 
infrastructure. The REMPLI system co-exists with them, although not providing any 
facilities for communicating to foreign stations. 

All Nodes within a typical REMPLI installation are connected to a cascaded 
power-line network. The power-line network consists of one Low-Voltage and one 
Mid-Voltage segment, with the word segment being used in the logical sense: several 
independent wired segments may exist in each Low-Voltage and Mid-Voltage 
“segments”. Communication at both levels is master/slave-based. Low- and Mid-Voltage 
segments are coupled by one or more REMPLI Bridges, which are usually installed at 

Access Point 1 Access Point 2 

Node 3 Node 2 Node 4 Node 5 Node 1 

Digital Meter 

Meter Data Bus Type B Switching Device 

AP Driver Interface 

Node Device Interface 

REMPLI TL  
Netwok 

Intranet (TCP/IP) 

Bridge 1 Bridge 2  Bridge 3 

Digital Meter 

Meter Data Bus Type A 

1 

2 

2 

2 

1 
1 2 

3 1 1 2 
DE/MUX  

ROUTING/LINK REDUNDANCY 

Application Server A 
APPLICATION SERVER REDUNDANCY 

Application Server B 

3 1 
1 1 

3 

3 Driver 1 Links 



  Part I 
Research Context 
 

32 

the secondary transformer stations, between the two parts of the cascade. Physically, the 
Bridge is comprised of a station that has both a high-voltage PLC modem and a 
low-voltage PLC modem. The link, established by a Bridge, is transparent for the data 
payload seen by applications: requests are forwarded from the upper part of the cascade 
into the lower one, responses are passed back. Hence, the whole PLC network of two 
segments becomes a single request/response communication environment. 

In some installations, where a utility company needs to collect information from 
the secondary transformer station itself or to control it, the Bridge can be combined with 
a Node, i.e. all the services available in a Node are also available on the Bridge. It is also 
possible to equip a secondary transformer station only with the Node, and not with the 
Bridge. In the latter case, the transformer station becomes a communication end-point, 
and no data transmission occurs into the Low-Voltage segment. Other Nodes can be 
connected directly to the Mid-Voltage network, e.g. for utility internal metering control 
purposes or for clients with direct Mid-Voltage electric power network supply (e.g. 
industrial clients). 

3.3 REMPLI System Internal Architecture 

From the point of view of Applications that use REMPLI resources, the network presents 
a flat address space (REMPLI Node Address) with direct connection from the Access 
Point Driver Interface at each AP to the Node Driver Interface at the Nodes or Bridges 
(Pacheco et al., 2005a). 

APs provide interfaces on the Intranet network to multiple Application Servers. 
Depending on the purpose of the system, a Server can be connected to one or more APs 
(this redundancy in access can be managed by the Server). However, the REMPLI 
system provides its own redundancy services between APs. This means that, if needed, 
an Application Server can be connected to a single AP and still have access to all devices 
in the network. 

In order to implement the interfaces to the external word, e.g. some specific 
Application Server and a Digital Meter, special modules (Drivers) are provided. Drivers 
implement protocol-specific functionalities to the REMPLI network on top of the 
Transport Layer providing services that connect each driver on the AP to a specific 
driver on the Nodes. Typically, a different driver pair is used for each type of metering 
or control devices.  

Management of shared resources (e.g., if drivers share the same physical bus), has 
to be implemented at the drivers’ level. In the example of Figure  3.4, Application Server 
A and B can connect to AP Driver 1 Interface (e.g. a TCP Server Port) at either AP1 or 
AP2, linking up to Nodes 1, 2, 3 and 4 and Bridges 1 and 3. At Node 2, Drivers 2 and 3 
share the same data bus and thus some resource management mechanism must be in 
place to avoid conflicts between the two modules.  

In the REMPLI project, Drivers for IEC 1107/EN 62056, IEC 60870-5-104 and 
EN 1443.3/M-Bus where implemented (REMPLI Project, 2008). The IEC 60870-5-104 
implementation is a simple translate and tunnel interface. The IEC 1107 Driver, 
however, had to implement local handshakes in order to cope with the standard’s 
timings. In the M-Bus driver, the dialled number command used to connect applications 
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to devices using phone-line modems was “translated” to a connection to a specific Node 
(the number is the Node Address); in this case a proxy application is used in the 
application server to forward communication port PDUs to the AP driver. A 
“transparent” point-to-point driver was also implemented and this enabled the SSH and 
Telnet standard Internet application connections to Nodes (used for instance in the field 
trials for remote debugging of software). 
 

 

Figure  3.4: REMPLI Upper Layer Functionality (“inside” vie w) 
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levels, merging the multiple driver data to a single channel. It also provides security 
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2004). The DeMux can also route requests made by a Driver in one AP to another AP 
using the Intranet. Depending on the current network conditions the response is routed 
back to the original AP automatically. In terms of implementation, the interfaces of the 
DeMux are internal TCP connections as a server to Drivers, and as a client to the 
Transport Layer. 
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(16 MiB in the current configuration, up to 4 GiB with code rebuild). The main services 
provided by the Transport Layer include sending a packet from an AP to a Node; 
sending a request from an AP to Node with response in the opposite direction; and 
broadcasting a packet from an AP to all available Nodes. A Node can also send a packet 
to, at least, one of the available APs, selected at run-time by the Transport Layer. 
Finally, the Transport Layer manages system-wide link quality information and link 
connection/disconnection information. 

The PLC Network is the base master/slave network with point-to-point 
communication of small packets and link-quality information services. The interface 
between the Transport Layer and the Network Layer is a Linux character device driver. 
From the point of view of the Transport Layer, the Network provides services in a 
master station like send data, send confirmed data, data reception and status information 
reception. On slave stations, the services are data transmission, data reception and status 
information setting. Since the Network Layer supports TDMA for multiple-master 
capability, a station can have multiple Master Network Units, each managing a group of 
TDMA slots, and multiple Slave Network Units (each connected to a single master). 
Bridges have both master and slave interfaces active. Connection between masters and 
slaves is dynamic and fully automatic: when a slave is started up, it searches for 
information on the current network characteristics (the REMPLI network can use 
multiple frequency bands and multiple TDMA configurations) and tries to connect to the 
available masters. All stations have a REMPLI Unique Serial Number (RUSN) that is 
used to keep track of the slave logins at the master but can also be used to build simple 
“access lists” that forbid certain slaves to login in certain masters. This feature is more a 
management feature than a security question. 
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 Chapter 4  
Protocol Stack Architecture 

This section presents a novel architecture for supporting multimedia TCP/IP 
services over a standard fieldbus protocol − Profibus. This communication 
architecture enables the transmission of multimedia traffic such as sound and 
video, in conjunction with the “traditional”  real-time control traffic, through 
appropriate admission control, scheduling and traffic differentiation mechanisms. 

4.1 Introduction 

One of the main objectives of the RFieldbus system architecture (RFieldbus Project, 
2000) is to allow that multimedia TCP/IP applications and native Profibus-DP 
(PROFIBUS & PROFINET International, 2008b) applications coexist transparently 
supported by the same physical network infrastructure.  Traffic differentiation must be 
guaranteed, i.e. different traffic classes must be defined in a way that real-time traffic is 
not affected by “multimedia” traffic, typically best-effort traffic. The solution that is 
proposed and discussed is achieved through a DP/IP Dispatcher that merges TCP/IP 
traffic and “native” Profibus-DP traffic (see Figure  4.1). 

 

Figure  4.1: RFieldbus Protocol Stack Architecture 

TCP/IP 
Applications 

Profibus  
Applications 

TCP/IP Stack 

AL 

IP Mapper 

Profibus DLL 

Profibus  
Management 

LLI DDLM 

DP Mapper 

Profibus PHY 

IP ACS 

DP/IP Dispatcher 

Layer 7 Layer 7 Protocols 

Layers 3-6 

Layer 2 

Layer 1 

empty 

 TCP/IP   Profibus   RFieldbus 



  Part II 
Factory Communications Framework 
 

38 

Traffic from each protocol stack is divided into five classes: DP High-Priority, DP 
Low-Priority, DP Best Effort, IP with QoS requirements and IP Best Effort. The DP/IP 
Dispatcher (or just “Dispatcher”, for short) can reserve a minimum bandwidth for each 
of the traffic classes. It can also guarantee that local Profibus traffic does not impact real-
time traffic generated by other network stations, which is something that even the 
standard original Profibus protocol could not guarantee without some care in configuring 
the diverse network parameters (Tovar and Vasques, 1999a).  

Since an objective is to rely on an unchanged Profibus DLL (Data Link Layer), the 
Dispatcher does not use the token arrival information. Alternatively, it executes 
periodically controlling the medium utilization time by means of transmissions time 
estimations of each frame sent. The Dispatcher receives these time values from the IP 
Mapper and DP Mapper sub-layers. 

A structural limitation must also be overcome: the Profibus protocol follows a 
master/slave paradigm (stations play different roles), while the TCP/IP protocol does 
not. The basic concept in master/slave networks is that some stations – the masters - 
control the access to the medium and other stations – the slaves – only respond to 
requests from the masters. On the other hand, in TCP/IP networks all stations have equal 
initiative rights. Therefore, in order to support TCP/IP applications it is essential that 
slave stations can behave like IP traffic sources without previous explicit consent from a 
master station.  

To grant slaves initiative, without changing the base network protocol, it must be 
guaranteed that all slaves (or at least the ones requiring initiative) receive a 
request/response PDUs periodically.  

In our proposal, this is achieved through two main mechanisms. First, the IP ACS 
Scheduler at the master side reserves some data slots for Request with Response PDUs 
for a particular slave. These are sent even if the applications at the master do not issue 
any request to the slave. The reserved slots are also used for application data, if that data 
is available. In this way, it is possible to guarantee a minimum bandwidth for the slave-
to-master communication, but additionally an equivalent bandwidth is also available to 
master-to-slave traffic. Secondly, when a master receives a packet, it checks if it is for 
itself or to another station. In the latter case, the message is forwarded to the appropriate 
destination; note that the destination can be an IP station outside the fieldbus network if 
the master embeds a gateway, or a slave station in the fieldbus network. 

The implementation of these mechanisms imply just some small additions to the IP 
ACS Scheduler. The IP Mapper routing mechanism becomes also quite straightforward. 
The main difficulty is using the correct packet identifiers for the fragments that are sent 
back to the network.  

This was solved using an ID Generation mechanism that is used when new packets 
are sent to the network and when packets are forwarded. Figure  4.2 depicts an illustrative 
example: on the left end side, a simple master/slave connection; in the middle M1 
forwards a packet from S2 to S3; on the right end side S2 sends a packet to a standard 
TCP/IP Ethernet host (A). 
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Figure  4.2: Slave initiative examples in a symmetrical scheme 
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Figure  4.3: RFieldbus Profibus-IP addressing scheme 
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Concerning the IP routing, the solution is a complement of the slave routing via 
masters. When a station receives an IP packet from the Profibus network, the IP Mapper 
performs the following algorithm (regardless of being a master or slave station): 

1. Check if the IP Destination Address matches its own address. If so, the 
packet is delivered to the local TCP/IP stack. 

2. Check if the three higher bytes of the IP Destination Address match its own 
RFieldbus Network ID. If so, it forwards the packet to the Profibus network 
using the Host ID of the IP Destination Address as Profibus Destination 
Station removing the most significant bit. 

3. Check if a Gateway station is configured. If it is the case, the packet is 
forwarded to the Gateway station. 

4. If everything else fails, the packet is delivered to the local TCP/IP stack. The 
local TCP/IP stack makes the decision to discard the packet or to send it to 
another host or router in the TCP/IP network. 

On a correctly configured network, Steps 2 and 3 should only be relevant for 
master stations. 

 

 

Figure  4.4: Multicast/Broadcast scenarios in RFieldbus 
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However, the above address-processing algorithm makes it possible for an RFieldbus 
station to send a multicast stream to stations outside the RFieldbus network. 

In Figure  4.4, three examples of broadcast initiated by a slave station are presented: 
on the left, same IP network (sharing the same Class C network ID); in the middle, 
different IP networks using TCP/IP stack routing; on the right, different IP networks 
using RFieldbus Gateway. 

The details on each of the components of the dual-layer stack are described in the 
next sub-sections. 

4.2 IP Mapper 

The IP Mapper sub-layer is located directly below the standard TCP/IP protocol stack, 
converting TCP/IP services into Profibus DLL services (and vice-versa). It performs the 
identification, fragmentation and re-assembly of the IP packets to/from Profibus DLL 
frames. In master stations, the IP Mapper is also responsible for routing slave TCP/IP 
packets to other stations. It also estimates the network usage of each fragment sent. 

 

 

Figure  4.5: IP Mapper Internal Architecture 
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Traffic class assignment, e.g. IP Best Effort (IPBE) or IP High Priority (IPH) is 
done in the IP ACS sub-layer, as presented in Section  4.4. 

The IP Mapper includes several entities and functionalities, briefly illustrated in 
Figure  4.5 and described next. 

The Fragmentation function receives an IP packet from the TCP/IP stack and 
divides it in fragments of appropriate size for the Profibus network; each fragment is also 
marked with a Fragment ID. IP datagrams that do not need fragmentation are marked 
with Fragment ID zero. Note that the IP Fragments that the IP Mapper passes to its 
lower layers take into account the limitations that are imposed by the underlying 
(Profibus) network. In this context, the IP Mapper may receive from the TCP/IP Stack an 
already fragmented IP packet and re-fragment it according to these limitations. 

For local fragments, the ID Generator assigns new Packet IDs for each IP Packet 
from a pool of 256 possible values. For remote (routed) fragments, the ID Generator first 
checks if the remote Packet ID is in use. If not, then it is returned unchanged, while if 
the ID is used then a new ID is generated and the Fragment Tracking Table (FTT) entry 
is updated accordingly. The Release ID function (not represented in Figure  4.5) is called 
every time a fragment is discarded or when a packet is completely sent or received. 

The Send/Route/Discard functionality first checks if the IP Network Address of the 
packet matches the IP Network Address of the station and the IP Host Address. If both 
addresses match, then the packet is delivered to the Reassembly entity. If only the IP 
Network Address matches, then the packet is delivered to the IP ACS using the IP Host 
Address as the Profibus Destination DLL Address. If they do not match, it means that the 
destination is not in the local network but in a remote IP network and therefore a 
gateway station must be used. If there is a gateway for this station, then its Destination 
DLL Address is used, if not the fragment is discarded. 

All fragments of a particular IP packet received from the fragmentation module are 
assigned a new Packet ID (at transmission time) by the ID Tagger (Send). 

For received fragments, the ID Tagger (Receive/Route) uses the FTT. The first 
fragment generates a new entry in the FTT with the Source DLL Address, Original 
Packet ID and a locally generated Packet ID. When receiving other fragments, the ID 
Tagger fetches a matching Source DLL Address and Original Packet ID from the FTT. 
If no entry is found then the fragment is discarded, while if a match is found than the ID 
Tagger replaces the remote Packet ID by the local Packet ID. 

The Reassembly function rebuilds IP packets to be delivered to the TCP/IP stack. 
When the first fragment is received, a memory buffer of the total IP packet size is 
reserved (the packet size information is in the IP header that is always available in the 
first fragment). Subsequent fragments are concatenated as they are received. Since low 
error rates are assumed, there are no special provisions for data retransmission, and an 
out-of-order reception voids the entire packet (it is assumed that a fragment was lost). 
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4.3 DP Mapper 

The DP Mapper is the Profibus-DP equivalent to the IP Mapper in TCP/IP (refer to 
Figure  4.1), and it is specified in detail in the RFieldbus Data Link Layer Specification 
(RFieldbus Project, 2001a). 

The DP Mapper is located below the standard Profibus-DP Application Layer. It 
incorporates the already existing mapping functionality of the Profibus Data Link Layer 
Management entity (DDLM) while enabling new features relevant to the integration of 
DP Traffic and IP Traffic. The DP Mapper takes care of traffic identification of DP 
traffic. Based on relevant System Management MIB (Management Information Base) 
Objects, DP Traffic is classified into DP High Priority (DPH) Traffic, DP Low Priority 
(DPL) Traffic and DP Best Effort (DPBE) Traffic. It also calculates the maximum 
transaction time of each PDU. Finally, it passes the PDU to the appropriate queue of the 
underlying DP/IP Dispatcher layer. DP Traffic fills three of the five queues of the DP/IP 
Dispatcher Layer − DPH, DPL and DPBE. 

4.4 IP ACS 

The IP Admission Control and Scheduling (ACS) sub-layer is responsible for the 
control/limitation of the use of network resources by the TCP/IP applications. Each IP 
packet is classified according to the IP Header fields, such as destination address and 
port. Given this classification, the corresponding fragments are placed in a specific 
queue. Moreover, this sub-layer implements the appropriate scheduling policies, in order 
to provide the required QoS for multimedia applications.  

In each master, the available IPH slots must be used to convey the IP traffic 
imposing QoS requirements. The ACS sub-layer (see Figure  4.6) is composed of several 
Relationship Entities (REs) and a Scheduler. Essentially each RE relates to a particular 
TCP/IP stream flow (with a particular QoS service level) identified by the IP Mapper. 
Each RE includes a First-In-First-Out (FIFO) queue, used to store the IP fragments 
coming from the IP Mapper. Fragments pending in these queues are passed to the 
Dispatcher sub-layer by the Scheduler. Each RE has a configurable maximum queue 
size; when this value is reached, requests are discarded. When a fragment is discarded 
due to queue overflow, all pending fragments of the same packet are also discarded. 

The Scheduler is responsible for the appropriate emptying of the different 
Relationship Entity Queues so that all different QoS requirements are fulfilled. The 
Scheduler uses a service interface, internal to the ACS, for the emptying of the different 
Relationship Entity Queues or the acquisition of information relevant to their contents. 
When a request for a fragment is issued by the Scheduler to an empty Relationship 
Entity Queue, then the Relationship Entity generates a special frame if the Slave Poll 
Option is chosen. This feature of the Relationship Entities is used by slave stations to 
support multimedia capabilities. In practice, it guarantees slave-to-master TCP/IP 
bandwidth by ensuring that the slave station has the chance to send a packet to the 
master at programmed intervals, even when no master-to-slave traffic exists. 
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Figure  4.6: IP ACS Architecture 
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the Scheduler attach information about the traffic class (IPH or IPBE) and about network 
usage estimation. 

The following example illustrates some of these principles. The scheduler micro-
cycle is equal to TDCY, the worse rotation time of the token. For this example  
TDCY = 10 ms and TIPH = 2 ms for a particular master station. We consider five TCP/IP 
data flows with 200-byte fragments, characterized as described in Table 4.1. 

Table  4.1: Example configuration 

Flow At every “n” TDCY Transaction duration Multimedia data throughput 
IPH1 1 100 µs 100 · 1600 = 160 kbps 
IPH2 3 200 µs 33.3 · 1600 = 27 kbps 
IPH3 3 200 µs 33.3 · 1600 = 27 kbps 
IPH4 4 400 µs 25 · 1600 = 40 kbps 
IPH5 4 1000 µs 25 · 1600 = 40 kbps 

 
The Transaction Durations depend on the locations of the stations and the data 

payloads. Spawning multiple domains (wired/wireless) results in additional delays. Also 
smaller data payloads result in smaller transaction times. However, for most TCP/IP 
traffic the maximum fragment size is used except in some particular applications, e.g. 
applications than send small User Datagram Protocol (UDP) packets.  

 

 

Figure  4.7: Scheduling example at IP ACS level 
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solution is simple but needs a value of TIPH of at least 1.9 ms (see Figure  4.7); more 
complex scheduling algorithms can be used to reduce this value. Other implementation 
alternatives and design options will be discussed in Chapter 5, Section 5.1. 

Besides the scheduling table (or a runtime implementation of the scheduling table 
algorithm), the IP ACS Scheduler can also include a runtime mechanism that 
compensates for empty IP queues in subsequent micro-cycles. The reader is referred to 
Section5.1 for more details. 

The traffic scheduled by the IP ACS is then fed into the DP/IP Dispatcher where it 
is mixed with other traffic. 

4.5 DP/IP Dispatcher 

The DP/IP Dispatcher layer (RFieldbus Project, 2001b) resides under the IP ACS Layer 
and the DP Mapper (see Figure  4.8). Both DP Traffic and IP Traffic pass through this 
sub-layer, which is responsible for transferring both kinds of traffic to the Profibus FDL.  

The DP/IP Dispatcher sub-layer considers three traffic classes, which are supported 
by five different FIFO queues according to the traffic source (Figure  4.9). 

The Guaranteed High-Priority traffic, which is Profibus high priority traffic that 
must be always scheduled on time. This traffic class is intended to support DP high 
priority traffic with real-time requirements (DPH). 
 

 

Figure  4.8: Dispatcher functionality and interfaces 
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intended to support two sub-classes: IP traffic without QoS requirements (IP-BE) and 
non real-time DP low priority traffic (DP-BE). 

 

 

Figure  4.9: Dispatcher traffic classes 
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the appropriate amount of traffic from the five different queues to the FDL High and 
Low Priority queues. The IP ACS layer is responsible for providing an optimal filling of 
the guaranteed QoS IP dispatcher queues, but sometimes the available time may be 
reduced by higher priority DP traffic. 

The dispatcher uses an estimate of the network usage time for each fragment to be 
sent. The IP Mapper and DP Mapper sub-layers calculate this time using several 
variables. These variables include: the topology of the system, since the communication 
between peers through a number of hopping stations (the complete system supports 
networks with multiple wired and wireless segments) poses greater delays to 
communications between peers in the same e.g. wired segment; the DLL Service used 
(confirmed requests take longer than non-confirmed requests); the number of bytes that 
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the fragment contains (to account for the transmission delays of the fragment itself); and 
the Delays due to hardware/software constrain (e.g. delays on module-to-module 
communication, hardware interface delays, etc.). 

With reference to the target message cycle time, corresponding to a worst-case 
message cycle duration including the request and reply and taking into account idle time, 
the dispatcher algorithm may be configured to work according to three schemes: Direct, 
Direct Tabular and Computing. In the Direct schema, the target message cycle time is 
given as one object in station management for all kinds of fragments. In the Direct 
Tabular scheme, there is a table containing the calculated target message cycle time 
values for different options of peer connections. This data is stored in the station 
management database. The calculations are done at system planning, taking into account 
the different system aspects. Finally, in the Computing schema the target message cycle 
time is calculated by the Dispatcher for each different fragments, taking into account the 
system management parameters. 

The target message cycle time is a significant parameter for the fieldbus system 
since it is used by both the DP/IP Dispatcher and the IP ACS Layers and is relevant to 
the selection of the appropriate fragments to be transmitted, so that all timing 
requirements imposed by the applications are met. 

The Dispatcher sub-layer interfaces the DP Mapper and the IP ACS to the Profibus 
DLL. For transmission, it provides several queues concerning the priority of service 
requests. The Dispatcher transfers requests from these queues to the DLL, limited by the 
master allocation time. The requests are transferred at least within the Dispatcher Cycle 
Time and according to the queue priority.  

According to the fragment model, a pre-defined set of dispatching rules imposes 
that, at each master station, the Dispatcher cyclically transfers to the FDL layer a number 
DPH PDUs depending on the DPH processing option. These PDUs are followed by DPL 
PDUs up to configurable TDPL usage estimation limit and then IPH fragments up to 
configurable TIPH usage estimation limit. If station time is available, DP-BE PDUs and 
IP-BE fragments are sent. 

Such dispatching strategy generates predictable traffic scenarios, where the token 
holding time (TTH) is never overran (provided that TTR is set according to the rules of the 
constrained low priority traffic profile). 

Each queue of the Dispatcher must hold the traffic needed for one dispatcher cycle. 
The Dispatcher is implemented on a cyclic basis, and the dispatching algorithm is 
triggered every TDCY. At each dispatcher cycle, the Dispatcher serves its queues and 
transfers traffic to the FDL queues. When the dispatcher algorithm is triggered, it starts 
by processing DPH. After processing DPH traffic, the dispatcher serves DPL traffic until 
the TDPL is consumed or there is no more available time for the current dispatcher cycle. 
After processing DPL traffic, the dispatcher serves IPH traffic until the TIPH is consumed 
or there is no more available time for the current dispatcher cycle. Finally, after 
processing the IPH traffic, the dispatcher serves Best Effort traffic: one PDU from DP-
BE queue if it fits the remaining time of the dispatcher cycle; one fragment from IP-BE 
queue if it fits the remaining time of the dispatcher cycle; this is repeated until the 
queues are empty or no traffic from the queues fit the remaining time of the dispatcher 
cycle. This process is illustrated and exemplified in Figure  4.10. 
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Figure  4.10: Dispatcher traffic classes and timing concepts 

In each dispatcher cycle, the DPH Traffic that is forward to the FDL may be 
processed in three alternative ways: 

1. all DPH PDUs are sent (results in standard Profibus processing of this kind of 
PDUs); 

2. DPH PDUs up to the dispatcher cycle time are sent (guarantees that this 
station does not delay the token): 

3. DPH PDU up to TDPH usage estimation limit are sent (guarantees that DPH 
traffic does not starve IPH traffic). 

The alternative to be used is a configuration parameter of the station. 
 

 

Figure  4.11: Dispatcher and token timing 

Ideally, the dispatching activities should be synchronised with the token arrivals at 
the FDL layer, maximising the available throughput, since at each token arrival there 
would be, at most, the agreed number of PDUs to be transferred. However, such 
synchronisation is not trivial, since it would imply modifications to the Profibus FDL. 

Dispatcher 

FDL Token 

20 ms 20 ms 20 ms 

15 ms 18 ms 12 ms 15 ms 

DPH Traffic 
DPL Traffic 
 

Station 1 

Station 2 

Station 3 

token 

token token 

IPH Traffic 
DP BE Traffic 
IP BE Traffic 
 



  Part II 
Factory Communications Framework 
 

50 

Then, in order to guarantee that the assumptions of the constrained low priority traffic 
profile are always satisfied, it is considered that the token arrives at the station at the 
same rate that the Dispatcher is executed, i.e. every TDCY. 

Consequently, the traffic throughput cannot be maximised, since there are some 
token arrivals when there is no traffic to be transferred at the FDL layer. For example, if 
TDCY=20 ms and Tcycleaverage=15 ms, the traffic at station k would be processed as 
presented in Figure  4.11. However, the scheduling guarantees are always meet if the 
token is never late, this can be achieved using options 1 or 2 of the DPH processing at 
the dispatcher in all stations or guaranteeing that this condition is fulfilled by the 
application. 
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 Chapter 5  
Other Design and Implementation Issues 

This chapter addresses a few details on how to implement the mechanims proposed 
in Chapter 5, namely concerning the Admission Control and Scheduling (ACS) 
mechanism, how packet fragmentation works and how to implement and configure 
a network scenario using commercial technology.  

5.1 IP ACS Scheduler 

While in Section  4.4 a simple scheduling algorithm was proposed, the RFieldbus 
implementation can use any other scheduling policies that might eventually be more 
adequate for each specific application scenario. As an example, we present a Deferred-
Release scheduling algorithm adapted from (Tovar and Vasques, 2001), that aims to 
minimize the minimum TIPH value, thus allowing the fulfilment of traffic with more 
stringent time requirements.  
 

functionfunctionfunctionfunction deferred_release; 
 
inputs: 
 niph     /* IPH data flows */ 
 k[i]     /* array with number of fragments per period for each data flow */ 
          /* ordered ascendingly */ 
          /* i goes from 1 to niph */ 
 Ttmc [i] /* transaction duration */ 
          /* (TMC paramenter )*/ 
 Tdcy     /* TDCY value, the scheduler cycle */ 
 Mcy      /* number of micro-cycles in a macro-cycle */ 
 
outputs: 
 sched[i,cycle] /* scheduling table */ 
                /* cycle goes from 1 to n_µcy */ 
 offset[i]      /* offset relative to first micro-cycle */ 
 Tiph           /* TIPH value */ 
 
begin 
1: /* offset calculation */ 
2: forforforfor i = 1 totototo niph dodododo 
3:  min_load = MAXINT; 
4:   forforforfor cycle = 1 totototo (Ttmc[i] div Tdcy) dodododo 
5:    cycle1 = cycle; 
6:    max_load = 0; 
7:    repeatrepeatrepeatrepeat 
8:    ifififif load[cycle1] > max_load thenthenthenthen 
9:     max_load = load[cycle1]; 
10:    end ifend ifend ifend if; 
11:    cycle1 = cycle1 + (Ttmc[i] div Tdcy) 
12:   untiluntiluntiluntil cycle1 > Mcy; 
13:   ifififif max_load < min_load thenthenthenthen 
14:    cycle_min = cycle; 
15:    min_load = max_load; 
16:   end ifend ifend ifend if; 
17:  end for; 
18: end for; 
19: cycle = cycle_min; 
20: offset[i] = cycle_min - 1; 
21: 
22: /* update each cycle workload */ 
23: /* build scheduling table */ 
24: repeat 
25:  load[cycle] = load[cycle] + Ttmc[i]; 
26:  sched[i,cycle] = 1; 
27:  cycle = cycle + (Ttmc[i] div Tdcy); 
28: untiluntiluntiluntil cycle > Mcy; 
29: 
30: /* get TIPH value */ 
31: tiph = 0; 
32: forforforfor i = 1 totototo Mcy dodododo 
33:  ifififif load[i] > Tiph thenthenthenthen 
34:   Tiph = load[i]; 
35:  end if; 
36: end for; 
returnreturnreturnreturn sched, offset, Tiph; 

Figure  5.1: IP ACS Deferred-Release algorithm 
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Decreasing the value of TIPH results in more network bandwidth available for other 
traffic in other stations, or other traffic in the same station, but there is less “headroom” 
for compensating missed IP fragments (i.e. fragments that were expected in a given 
period from the TCP/IP stack but that for some reason were slightly delayed). The 
algorithm delays some fragments by one or two micro-cycles but never more than the 
data flow period so the final QoS of the flow is unaffected. 

The algorithm presented in Figure  5.1, results in the scheduling scenario as 
illustrated in Figure  5.2. 

 

Figure  5.2: IP ACS Deferred-Release scheduling example 

Another condition to take into account is when the scheduler has a slot available in 
a micro-cycle for a particular data flow but, for some reason, no fragment is available. 
This can occur due to the way applications generate data flow (that can be slightly bursty 
and not a perfect constant rate), due to TCP connection control mechanisms, Operating 
System and TCP/IP stack delays and even IP Mapper fragmentation delays. 

An on-line compensation mechanism can be implemented to overcome this 
situation. The concept is that when there is a “miss” on the scheduler slot this can be 
compensated in the next micro-cycles if there is enough free TIPH time. In order to avoid 
a burst of compensation cycles in the future, a limit on the maximum number of 
compensated fragments must be set. In (Ferreira et al., 2001) the value of this limit is 
defined according to the maximum acceptable jitter (Ji) for the application with period 
(Ti) and presented in Eq. (6.1). 
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The result of this compensation for an example scenario is presented in Figure  5.3. 
IPH1 generates fragments in a variable way, from zero to three fragments in each micro-
cycle. However, the average for the full macro-cycle is one fragment per micro-cycle. 

 

 

Figure  5.3: IP ACS Deferred-Release Scheduling with Jitter compensation 

This compensation mechanism can be implemented over an off-line scheduling 
table, using an enhanced dispatcher, or it can be integrated in an on-line scheduling 
algorithm. 

5.2 Configuring the RFieldbus Network 

As seen in Section  2.4, configuring a Profibus network with wired and wireless segments 
involves setting correct timing parameters such as TTR, TSL, TID1 or TID2. While this 
configuration is usually done in an intuitive way, this approach is inadequate when 
tackling more complex networks such as the ones supported by the RFieldbus 
architecture (multiple wired and wireless segments). A systematic presentation of this 
configuration was performed The main aspects of the approach are described next. 

The starting point for the approach consists in summing up all the required master 
allocations and guarantee that TDCY is greater than that value. TTR is then set accordingly. 
Figure  5.4 illustrates the reasoning. 
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Figure  5.4: Basic temporal parameters for network configuration 

In a more formal way: 

 MIN

n
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 ( 5.2) 

Since TDCY is the maximum time that the token can take between visits to a 
particular master, this value must be smaller than the requested network response time 
(TMIN), an application-dependent parameter. Ti

MA, the allocation time for each master can 
be calculated by: 

 i
token
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MA TTTTTT ++++=  ( 5.3) 

In Figure  5.4, the TTR value is also illustrated. It is fundamental that TTR is high 
enough so that the token is never late. This means that TTR must allow for a complete 
TDCY cycle plus the transmission of all PDUs (including token passing) in the master with 
the largest TMA. 
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All these values are calculated depending on the transaction duration for each 
scenario. In case of an SRD message (confirmed request) this duration is: 

 1IDrespSTreqMCSRD TCTCT +++=  ( 5.5) 
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In addition, for the simpler SDN message (unconfirmed request) this duration is: 

 2IDreqMCSDN TCT +=  ( 5.6) 

In these last two equations, Creq and Cresp can be computed using the message size 
(in bits) and the bit rate. For simplicity, we use the largest possible value for these 
variables. 

Regarding TID1, this parameter must be carefully calculated on RFieldbus systems 
due to the PDUs being relayed between mediums with different bit rates and frame 
formats. If TID1 is too small this can lead to buffer overflow in the relaying stations and 
thus to unpredictable PDU end-to-end delays. Setting TID2 has a similar impact, but now 
regarding SDN transactions. Finally, TST, the “timeout” value for a response of a slave 
must take into account delays due to queuing and bit rates.  

Lastly, for the MoM (Mobility Master) station, an additional idle time TID2 must be 
inserted such that the wireless stations have enough time to perform radio channel 
assessment and hand-off, regardless of their location in the RFieldbus network (some 
mobile stations can be closer to the MoM than other). When the MoM sends the Beacon 
Trigger it is forwarded by all relaying stations in the network and detected by wireless 
slaves. After forwarding the Beacon Trigger, the base stations start sending a series of 
beacons spanning all pre-defined radio channels, during the mobility management 
period. In parallel, the mobile stations start probing each available radio channel and 
select (hand-off) the best available channel. The number of beacons each base station 
must send sufficient must take into account the delay in the beacon trigger relaying 
(eventually involving multi-hop) and the worst-case duration of the channel assessment 
by the wireless stations. 

The complete reasoning for the computation of TID1, TID2 and TSL and of the 
mobility management parameters is available in (Alves, 2003) 

5.3 Profibus Fragmentation Needs 

As presented in Chapter 2, Profibus supports up to 246 bytes of data per PDU. However, 
small stations can be limited to 32-64 bytes of data. 

In contrast, a standard TCP/IP packet can have up to 64 Kbytes of data, which can 
be fragmented automatically by IP to match the Maximum Transmission Unit (MTU) of 
the forwarding networks. The minimum MTU is limited by the need to send one full IP 
Header per fragment, and has a theoretical minimum value of 68 (Postel, 1981). Most 
applications expect networks that can send fragments of around 1500 bytes − e.g. 
Ethernet − and up to more than 9000 bytes − e.g. ATM using AAL5 (Atkinson, 1994). 

For instance, in a network with a MTU of 1500 bytes, a standard (i.e. with a 
20 byte header) IP packet with 4000 bytes of data is divided into three fragments: two 
fragments with 1500 bytes (1480 bytes of data) and one fragment with 1060 bytes (1040 
bytes of data). This means that there will be two extra IP headers due to fragmentation, 
and out of the total 4060 bytes, 40 are used to that purpose alone, meaning an overhead 
of 1% of the original data. 
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The same example in a network with very small MTU results in an excessive 
overhead. In a network with a MTU of 128 bytes, an IP Packet with 4000 bytes of data is 
divided in 38 fragments: 37 fragments of 128 bytes (108 bytes of data) and 1 fragment 
with 24 bytes (4 bytes of data). In this situation, the additional 37 IP headers due to 
fragmentation will now be 740 bytes, i.e. 18.5% of the original data. For a MTU of 64 
bytes the overhead of the example packet goes up to 83% (!), and in the best-case 
Profibus scenario (MTU of 246) we have an overhead of 4.5%.  

As a result, an RFieldbus-specific fragmentation scheme was devised. Each 
RFieldbus PDU has a 2-byte header (Figure  5.5). The first byte identifies the original IP 
packet (and is unsurprisingly named Packet ID), and can have values between 0 and 255. 
Each RFieldbus station generates its own Packet IDs, and so, Packet IDs are unique for 
each source. This circumstance limits the maximum number of concurrent (i.e. with 
interleaved fragments) IP packets that can be sent from a station to a maximum of 256. 
The second byte is used to identify the order of the fragment (Fragment ID) and can 
range from 0 up to 127. Value 0 is used to identify non-fragmented packets. Values 
higher that 127 are reserved for future use.  

On reception, the actual length of the Packet is obtained from the IP Header in the 
first fragment. This limits the current protocol to be used on IP (version 4) packets, but it 
can be extended using the reserved range of the Fragment ID. 

  

 

Figure  5.5: RFieldbus packet format 

This solution has a minimum PDU data size of 22 bytes if IP packets without IP 
options are used, or 62 bytes to support all possible IP packets. Since we have a 
maximum of 127 fragments per packet, the maximum IP packet size (i.e. the MTU seen 
from the TCP/IP layers) will be around 8000 bytes even for Profibus networks with 
limited PDU data length of 60 bytes. 

The overhead of the previous examples is now reduced significantly: a 4000-bytes 
IP packet has an overhead due to fragmentation of only 3,25% in a 64-byte Profibus 
network; and in the best-case scenario of a 246-byte Profibus network this goes down to 
0,85%. 

It should be noted that the current implementation is PC-based and the PDU length 
limit is not actually an issue, but in future implementations at more resource-limited 
stations, the problem may arise. 

The maximum IP packet used in a network can also be limited due to the time 
needed to transmit the packet that can be relevant in time-critical applications. However, 
a Profibus-DP network at 12 Mbps takes only about 8 ms to send 8000 bytes of 
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unconfirmed data ((8000 data bytes + 33 * 11 header bytes) * 11 bits on the network per 
usable byte / 12 Mbps), a delay that might be acceptable for most TCP/IP applications.  

Other side-effects that may limit the usage of very large MTUs in IP include Cyclic 
Redundancy Check (CRC) resiliency with MTUs greater than 10000 bytes (Jain, 1990), 
but Profibus has its own error-control scheme and our fragmentation mechanism 
discards the full packet if there is an error in any fragment. 

The usage of large IP packets is possible due to the high reliability of the Profibus 
network itself. Since the network has a low error rate and IP has its own methods to 
overcome errors (using automatic resend for TCP Streams, UDP applications are aware 
that packets may be lost) no mechanism was implemented to resend lost fragments at the 
RFieldbus network. A simple timeout is implemented so that a lost fragment results in a 
discarded packet; with very large packets this may have a significant impact on the 
network performance. It is viable to implement such a mechanism in the future.  

5.4 Windows NT Network Drivers 

The IP Mapper and Dispatcher were integrated on the Windows NT Network Drivers 
architecture, which is described next. 

The Microsoft TCP/IP protocol suite is comprised of core protocol elements, 
services, and the interfaces between them, as illustrated in Figure  5.6. The Transport 
Driver Interface (TDI) and the Network Device Interface (NDIS) are public and their 
specifications are available from Microsoft. In addition, there are a number of higher-
level interfaces available to user-mode applications. The two most commonly used are 
Windows Sockets and NetBIOS. 

 

 

Figure  5.6: Windows NT TCP/IP network model overview 
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5.4.1 The NDIS interface and below 

Microsoft networking protocols communicate with network card drivers using the NDIS. 
NDIS defines a fully abstracted environment for Network Interface Card (NIC) driver 
development. For every external function that a NIC driver needs to perform, it can rely 
on NDIS routines to perform the operation. This includes the entire range of tasks 
performed by a NIC driver, from communicating with protocol drivers, to registering 
and intercepting NIC hardware interrupts, and communicating with underlying NICs 
through manipulating registers, port I/O, and so forth. Therefore, NIC drivers can be 
written entirely in platform-independent high-level languages such as C. These drivers 
can then be recompiled with a system-compatible compiler to run in any NDIS 
environment. 

NDIS includes features that simplify the driver development and integration 
including: single driver instance used to control all network adapters supported; a fully 
abstracted interface (ndis.sys); symmetric multiprocessor support; loopback support; 
multiprotocol support (protocols can be bounded to NDIS NIC drivers independently of 
implementations, including native Windows ARCNET and WAN Support); simplified 
administration; single or multiple packet per send request interfaces; additional 
information can be attached to packets (like QoS parameters) and full duplex operation 
on SMP machines. 

5.4.2 Intermediate drivers 

A NDIS intermediate driver usually exports MiniportXxx functions at its upper edge and 
ProtocolXxx functions at its lower edge. Less commonly, an intermediate driver can 
export MiniportXxx functions at its upper edge and a private interface to an underlying 
non-NDIS driver at its lower edge (Figure  5.7).  

An intermediate driver is typically layered over one or more NDIS NIC drivers and 
under a transport driver (possibly multilayered), that supports TDI at its upper edge. 
Theoretically, an intermediate driver could be layered above or below another 
intermediate driver, although such an arrangement is unlikely to exhibit good 
performance.  

An example of intermediate drivers is a LAN-emulator intermediate driver layered 
below a legacy transport driver and above a miniport NIC driver for a non-LAN 
medium. Such a driver receives packets in a LAN format at its upper edge, translates 
them to another NIC-native medium format and sends them on to an NDIS miniport for 
that NIC. On receives, this intermediate driver translates packets indicated up from the 
underlying NIC driver to a LAN-compatible format and indicates these converted 
packets to the upper level transport driver. 

An intermediate driver can also be deployed below NDIS, when the Intermediate 
Driver depends on an underlying driver of a device other than a NIC. For example, an 
intermediate driver might handle network I/O requests for a device connected to a serial 
port. Such an intermediate driver would export a set of MiniportXxx functions to 
communicate with NDIS at its upper edge and use standard Windows NT I/O Request 
Packets (IRPs) to communicate with the underlying serial device driver at its lower edge.  
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Figure  5.7: Supported intermediate driver configurations 

5.5 RFieldbus Prototype Implementation 

The implementation of the RFieldbus prototypes is based on existing software, which 
supports Profibus master and slave functionalities. It consists of three main parts: the 
Profibus firmware; the NDIS miniport driver and the NDIS intermediate driver (Figure 
 5.8). In addition, a card driver Dynamic Link Library (DLL) is necessary for the Profibus 
control application. 

Since Windows NT4.0 was used in the RFieldbus field trials, an NDIS miniport 
driver was needed in order to support the adequate interface to the TCP/IP stack or to 
underlying intermediate layers. On the other hand, an interface to the Profibus 
applications was necessary. These applications run in the user mode, wherefore the 
NDIS interface is not usable. That is why a Windows Driver Model (WDM) interface 
was also implemented, to support interfaces to both the Profibus application and the 
TCP/IP stack. 

The device driver has to perform two main tasks: to set up the hardware access 
according to the different board types and to manage the exchange of service primitives 
between the TCP/IP protocol and the Profibus firmware. 

The Device Driver is started with the Windows boot process. However, it rejects 
all send packet requests from the network protocols until the Profibus firmware is 
initialized. It is the task of the Profibus application to start-up the hardware via the 
Hardware Management features of the Miniport Driver. The initialization is performed 
in three steps. First, the Profibus application prompts the device driver to make a 
hardware reset to the board, maps the DPRAM (hardware interface) into the user mode 

N
D
I
S
 

N
D
I
S
 

Transport 
Driver 

Transport 
Driver 

Intermediate 
Driver 

Intermediate 
Driver 

Device 
Driver NIC 

Driver 

ProtocolXxx - MediaX 
Driver 

ProtocolXxx - MediaX 
Driver 

ProtocolXxx - MediaY 
Driver 

MiniportXxx - MediaY 
Driver 

MiniportXxx - MediaX 
Driver 

MiniportXxx - MediaX 
Driver 

Private Interface 
Driver 

Private Interface 
Driver 

Device 

NIC 



  Part II 
Factory Communications Framework 
 

60 

address space and returns the virtual DPRAM address. Then, the application initializes 
the required firmware protocol (master or slave) and forwards the offset of the IP 
command area of the DPRAM interface to the driver. The driver initializes its private 
interface to the Profibus firmware. Lastly, the Profibus application loads the network 
parameters into the firmware to activate the connection to the Profibus system. 

 

 

Figure  5.8: RFieldbus NDIS implementation architecture 

After a successful firmware initialization, the device driver forwards send packet 
requests from the network protocols to the Profibus firmware and receive packet 
indications from the firmware to the protocols. Send packets are returned to the network 
protocols together with state information, when receiving the related send confirmations. 

Receiving service primitives from the Profibus firmware is done by polling the 
report area of the DPRAM interface. 

The Intermediate Driver is responsible for interfacing with upper level protocols 
(i.e. TCP/IP) on its upper edge, and with the lower Miniport. Mainly, the Intermediate 
Driver implements IP Mapper and IP ACS functionalities. 

Figure  5.9 depicts the NDIS Intermediate Driver internal interface. Both IP Mapper 
and IP ACS modules rely on a common driver support facility, and interact using a 
defined function interface. The Intermediate Driver’s entry/exit functions are NDIS 
standard calls. 
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Figure  5.9: RFieldbus NDIS Intermediate Driver Interfaces 

To send packets, TCP/IP indicates to the Intermediate Driver “send” function the 
data (represented by a NDIS defined structure) to be transmitted, using a standard NDIS 
call. In the opposite case, where a reassembled IP packet is ready to be forwarded to 
TCP/IP, another standard NDIS call is used to forward the data to the TCP/IP stack. To 
send and receive fragments, the IP ACS uses standard NDIS calls to communicate with 
the lower Miniport in a similar manner. 

As for the IP Mapper/IP ACS interface, the three service functions described next 
are utilized.  Upon reception of fragments from the lower layers, the IP ACS uses the 
Fragment Delivery Indication service function to forward them to the IP Mapper.  By 
calling this function, the IP ACS passes to the IP Mapper the pointer to the fragment as 
well as its source address.  This extra information is necessary for the identification of 
the fragment. 

On the other hand, for fragments destined to the lower layers, the Fragment 
Delivery Request service function is used to send them to the IP ACS.  For every 
fragment sent to the IP ACS, the IP Mapper expects a confirmation indicated by the 
service function Fragment Delivery Confirmation. This confirmation, sent by the IP 
ACS, depends on the delivery status of the fragment to the lower layers. 

The Dispatching functionality is implemented in firmware. 

5.5.1 NDIS Intermediate Driver details 

The Profibus NDIS Driver implements most of the functionalities of the IP Mapper and 
ACS sub-layers, as illustrated in Figure  5.10. 
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Figure  5.10: RFieldbus NDIS intermediate driver functionality 

5.5.2 Sending packets 

When the transport layer has a packet to send down to the network, it indicates this to 
NDIS that, in turn, calls the appropriate function registered during initialization. This 
was set to the “send” function of the Profibus NDIS Driver. This function is also 
responsible for the packet identification, making decisions about whether to send the 
packet or discard it, its fragmentation, and queuing in the proper Relationship. 

 

 

Figure  5.11: Modules acting in the task of sending a packet 

A timer function is triggered at predetermined intervals. When the timer function 
triggers, the state of the Relationships is checked, and the scheduling of the fragments to 
send is defined. The fragments are then sent according to this scheduling. The 
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scheduling takes into account several parameters of the different IP streams to serve, 
according to a proper algorithm as described in Section 5.1. 

In Figure  5.11 the functionality modules impacting the task of sending a packet are 
described. 

The diagram in Figure  5.12 shows the processes involved when a packet is sent 
from the transport layer, until its fragments are stored in the appropriate relationship. 
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Figure  5.12: DFD - Store packets to send in appropriate relationship 

When the timer function triggers, the relationships are checked, and emptied 
according to a scheduling algorithm as briefly illustrated in Figure 5.13. 

 

Relationship 

 

Check  
Relationship 

 
Make 

Schedule 

Relationship 
information 

 
Queuing in 

IPH and 
IPBE 

Fragments 

Relationship information 

Schedule information 

NIC 

Fragments 

 
Send  

Fragments 

Fragments 

 

Figure  5.13: DFD - Emptying of the relationships 



  Part II 
Factory Communications Framework 
 

64 

5.5.3 Receiving data 

The reception of fragments is a simple task, as the NDIS Miniport passes up to the NDIS 
Intermediate Driver the received fragments. Upon this, the several fragments are 
buffered until the whole packet is received; at this time, the data is delivered to the upper 
layer, as presented in Figure  5.14. 

 
 

Check/ 
Identify 

 fragment 

 
Reassemble 

packet 

Fragment (with ID 
information) 

Deliver  
packet to  
transport 

Fragments 

Packet 

NIC 

Packet 
Transport Layer 

 
 

Discarding 

Discarded 
fragment 

ID Generation entity 

ID information 

 

Figure  5.14: DFD - Receive packets and deliver to upper layer 



65 

 Chapter 6  
Validation 

This chapter addresses the experimental validation of the mechanisms proposed in 
Chapter 5 and for which some implementation details were provided in Chapter 6. 
The Manufacturing Automation field trial of the RFieldbus European Project was 
used as a testbed. This enabled us to test and validate the feasibility and 
correcteness of the proposed mechanisms in a real and application-rich scenario. 

 

6.1 Introduction 

The RFieldbus features presented in this thesis were tested in the RFieldbus 
Manufacturing Field Trial, which is described in Sections 6.2 and 6.3. Configuration, 
tests and discussion of results are described in subsequent section of this chapter. 

6.2 The Manufacturing Automation Field trial 

The manufacturing automation field trial (IPP Hurray, 2002) involved the use of 
traditional Distributed Computer Control Systems (DCCS) and ‘factory-floor-oriented’ 
multimedia (e.g. voice, video) application services, supporting both wired and 
wireless/mobile communicating stations (mobile vehicles, for example). It was also a 
major goal that the manufacturing automation field trial would provide a suitable 
platform for RFieldbus timing (e.g. guaranteeing deadlines for time-critical tasks) and 
dependability (e.g. reliability) requirements to be assessed. 

RFieldbus mobility requirements impose the use of wireless stations such as 
transportation vehicles and handheld terminals for supervision and maintenance. The 
manufacturing automation field trial also involved the use of wired segments, i.e. a 
hybrid wired/wireless fieldbus network.  

One very important issue that was addressed in the manufacturing automation field 
trial was bringing multimedia applications into the factory-floor. Applications such as 
(mobile) on-line help for maintenance purposes and hazardous or inaccessible location 
monitoring are examples. The manufacturing automation field trial was designed to be 
an adequate test-bed to assess the suitability of the RFieldbus system to support both 
real-time control data and multimedia data in the same transmission medium, as deeply 
addressed in this Thesis. 

To have an application gathering all the previously referred characteristics, an 
industrial (sub) system that transports, classifies and distributes parts according to a 
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certain criterion was specified (RFieldbus Project, 2002). The mechanical system 
imposes stringent timing and fault-tolerance requirements for the communication 
network supporting the diverse I/O points (sensors/actuators/servos).  

6.2.1 Layout and Components 

The manufacturing automation field trial implements a system that transports, classifies 
and distributes parts according to their type. Roller belts and different pneumatic 
equipment are used to transport and distribute parts to output buffers, according to their 
type. When output buffers are full, they are moved to the respective unload station, in 
order to be emptied. This operation is done either by an Automatic Guided Vehicle 
(AGV), a robot arm and an operator or just by an operator. Considering the classification 
criteria, we assume, at this moment and for the sake of simplicity, that a part type is 
distinguished by its colour. The physical layout is presented in Figure  6.1. 
 

 

 

Figure  6.1: Manufacturing field trial mechanical system layout 

The input buffer (B1) stores black, white and grey (defective) parts, which are 
sequentially pushed into the roller belt (RB1). SA2 (a swivelling double arm with 
suction cups) pushes grey parts to RB2. Grey parts go into B5. If this buffer is full or in 
transit grey parts must circulate around RB1-RB2. When B5 is full, AGV1 moves to U1, 
for unload operation carried out by a robot arm (R1) and an operator, and then returns to 
the initial position. White and black parts go into RB3, and white parts are pushed into 
output buffer (B2). When B2 is full, an operator is warned, in order to unload it. 
Meanwhile B3 must be used to receive white parts. If both B2 and B3 are non-
operational (full or in transit), white parts must circulate in RB1-RB2. Black parts go 
into B4, until it is full or if it is in transit. When B4 is full, AGV2 moves to U2, for 
unload operation carried out by R2. Black parts must circulate around RB1-RB2, if B4 is 
unavailable. 
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6.2.2 RFieldbus Communication Subsystem 

The RFieldbus Communication Subsystem includes all the RFieldbus equipment 
necessary to interconnect all the wired and wireless components of the distributed 
system. In order to test, validate and demonstrate the technical capabilities of the 
RFieldbus approach, a network infrastructure (Figure  6.2 - Left) including a wired 
segment and two radio cells was devised, forcing communication between wired and 
wireless stations and the handoff between radio cells.  

In order to have a structured wireless network supporting mobility, the 
RFieldbus network infrastructure is composed of two Link Base Stations (LBS1, LBS2) 
that interconnect the two wireless domains (WL1, WL2) and the wired segment (WR). 
All stations are Profibus slaves (PC2-6, I/O1-2, PLC1 and Drive1-2), except PC1 and 
MoM, which are Profibus master stations.  

 

 

Figure  6.2: Manufacturing field trial network topology 

6.2.3 Multimedia Streams  

Several multimedia applications are used for control, monitoring and interpersonal 
communication. The correspondent data streams on the RFieldbus network are presented 
in Figure  6.3 and described next. 

TCP/IP Remote Part Classification  (MM1, MM2): Two cameras in PC6 acquire 
images of the moving parts at a predefined rate. These images are down sampled and 
compressed to greyscale JPEG files. This data is then sent using TCP/IP connection to 
the remote machine (PC1). On the monitoring side (PC1), each received image is 
decompressed, processed to identify the presence of a piece and classify it. 

TCP/IP Remote Video Monitoring  (MM3, MM4): This application enables the 
operator in the central control PC (PC1) to visually monitor the area in the trajectory of 
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the AGVs (AGV1 and AGV2). It must also have basic control facilities like start and 
stop the video stream. 

 

 

Figure  6.3: Manufacturing field trial multimedia streams 

TCP/IP Voice Connection (MM5): This is a simple point-to-point TCP/IP bi-
directional voice application connecting PC1 and PC4. The only controls needed to the 
operator are "dial", "answer" and "hang-up". 

TCP/IP Remote Position Detection (MM6): The autonomous vehicle (AGV1) 
may slightly deviate from the ideal loading/unloading position. Therefore, a visual 
position detection mechanism was implemented in order to make the appropriate 
position corrections for the robot arm to manipulate the buffer. On the capture side 
(PC2), images are captured by request of the monitoring machine (PC1) and sent using 
TCP/IP connection to PC1. Each received image is decompressed and processed to 
identify the presence and location of the buffer in the Robot 3D coordinate system.  

Remote Robot Control Services (MM7, MM8): In order to be able to remotely 
control the two robots of the field trial, support to FTP and HTTP is provided (in PC2, 
PC4). The FTP servers are configured to enable the transference of program files to a 
specific directory on the computer. The WWW application enables the transfer of these 
files to the robot and interact with the Robot system itself.  

Intranet Interface Services: Several services are available for system monitoring 
and control using standard TCP/IP stations in the Intranet attached to PC1. Two ways to 
access this information where deployed. The WWW Server provides several HTML 
pages and forms where that the user can browse to check the current system status and 
interact (give the proper credentials) with the system. Any WWW browser can access 
this information. The UDP Server supports efficient broadcasting of information to 
several stations on the network. Specific clients where developed to interact with this 
server. 
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6.2.4 Supporting Technologies 

In order to exploit the multimedia characteristics of the RFieldbus field trial, several 
additional technologies were integrated in the industrial automation system. Some of 
these technologies are not common in the factory floor now but there is a clear eagerness 
to start their widespread use with clear benefits (Pacheco et al., 2002).  

Wireless Network: Despite the fact that RFieldbus wireless modems share the 
same unlicensed spectrum of the IEEE 802.11b wireless network standard, a Windows 
Laptop PC and a Pocket PC where integrated in the field trial with connections speed of 
up to 11Mbps and significant mobility with transparent connection to the field trial 
Ethernet segment using a IEEE 802.11b bridge. 

 

 

Figure  6.4: Using a HMD in the manufacturing field trial  

Head Mounted Display: the HMD technology opens a new level in the way 
information is presented to the user. The display is in front of the user’s eye giving (due 
to the lenses used) the sensation of a big monitor. A simple monocular gray-scale 
monitor was used, presenting basic information about the system status, alarms or need 
of user intervention, as illustrated in Figure  6.4. 

 

Figure  6.5: Manufacturing field trial Pocket PC Client Application snapshots 

Available since more than a decade, Personal Data Assistants (PDAs) have been 
used almost exclusively for they main purpose: as an electronic version of the traditional 
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pocket agenda. In the last years many new applications and several operating systems 
have appeared. The latest generation of Pocket PCs has advanced features like: fast 
processors, full-colour displays, TCP/IP and WWW support, connectivity (irDA, 
802.11b, Bluetooth), expandability (using PCMCIA, SecureDigital, etc.), GPS and more. 
In the manufacturing automation field trial, a PDA was used to fine-control the system 
and to get information about all stages of the trial (see Figure  6.5). 

The system featured also a simple GSM SMS (Shot Message Service) gateway, 
and selected alarm classes were automatically forwarded to a particular phone with full 
text descriptions. 

6.3 Low-level communication flows characteristics 

This sub-section presents a detailed view on all the expected traffic flows of the 
manufacturing automation field trial. 

6.3.1 Cyclic DPH Traffic 

Figure  6.6 depicts the traffic flows for the DP High Priority Traffic, used for real-
time control functions. 

 

 

Figure  6.6: Manufacturing field trial cyclic DPH traffic 

PC1 sends cyclic DPH PDUs to 9 slaves in the system, to update its outputs and to 
read its inputs. The swivel arms functionality is controlled by PLC1, a PLC with a 
Profibus DP module. It is possible to start a rotation operation on either swivel arms and 
to get information when the operation is complete and upon error events. 

The roller belts are controlled by Drive 1 and Drive 2, two variable speed motor 
drives with Profibus DP modules. It is possible to start or stop each drive and to select 
the speed or get status information (like current speed). 
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Robotic arms R1 and R2 are controlled via PC2 and PC4, two PCs with Profibus 
DP network cards. The Profibus DP application enables remote start of a transfer 
operation and informs on the status of the operation (stopped, running, error). PC4 is 
also used to control AGV2 stop/start at the remote load/unload station and to detect its 
presence there. 

AGV1 operation is controlled via PC3, a mobile PC with Profibus DP interface 
with wireless capabilities that is carried by the vehicle. AGV1 has full motion 
capabilities but the DP interface simply tells it to go to load/unload station 1 or 2 and 
gets information on current status (moving to 1, moving to 2, stopped, error). 

IO1 and IO2 are Profibus DP Digital I/O modules used to control pneumatic 
cylinders, indicators and to get information on parts sensors and buffer status. IO2 is also 
used to control AGV2 stop/start and arrival at the local load station. 

PC6 is used as a Profibus DP sound generator: specific DP commands activate a 
different sound like soft bell, telephone ring or warning message. It is a PC with Profibus 
DP interface, a sound card and speakers, it is an output-only station from the DP point of 
view. Finally, PC5 has Profibus DP capabilities and bandwidth reservation but these 
where not used by applications in the field trial. 

6.3.2 Non-Cyclic DPL Traffic 

The non-cyclic DPL Traffic is not related to the field trial application control, but only to 
“internal” Profibus DP generated traffic: logical ring maintenance, live list, etc. This is 
taken into account in the configuration of the master. 

6.3.3 TCP/IP Traffic over Profibus DP 

There are two main classes of TCP/IP traffic in the system: 
− Guaranteed service (IPH): traffic that is essential for the correct functionality of 

the system as a whole. These include images used for part classification that 
must be transferred from PC6 to PC1 in a limited time, the voice-link 
application between PC4 and PC1 that must have adequate QoS parameters to 
be useful; video feeds from cameras at AGV1 and AGV2 (UDP traffic from 
PC3 and PC5 to PC1); and finally a frame capture application that is used to 
detect the precise position of AGV2 in UL1 and adjust the robotic arm 
operation accordingly. 

− Best-effort service (IPBE): traffic that can be served after the critical parts of 
the system. This includes HTTP and FTP traffic used to manage the programs 
in the robotic arms (PC1 to PC2 and PC4). 
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6.4 System configuration 

The system is configured using a System Planning Application (SPA) developed in the 
RFieldbus project (Alves et al., 2003). Given the temporal characteristics of the base 
networks and the characterization of the several information flows and endpoints the 
SPA calculates de system parameters for correct operation or informs the user that it 
cannot guarantee the system performance for the given scenario. 

The basis for the SPA application are described in detail in (Alves, 2003) and 
where introduced in Section  5.2. The first parameters to be used in the configuration are 
the DLL characteristics summarized in the following table. 

Table  6.1: Field trial network configuration parameters 

Parameter Value 
Bits per DLL character 8 bits 
Maximum PDU size 255 chars 
Minimum PDU size 6 chars 
Token size 3 chars 
Interconnection delay 25 µs 
TIDmin 100 bits 
Minimum TSDR 10 µs 
Maximum TSDR 50 µs 

 
The Mobility-related parameters were considered as illustrated in Table 6.2: 

Table  6.2: Field trial mobility management parameters 

Parameter Value 
Beacon Trigger PDU size 10 chars 
Number of radio channels 2 
Beacon duration 200 µs 
Beacon interval 25 µs 
Radio channel switching delay 700 µs 
Buffering delay 25 µs 

 
The parameters for wired/wireless interoperability support as described in Table 6.3.  

Table  6.3: Field trial wired/wireless parameters 

Parameter Wired Wireless 
Transmission rate 1.5 Mbps 2 Mbps 
Header size 0 bits 180 bits 
Trailer size 0 bits 32 bits 
UART character size 11 bits 8 bits 
Offset 33 bits 148 bits 

 
Provided this data, the SPA can calculate TMC for all information flows in the 

system. The value depends also on the data payload length, the type of requests and the 
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path between stations. Although the system has multiple link stations, the architecture 
can be simplified for timing calculations and reduced to a wired bus (with master, slaves 
and MoM) and a wireless domain (with slaves). In this simplified scenario, there are 
only exchanges between the master and a generic slave on the wired segment and 
exchanges between the master and a generic slave on the wireless domain.  

Table  6.4: Data flows for field trial configuration 

SPA Flow Master Slave Creq Cresp 
A1 Wired Wired 11 chars 11 chars 
A2 Wired Wired 6 chars 255 chars 
A3 Wired Wired 12 chars 13 chars 
A4 Wired Wired 21 chars 21 chars 
A5 Wired Wired 25 chars 25 chars 
A6 Wired Wireless 6 chars 255 chars 
A7 Wired Wireless 11 chars 11 chars 
A8 Wired Wireless 39 chars 255 chars 
A9 Wired Wireless 255 chars 255 chars 

 
Other system parameters that had to be calculated include the TDCY value, which is 

equal to the maximum period between requests so the application can work correctly. On 
the manufacturing automation field trial case, the time-critical events occur between the 
detection of a part using the infrared sensors and the time to activate one of the actuators 
(pneumatic cylinders or swivel arms). If the delay between requests is too high, there is 
the risk that the actuators do not handle the part correctly; a value too small overburdens 
the network with no direct benefit.  

The system was put into operation with several TDCY values and we concluded that 
a value smaller or equal to 100 ms resulted in adequate system performance. A more 
formal approach could take into account the roller belt speed (0.15 m/s), the acceptable 
positioning error (about 20 mm), the sensor delay (2 ms), the combined valve and 
actuator delay before hitting the part (25 ms). Some of these values, in particular the 
actuator delay and the position error, are only available as an estimation. The final TDCY 
value is then: 
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The values for TID1 and TID2 are calculated by SPA for each master in the system 
and for the token. This resulted in TID1 = 293 bits, TID2 = 3442 bits and TID1token = 393 
bits. The values for Profibus configuration are min{ TSDR} and max{TSDR}, and given the 
fact that other values that could affect this sets are two small when compared to the 
results we can set min{TSDR} = 393 bits (the greater of  TID1 and TID1token) and max{TSDR} 
= 3442 bits. 
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Table  6.5: Transaction and token delays for the field trial 

Flow Type Stations TST Transaction Duration 
S1 DPH PC1↔PC6  710 bits 
S2 DPH PC1↔PC3  2205 bits 
S3 DPH PC1↔PC5  2205 bits 
S4 DPH PC1↔PC4  2205 bits 
S5 DPH PC1↔PC2  710 bits 
S6 DPH PC1↔Drive1  930 bits 
S7 DPH PC1↔Drive2  930 bits 
S8 DPH PC1↔IO1  743 bits 
S9 DPH PC1↔IO2  643 bits 
S10 DPH PC1↔PLC1  1018 bits 
S11 IPH PC1↔PC6  3427 bits 
S12 IPH PC1↔PC3  6023 bits 
S13 IPH PC1↔PC5  6023 bits 
S14 IPH PC1↔PC2  3713 bits 
S15 IPH PC1↔PC4  8778 bits 

Token  PC1↔MoM 393 bits 443 bits 
 
Transaction delays are used to set the TMC parameter of Profibus network, the 

maximum transaction duration is 2205 bits and so this is the TMC value. 
For the IP Mapper, the transaction delay is also used to estimate the Target 

Message Cycle Time (TTMC) of each IP flow. The estimation can be done in three ways: 
(i) using the same value for all data flows; (ii) using a table with flow IDs and the value; 
and (iii) calculated on a PDU-by-PDU basis. On the manufacturing automation field-
trial, the second option was used, providing a balance between accuracy and system 
complexity. 

The SPA also calculated that 10 beacons were necessary for the given 
configuration and TBT to be 180 bits. This results in an overhead for mobility 
management TMAMoM ≈ 4100 bits. Combined with the aggregate intermediate allocation 
AIM ≈ 25000 bits needed for the data flows we conclude that the network can easily 
handle the load since TMAMoM + AIM (4100 bits + 25000 bits) is still much less then TDCY 
(150000 bits). 

6.5 Scheduling of TCP/IP Traffic 

The micro-cycle to be used is the worst token rotation time, i.e. 150000 bits. While the 
overall system involves six IPH flows, we reduced it down to five considering the traffic 
from the two identical applications as S11 (but using them separately). 

To determine the number of fragments per second used by each application, a 
TCP/IP capture application was used testing the data flows during an adequate period. 
For each capture, the number of fragments was calculated considering that IP packets 
larger than 240 bytes are fragmented. 
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Table  6.6: Transaction and token delays for the field trial 

Flow Frags/s Tfrag TCP/IP Application Stations 
S11 (x2) 5 2 Color Detection Application PC1↔PC6 
S12 10 1 Image Stream PC1↔PC3 
S13 10 1 Image Stream PC1↔PC5 
S14 1.67 6 Image Position Application PC1↔PC2 
S15 * 0.5 Bidirectional Voice Call PC1↔PC4 

 
Since the voice application (S15) generates a variable data flow, the correct value 

was obtained via experimentation: several scheduling tables were used and the system 
tested. The conclusion was that 2 fragments per each TDCY resulted in adequate 
application behaviour, with lower values leading to a degradation of the voice quality. 

Given this data and using the algorithm described in Section  5.1 we got the 
scheduling table of IPH fragments at PC1. 

Table  6.7: Scheduling table for IPH data flows in PC1 

Micro-cycle 1 2 3 4 5 6 
S15 2 2 2 2 2 2 
S12 1 1 1 1 1 1 
S13 1 1 1 1 1 1 
S11  2  2  2 
S14 1      
TIPH (bits) 33315 36456 29602 36456 29602 36456 

 
The maximum TIPH is aprox. 36500 and the network is still viable since AIM + 

TMoM + TIPH (25000 + 4100 + 36500 = 65600 bits) is still much less than TDCY (150000 
bits). 

Finally, the TTR and TSL Profibus parameters must be adequately set. For the TTR 
calculation there is the need to estimate the traffic allocation for PC1. Considering just 
the IPH, DPL and IPH traffic we have TMAPC1= 2250·10+2205+36500+443 ≈ 61200 bits. 
We can round up this value to 70000 bits and the remaining is used for BE traffic. This 
results in a TTR of 150000+70000 = 220000 bits. Finally, for TSL, we look to the greatest 
of TSL1 and TSL2 that takes the greatest value of TST and TSTtoken respectively. Since TSL1 is 
2775 bits and TSL2 is 393 bits, TSL is set to 2775 bits for PC1. 

6.6 Manufacturing automation field trial results 

The manufacturing automation field trial applications behaved as planned (Machado, 
2006), (Van Nieuwenhuyse and Behaeghel, 2003) with no interference between 
multimedia (TCP/IP) traffic and control (Profibus) traffic. Both DP and TCP/IP 
applications performed as expected and a Profibus network/protocol analyser enabled to 
confirm that the traffic in the network was as expected, given the pre-defined data stream 
scheduling. The only exception was the image identification application where 
sporadically some pictures were not grabbed by the system. 
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The system planning was done in a way to leave some extra bandwidth available 
for encompassing new applications or modifications to the existing ones. Thus, after the 
first tests phase the system was readjusted. Two of the applications that could most 
benefit from additional network resources were the image position application (due to 
the scheduling policy, an image would take about 30 seconds to be transferred over the 
network) and the voice-call application (that had a start-up delay of about 1 second). 

The first step was to solve the issues with the S11 stream. The solution was simply 
to give more bandwidth to the application, as shown in Table  6.8. 

Table  6.8: Revised scheduling table to improve S11 

Micro-cycle 1 2 3 4 5 6 
S11 2 2 2 2 2 2 
S15 2 2 2 2 2 2 
S12 1 1 1 1 1 1 
S13 1 1 1 1 1 1 
S14 1      
TIPH (bits) 40851 37028 37028 37028 37028 37028 

 
Afterwards, the scheduling parameters where changed and the image position 

application response time was decreased from 30 to 10 seconds, by using a macro-cycle 
of 2 instead of 6, resulting in 1 fragment every 2 micro-cycles for S14, instead of the 
original 1 fragment every 6 micro-cycles. Another change was to use 3 fragments 
(instead of 2) per micro-cycle for S15, the voice-call application, but this time this 
adjustment resulted in a marginal start-up delay reduction and no noticeable voice 
quality improvement.  

All these changes where cumulative and did not affect in any way other 
applications in the system. At this moment we had a TIPH that was about half of the 
maximum TIPH so there was still room for further application bandwidth upgrading.  

Things got more complicated when larger bandwidth was allocated for S11, 
resulting in the following scheduling table: 

The system responded with a fast degradation of transmission capabilities in all 
applications until it completely crashed. This was unexpected since the allocated 
bandwidth was still far from the maximum possible for TCP/IP traffic. Testing a similar 
change with S15 (Voice) stream got similar results: system-wide degradation and lack of 
TCP/IP functionality after a minute of operation. 

Table  6.9: Revised scheduling table to 2nd improvement on S11 

Micro-cycle 1 2 
S11 5 5 
S15 3 3 
S12 1 1 
S13 1 1 
S14 1  
TIPH (bits) 60768 56945 
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After low-level scrutiny (using Windows NT kernel level debugging capabilities) 
we detected that the problem was related to the way Profibus hardware (IFAK _isPRO 
ISA) used in the PCs handled large bursts of fragments. The system would not work 
correctly when the dispatcher was configured to send more than 9 fragments per micro-
cycle. The problem was overcome by decreasing (if possible) cycle times. 

Another problem detected was that TIPH cannot be too large, or the TCP/IP stack 
stops working correctly due to timeouts. At the time, it was not investigated if Windows 
NT parameters (of the stack) could be changed to avoid this situation. 

Finally, a test was done to check the result of overflowing the IP ACS queues: 
using an UDP application we sent 1 fragment per micro-cycle when in reality the 
scheduler only handles 1 fragment per 2 micro-cycles. As expected, the fragments 
started suffering long delays and some were lost (as seen from the application).  
Unfortunately, it was not possible to test alternative configurations during the field trial, 
like limiting the queue size at the REs and time-stamping of UDP data payload, so the 
only conclusion is that the system does not crash when a queue overflows. 
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 Chapter 7  
Proposed Architecture 

Power-line communication (PLC) provides a natural medium for electrical energy 
distribution applications like metering and grid control. However, the medium 
itself is a harsh one when considering long distances, large number of stations, and 
wildly varied physical configurations used by each energy provider over the world. 
This leads to the availability of a basic master-slave network, with resilient service 
but limited capabilities. Taking advantage of the dual-level voltage used in the end 
leafs of the distribution grid, the proposed Energy Management System connects 
two master-slave networks and provides complete bi-directional, end-to-end, 
services over this two-level system. This chapter provides both the system-wide 
architecture details, to particular solutions found to ease the development of the 
embedded software 

 

7.1 System Objectives 

As presented in Chapter 3, within the REMPLI system, the Transport Layer (TL) is the 
fundamental communication layer dealing with setting up bi-directional, end-to-end, 
communication in the energy management system. This layer allows a direct link 
between the AP and Node devices, on top of the basic master-slave network provided by 
the power-line communication subsystem.   

It does so fulfilling the following main objectives:  
1. implement high/level services like confirmed unicast packets, response request 

service and alarms;  
2. support of unlimited4 packet size in the above services;  
3. fast reaction times for small requests;  
4. enable usage of medium voltage and low voltage power distribution networks 

as a single data network with a flat address space; 
5. be resource conscious in terms of network usage, processing power and 

memory needs; 
6. provide a simple priority-based scheduler than can be updated to other 

alternatives  
Since the underlying REMPLI Network Layer is designed to be used directly by a 

single application there is no direct support for application multiplexing at this level: the 
                                                           
 
4 Limited only by available memory and the impossibility of processing blocks 

larger than 232 bytes in the target software/hardware system. 
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REMPLI Transport Layer is the only client of the Network Layer; and the DeMux is the 
only customer of the Transport Layer (see Figure  7.15). The services provided to the 
DeMux by the TL were designed to be used by Metering and SCADA applications, also 
enabling the deployment of new solutions in these areas. The Unicast service is focused 
on commands, the Request/Response on gathering information and the Alarm service on 
reverse direction transmission of events. 

 

 

Figure  7.1: REMPLI Upper Layer Functionality (“inside” vie w) 

SCADA and Metering applications have variable Quality of Service needs. 
However, one common mandatory feature is that short packets (e.g. smaller than one 
hundred bytes) are typically issued frequently and needing to be processed quickly by 
the system. This is particularly valuable not only for remote control of devices but also 
beneficial to an adequate scalability of the network. Also important is the possibility of 
enabling some traffic, like urgent control commands, to “overpass” background traffic 
like daily meter readings. The Transport Layer provides such services with the priority 
based scheduler and diminutive network overheads. Nevertheless, it is also open 
allowing the exploration of distributed scheduling mechanisms for new and improved 
services (these are out of the scope of this work).  

                                                           
 
5 This is Figure  3.4 repeated here for completeness 
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The target applications also imply the deployment of a large base of end-user 
stations, meaning that the system must be cost-aware. To make this possible, the end-
user stations have to be inexpensive and efficient (as presented in point e) above) in the 
list above. To put the objective in perspective one of the open paths of the project is to 
implement the Nodes on low-budget 8051-class processors in the future. Also of 
paramount importance is the possibility of updating the software (firmware, other 
program files or data) in these stations in an efficient and simple form. This is simplified 
considering that the Transport Layer services can be used unchanged for large packets. 
In fact, even on the current version with “limited” 24-bit lengths (16 MiB) it is unlikely 
that a Node station has enough memory to process the largest sized packet.  

The usage of the power distribution grid as a communication medium eases some 
typical deployment problems like placing new cables and providing power to stations. 
However, stringent regulatory limitations restrict the usable bandwidth and the extreme 
geographic distribution of some layouts implies error resilient coding at the cost of 
bandwidth. The Transport Layer must take all this limitations in account and be aware 
that both physical and logical network topologies can change over time. Power grids are 
not a static arrangement of links and in normal operation new connections are 
dynamically created and others are removed. This effect is also present in other areas of 
the power grid in terms of propagation of the communication signals: activation and 
deactivation of noise sources can occur in an unpredictable fashion. The Transport Layer 
capability of connecting the Medium Voltage and Low Voltage networks in multiple 
points makes it possible to overcome these drawbacks efficiently.  

On the other hand, dynamic network configurations should not be an issue for the 
end-user of the system (the utility companies) and so a flat address space is provided that 
effectively hides the system hierarchy and topology. It also enables simple field station 
replacement: the Node Address used by application is maintained and only the table that 
maps addresses to serial numbers has to be updated. 

The remaining of this chapter presents the main features of the Transport Layer, 
starting with network layer login/logout and address conversion, needed for providing a 
flat address space to drivers. Afterwards the routing and distributed link quality 
mechanisms are explained, followed by the slave-to-master communication capabilities. 
Traffic priority schemes and the Alarm service functionality conclude the architecture 
overview. 

7.2 Login/Logout processing and Address conversion  

To gather base routing information about the system, the Transport Layer keeps track of 
Login and Logout events. When a slave station connects to a master station at the 
Network Layer level, the Transport Layer in each side receives information on the events 
including the Unique Serial Number and the Network Address (NLAddr) assigned at the 
moment to the slave station. This information is used for address conversion from the 
“flat” address space seen by the Applications to the temporary login/logout addresses 
(NLAddr) used by the Network Layer. A configuration table includes Unique Serial 
Number and corresponding Node Address. This information is appended with the 
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NLAddr provided by the Network Layer when a station logins, and in order to build the 
route tables, the Transport Layer uses NL Login/Logout information and link quality 
information forwarded from remote nodes. Figure  7.2 presents the complete Login 
processing steps, which are managed by the Transport Route Manager (TRM) a sub-
module of the Transport Layer. 

When a new Bridge is connected by the Network Layer to an AP, two Login events 
arise: one at the AP and the other at the Bridge. The Bridge Login event includes 
information on the newly active Network Unit (this information is stored by the TL in a 
table with a fresh BridgeID). This BridgeID is used to inform the Nodes of the original 
packet source when needed. 

Meanwhile in the AP side the Login event includes not only NL addressing 
information (NLUnit and NLAddr) but also the Unique Serial Number of the Bridge. All 
this information is stored in the local routing table with the matching Node Address a 
BridgeID of 0 (to signal that this is a direct connection). This data is needed not only for 
routing, but also to access the Node functionality of the Bridge itself. 

 

 

Figure  7.2: REMPLI login processing 

The AP then sends a list with the authorized Nodes that can be connected to the 
Bridge’s Network Layer. The configuration of these tables depends on the dimension of 
the network: in simpler networks can be an “allow-all” list, a list shared by all bridges, or 
a per-Bridge list on large systems. When a Bridge and a Node are newly connected, 
another set of events occurs. At the Login event, the Node simply stores the activated 
NLUnit identifier. This information is used to generate Alarm packets.  

On the Bridge side, the Transport Layer starts by generating a new BridgeID and 
storing the route information of the new node. Afterwards the Bridge forwards the new 
route information (Unique Serial Number + BridgeID) to all the available APs. A Bridge 
with attached Nodes that connects to a new AP sends this information to the newly 
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connected AP. On the AP side, the received information is included in the routing tables 
that contain information on all the possible paths from this AP to a particular Node. 

The process for a Node directly connected to the AP the new connection 
information is stored at each side and no TRM PDUs are exchanged.For the Logout 
processing (Figure  7.3) the main tasks is to clear the obsolete tables and to discard any 
pending requests that where using the disconnected path. 

If a Node logs out from a Bridge then the Bridge informs all the connected Access 
Points of the event using a TRM PDU and they react accordingly. 

When a Bridge disconnects from a particular AP, it does not inform the Nodes of 
this event. The Bridge ignores any pending responses that the node tries to send back to 
the disconnected AP. If needed, it is the task of Node Drivers and Applications to 
generate traffic to guarantee that the link is still active. 

 

 

Figure  7.3: REMPLI logout Processing 

7.3 Routing and Link Quality information 

Apart from the Login/Logout events, the routing tables on the Transport Layer are 
updated periodically with link quality information and remote queue information to 
enable more accurate scheduling/routing decisions at the AP (also a task of the Transport 
Route Manager sub-module).  

The Link Information provided by the Network Layer is the average number of 
slots used to transmit PDUs to a particular station in the past. This value varies 
depending on the number of retries needed for a successful delivery (the NL has a basic 
retry mechanism) and the number of repeaters needed to reach a station. Hence, lower 
values reflect better quality. On the other hand, this reflects the actual “quality” of the 
link between the master and the slave. 

Link information quality is gathered in Bridges and APs by periodically pooling 
the NL for link quality data. The Bridge forwards the data to the AP when needed 
together with the data queue depths. At the AP, the Transport Layer estimates the time 
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that a non-confirmed fragment takes from the AP to a particular Node given not only the 
link-quality of the connections but also the pending fragments on the intervening queues. 

 NL
NkBj

B
NkNLUBj

NL
BjAPi

AP
BjNLUAPi

TRM
NkBjAPi d1qdqd →→→→→→ ⋅++⋅= ')'( )()(  ( 7.1) 

Where d are estimated delays in time slots, q are queue sizes in fragments for the 
Network Unit that connects to station, q' and d' is based on forwarded information (from 
Bridge to AP) and dTRM is the estimated delay for a particular path.  

The forwarded information is updated regularly based on the network conditions, 
e.g. if the Bridge sent a queue size of 4 to the AP, then this value is decremented 
automatically by timed operation in the AP depending on the link quality information of 
the Bridge itself. This reduces the need to update the “real” information frequently. 

After calculating the delays, the TRM at the AP simply selects the fastest route 
available to a particular Node. Since this calculation includes the queued fragments, it is 
the natural behaviour of the TRM to distribute a sequence of big packets over all 
available links. 

Routing decisions are taken only at the AP and per request: all fragments of a 
request follow the same path, and if there is a response, it also follows the same path as 
the request. The BridgeID field is used in the fragments to transmit this information over 
the network. 

This solution has the following features: good use of the available network 
resources; very small overhead on the network for data transmission; simple 
implementation; and some additional resource are needed on the stations to keep track of 
address conversions (BridgeIDs). 

Link Information is also provided to higher levels giving an estimate of the delay 
that takes a single fragment to be sent from a particular AP to a specific Node.  
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In Eq. (7.2) SAPi→Nk is the set of Bridges that connect AP (APi) and Node (Nk). The 
square operation reflects the fact that if more than one path is available then, in average, 
the packets (but not fragments of packets) are delivered faster since they can be sent in 
two parallel channels. 

If multiple APs have connection to a Node, it is the task of upper layers (e.g. 
DeMux or Application Servers) to manage that redundancy eventually using this 
information (Figure  7.4). Since this estimation includes queue information, it is highly 
dynamic and periodically updated by the Transport Layer. 

In similar fashion to the Link Quality Information service, the Transport Layer also 
handles Node Status information transfers from Nodes to APs via Bridges. 
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Figure  7.4: REMPLI Network Layer example layout 

7.4 Sending fragments from slaves to masters  

As presented before, the base communication channel on the REMPLI system is a 
master/slave network. However, there are two specific higher-level services where slaves 
have the initiative: in the Alarm service slaves send data spontaneously; and in the 
Request/Response service the slave can send a single Response in a rather large time 
window overcoming the usual “reserved response slot” paradigm of master/slave 
systems.  

These services are tightly integrated with two Network Layer specific features. The 
first feature is that the NL guarantees that a particular slave station is visited (i.e. a 
request-response is sent) regularly with a maximum run-time configurable delay. A 
second specific feature is that after visiting a slave the master tries to fetch all the data in 
the slave station’s queue. These features were developed inside the REMPLI project 
itself and enable the “spontaneous” transmission of packets from the slave to the master 
with timing parameters controlled on the fly by the Transport Layer. 

Given this scenario, the task of the Transport Layer is to configure the timing 
parameters correctly (a task of the TRM) and to put the adequate data on the Network 
Layer queues at the slave side (a task of the QM). For the Alarm service, a system-wide 
maximum delay is configured that guarantees a minimum QoS. For the Response service 
the system-wide maximum delay is used by default but the Node applications can 
indicate a smaller delay if needed. 
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Figure  7.5: Slave timer concept in REMPLI system 

Figure  7.5 presents the main timing mechanism of the Network Layer. In step 1 the 
NL queues on master station 1 (M1) have one packet for slave station 2 (S2) and one 
packet for S3; the NL queues on S2 have three packets and the NL queues on S3 have 
one packet. When the NL sends the first packet from M1 to S2, the reply has not only TL 
data but also an NL flag that signals that more data is available on the slave. The NL in 
M1 automatically issues further confirmed requests until no more data is available. The 
NL in M1 then moves on to the next slave (step 2) and sends a confirmed request that 
has an immediate response, no more data is in the queues. In M1 separate timers are used 
for S1 and S2. When they expire the NL issues empty requests automatically (steps 3 
and 4). If no data is available then the timers are restarted. When TL sends a confirmed 
request to a station (step 5) the NL resets the timer for that station. On step 6 the timer 
for S2 has expired and the NL has retrieved one packet from the NL. 

To set the slave-specific delay, the Transport Layer on the slave side keeps track of 
open transactions and respective expected delays in response. The expected delay for a 
response is a service then can be used by a Node driver to give a hint on when the 
response will be available. To simplify implementation the TL uses half this value as the 
ideal periodic visits needed to serve the response, and selects the minimum value of all 
open requests to set the NL parameter. The NL automatically forwards this value to the 
master in the next empty NL response. Only then, the new parameter is effective, since it 
is the master’s side task to handle the timers. 
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7.5 Traffic prioritization and queuing 

Traffic differentiation is provided by an 8-bit priority identifier that can be used by 
applications to signal different importance. The Transport Layer uses a simple “serve all 
higher-priority” mechanism with round-robin service for same-priority traffic. In order 
to provide priority on the responses and over bridges, priority information is 
encapsulated in some Transport Layer headers. 

The Network Layer supports up to three priority classes (only two are usable at the 
slave side). All Transport Layer traffic is sent using the lowest Network Layer priority, 
except if the application chooses one of the two special priority identifiers (-1 and -2) 
that are mapped directly to the two higher priority queues of the Network Layer. 

 

 

Figure  7.6: REMPLI priority queues processing 

To make sure that no time slots are lost due to Network Layer queues starvation, 
the Transport Layer feeds a programmable number of fragments to the Network Layer 
queues even before the queues are empty. The Network Layer has a feedback channel 
(see Figure  7.6) to inform Transport Layer that a fragment was removed from the 
queues.  

The disadvantage of this scheme is that when a fragment arrives in the Transport 
Layer it may be delivered to the network later than lower-priority fragments already 
queued into the Network Layer. The two “special” priorities overcome this problem 
since these are delivered directly to specific queues on the Network Layer and can pass 
in front of normal priority fragments. 

On slave stations the Network Layer has only two queues and requests for High 
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the Transport Layer, which delivers the two special priorities to the Network Layer. 
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7.6 The Alarm Service 

The Alarm Service makes it possible for any Node to send a packet to, at least, one AP. 
The Node cannot choose the destination station, and it is possible that more than one AP 
receives the generated alarm. The Node can set the Priority and the relative Timeout of 
the request. 
 

 

Figure  7.7: REMPLI Alarm service 

The implemented algorithm is based in the possibility of multiple paths for 
delivering the fragments (Figure  7.7). It is possible for AP 1 to have the complete data 
receiving some fragments from either bridge. Another feature is that when each station 
has confirmed the delivery of a fragment to all network units it can safely discard the 
data block preserving memory in the stations. At the state presented in the picture, the 
AP 1 would start to inform the other stations on the network that the Alarm delivery was 
successful. Since this is a distributed mechanism, it is possible that other APs gather all 
the fragments of the packet while this finishing process is ongoing.   
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 Chapter 8  
Implementation Issues 

This chapter presents further details on how to implement the mechanims proposed 
in Chapter 7. It starts by presenting an overview of the software architecture of the 
Transport Layer, providing afterwards the main implementation details of each 
service. 

8.1 Transport Layer Software Architecture 

The REMPLI Transport Layer architecture was designed and tested using OMNeT++ 
(OMNeT++, 2007), a public-source software suite. OMNeT++ is a discrete event 
simulation environment with focus on the simulation of communication networks. Since 
it has a generic and flexible architecture, it is also used in other areas like the simulation 
of complex IT systems, queuing networks and hardware architectures as well.  

Programming of components (modules) is done in C++. Modules can be nested 
and inter-connected into larger components using the NED high-level language. 
OMNeT++ runs on Linux and Windows and has full GUI support. 

The base OMNeT++ code does not include any models. There are several 
simulation models and frameworks available directly at omnetpp.org website, these 
include Mobility Framework (focused on OSI layers 1 and 2) and INET Framework 
(focused on higher OSI layers). For example, INET Framework includes not only 
protocols like IP and UDP/TCP but also models of IEEE 802.11, PPP, IPv6 and others. 

To run a simulation in OMNeT++, it is necessary to implement the components 
and interconnections, and specify the simulation parameters. The simulation results can 
be recorded using OMNeT++’s tools or the users records. 

Transport Layer code was built in order to be used unchanged in both OMNeT++ 
and the end-system embedded Linux easing the deployment and testing of the system 
(Marques and Pacheco, 2007). 

The Transport Layer was designed from the start to be compatible between the 
simulation environment under Windows or Linux and the deployment in the field on 
embedded Linux using the same source code (Marques and Pacheco, 2007). The main 
blocks of the Transport Layer are presented in Figure  8.1Error! Reference source not 
found.. It is divided into four modules, the RCI Manager (RCIM), the Transport Route 
Manager (TRM), the Queue Manager (QM) and the NL Interface (NLI). Interface with 
the higher layers of the system is done through the Rempli Communication Interface 
(RCI), with TCP/IP based streams, whilst the interface to the lower layer is done through 
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a Linux character driver (for efficiency reasons, the lower Network Layer is within the 
Linux kernel). 

The higher-level connection with the DeMux is controlled by the RCI Manager. 
This thin module does routing of messages from the Rempli Communication Interface 
(RCI) to the QM or TRM depending on the message type. It also forwards messages 
from QM and TRM to the RCI. Some not implemented RCI functionality (like Access 
Point Connect) results in an immediate response from the RCIM without interference 
from other TL modules. 

The RCI uses an IPC Transaction Identifier and a Thread Identifier (the later helps 
DeMux internal tasks) for each RCI Request. These identifiers are recorded by the 
RCIM for all messages received from the RCI. Responses from the internal TL modules 
only have the IPC Transaction Identifier, and the RCIM adds the matching Thread 
Identifier to the response. Events generated by the TL do not use either identifier. The 
RCIM distinguishes Events – that do not used identifiers – from Responses – that use 
Transaction Identifiers and Thread Identifiers – by the message type. 

 

 

Figure  8.1: REMPLI Transport Layer internal architecture 

Similarly to the RCIM, the NLI function is to route messages from QM and TRM 
to the Master NL or to the Slave NL. Again, routing is done using the message type. 
Some messages from the TL to the NL are of a request/response nature. For example: a 
TL_MASTER_SEND_CONFIRMED message is eventually followed by a matching 
response from the NL. The NL pairs these messages using the NL Transaction ID. 
However, for the internal TL modules, the NL Transaction ID is not used and the Queue 
ID is used instead since it maps directly to multi-fragment data. The NLI handles 
conversions from TL Queue IDs and NL Transaction IDs and the automatic 
generation/disposal of NL Transaction IDs. 

To ease the task of the QM, some additional information like Fragment ID and 
Queue Type is also stored with the Queue ID. 
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communication services for the TRM. On the other hand, the QM relies on the TRM for 
routing information (i.e. address conversion) and scheduling of transmission tasks.   

The TRM has a global view about the network status, keeping track not only of 
login and logout events but also on link quality information and queue sizes in a 
distributed fashion. In the current implementation the TRM uses this information to 
make route selection based on fragment delay estimation However, it supports the 
addition of more advanced scheduling policies. The TRM also handles some accessory 
functions like Link Status information. 

The main tasks of QM and TRM are presented in the next paragraphs. Most of the 
code of the Transport Layer is used (Figure  8.2) in both the OMNeT++ simulation and 
the final-system HyNet (Hyperstone, 2007) board; the main difference is the addition of 
a Message processing system that handles the interface between the Transport Layer 
blocks and the “outside world”. 

 

  

Figure  8.2: OMNeT++ simulation and HyNet implementation 
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the start having this objective in mind. At a first stage of the project, a C Object-Based 
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only one instance of each module object in each HyNet target machine; OMNeT++ 
message communication functionality is implemented by a C module specific for HyNet. 

The REMPLI code of each module was inserted into a simulation using OMNeT++ 
network design tools and some simulation-specific modules. A main network layout 
(Figure  8.3) was used with a dual PLC network that was used for both bridged services 
simulation with several Nodes and for direct services simulation using the integrated 
Node functionality the Bridges. 

 

 

   
 

Figure  8.3: OMNeT++ simulation network layout 
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the station identifier of the TCP message is equal to the OMNeT++ port minus 
one. 

On the reverse direction, the following rules are applied to messages received on 
the TCP interface:  

− master related messages are routed to the OMNeT++ port with the same 
identifier of the TCP socket, the Net Unit identifier is also set to the identifier of 
the TCP socket – master-related messages from the NL Emulator have always 
Station Identifier equal to zero;  

− slave related messages are routed to the OMNeT++ port with the identifier of 
the Station Identifier in the TCP message plus one. 

The PLC Network module also handles timed self-messages to trigger the 
simulation process on the NL Emulator. Since we are using two NL Emulators to 
simulate two masters each simulation is triggered every two slot time intervals. 

There is one exception on the above message processing: multicast requests are 
handled by the PLC Network module by sending a unicast request to a pre-defined slave 
station. When the PLC Network module receives a TCP message with the predefined 
station identifier, it duplicates the message to all OMNeT++ slave ports. This exception 
was needed since multicast is not supported on the available NL Emulator. The 
drawback of this approach is that the timing behaviour of the multicast service is not 
reflected into the simulation. 

 

 

Figure  8.4: Implementation of multi-master simulation 
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Bridge Transport Layer that has connections to the Master NL port and the Slave NL. 
The Access Point module and the Node module are similar but a special Dummy module 
shunts the missing ports. Despite the label, the Bridge Transport Layer is exactly the 
same module that is used inside the Access Point and the Node modules. 

On the right side of Figure  8.5 the same modules and connections that were 
conceptually presented in Error! Reference source not found. are now portrayed in the 
OMNeT++ simulation. There are also three connections to the “outside”: Driver De/Mux 
port; Master NL port and Slave NL port. 

 

  

Figure  8.5: OMNeT++ Simulation “Bridge” and “TL” modules 
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After developing the functional modules of the Transport Layer on OMNeT++, as 
presented in the previous section, an important part of the layer was developed to enable 
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Figure  8.6 depicts the main blocks and characteristics of the Message Processor. 
 

 

Figure  8.6: REMPLI message processor concepts 
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This “Message Processor” is in fact the main process of the Transport Layer when 
running on the target devices. Although the modules were developed to be compatible 
with both Windows and Linux systems (and were tested in the two on OMNet++), the 
Message Processor was developed specifically for the HyNet board. 

The Message Processor is a multi-thread module, which manages TCP/IP 
connections to the Driver De/Mux and Linux Driver interface to the Master NL and 
Slave NL, adapting internal TL messages to these channels. The module also stores 
internal messages that will be later delivered to internal modules or one of the outside 
interfaces, including both event- and time-triggered messages. Each instance of the 
module is guaranteed to run in single-thread fashion, but different modules may be 
running at the same time. 

 

8.3 Inter-module messages  

In terms of message exchange, one of the more active internal TL connections is the 
QM/TRM link. The main tasks of the TRM are (i) to inform the QM of the destination 
path for a request/response, and (ii) to trigger the transmission of particular fragments. 
This also means that any change on QM queues must be forwarded to the TRM so the 
later has an up-to-date view of the pending requests. 

Figure  8.7 presents the main messages exchanged by these two modules. There are 
messages for the QM to signal new queues (with Node Addresses) and respective route 
responses from the TRM. Route information includes NLAddr, Bridge IDs and NL Units 
depending on the situation. Each queue type has a different message type since each type 
has its own set of parameters. Requests and responses are associated by QM’s Queue ID, 
being this association unique for the “creation” messages. Other message types do not 
require this unique mapping, and the QM may issues several messages with the same 
Queue ID to the TRM before receiving the matching responses. 

When the TRM wants to delete a QM queue, or when a QM queue does not have a 
viable path, it sends one of the  QueueRoute messages with the NLUnit set to zero. After 
a first valid route message the TRM can send a delete route message afterwards if the 
connection to a station is lost. 

There is a simple protocol to TRM signal to QM when new fragments should be 
delivered to the NL (ServeSlot) and respective results (ServedSlot, UnusedSlot). The QM 
can also signal that a queue was updated or destroyed (QueueUpdate, DestroyQueue). 
The update messages are always with relative values, i.e. increment or decrement any of 
the queues characteristics. 

Although some messages are specific for certain station types, (e.g. NewAPQueue 
can only be issued in an Access Point) the code is the same in all stations to simplify 
development. Different configurations are supported through specific annotations in the 
code that can be later pre-processed (for instance to create a “Node-only” version of the 
Transport Layer in the future). 
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Figure  8.7: REMPLI TRM/QM messages 
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Figure  8.8: REMPLI NLI messages 
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the QM task to extract the TL header and from this header distinguish the final 
destination of the data. 

 

 

Figure  8.9: REMPLI RCI messages 
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As expected, the messages in the NLI are a faithful representation of the available 
Network Layer services including master/slave separation, confirmed and non-confirmed 
requests, login/logout events and status update information. In these services, stations are 
identified by (run-time) NLAddr and Unit IDs and the data payload sizes are very 
limited. 

Figure  8.9 provides the flow of messages at the RCI interface, between the 
QM/TRM and the Access Point and Node Drivers. The services are the ones provided by 
the RCI: Request with Response, Request With No Response, Multicast Data, Alarm 
Service, Status Update and Live List information. All the data-related services support 
very large data payloads and destinations are identified by Node Addresses.  

Importantly, the TRM can also use the data-related services of the QM, as a Driver 
would. The only limitation is that TRM services are never fragmented and therefore the 
data payload is always restricted in size. 

8.4 Processing Requests 

In order to understand the behaviour of the Transport Layer, it is important to understand 
how requests are handled. Figure  8.10 depicts the processing of a confirmed request, 
where: 
1. The TL receives an RCISendConfirmed request, with the RCIPacket data, and 

related Node Address and Access Point TL Transaction ID. 
2. The TL converts the Node Address to {NLAddr; NLUnit; Bridge ID}. Since the 

depicted example is for a direct connection, Bridge ID is always 0. Then the TL 
generates a new PDU ID to group the fragments of the request on the PLC 
network. PDU IDs are unique for each NLAddr and NLUnit. Finally, the TL saves 
the AP TL Transaction ID for this request. 

3. The TL sends fragments using the NL for the NLAddr, NLUnit destination adding 
its own header with PDU ID and Bridge ID. 

4. The Node NL receives the fragment 
5. The TL of the Node rebuilds the fragments of the request (the current 

implementation supports selective acknowledge mechanism to complete this task), 
generates a new Node Trans ID and stores corresponding PDU ID / Bridge ID / 
NLUnit. 

6. The TL delivers the complete request with the attached Node TL Transaction ID to 
the DeMux, which eventually delivers it to the Node Driver. 

7. The Node Driver processes the request and prepares the adequate response. The 
answer is delivered via the DeMux to the TL. The Node TL Transaction ID is used 
to match request and response. 

8. The TL now fragments the response and sends it back to the AP. The fragments of 
a response have the same PDU ID and Bridge ID of the original request, so the 
first task is to retrieve this information, saved in step 5. 

9. Fragments are sent to the AP using the same NLUnit of the request. The Bridge ID 
and PDU ID are included in the TL header information. 
 



  Part III 
Power-Line Communication System 
 

102 

 

Figure  8.10: REMPLI PDU processing (direct connection) 
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11. After receiving all fragments of the response the TL matches the response to the 
original AP Driver request 

12. The response is delivered to the AP Driver. The AP TL Transaction ID is used to 
match the request and the response. 

 

Figure  8.11: REMPLI PDU processing (via Bridge) 
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For a bridged request most of the processing is similar (Figure  8.11), with some 
exceptions: 

− When a Node connects to a Bridge, the Bridge assigns this Node a Bridge ID. 
When the Access Point wants to communicate with the Node it uses this Bridge 
ID to address it at one particular Bridge. On the reverse direction (Node to 
Access Point via Bridge) a similar mechanism is used. The advantage of this 
method is that TL header space is reduced significantly without compromising 
scalability of the system. 

− If the Access Point wants to communicate directly to the Bridge (i.e. using the 
Node functionality of the Bridge itself) it uses the reserved Bridge ID of zero. 

− Each network segment has its own PDU IDs, Bridge IDs, etc. 
− All the fragments of a request and matching response (when applicable) follow 

the same route. 

8.5 Fragmentation and Headers 

Like in Profibus networks, the REMPLI NL is also limited to small PDU size in order to 
improve system responsiveness. The TL is built over the NL layer to provide very large 
data payload services to applications.  

The need to combine fast response services with large data lengths (up to 16 MiB 
on the current configuration) on the same system lead to solution with three different 
headers (Figure  8.12):  

 

 

Figure  8.12: REMPLI Fragmentation Headers for Unicast Data Services 
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− a Minimum Header with Request Type (2 bits), Header Type (4 bits), PDU ID 
(6 bits) and Offset (6 bits), with a total of 18 bits or 3 bytes;  

− a Small PDU Header with the same information fields of the Minimum Header 
plus a 8-bit Data Length field, with a total of 26 bits or 4 bytes; 

− a Large PDU Header with the same information fields of the Minimum Header 
plus a 24-bit Data Length field, with a total of 42 bits or 6 bytes. 

 
The first field identifies the type of PDU, Request/Response, Unicast, Response 

and TRM Data. The second field Header Type is used to distinguish between the 15 
available header configurations at the current version. The PDU ID field is unique per 
source (i.e. the master or slave of a particular station) and identifies a group of fragments 
as belonging to a packet. In the current header architecture it would possible to share 
PDU IDs between some groups of header types but to reduce complexity this is not 
implemented at the moment. The 6-bit Frag. ID identifies the order (starting at 0) of 
each fragment in the set of fragments of a given packet. 

When sending fragments, the first fragments (a compilation-time constant, 
TLH_NumberBigHeaders, with a typical value of 3) are with length fields, and the 
following fragments use only minimum headers. Since the system can only store data 
fragments after a successful reception of a header with a length field, the number of 
fragments with packet length information is configurable depending on the expected 
error rates of the network and also on the probability of out-of-order delivery. 

In addition, the bit lengths for “small” and “large” PDUs can be easily pre-
configured and can have up to 32 bits (4 GiB). Decision on the length sizes of headers is 
dependent on the specific system and the predicted traffic patterns. 

The fragmentation functions handle most of the data reception and transmission 
tasks for typical services. For transmissions, the fragmentation starts after the QM is 
aware of the maximum length available for a particular request. It creates 
(NodeCreateFragments, AlarmCreateFragments, etc) a linked list with fragment 
information and ready-to-use PDUs data blocks, complete with headers. If applicable 
(see below), the fragmentation process handles the different headers used in one request, 
that is, only the first fragments have “complete headers” thus the remaining fragments 
have more space for data payload. Fragment information varies with the type of queue 
but typically includes TTL counter, PDU final size, absolute fragment number (starting 
at 0) and delivery status (e.g, DataToBeSent, Sent, Confirmed).  

After creating the fragments, the original data block is discarded. This means that 
there is a temporary duplication of the data payload on the station, but the advantage is 
that as soon as each fragment is confirmed the data can be discarded and memory 
released gradually. The other reason to choose ready-to-use PDUs is to guarantee that 
when a queue is scheduled, fragments are delivered as fast as possible to the Network 
Layer. The disadvantage is a higher worst-case memory footprint. 

This is also dependent on the possibility of simultaneous use of different sized 
network layer units. If this was not foreseen, fragmentation could be done immediately 
when the data is received at the DeMux interface moving part of this functionality from 
the QM to the RCIM. The QM would later add the headers to the fragments. 
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Figure  8.13: Memory Blocks in a Unicast service (Linux HyNet System) 
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On the TL, the offset is signed, and if lower than zero then all fragments are 
confirmed6. On the side that is sending the Data PDU several tasks have to be fulfilled. If 
all fragments are confirmed the transmission is complete. Depending on the station and 
queue type, this can originate an event for the driver (e.g. NodeOkAlarm) and/or the 
destruction of the queue itself. For partial lists, all the fragments with offsets lower than 
the first fragment are released (since they are confirmed implicitly), the bit-by-bit 
confirmed fragments are also released. For the “not-confirmed” bits a simple retry 
mechanism was implemented: after the reception of two “not-confirmed” bits for the 
same fragment, the fragment is placed back in the “to send” state (and is scheduled in 
due course). For unicast requests, the first 64 (QueueSegmentSize) fragments are 
numbered in sequence starting at 0 up to 63, the next ones from 0 to 63 and so on. A 
sliding window mechanism is used to keep track of which section of the fragment list are 
being dealt with. The first fragment value of the QMStatus structure sets the first 
fragment of the “window” and only up to 32 fragments ahead of it are sent. Like 
“traditional” sliding window implementations, the window can only move when a new 
QMStatus structure is received. 

// STATION RECEIVING THE DATA PDU 
 
// Assume that: 
 
// a. when a fragment is received a structure is placed in an ordered linked  
// list with the absolute fragment offset. 
// b. block->frags{0} reads or sets the first bit, {1} the second and so on 
// c. block->frags{0..4}=true sets the fist 5 bits, etc 
 
 
// function GenerateQMStatusBlock 
 
// Return a pointer to Status Block for 
// one Reception Queue, or NULL if all fragments 
// are received 
 
(StatusBlock *) GenerateQMStatusBlock(rxQueue) { 
 // temporary var to store the block 
 StatusBlock * block; 
 
 // 1. find first missing fragment or unconfirmed fragment 
 
 curFrag = 0; 
 aux = rxQueue->firstFragment; 
 while (aux!=null) { 
  if (aux->offset != curFrag) 
   break; 
  aux = aux->next; 
  curFrag++; 
 } 
 
 if ((aux == null) && (curFrag == rxQueue->numFrags)  
  return null; // we have all fragments 
 
 // 2. build the status block and set the first fragment value 
 
 block = new StatusBlock(); 
 block->firstFragment = curFrag; 
 block->frags{0..23} = true; 
 
 // 3. build the bit list of other fragments 
 curFrag=0; 
 aux = aux->next; 
 while (aux!=null || curFrag > 24) { 
  deltaFrag = aux->offset - block->firstFragment + 1 
  if (deltaFrag != curFrag) { 
   if (deltaFrag >= 24) { 
    block->frags{curFrag..23} = false; 
    break; 
   } else { 
    block->frags{curFrag..deltaFrag-1} = false; 
    curFrag += deltaFrag-1; 
   } 
  }  
  curFrag++; 
  aux = aux->next; 
 } 
 
 // 4. we are done! 
 return block; 
} 
 

Figure  8.14: REMPLI Status Information Algorithm 

                                                           
 
6 In terms of programming this is almost the same as checking if the offset is equal 

(or greater) to the number of fragments in the PDU, but it eases debugging tasks. 
Another difference is that the number of bits used system-wide is configurable at 
compilation time. 
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For non-unicast services, the main difference is that no “minimum headers” are 
used (Figure  8.15) and the headers have the absolute order number of the fragment. The 
benefit is that all fragments have the necessary information to start the data reception. 

In order to conserve bandwidth, the “internal” TL traffic “piggybacks” several data 
blocks inside a Network Layer PDU, aligned at byte boundaries. 

For the internal traffic between TRM units in different stations, the system fills the 
available data space with a series of TRM data blocks, each with its own function. It is 
possible for example to send several link quality update notifications mixed with status 
service updates in one single NL packet. QM uses a similar procedure for its own 
packets, e.g. the QMStatus described in the Confirmation process above. 

 

 

Figure  8.15: REMPLI Fragmentation Headers for Non-Unicast Data Services 

8.6 Direct Unicast Service 

The TL unicast service aims to provide reliable transmission of packets from the Access 
Point to a Node over the two-level network. The base network does not guarantee the 
order of delivery of packets and has a very limited payload per PDU so this service is a 
major improvement over the existing system. However, it was important for the 
implementation that small packets could be delivered fast (but not necessarily confirmed 
as fast) and the service has this in consideration. 

The algorithm of the unicast service is summarized in the next paragraphs for the 
non-bridged version; the bridged version is very similar to the alarm processing that is 
presented in the next sub-chapter. 

1. Access Point Driver issues a Unicast Request directed to a Node 
When a request is issued by the driver the packet data is delivered first to the 

DeMux and then to the RCIM and finally to the Queue Manager 
(CreateApTxQueueUnit).  

The Queue Manager saves the PDU data pointer for later processing. It also assigns 
a Queue ID (unique for this station) to the request and saves the queue information in the 
list of Transmission Queues (InsertTxQueueUnit). It then waits for the Transport Route 
Manager for an available route to the given Node Address destination. 
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The Transport Route Manager then calls the Fragment Scheduler and sends either a 
route to the QM or an message signalling than no route is available. In the latter, the QM 
destroys the queue information and issues an error message that is later delivered to the 
driver. 

If a route is available, (UpdateApTxQueueUnitInfo) the QM assigns a new PDU ID 
(unique for each Network Layer Unit). The route information also includes the 
maximum data length for the path and it can now create (APCreateFragments) the 
fragment information. The PDUs created have the request type of ReqNoResp. If for 
some reason fragments cannot be created, the QM informs TRM to remove the Queue 
Unit information. 

It then sends an update message back to the TRM with information on how many 
fragments are to be sent. The QM uses a sliding window in order to support very large 
packets. Only fragments up to the sliding window size are marked as “available to be 
sent” to the TRM. The queue is identified in these messages by the Queue ID.  

This message starts the cycle of fragments transmission: when the network is 
available the TRM informs the QM to send (ServeTxQueue) one or more fragments to 
the Network Layer. When the Network Layer processes the fragment (e.g. when the 
fragment is about to be sent to the physical network) the QM informs the TRM that a 
slot is available and the process is repeated until there are no more fragments to send. 

When a fragment is processed by the Network Layer it does not guarantee that it is 
correctly delivered. The fragment is kept as “pending” on the fragment list. When a 
confirmation is received from the NL then the fragment is considered to be “delivered”. 
If an error is received from the NL then the fragment is set as “available to be sent” 
again. 

The Fragmentation process controls the delivery of all fragments 
(ReceiveQmMasterData) and delivers the OK message to the DeMux when the process 
is complete. 

2. Node Transport Layer Receives Data 
When the Node receives a fragment with ReqNoResp request type it starts by 

building the new queue information (CreateRxQueueUnit). This process first checks if 
the queue already exists, e.g. if there is any RxQueueUnit with the same PDU ID and 
NLUnit.  

If it does not exist then it creates it. It saves the base queue unit parameters (like 
priority, length, PDU ID and NLUnit), and the event type that is used to transfer the data 
do the DeMux (in this case NodeUcastReceived). Since this is a reception queue it does 
not have a Queue ID. 

After creating the queue, or if the queue already existed, the fragment reception 
process (ReceiveRxFragment) is run. If all the fragments are received the data pointer is 
transferred to the DeMux using the previously stored event type. Finally, the last step is 
deleting the queue unit information (DeleteRxQueueUnit). This function simply removes 
the structure from the linked list and frees the used memory. 

3. Timeout and error processing 
For simplicity timeout, processing was not included in this description. The main 

concept is that the Queue Manager calculates the deadline for the packet and forwards 
this value to both the Bridge and the Node. This solution was chosen since the 
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synchronization of the clocks in all stations is guaranteed by other REMPLI components 
(Gaderer et al., 2006). 

The processing of typical errors, including retry operations are handled by the 
ReceivedRxFragment function. 

Except for timeout checks in the Queue Manager and the Live List Cost updates in 
the Transport Route Manager, all the processing inside the Transport Layer is driven 
from external events: TL progression is only activated when there is an external input 
(from the DeMux or from the NL). 

8.7 Bridged Alarm Service 

The Alarm Service makes it possible for any Node to send a confirmed packet to, at 
least, one Access Point. The Node cannot choose the destination station, and it is 
possible that more than one Access Point receives the generated alarm. Therefore it can 
be classified as an “anycast” service originated in the Nodes.  

The Node can set the Priority and the relative Timeout of the request. 
 

 

Figure  8.16: The Alarm Service Fragment Status – Simplified Concept 

The concept is based in the possibility of multiple paths for delivering the 
fragments (Figure  8.16). It is possible for Access Point 1 to have the complete data 
receiving some fragments from either bridge. Another feature is that when each station 
has confirmed the delivery of a fragment to all network units it can safely discard the 
data block preserving memory in the stations. At the state presented in the picture, the 
Access Point 1 would start to inform the other stations on the network that the Alarm 
delivery was successful. Since this is a distributed mechanism, it is possible that other 
Access Points gather all the fragments of the packet while this finishing process is 
ongoing. 
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In the REMPLI Transport Layer the process is more complex due to the support of 
multiple sized Network Layers: the received fragments can have a different size of the 
transmit fragments. This is possible since the network layers can be configured 
differently depending on the physical medium characteristics.  

Consequently, a dual-queue architecture was designed to enable support of 
different data lengths in master and slave side of the Bridge: a collection of 
QueueSegments gathers blocks of received information from the Node; and fragments 
ready-to-send to the Access Point are attached when possible to a transmit QueueUnit. 

 

 

Figure  8.17: The Alarm Service Bridge Dual-Queue Architecture 

Received data is released in a segment block when all the data of that block is 
completely received and has been transferred to the transmission queue. Transmission 
data is released on a fragment-by-fragment basis like any other transmission queue. 

This process is summarized in Figure  8.17. Nevertheless, a clarification must be 
made in terms of memory usage. At the reception, each SegmentQueues is allocated at 
once to store user data of several fragments and released when possible. In transmission 
memory is only allocated when needed by a fragment, and released when the fragment is 
confirmed. In terms of the figure, this means that the gray boxes at the “To AP:” side are 
not allocated yet, but the gray boxes on the “From Node” side are already allocated but 
not filled up. However, SegmentQueues are only allocated when needed: in the example 
above the second segment was only allocated when the first of fragments 5 or 8 arrived. 

The choice for SegmentQueues was done to mimic as far as possible the normal 
non-bridged reception without wasting too many resources. 

1. Node Driver sends Alarm request 
At the Node side the process begins with a NodeSendAlarm request from the Node 

Driver. As usual this request is passed to the Driver and to the RCI and, finally, to the 
Queue Manager. 

The Queue Manager starts by (CreateAlarmQueueUnit) saving in a list the basic 
information about the request, priority, size, data payload, etc. It also appends to the data 
payload an absolute timeout value. It then passes scheduling information to the TRM. 
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The TRM stores the information and issues a AlarmAddNetUnit message for the 
QM regarding each available network unit on the station. This enables the “reverse” 
broadcast nature of the Alarm service. 

Back on the QM side, the first message triggers the fragmentation process 
(AlarmCreateFragments). In the Alarm Queues each fragment has status information 
regarding each network unit so it can track the delivery independently. Only after 
confirmation in all units is the fragment is released. The QM issues an update message to 
the TRM with the number of fragments pending for the given net unit. 

At this point, the TRM Fragment Scheduler can select one of the alarm units to be 
served depending on the current pool of pending requests. In this, Alarm priorities are 
treated like any other queue priority, but advanced Schedulers could differentiate queue 
types. 

When the Fragment Scheduler selects a particular Alarm queue and unit the QM 
scans (ServeAlarmQueue) the fragment list for fragments to be sent. If found they are 
marked as “not confirmed” and a copy of the fragment PDU delivered to the slave NL 
(via NLI). Multiple fragments can be scheduled with a single TRM request. 

2. Bridge receives fragments from Node 
The first fragment originates a new Queue Unit (CreateBridgeAlarmQueueUnit), 

other fragments are “added” to the queue unit data (ReceiveAlarmBridgeFragment). 
When creating the QueueUnit the QM sends a BridgeGetBridgeID message to the 

TRM, with network unit and address of the Node. The TRM eventually sends back a 
BridgeGetBridgeIDResponse message with the matching BridgeID that is used to 
identify the original node in the fragments to the Access Points, transmission fragments 
are only created after receiving this information since it is needed for the fragment 
headers. The QM also issues a NewAlarmQueue for TRM scheduling purposes. The last 
step in creating the queue is calling CreateAlarmBridgeQueue. This allocates memory 
for one AlarmBridgeQueue structure and the first AlarmBridgeQueueSegment structure. 

The received fragment data is saved in the data block of one of the 
AlarmBridgeQueueSegment structures (if needed a new structure is allocated). As 
referred above, when possible, e.g. when contiguous memory is available, received 
fragments are rebuilt into fragments (AlarmBridgeReconstructFragments) ready to be 
sent in the slave side of the Bridge stored in the AlarmQueueUnit structure like other 
transmit queues. When all the data in a particular AlarmBridgeQueueSegment is 
transferred to the AlarmQueueUnit the AlarmBridgeQueueSegment is released. The new 
fragments originate UpdateQueue messages to the TRM. 

If an AlarmOK PDU is received a confirmation is sent back. The need for this “re-
confirmation” is that the Node is not able to confirm via the Network Layer if the PDU 
was actually delivered or not. This PDU is sent back even if there is no matching queue 
unit in the Bridge. All the remaining AlarmBridgeQueueSegment data, and the 
AlarmBridgeQueueSegment structure, is released at this point. 

3. Node receives fragments confirmation 
Eventually the slave station receives special QM PDUs with Alarm information. 

Each PDU includes information about the AlarmID, if the Alarm was delivered to one 
destination (AlarmOK), and fragment confirmation data.  

If the AlarmOK bit is set, the QM releases (ReceiveQmAlarmHeader) all the 
fragments and set the status as “finished”. If this was the first AlarmOK PDU for this 
queue then the Node Driver receives the confirmation that the alarm was sent. 
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8.8 Request with Response Service 

The processing of Request with Response service is similar to the Unicast service on the 
AP-to-Node direction followed by a “single-route” Alarm service on the Node-to-AP 
direction.  

One of the differences it that at the Node side a special queue is kept in “open” 
state while the Node driver processes the Request. The Node driver can opt to send a 
Response with any data length (including 0) or a special NoResp command. The 
Response is matched to the Request by the TL Transaction ID. 

If the queue timeout expires before a response is issued, a NoResp PDU is sent to 
the AP Driver by the Transport Layer and the TL Transaction ID is invalidated. There is 
no way for the AP Driver to know if the NoResp was due to a timeout or really issued by 
the Node Driver. The AP Driver only receive timeout errors for the transmission phase 
of the request. 

An a additional feature is that the Node Driver can send a RespTimes command for 
a particular TL Transaction ID with information on the expected delay till the Response 
command. Periodically the Transport Layer scans all open requests in the Node and 
selects the smallest of these delays to setup the timeout sub-system of the Network Layer 
(as presented in Section  7.4). The timeout is set to half the minimum value indicated by 
the Node drivers. 
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 Chapter 9  
Validation  

This chapter addresses the experimental validation of the mechanisms proposed in 
Chapter 7 and for which some implementation detail was provided in Chapter 8. 
This validation was based in extensive test cases in a simulation environment, 
which allowed to build an application-rich scenario and comparison with 
performance in actual field tests. 

9.1 Introduction 

With the test scenarios devised to validate the REMPLI Transport Layer, particular 
attention was given to the advanced features which were the focus of the previous 
chapters. These consisted in the new end-to-end services, routing in a two-level network, 
scheduler performance and resource usage. Extensive test cases were implemented in a 
simulation environment, whilst field test results allowed to confirm the adequateness of 
the approach. 

9.2 Simulation Environment 

By design, the Transport Layer was prepared to be tested in the OMNeT++ simulation 
environment. However, this environment did not support the REMPLI physical and 
network layers, thus a new emulator was designed by a group within one of the project 
partners (iAd). This application emulates the physical layer behaviour of the PLC system 
in a single time slot using a simplified (and fast) mathematical model of the network, 
which deals with successful or successful data delivery between several network points 
at the same time. For example, if two stations in different network positions send a PDU 
to the physical medium, the emulator calculates all the positions that received each PDU 
and delivers the respective data considering possible mutual interferences. These 
network models where obtained from a much more complex (and time-consuming) 
simulation system of the physical layer, including channel encoding and synchronisation, 
and estimated response of the physical layer considering the signal responses of actual 
power lines.  

The emulator included data files for topologies like Ring, Open Ring and Random 
Area (a central point with several “trees” radiating). Depending on the models, the 
number of positions varied from 10 to 200 stations.  
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On top of this emulator, a version of the Network Layer was developed by another 
partner (Loria), therefore building a complete environment for testing. This was 
integrated with the OMNeT++ simulation tool via a TCP channel. The simulation sends 
new data packets to the emulator where they are queued. In each “time slot”. an 
emulation cycle is requested to the emulator that sends back the resulting data packets 
and the respective stations. Since the emulator supported only single-master networks, 
multi-master networks were supported using two (or more) emulators in parallel, and the 
number of used slots adjusted accordingly. Nevertheless, multiple master networks 
sharing the same TDMA slots (e.g. in “distant” points of the network) are not supported 
in the current version of the simulation system. This would require changes to support 
multiple network layers in parallel and move each master to a programmed position in 
the grid (currently they are always in position 1). 

  

 

Figure  9.1: Nodes connected in REMPLI Network Emulators 

Figure  9.1 presents the physical layout of the nodes of the physical layer emulator; 
the curves surround the slaves that connected to the master in the centre of the network. 
The difference between the simulations is only on the seed of the random number 
generator used for the physical layer emulator. In these physical layer simulation 
scenarios, all 100 stations were connected after 140 simulation seconds. Also presented 
are the selected node positions for simulation: 2 to 10 and 60. Looking at the map it is 
possible to conclude that positions 4, 7 and 8 never receive data, and positions 3, 6, 9, 10 
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and 60 always connect successfully. Other positions connect only in some of the 
emulators. Position 60 has the best reception possible on the network in terms of delays 
with a high probability of not using repeaters at all; other positions may be subject to 
repeater delays, especially the ones nearer the borderline. 

Emulators 1 and 2 are used in the low voltage segment and Emulator 3 and 4 in the 
high voltage segment. Table 9.1 presents the map positions with corresponding Node 
Address and connection capability. On Emulators 3 and 4 only Node Addresses 201 and 
202 are presented since only two bridges were used in the simulations; Node Addresses 
301 to 310 are for Nodes. These values are only for the Transport Layer and Drivers. 
The Network Layer and Physical Layer still behave according to the scenario of 100 
stations in each network, including internal management activity to keep track of all 
logged stations. 

Table  9.1: Channel conditions in each REMPLI emulator position 

Position���� 2 3 4 5 6 7 8 9 10 60 
Node Address 301 302 303 304 305 306 307 308 309 310 
Emulator 1  OK   OK   OK OK OK 
Emulator 2 OK OK  OK OK   OK OK OK 
Node Address 201 202 --- --- --- --- --- --- --- --- 
Emulator 3 OK OK OK OK    OK OK OK 

Emulator 4 OK OK  OK    OK OK OK 

 
Apart the Network Layer Module, simulation-specific Access Point and Node 

Driver Modules were designed for OMNeT++. Other modules like TRM, QM, NLI and 
RCIM use the same source code as the target implementation. 

The Access Point Driver module is specific for the simulation scenarios. In a real 
station, the drivers would receive requests from external applications and translate them 
into protocol requests to the DeMux. In the simulation there are no applications making 
requests, as the Access Point Driver module emulates these requests in each simulation 
station depending on the features to be tested. The Access Point Driver can generate 
confirmed requests, unconfirmed unicast requests, unconfirmed multicast requests and 
status requests. Since we have two different PDU headers in the system depending on 
data lengths, the simulation also takes this fact into account. 

On the other end of the network are the Node Drivers, which are also simulation 
specific. In this case the only requests are the Alarm Service and Status Service Updates. 
Depending on the station, the Node Driver can also issue automatic responses 
(eventually with a delay) to confirmed requests of the Access Point. 

In the end system there is a DeMux layer between the Transport Layer and the 
(multiple) Drivers per station, but for simulation this was not critical since the service 
interface and functionality is comparable for modeling purposes. Although the name, the 
“Drivers” in these simulations emulate the DeMux functionality including additional 
fields in the transfers with the TL when appropriate. 



  Part III 
Power-Line Communication System 
 

118 

 

Figure  9.2: Transport Layer Simulator Architecture 

9.3 Base Network Layer Characteristics 

The base network emulator was configured matching the laboratory test bed 
configuration that was also successfully in the field trial: 64-byte packets (51 available 
after Network Layer) and a slot time of 9.5 ms. 

Since we are using a dual master network sharing equal parts of the time slots with 
a normal interleave of four, the parameters for the emulators were adjusted accordingly. 
Each emulator was configured with an interleave-value of two and each pair is called in 
alternating slots. In reality, each emulator is activated every 19 ms. Apart this 
configuration parameters the network emulator is treated in a black box fashion in this 
section. 

In order to be able to obtain higher sensitivity regarding the Transport Layer 
performance, it is interesting to use information about the underlying Network Layer. 
With this data, it is possible to compare not only the end-to-end additional delays 
included by the additional Transport Layer mechanisms, but also to have some 
information on the issues create by lower layers delays and errors (also having the base 
average bandwidth). In order to be a faithful representation of the future tests base 
network, this test only sends PDUs to slaves that logged in and it is used in the other 
tests (i.e. Node Addresses 301-310 and 201-202). 

The first test was to produce the maximum allowed load in the network with 
unconfirmed requests from all masters, registering the delays until the PDU was 
delivered to the slaves and/or possible error indications. For this test, the NLI was 
adapted to provide the desired scenario, including careful synchronization with the 
emulator slot timer, while remaining TL functionality was disabled. This 
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synchronization was possible since the NL generates an event every time it reads a 
packet from an output queue. This process guarantees that an emulator slot occurs 
immediately after the Master Network Layer generates a new request with an effective 
null time difference and with minimal queuing. In the normal operation of the Transport 
Layer, there is no such synchronization since the timing is controlled by external entities 
(the Drivers) that do not have the need for a precise synchronization with the Network 
Layer. In practice this means that “real-life” results should have in average an additional 
delay of half a slot in a mono-master network (in the worse case the PDU has to wait 
almost an entire time slot), or in a dual-master network with interleaved slots (e.g. M1-
M2-M1-M2 and so on…) the average delay increases to a full time slot. 

The tests results are summarized in tables 9.2 to 9.4. 

Table  9.2: Network Layer Performance Tests 

Table  9.3: Network Layer Unconfirmed Requests performance test 

Global paramenters  Slots 
Slot time (“real”) 9.5 ms  
Interleave factor (“real”)  4 
Number of networks (“real”) 2  
Number of masters per network 2  
Number of slots per interleave cycle for one Master  2 
Physical layer raw data rate (both networks) 107786 bps  
Physical layer raw data rate per master 26947 bps  

Unconfirmed Requests Results  Slots 
Total possible slots  31578 
Slots used / Packets issued  20597 
Network availability 65%  
Average Tx data rate (TL Payload) per master 14006 bps  
Minimum network access delay 0 ms 0.0 
Average network access delay 11 ms 1.1 
Maximum network access delay (99.5% best) 57 ms 6.0 
Maximum network access delay 3382 ms 356.0 
Packets delivered  18945 
Packet Error Rate 8%  
Average correct Tx data rate (TL Payload) per master 12883 bps  
Minimum transmission delay 38 ms 4.0 
Average transmission delay 64 ms 6.7 
Maximum transmission delay (99.5% best): 152 ms 16.0 
Maximum transmission delay 3420 ms 360.0 
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Table  9.4: Network Layer Confirmed Request performance test 

 
Analysing these results, the first conclusion is that a large part of the network raw 

capability is “lost” in the current setup. A part of it is lost in headers (64 bytes turn into 
51 bytes usable by the Transport Layer: a 20% drop), but most of the “lost” slots are 
used by the network layer repeater mechanism to increase the coverage area (some are 
lost in network layer’s management). Although the fact that we are connecting only a 
few stations to the OMNeT++ simulation, the emulator, which includes the network 
layer functionality, uses the complete network of 100 stations. Since the selected nodes 
are distributed in the “connection” area, some have the minimum delay (4 slots) but in 
average they need at least two repeaters (8 slots) and some need three (12 slots). 
However, less than 0.5% of the requests show extremely large delays, much larger than 
the repeating slots and more in the order of 3 seconds. A quick review of the test logs 
shows that the network did not generate any traffic during these delays, but data stays on 
the Network Layer queues, therefore it is possible to assume they reflect internal 
network maintenance cycles (also possible that the network detects a fault and stopps 
sending packets temporarily). These outages have a great impact in the network. 
Considering the unconfirmed request case, the 0.5% worse cases (101 requests) occupy 
5662 slots. If we deduct from this value the time used in average for the other 99.5% 
requests, in order to process 101 requests we have 5056 slots “wasted”. This is around 
20% of the usable slots.  

Confirmed Requests Results  Slots 
Total possible slots  42104 
Slots used / Packets issued  13024 
Network availability 31%  
Average Tx data rate (TL Payload) per master 6642 bps  
Minimum network access delay 0 ms 0.0 
Average network access delay 89 ms 4.5 
Maximum network access delay (99.5% best) 285 ms 30.0 
Maximum network access delay 5890 ms 342.0 
Packets delivered  13020 
Packet error rate 0.03%  
Average correct Tx data rate (TL Payload) per master 6640 bps  
Minimum transmission delay 38 ms 4.0 
Average transmission delay 102 ms 10.8 
Maximum transmission delay (99.5% best) 437 ms 46.0 
Maximum transmission delay 3287 ms 346.0 
Confirmations received  13017 
Deliveries non confirmed 0.02%  
Minimum confirmation delay 76 ms 8.0 
Average confirmation delay 154 ms 16.3 
Maximum confirmation delay (99.5% best) 513 ms 54.0 
Maximum confirmation delay 3325 ms 350.0 
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Concerning error rates, for unconfirmed PDUs, 8% of the requests did not reach 
their destination. Nevertheless, this results vary wildly depending on the link studied, for 
example the connection between 101 and 201 is consistently worse (minimum 8.0, 
average 12.1 slots) than the connection between 101 and 202 (minimum 4.0, average 5.6 
slots). This result is expected from the mere observation of the connection map where 
position 2 (station 201) is in the borderline of the connection area and position 3 (station 
202) much nearer the centre of the map.  

For confirmed PDUs, there is a residual packet error rate (4 errors in 13024 
requests); in the test we also reporter very few missing confirmations for correctly 
delivered packet (just 3 missing confirmations in 13020 delivered packets). Therefore, 
the simulated network is extremely reliable when using confirmed requests when 
compared to the unconfirmed request performance in this parameter. 

In terms of delays, it takes at least 4 time slots for a PDU to go from A to B. For 
confirmed requests, the average is 6.7 slots for data to be delivered from the master to 
the slave, and this value increases to 10.8 slots for confirmed requests (see Figure  9.3). 
The additional delay in confirmed requests is due to the automatic retry mechanism 
supported by the Network Layer: if an error is detected, additional time slots are used to 
retry the request and, as seen in the final error rates, the Network Layer behaves well in 
this aspect. These delays also influence the queuing time before PDUs are sent. 
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Figure  9.3: Network Layer performance histograms 

It was also possible to repeat the confirmed request tests with echo functionality 
from the slave station. The results were similar to the table above and most of the 
confirmations at the master were followed by the slave data in the same slot. 11859 slave 
responses arrived to the masters, which means a loss of about 9%. Slave to master data 
payloads are typically sent by the Network Layer in the confirmation of master request, 
but they are not re-confirmed. For a particular master to slave confirmed request a PDU 
can be generated by the slave with a data payload and not make it all the way to the 
master. The network layer at the master side reissues the original request if needed but 
the slave data is lost anyway. 

Another effect was that approximately 20 PDUs were queued for delivery after the 
last confirmation at master 201 and 202, while in master 101 and 102 only 3 PDUs 
where delivered late. Most of these “queued” PDUs were delivery to the master in a 
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burst with only 2 to 6 slots intervals between PDUs. Since the slave-to-master channel 
was being used at this time, the network data rate for correctly delivery data went up to 
12679 bps - that is almost the same as the results for non-confirmed data. 

Another test was setup with duplicated echo PDUs. In this scenario, the Network 
Layer tries to empty the slave’s queues as soon as possible and uses more bandwidth for 
the slave-to-master channel. This resulted in only 5256 confirmed requests generated, 
one of them being lost during transmission and 9556 PDUs being received back in the 
master (again 9% less than the generated).  

In global 14812 slots where used for this last test of the around 42104 possible. In 
the tests with responses a lot of additional slots where used since the slave replies 
continued after the last transmission for more 5 seconds in bridge 202 and around 2.5 
seconds for the other masters. On non-echo tests this additional slots where much more 
limited (maximum 288 slots) and were not taken into account.  

9.4 Unicast Test and the TL Queued Requests Parameter 

Apart the basic address conversion tables that assign Unique Serial Numbers to Node 
Addresses, the Transport Layer has multiple configurable parameters concerning not 
only fragmentation-related information but also timeouts, thresholds, and queue sizes. 

 The optimal set of parameters is highly application dependent, but for all 
applications one parameter in particular has a likely direct impact on the timing 
performance of the system. This parameter is the number of pending Network Layer 
requests that the TL leaves open before stopping sending new requests.  

In theory, a higher queue parameter guarantees that the NL queues are never 
unnecessarily starved (e.g. a transmission slot is available but the Transport Layer failed 
to fill it up in time); on the other hand smaller queues guarantee faster response to 
priority packets. 

 

Figure  9.4: Queue size average delay and last transmission 
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For this test, small sized packets (that fit in a single fragment) were used. The tests 
sent 500 packets from each master to all stations logged in the network, including the 
Bridges. A total of 2000 packets were injected in the network (one for each master, and 
one for each reply). Up to 10 packets were sent with 1 ms interval. After this, new 
packets where generated when the TL replied to a previous request.  

The node echoes the packet back in the same simulation instant. Since the AP 
Driver is not synchronized with the NL, there may be an additional delay up one time 
slot, which is almost irrelevant in this scenario. 

For a queue size of one, the test ended before all the packets where processed since 
the delay was extremely larger than in other tests (see Figure  9.4). For the other queue 
sizes, the average is almost the same (around 105) and the last transmission happens 
later (6400 for queue size 2) for smaller queue sizes, but is practically the same for 
queue sizes of 8 to 12 (around 4500). 

The histogram in Figure  9.5 allows a slightly different analysis: the queue size of 1 
behaved well and delivered more than 300 packets with a delay smaller than 40 time 
slots between transmission and delivery; however, this effect was destroyed by the 
amount of time the confirmation response took to go back to the AP Driver. 

Analysing the other queue sizes, size 2 delivers most packets in the 40-60 slots 
interval and other intervals follow an almost linear response but with a long tail. Size 8 
and 12 show two irregular bell curves with queue 8 having the norm at 100 and queue 12 
at 120. 
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Figure  9.5: Delivery delays histogram 

The main conclusion from this analysis is that if there are no stringent 
requirements to deliver higher priority packets in front of other traffic, a queue value 
between 8 and 12 is a reasonable balance between delivery times and faster 
confirmations. Therefore, a value of 8 was selected for the next tests. 
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The following histogram in Figure  9.6 shows the side-result of this first test set: the 
temporal behaviour of the Unicast service for very small data payloads (i.e. single-
fragment). 
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Figure  9.6: Unicast Requests - 1 fragment – Mixed destinations 

This test was performed sending packets to all stations. Since the majority of 
stations are nodes behind the bridges, it is natural that the final performance is not ideal. 
The next test set shows the requests only for direct-connection destinations 201 and 202. 
Here the variability is much limited and, even with 1000 packets generated in each AP, 
the system experiences very small variations.  
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Figure  9.7: Unicast Requests – Bridges Only – Round Robin Policy 
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However, the fragmentation performance could be considered unexpected (see 
Figure  9.7). The average delay for the Node Reception with one fragment was 48 time 
slots, but with two fragments, this average went to 147 time slots. The issue here is the 
round-robin scheme of the Fragment Scheduler: since up to 10 packets are scheduled in 
parallel, the second fragment has to wait for the round robin cycle to be complete. 
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Figure  9.8: Unicast Requests – Bridges Only – Pick First Policy 

In theory, this method shares the available slot more evenly between the queues. 
On the other hand, the pick first policy guarantees fast delivery for most packets, but if 
there is a network problem then a small group of packets suffers long delays (see Figure 
 9.8). The principle of round robin applies well to multiple sized packets, but the pick 
first policy induces additional delays for small packets, that have to wait for big packets 
to be completely delivered. 

9.5 Request/Response Service 

In the Request/Response service, an Access Point Driver can send a packet to a 
particular node and the Node Driver responds with another packet (that can be empty). 
In the first test, each AP Driver sends a uniform distribution of packets with 1 to 4 
fragments to all connected Nodes. The Node Drivers respond immediately with the same 
data block. The histogram in Figure  9.9, shows the delays until the Node receives the 
request packet, and the AP receives the response packet (based on the original message 
transmission time). 
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Figure  9.9: Request/Response, 1 to 4 fragments, Nodes only 

9.6 Alarm Service 

The Alarm service enables a Node station (or the Node functionality in a Bridge) to send 
a confirmed packet to at lest one of the available Access Points. The Transport Layer 
manages the reliability and data management features, but it benefits from the Network 
Layer capability of “picking” fragments from slaves. The Network Layer task is eased 
by the fact that not only confirmation traffic from masters to slaves but also internal 
TRM-to-TRM traffic “opens” slots for data transport in the reverse channel. 

The first test of this service uses both Bridges, with 150 requests sent sequentially 
one at a time with a small delay between the OK and the new request at each bridge. In 
the current implementation, the TRM does not try to select better paths for slaves and it 
simply serves the queues based on priorities. 

In the one fragment test, 66% of the packets were received first by AP 101 and 
34% by AP 102. The minimum delay of an AP event was just 4 slots and the average 79 
slots. On the other hand, the average delay for confirmations on the Node was 95 slots 
since the start of the node request. On this test the requests were generated at the Node 
two seconds after the confirmation, and of the 300 packets generated, 20 overrun this 
delay and might had their performance affected by the new request on the network. 

For the two fragments test, the minimum delay for delivery was 10 slots with an 
average 105 slots, an increase of 26 slots compared to the one-fragment test. For the 
confirmations the average was 121 slots, again an increase of 26 slots compared to the 
one-fragment test. The distribution of the first alarm between AP 101 and AP 102 was 
very similar to the one-fragment test (see Figure  9.10). The requests were generated 4 
seconds after the confirmation and none was overrun. In the one-fragment test, all alarms 
were received by both APs, while on the two-fragment test only 2 out of the possible 600 
were not received. 
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Figure  9.10: Alarm Service, 1 vs 2 Fragments, Bridges 201 and 202 

For the Nodes, 50 requests were generated in active Node 310, the “best” 
connected station in the network. The average delay for the first AP delivery was 188 
slots, and the confirmations were received at 212 slots average. 60% of the requests were 
received first at AP 101 and 40% at AP 102. 

  

Alarm Messages - Node 310 - 1 or 8 Queued Requests at Node

0

10

20

30

40

50

60

70

80

0 16 26 36 46 56 66 76 86 96 106 116 126 136 146 156 166 176 186 196 206 216 226 More

Delay (time slots)

N
u

m
b

er
 o

f 
M

es
sa

g
es

1 - AP Reception
1 - Node Confirmation
8 - AP Reception
8 - Node Confirmation

 

Figure  9.11: Alarm Service, 1 Fragment, Node 310 
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The test was repeated with eight fragments queued at the Node side. The 
performance improvement was significant. The average delay for the first AP delivery 
was 80 slots, and the confirmation received at 193 average slots. Looking at the 
histogram in Figure  9.11 it is clear that a significant part of the deliveries are in the 26 to 
35 slot range when they were much more scattered in the one-fragment scenario. 
However, the largest delay increased to 2086 slots, when it was around 400 slots for the 
tests with only one-fragment queues. 

The main point on these two tests is that when a single request with no traffic on 
the network is present, it is up for the network layer polling cycle to fetch the data, and 
this operation can take several slots. When several requests are queued together, the 
network polling cycle fetches all the pending requests in a fast sequence reducing the 
average delay.  

This conclusion led to another test: to issue Alarms and Unicast services in the 
same network. A small alarm test was performed with 50 Unicast requests and 50 Alarm 
requests. The average delay for the Unicast delivery was 153 slots, but the average delay 
for the Alarm packets was only 24 slots, showing a significant improvement on the 
Alarm performance. The results can be compared in Figure  9.12, where the results 
without AP-to-Node traffic are the same as presented previously but scaled down to 
match the 50-packet scenario. 
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Figure  9.12: Alarm Service with AP-to-Node traffic 

These results show that a good performance may be obtained from the Alarm 
service but there is a trade-off between “wasting” network bandwidth at the Network 
Layer level, for more frequent pooling requests, and limiting the expected delay for the 
Alarm service. However, if the network is used periodically by the application then this 
already used bandwidth is beneficial for decreasing the Alarm delays, differently from 
the “traditional” way network bandwidth is characterized. 

Given the connectivity losses experienced by the physical layer emulator, the 
maximum delay of the Alarm is dependent on the network interruptions and not on the 
Transport Layer capabilities. 
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9.7 Unlimited packet size and fragmentation 

One of the design features of the REMPLI Transport Layer is to use multiple headers 
depending not only on the size of the packet but also on the number of fragments. In 
particular for the Unicast service there is a “Small Header” that takes 4 bytes and 
handles PDU lengths up to 255 bytes (28-1); a “Large Header” that takes 6 bytes and 
handles PDU lengths up to 16 MiB (to be precise 224-1); and finally a “Minimum 
Header” that takes only 3 bytes.  All this length limits are compile time options and can 
be easily changed depending on a particular deployment. 

The objective is to have very large packets on the system without compromising 
the real-time performance of the very small packets.  

On the current test set, the TL can issue fragments with up to 51 bytes to the 
Network Layer. This means that, in practice, the usable data payload per fragment is 48 
bytes for minimum headers, 47 bytes for small headers and 45 bytes for large headers. 

With these parameters the number of fragments per packet is: 
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Effective usable bit rate Bapp available for applications in bits per time slot is: 
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where L is the packet size in bytes, N1 is the number of starting headers, before switching 
to minimum headers (3). L1 is the length limit for using small length headers (255).  

The graphics in Figure  9.13 present the usable bit payload per packet and give 
some insight on the consequences on choosing the length parameters. 
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Figure  9.13: Headers choices and effective usable payload  
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For the small length headers it is clear that using 8-bits results in better bandwidth 
usage than using 14-bits. However, this 8-bit choice means that we can only use small 
headers for packets up to 255 bytes; after that, the large length headers start to be better. 

In addition, when it comes to large headers it is obvious that a header with 32-bit 
length takes more space than one with a 24-bit length field, even if we consider that they 
are only used in the first three fragments. This difference starts to fade with bigger 
packets, but it is very significant for smaller packets and a large portion of the bandwidth 
can be wasted in a system that issues many small packets.  

For systems that really need 32-bit length packets, it may be necessary to use small 
length headers larger than 8-bits, in order to avoid the performance hit on packets larger 
than 256 bytes. However, for systems where the time-critical packets are very small and 
there are not that many packets in the 256+ borderline, the 8-bits could be the best 
solution. The current setup of 8-bit small length and 24-bit large length provides a 
smooth transition and does not waste too much bandwidth in the smaller packets. 

For system configurations with larger Network Layer payloads, the predominant 
factor for very small packets is not the header sizes but the fact a single fragment is sent 
in each slot resulting in poorer real-time performance. 

Finally, another issue to take into account is the number of start fragments: in the 
current setup, with an interleave factor of 4, it is very unlikely that after sending 3 start 
headers and a minimum header the minimum header fragment arrives before all the other 
fragments. If this happens, the minimum fragment is discarded, but the other fragments 
are received correctly. In systems with low repetition rates at the network layer level, it 
is possible to send even less start headers without loosing packets, thus this can be an 
interesting option (depending on the traffic characteristics of the network). 

9.8 Small size packets delivered quickly over bi-level network 

Most of the previous tests have “occupied” the network by issuing new requests when 
the previous ones were completed. The following test issues packets separated by one-
second interval, basically “isolating” each request. The idea is to measure the time it 
takes to complete a unicast request in the network when there is no other traffic. 

A total of 50 requests were issued from Access Point 101 to Node 310. The TRM 
Scheduler used only Bridge 202 in this test. The average delays for reception at the Node 
were 18 slots and 26 slots for 1 and 2 fragments respectively. The best case took only 10 
and 18 slots, which are near the best theoretical values possible. For one fragment case, 
it takes 4 slots for the Access Point to Bridge transmission, plus 4 slots for the Bridge to 
Node transmission. The two other slots are lost due to probabilities: 1 since the 
probability of having 4 transmission slots in both networks is very low, and the other 
since the probability of having 0 slots of network access in both networks is also very 
low. With a larger data set some occasional values of 9 or 8 slots might occur. For the 
average case, the network delays are larger (due to NL’s internal traffic and also possible 
repetitions), and the access delays are more random, again due to NL’s internal traffic. 

The histogram in Figure  9.14 also presents the delays for one fragment for unicast 
directly to Bridge 202, where it is possible to conclude that the one fragment unicast for 
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node 310 is almost a copy more “spreaded” (due to additional jitter) and shifted four 
slots. 
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Figure  9.14: Unicast Service, Individual Requests (101���� 310) 

9.9 Priority processing 

To test the traffic priority mechanism, the network was flooded with up to 10 queued 
unicast 1-fragment packets of priority 10 from AP 101 to Bridge 202. In parallel, at 
every 500 ms a different priority unicast packet is sent from AP 101 to Bridge 202. 200 
packets where generated in total, including 15 of different priority. For the bridged 
request from AP 101 to Node 310, 50 packets were generated in total, including 10 to 12 
of different priority generated every 200ms.  

The results are displayed in Table 9.5. 
The effect of the priority values is clear in these tests. The (large) difference 

between the “normal” TL Priority of 5 and the “special” priority of -1 is due to the 
queuing in the NL Layer. In this test set (like in most of the other tests in this section), 
the maximum number of queued requests by the Transport Layer to the Network Layer 
was set to 8. This means that when a request with priority 5 appears it is likely that it 
already has 7 requests “in front” at the Network Layer queue with priority 10 and it 
cannot overpass them. If the special priority is used, then the Network Layer handles the 
priority and the request with priority -1 is processed in front of the 7 pending “priority 
10” requests. 
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Table  9.5: Transport Layer unicast priority test 

 
The duration of the test is limited by the number of packets. In the last test set from 

AP 101 to Node 310 with priority -1, there was a side-effect of this policy: the flooding 
requests were significantly delayed by the presence of the higher-priority traffic and so 
12 high-priority packets were generated instead of the 10 in the other tests.  

Since the higher priority requests were generated every 200 ms, i.e. every 21 time 
slots, this may be the result of a rush-in effect. If two higher priority requests overlap the 
lower priority traffic requests, they delay all the pending lower priority request. This 
effect is minor in the test with priority 5 due to the damping effect of the Network Layer 
queues, whichlimits the number of affected pending lower priority requests. To test the 
theory, a test re-run was done with the Driver queued requests increased to 15 (instead of 
the original 10) and keeping the 8 requests at the NL queues. The tests were done with 
same-priority and with priority 5 requests. There was a 31% increase in the delay of the 
normal traffic when the priority 5 requests were included in this scenario. 

9.10 Best route selection 

The objective of this test was to analysed the behaviour of Transport Layer routing in 
dynamic traffic situations. The test is based in the fact that only Bridge 202 connects AP 
102 to Node 301 due to the emulator network seeds selected. On the other hand, both 
Bridges are available by AP 101 to reach Node 310. 

 Average 
Slots 

Maximum 
Slots 

Same Priority Test – 101� 202   
Flood Priority = 10 58 84 
Timed with Priority = 10 58 85 

Higher Priority Test – 101� 202   
Flood with Priority = 10 60 90 
Timed with Priority = 5 37 42 

NL Higher Priority Test – 101� 202   
Flood with Priority = 10 62 90 
Timed with Priority = -1 10 19 

Same Priority Test – 101� 310   
Flood Priority = 10 84 190 
Timed with Priority = 10 84 135 

Higher Priority Test – 101� 310   
Flood with Priority = 10 89 185 
Timed with Priority = 5 66 89 

NL Higher Priority Test – 101� 310   
Flood with Priority = 10 145 361 
Timed with Priority = -1 37 63 
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Figure  9.15: Bridge routing test concept 

To test this application the TRM internal link quality values were updated every 
200 ms. In the first test, the queue updates from Bridges to AP where used as normal; in 
the second test the code was changed to remove the fragment count update at the AP 
side. 40 packets were generated by AP 101 and sent to Node 310, AP 102 sent 40 
packets to Node 301. Both bridges could route packets from AP 101, and Bridge 202 
was the only route for packets from AP 102 (see Figure  9.15). The results are 
summarized in Table 9.6. 

Table  9.6: Transport Layer bridge routing test 

 
The average delay improved significantly for packets from AP 101 to Node 310, 

and the overall system performance was superior in the system with fragment feedback 
enabled. This makes sense, since without this information the system tries to send more 
fragments to Bridge 202 only for them to be waiting in queues. 

However, looking at the log files it was possible to determine that other 
improvements could be performed. The fragmentation feedback system uses a sampling 
method, thus when a timer expires or a link quality changes too much, a sample is taken 
at the Bridge and sent to the AP. During this particular test, despite the fact that the 
network was being slightly flooded with requests (we only used a Driver queue of 5 
pending requests), many of the values transmitted from Bridge 202 were equal to zero. 
Therefore, averaging the number of fragments between the samples could improve the 
results. 
  

 Average 
Slots 

Maximum 
Slots 

With Fragment Information Active – Global: 90 167 
101 � 310 77 167 
102 � 301 104 162 
Bridge 201 used 7 times, 202 used 73 times   
With Fragment Information Inactive – Global: 110 202 
101 � 310 111 191 
102 � 301 108 202 
Bridge 201 used 2 times, 202 used 78 times   
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 Chapter 10  
Conclusions 

This chapter concludes this Thesis, by providing an overview of the main 
achivements. 

10.1 Overview of research objectives 

Industrial communication networks following the master/slave paradigm usually provide 
limited-length data transfers between stations with guaranteed timings. These limitations 
are a natural consequence of their target market: control systems focused on low-latency 
and high reliability transmission of many small packets. However, there are several 
situations where these constraints make the integration of broader services very difficult 
or even impossible.  

This Thesis addressed the design, implementation, test and validation of additional 
services over master/slave networks without loosing their native control timing 
characteristics. This was instantiated in factory automation and power-line 
communication networks. 

10.2 TCP/IP integration with Profibus  

In the first context, multimedia applications over TCP/IP and Profibus-DP control 
applications were merged into a single Profibus network.  

Traditionally TCP/IP over fieldbus has been seen with suspicious eyes from both 
the control-oriented experts, that do not expect much from TCP/IP, and from the 
multimedia-oriented field, where the modest bandwidth capabilities of the fieldbus 
networks look unpromising. 

Nevertheless, by implementing a trouble-free dispatching method and a dual-stack 
architecture it was possible to run TCP/IP applications over a Profibus network 
preserving full backward compatibility with existing fieldbus stations and with 
advantages for both multimedia and control applications. With this architecture, 
multimedia applications can be placed directly in the factory floor without additional 
wiring, on the other hand, control applications can use TCP/IP as a flexible data 
communication method. The presented architecture enables end-user network-wide 
traffic isolation between the protocols.  

The dispatcher system can be used like a traditional Profibus system where all 
high-priority packets are transmitted if so required by a particular deployment, but it can 
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also be configured to guarantee that additional traffic in one station does not have 
detrimental effects on the other stations deadlines, in fact improving the original 
Profibus protocol characteristics. 

On the other hand, the implemented QoS mechanism not only guarantees network-
wide traffic parameters but also enables to transparently in Profibus slave stations, 
overcoming the “lack of initiative” problem, as reported in this Thesis. 

The proposed fragmentation mechanism overcomes the packet size limits of 
Profibus so that TCP/IP applications can use typical packet sizes available on Ethernet 
networks. Services like World Wide Web, File Transfer Protocol and even Voice 
connections are now easily deployed using traditional (unmodified) TCP/IP applications. 

The system was validated via a factory automation field trial involving not only the 
merging of TCP/IP traffic and native control-oriented Profibus traffic, but also 
successfully including TCP/IP traffic in the real-time control-loop. 

10.3 QoS aware end-to-end system over dual-level power-line communication 
network  

While the network context previously addressed focused on factory-floor networks, this 
second target domain, a power-line communication system, widens the geographic span 
of the network stations.  

End-to-end geographically dispersed low-delay metering-oriented services are of 
paramount importance to Utility companies, however this deployment has been delayed 
due to lack of adequate technology combining performance and low cost. We believe 
that the REMPLI solution, based on a two-level master/slave PLC network, is a further 
step into the dissemination of such large-scale metering systems. 

The REMPLI system overcomes the base master/slave network limitations and 
allows the transmission of very large information blocks between utility servers and 
metering devices at customers’ premises, with QoS guarantees.  

The support of large data blocks usually implies larger PDU headers that have a 
detrimental impact on small-length packet delays. However, the use of different headers 
for large and small packets guarantees a minimal impact on the fast response capabilities 
of the network for small packets. On the other end, the sliding-window mechanism 
enables forwarding of large packets via bridging stations with limited memory. 

Bi-directional services are also available and the system can overcome the 
transmission path changes due to electromagnetic interferences and physical network 
reconfiguration. This was achieved through an efficient distributed-scheduling 
mechanism. 

Due to the transmission medium, the system was designed with electrical energy as 
the main starting point, but can be used directly to measure any other utility product like 
water, heating, gas, etc. User-oriented services like security and remote control can also 
be integrated in the system. 
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These objectives are viable using nodes (the more numerous stations in the 
network) with modest capabilities that are effortlessly deployed and remotely 
configurable.  

The tests (simulation-based) demonstrated that the proposed services are efficient 
and use limited resources, as initially envisaged. 
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 Chapter 11  
Future Work 

This section gives an overview on future developments beyond this Thesis.. 
 

Both REMPLI and RFieldbus projects represent a significant integration work of very 
diverse technologies and solutions, aiming at extending existing communication 
infrastructures with additional functionalities and guaranteeing end-to-end quality-of-
service (QoS) requirements. 

While clearly developed in synergy with these two European-level efforts, this 
Thesis explored and instantiated several scientific and technological contributions on 
what we dubbed “Intermediate-Level Protocols”, that in some way were common to both 
projects. In this context, relevant inputs to the scientific and industrial communities 
resulting from this Thesis were clearly recognized. 

Nevertheless, even more important than the direct benefits resulting from the 
research findings and engineering solutions provided within this Thesis for the projects 
stakeholders (e.g. companies involved in the two projects) is to identify how these can be 
leveraged for a wider spread use in the context of emerging paradigms in Information 
and Communication Technologies. 

As we witness computers being increasingly embedded in the physical 
environments, scaling down in size and up in number, new research challenges emerge. 
The dawn of large-scale networked embedded systems will bring an undefined number 
of new cyber-physical applications that will improve our quality of life, some of them 
yet to be unveiled. What we can forecast is that the trend is for most of these applications 
to be largely geographically distributed and computing devices to be tightly embedded in 
their physical environments. Ambient intelligence, assisted living, home and building 
automation, monitoring/controlling large physical infrastructures such as roads, electrical 
and gas grids are just examples.  

It is also accepted that the underlying large-scale network infrastructures will likely 
support many applications and services, most probably each of them with different 
quality-of-service requirements, e.g. depending on spatiotemporal issues. In this context, 
the research findings in this Thesis may be of extreme importance. Issues such as the 
provision of admission control and scheduling mechanisms can be used for achieving 
traffic differentiation, assigning packet priorities according to each application/task 
requirements. Packet fragmentation/defragmentation strategies will be of paramount 
importance when we think, for instance, on achieving a more pervasive Internet running 
into “smart objects” with limited processing, memory, energy and communication 
capabilities. The 6loWPAN protocol is just an example highlighting the need for 
subdividing (longer) IP packets to fit (smaller) IEEE 802.15.4 packets.  
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Conceiving QoS-aware Transport and Network level protocols for these large-scale 
networked embedded systems is also an enormous challenge. Could we apply the 
REMPLI Powerline Communications methodologies that were proposed in this Thesis to 
large-scale networked embedded systems? In fact, powerline communication systems 
and wireless sensor networks seem to have several commonalities, such as the 
unreliability of the links, low bandwidth, and network dynamics. 
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Abbreviations & Clarification of Terms 

Abbreviation  Clarification  
802.11 IEEE 802.11 Wireless Network Standards 

AAL ATM Adaptation Layer (Networks) 
ACS IP Admission Control and Scheduling (RFieldbus) 
AGV Automated Guided Vehicle 

AL Application Layer (Profibus) 
AP Access Point (REMPLI) 

ARCNET Attached Resource Computer Network (Networks) 
ARP Address Resolution Protocol (TCP/IP) 

ASCII American Standard Code for Information Interchange 
ATM Asynchronous Transfer Mode (Networks) 

BE Best Effort 
Bridge A kind of REMPLI station than interconnects LV and MV 

networks 
COM RS-232 Serial Communication Port (PC) 
CRC Cyclic Redundancy Check 

CSRD Cyclic Send and Request Data with Reply (Profibus) 
DA Destination Address (Profibus) 

DCCS Distributed Computer Control System 
DeMux De/Multiplexer (REMPLI) 
DDLM Direct Data Link Mapper (Profibus) 

DFD Data Flow Diagram 
DLL (i) Data Link Layer (Networks) 
DLL (ii) Dynamic Link Library (Microsoft Windows) 

DMA Direct Memory Access 
DMS Distribution Management System (Power distribution) 

DP Decentralized Peripherals (Profibus DP) 
DPH DP High Priority (RFieldbus) 
DPL DP Low Priority (RFieldbus) 

DPRAM Dual-Ported Random Access Memory 
DSP Digital Signal Processor 
EDN Electricity Distribution Network (Power distribution) 

FC Frame Control (Profibus) 
FCS Frame Checking Sequence (Profibus) 
FDL Fieldbus Data Link (Profibus) 

FIFO First In, First Out 
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Abbreviation  Clarification  
FPGA Field-Programmable Gate Array 

FTP File Transfer Protocol (TCP/IP) 
FTT Fragment Tracking Table (RFieldbus) 
GB Gigabyte: 109 bytes 
GiB Gibibyte: 230 bytes 

GSM Global System for Mobile communications (Mobile 
Telephony) 

GUI Graphical User Interface 
HMD Head Mounted Display 

HP High Priority 
HSE High Speed Ethernet (Fieldbus Network) 

HTML Hypertext Mark-up Language (Internet) 
HTTP Hypertext Transfer Protocol (Internet) 
ICMP Internet Control Message Protocol (TCP/IP) 

IDA Interface for Distributed Automation (Fieldbus Network) 
IEEE Institute of Electrical and Electronics Engineers 

IGMP Internet Group Management Protocol (TCP/IP) 
I/O Input/Output 

IOCTL Input/Output Control 
IP Internet Protocol (TCP/IP) 

IPC Inter-process Communication (Operating Systems) 
IPH IP High Priority (RFieldbus) 
IPL IP Low Priority (RFieldbus) 

irDA Infrared Data Association 
IRP I/O Request Packet (Microsoft Windows) 

JPEG Joint Photographic Experts Group image compression format 
KB Kilobyte: 103 bytes, i.e. 1000 bytes 

Kbps Kilobit per second: 103 bits per second 
KiB Kilibyte: 210 bytes, i.e. 1024 bytes 

LAN Local Area Network 
LBS Link Base Station (RFiedlbus) 

LE Length of PDU (Profibus) 
LLI Lower Layer Interface (Profibus) 
LP Low Priority 

LSB Less Significant Bit 
LV Low Voltage (Power Distribution Grid) 

MAC Medium Access Control 
MANET Mobile Ad-hoc Network 

MB Megabyte: 106 bytes 
Mbps Megabit per second: 106 bits per second 

MEER Ministry of Energy and Energy Resources of Bulgaria 
MiB Mibibyte: 220 bytes 
MIB  Management Information Base (RFieldbus) 

MoM Mobility Master (RFieldbus) 
MOST Media Oriented Systems Transport (Multimedia Network) 

MSB Most Significant Bit 
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Abbreviation  Clarification  
MTU Maximum Transfer Unit length 
MV Medium Voltage (Power Distribution Grid) 

NDIS Network Device Interface (Microsoft Windows) 
NetBIOS Network Basic Input/Output System (Microsoft Windows) 

NetBT NetBIOS Over TCP/IP (Microsoft Windows) 
NIC Network Interface Card 
NFS Network File System (RFC 1094, RFC 1813, and RFC 3530) 
NL REMPLI Network Layer 

NLI REMPLI Network Layer Interface 
NLIM NLI Manager (REMPLI Transport Layer) 

NLAddr REMPLI Network Layer Address 
NLUnit REMPLI Network Layer Unit Identifier 

NMS Network Management System (REMPLI Network Layer) 
Node A kind of REMPLI station 

Node Address Used to identify nodes at RCI Interface at APs (REMPLI) 
Packet A block of data (used in higher-level protocols) 

PC Personal Computer 
PCI Peripheral Component Interconnect 

PCMCIA Personal Computer Memory Card International Association 
PDA Personal Data Assistant 
PDU Protocol Data Unit (used at lower-level protocols) 
PHY Physical Layer 
PLC Power Line Communication 
PPP Point to Point Protocol 

PSTN Plain Standard Telephone Network 
QM Queue Manager (REMPLI Transport Layer) 
QoS Quality of Service 
RCI REMPLI Communication Interface 

RCIM REMPLI TL RCI Manager 
RE RFieldbus Relationship Entity 

RFC Request for Comments 
Rx Receiving 

RUSN REMPLI Unique Serial Number 
SCADA Supervision Control and Data Acquisition. Can be local or 

distributed 
SA Source Address (Profibus) 

SAP Service Access Point (Profibus) 
SD Start Delimiter (Profibus) 

SDA Send Data With Acknowledge (Profibus) 
SDN Send Data with No Acknowledge (Profibus) 
SFN Single Frequency Network (REMPLI Network Layer) 
SMP Symmetrical Multiprocessing 
SMS Short Message Service (Mobile Telephony) 
SRD Send and Request Data with Reply (Profibus) 

Station A device with networking capabilities 
TCP Transmission Control Protocol (TCP/IP) 
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Abbreviation  Clarification  
TCP/IP The TCP/IP Protocol Stack, including UDP, IGMP and other 

protocols 
TDCY Dispatcher Cycle Time (RFieldbus) 
TDI Transport Driver Interface (Microsoft Windows) 
TDPL Usage Estimation Limit for RFieldbus DP Low Priority 

Traffic 
TIPH Usage Estimation Limit for RFieldbus IP High Priority Traffic 
TL Transport Layer (REMPLI) 

TRM Transport Route Manager (REMPLI Transport Layer) 
TTH Token Holding Time (Profibus) 
TTR Token Target Rotation Time (Profibus) 
Tx Transmission 

UDP User Datagram Protocol (TCP/IP) 
USB Universal Serial Bus 
VPN Virtual Private Network 

WAN Wide Area Network 
WDM Windows Driver Model (Microsoft Windows) 

WWW World Wide Web 
  

 
 
 
 


