

Intermediate-Level Protocols to Provide

Quality of Service in
Master/Slave Communication Infrastructures

By

Filipe de Faria Pacheco

A dissertation submitted in partial fulfilment of the requirements for the degree of
Doctor in Electrical and Computer Engineering

November 2008

Doctoral Committee:

Prof. Fernando Lobo PEREIRA Chairman

Prof. Thilo SAUTER
Prof. Luís ALMEIDA

External Examiners

Prof. Manuel Pereira RICARDO
Prof. Paulo PORTUGAL

Internal Examiners

Prof. Eduardo TOVAR Supervisor

Prof. Pedro Ferreira do SOUTO Co-Supervisor

i

Intermediate-Level Protocols to Provide
Quality of Service in

Master/Slave Communication Infrastructures

Abstract

Industrial communication networks have suffered a dramatic change over the last
decades. There has been a proliferation of “traditional” fieldbuses and other more
application-specific networks, such as the ones relying on power-line communications.
Industrial Ethernet solutions have gained a significant market share too. Due to the
stringent quality-of-service (QoS) requirements of industrial monitoring and control
applications, most of the protocols for this type of applications rely on a master/slave
paradigm where one or more master stations control the access to the communication
medium, granting medium access to slave stations.

This Thesis was developed in synergy with the RFieldbus and REMPLI European
Union projects. Although operating at opposite network scales, they share one main
characteristic: a master/slave network was enhanced with communication features
previously unavailable.

In the context of the RFieldbus framework, a standard fieldbus network was
extended to support multimedia services and wireless/mobility capabilities. These
multimedia services run over the TCP/IP stack that in turn runs over the fieldbus low
layers network protocols. Since these multimedia services and the “traditional” control
traffic converge in the use of the same communication medium, appropriate admission
control and scheduling mechanisms were conceived to introduce different traffic classes,
in such a way that real-time control traffic is not affected by multimedia traffic which in
some cases is typically of best-effort type.

The REMPLI approach is based on a power-line communication protocol that was
enhanced with additional capabilities such as the ability of supporting large-scale
deployments - both in terms of number of network stations and in terms of geographical
area under coverage - and new metering-focused end-to-end services. This required a
rethinking of the Data Link, Network and Transport Layer protocols in a cross-layered
perspective that had end-to-end QoS requirements in mind.

The initial hypothesis was that providing add-ons to existing protocols to achieve
the required level of QoS and additional functionalities would present major advantages
over all-new network protocols or using stripped-down versions of existing network
protocols. This hypothesis is confirmed through experimental and simulation validations.

Keywords: Real-time Systems, Master/Slave Networks, Quality-of-Service, Fieldbus,
Power-Line Communications, Network middleware, Cross-Layered Design

ii

iii

Protocolos de Nível Intermédio para Conferir
Qualidade de Serviço a Infra-estruturas de

Comunicação Baseadas em Protocolos Mestre/Escravo

Resumo

As redes de comunicação industrial passaram por uma mudança extraordinária nas
últimas décadas, observando-se uma proliferação de redes “tradicionais” e outras redes
mais específicas, tais como as baseadas em comunicação pela rede de energia eléctrica.
A chamada Ethernet Industrial também conquistou uma representatividade significativa
em poucos anos. Os rigorosos requisitos de qualidade de serviço (QoS) das aplicações
industriais de controlo e monitorização levaram a que muitas destas soluções se
baseassem no paradigma mestre/escravo, segundo o qual, uma ou mais estações mestre
controlam o acesso ao meio de comunicação, concedendo então acesso às estações
escravo.

Esta Tese foi desenvolvida em sinergia com os projectos europeus RFieldbus e
REMPLI. Embora de certa forma situados em extremos opostos do espectro das redes de
dados, as redes utilizadas no âmbito desses dois projectos possuem uma característica
comum: redes com controlo do acesso ao meio baseado no paradigma mestre/escravo
foram utilizadas como base para a introdução de novas funcionalidades de comunicação.

Na abordagem RFieldbus, uma rede de comunicação industrial normalizada foi
actualizada com mecanismos inovadores que permitiram suportar serviços multimédia e
funcionalidades de rede sem fios/mobilidade. Os serviços multimédia operam sobre a
pilha de protocolos TCP/IP que por sua vez opera sobre os protocolos de nível baixo da
rede de comunicação industrial. Tendo em conta que estes novos serviços e o tráfico de
controlo “tradicional” convergem na utilização de um mesmo meio de comunicação, foi
necessário desenvolver mecanismos de controlo de admissão e escalonamento de tráfego
apropriados de modo a introduzir diferentes classes de tráfico, permitindo assim que o
tráfego de controlo tempo-real não seja afectado pelo tráfico multimédia.

A abordagem REMPLI foi baseada num protocolo de comunicação de dados pela
rede de energia eléctrica, o qual foi complementado com funcionalidades adicionais
adequadas ao suporte de redes de grande dimensão – quer em termos de número de
estações de rede, quer em termos de distribuição em área geográfica – e novos serviços
focados na gestão da distribuição de energia. Estes melhoramentos obrigaram a um
reequacionar dos diversos níveis da pilha protocolar numa perspectiva holística e tendo
em conta os requisitos de QoS entre os pontos de disponibilização dos serviços.

A hipótese validada por esta tese é a de que estendendo os protocolos existentes de
forma a atingir os níveis requeridos de qualidade de serviço e de funcionalidades, resulta
em vantagens relevantes quando comparado com soluções alternativas baseadas em
sistemas de rede desenhados de raiz ou usando versões reduzidas de redes de
comunicação existentes. A hipótese foi confirmada através de validação experimental e
simulação.

Palavras-chave: Sistemas de Tempo-real, Redes mestre/escravo, Qualidade de serviço,
Serviços de comunicação de dados, software de nível intermédio para redes de dados.

iv

v

Protocoles de Niveau Intermédiaire pour offrir
Qualité du Service en Infrastructures

Maître/Esclave de Communication
Résumé

Les réseaux de communication industriels ont connu une évolution notable durant ces
dernières années du fait de la prolifération de réseaux traditionnels et d’autres
applications réseaux spécifiques tels que celles basées sur les réseaux électriques. Les
solutions Ethernet industrielles ont également remporté un gain significatif du marché au
sein de quelques années.

Toutefois, les exigences strictes de qualité de services (QdS) pour les applications
de contrôle industriel ont notamment conduit à un grand nombre de solutions reposant
sur le paradigme Maître/ Esclave. De ce fait, un ou plusieurs machines Maître stations
contrôlent l'accès aux moyens de communication, tout en garantissant un accès aux
stations de type Esclave.

Cette thèse a été développée en collaboration avec les projets Européens RFieldbus
et REMPLI. Bien que ces réseaux soient situés à l’extrémité opposée de la gamme de
réseaux ordinaires de données, ils ont une caractéristique en commune présentée par
l’amélioration des réseaux Maître/ Esclave par des configurations de communication
précédemment invalides.

Dans le Project RFieldbus, un réseau de communication industriel normalisé a été
étendu pour le support des services multimédia et des fonctionnalités réseaux sans fil/
mobilité. Les services multimédia fonctionnent sous TCP/IP qui, à son tour, fonctionne
sur le réseau de communication industrielle.

Etant donné que ces nouveaux services et le trafic de contrôle "traditionnel"
existant dans le même moyen de communication, il s’avère important de concevoir et de
mette en place des mécanismes appropriés de commande et d’ordonnancement
d'admission pour définir différentes classes du trafic, de telle manière que le trafic de
contrôle temps réel ne soit pas affecté par le trafic de multimédia de meilleur-effort.

Le projet REMPLI, construit sur la base d'un protocole de communication de
données pour le réseau électrique, a été complété par des fonctionnalités
supplémentaires. A travers ces nouveaux fonctionnalités, de nouveaux services axés sur
la gestion de la distribution d'énergie ainsi que le support des déploiements à grande
échelle que ce soit en termes de nombre de stations du réseau, que en termes de
répartition par une vaste zone géographique ont été mis en place.

Ceci a exigé une révision des couches liaison de données, réseau et transport dans
une perspective multi-couche tout en tenant compte des conditions de QdS bout en bout.
L'hypothèse initiale était l’extension des protocoles existants pour atteindre le niveau
exigé de QdS et les fonctionnalités additionnelles présenteraient des avantages
importants par rapport aux nouveaux protocoles ou à ceux existants. Cette hypothèse a
été confirmée par des validations expérimentales et des simulations.

Mots-clés: Réseaux Maître/Esclave, Qualité de Service, Services de Réseaux de
Communications

vi

vii

Acknowledgements

It is always hard to find the most adequate words to show appreciation to all that made
this huge task possible. To all those that are not in this few lines and feel that they should
be, please accept my most sincere apologies and gratefulness for their encouragement.

First, I would like to thank my supervisor, Eduardo Tovar, for his leadership and
his reviewing work. I would also like to express my gratitude to the support provided by
my co-supervisor, Pedro Souto.

My deepest gratitude also goes to Mário Alves and Miguel Pinho for their
friendship and reviewing work.

Additional acknowledgments to the RFieldbus team Nuno Pereira, Sandra
Machado, Luis Ferreira (ISEP), Heiko, Jörg and Lutz (IFAK), Klaus, Gerhard
(Siemens), Peter and Thomas (Softing), Αθανάσιος, Χρήστος and Σταύρος1 (ISI) and
Frabrice (ST2E).

The REMPLI team also deserves my sincere thank you: Luis Marques, António
Barros (ISEP), Maksim, Albert, Gerhard and Thilo (ICT), Peter (TCE), Greg, Jüergen
and Xavier (iAd), Raul and YeQiong (Loria).

I would also like to extend my most friendly appreciation to Isabel Praça, Miguel
Losa, Berta Batista, Veríssimo Lima and Armando Sousa for their unconditional support.

Finally, a special thank you note goes to my family and friends, mainly to João but
also extended to my brothers and parents. Without them, it would all have been
useless…

 Formal Acknowledgments:
 This work was partly supported by the RFieldbus (IST-1999-11316) and the REMPLI
(NNE5-2001-00825) European projects, by the Portuguese Science and Technology
Foundation (PRODEP) and by my school (ISEP/IPP)

 Porto, 24/Nov/2008

 Filipe de Faria Pacheco

1 “Athanassios, Christos and Stavros” in Latin Alphabet transliteration

ix

Table of Contents

Table of Contents... ix

Table of Figures ...xiii

Part I Research Context ... 1
Chapter 1 Overview.. 3

1.1 Introduction.. 3
1.2 Factory Automation Scenario .. 4
1.3 Energy Distribution Management Scenario ... 5
1.4 Hypothesis.. 7
1.5 Research Contributions .. 7
1.6 Structure of the thesis...8

Chapter 2 Related Work on Factory Communications ... 11
2.1 Overview of fieldbus networks .. 11
2.2 Fieldbus standards.. 13
2.3 Profibus overview .. 16
2.4 Wired/Wireless Profibus Networks.. 20
2.5 Connecting Fieldbuses to TCP/IP and Ethernet networks 23
2.6 Multimedia content over fieldbus and automotive on-board networks .. 24

Chapter 3 Related Work on Power-Line Communication Systems........................ 27
3.1 The DLC1000 Power-Line Communication System 27
3.2 The REMPLI System Services... 30
3.3 REMPLI System Internal Architecture .. 32

Part II Factory Communications Framework.. 35
Chapter 4 Protocol Stack Architecture ... 37

4.1 Introduction.. 37
4.2 IP Mapper... 41
4.3 DP Mapper...43
4.4 IP ACS ... 43
4.5 DP/IP Dispatcher ... 46

Chapter 5 Other Design and Implementation Issues... 51
5.1 IP ACS Scheduler .. 51

 Table of Contents

x

5.2 Configuring the RFieldbus Network .. 53
5.3 Profibus Fragmentation Needs... 55
5.4 Windows NT Network Drivers .. 57
5.5 RFieldbus Prototype Implementation... 59

Chapter 6 Validation... 65
6.1 Introduction.. 65
6.2 The Manufacturing Automation Field trial .. 65
6.3 Low-level communication flows characteristics.................................... 70
6.4 System configuration ... 72
6.5 Scheduling of TCP/IP Traffic .. 74
6.6 Manufacturing automation field trial results .. 75

Part III Power-Line Communication System ... 79
Chapter 7 Proposed Architecture.. 81

7.1 System Objectives.. 81
7.2 Login/Logout processing and Address conversion 83
7.3 Routing and Link Quality information... 85
7.4 Sending fragments from slaves to masters... 87
7.5 Traffic prioritization and queuing .. 89
7.6 The Alarm Service ... 90

Chapter 8 Implementation Issues.. 91
8.1 Transport Layer Software Architecture.. 91
8.2 Message Processor ... 96
8.3 Inter-module messages... 97
8.4 Processing Requests... 101
8.5 Fragmentation and Headers.. 104
8.6 Direct Unicast Service ... 108
8.7 Bridged Alarm Service... 110
8.8 Request with Response Service ... 113

Chapter 9 Validation... 115
9.1 Introduction..115
9.2 Simulation Environment .. 115
9.3 Base Network Layer Characteristics .. 118
9.4 Unicast Test and the TL Queued Requests Parameter 122
9.5 Request/Response Service ... 125
9.6 Alarm Service .. 126
9.7 Unlimited packet size and fragmentation... 129
9.8 Small size packets delivered quickly over bi-level network 130
9.9 Priority processing ... 131
9.10 Best route selection .. 132

Part IV Conclusions & Future Work .. 135
Chapter 10 Conclusions.. 137

10.1 Overview of research objectives .. 137
10.2 TCP/IP integration with Profibus... 137

xi

10.3 QoS aware end-to-end system over dual-level power-line communication
network .. 138

Chapter 11 Future Work... 140

References ... 142

List of Publications ... 149

Abbreviations & Clarification of Terms ... 153

xiii

Table of Figures

Figure 1.1: Example of a System TCP/IP services coexisting with fieldbus services 4

Figure 1.2: Energy Management System.. 6

Figure 2.1: IEC 61784-1 (2nd Ed.) and -2 (1st Ed.) communication profiles 14

Figure 2.2: Example Profibus data exchange.. 17

Figure 2.3: Profibus Low Priority traffic affects High Priority traffic 18

Figure 2.4: Profibus most used frame formats .. 20

Figure 2.5: Profibus UART frame .. 21

Figure 2.6: Profibus Idle Times and Slot Time... 21

Figure 2.7: Profibus Inserted Idle Time .. 22

Figure 2.8: Modbus/TCP and Modbus Serial PDU... 23

Figure 2.9: EtherCAT Ethernet PDU.. 24

Figure 2.10: MOST Frame Structure .. 25

Figure 2.11: MOST data structures... 26

Figure 3.1: DLC1000 Network Layer time division ... 27

Figure 3.2: DLC1000 Network Layer timing ... 28

Figure 3.3: REMPLI Upper Layer Functionality (“outside” view)................................. 31

Figure 3.4: REMPLI Upper Layer Functionality (“inside” view)................................... 33

Figure 4.1: RFieldbus Protocol Stack Architecture .. 37

Figure 4.2: Slave initiative examples in a symmetrical scheme...................................... 39

Figure 4.3: RFieldbus Profibus-IP addressing scheme ... 39

Figure 4.4: Multicast/Broadcast scenarios in RFieldbus... 40

 Table of Figures

xiv

Figure 4.5: IP Mapper Internal Architecture... 41

Figure 4.6: IP ACS Architecture... 44

Figure 4.7: Scheduling example at IP ACS level.. 45

Figure 4.8: Dispatcher functionality and interfaces .. 46

Figure 4.9: Dispatcher traffic classes.. 47

Figure 4.10: Dispatcher traffic classes and timing concepts ... 49

Figure 4.11: Dispatcher and token timing... 49

Figure 5.1: IP ACS Deferred-Release algorithm .. 51

Figure 5.2: IP ACS Deferred-Release scheduling example .. 52

Figure 5.3: IP ACS Deferred-Release Scheduling with Jitter compensation 53

Figure 5.4: Basic temporal parameters for network configuration.................................. 54

Figure 5.5: RFieldbus packet format... 56

Figure 5.6: Windows NT TCP/IP network model overview... 57

Figure 5.7: Supported intermediate driver configurations .. 59

Figure 5.8: RFieldbus NDIS implementation architecture.. 60

Figure 5.9: RFieldbus NDIS Intermediate Driver Interfaces .. 61

Figure 5.10: RFieldbus NDIS intermediate driver functionality..................................... 62

Figure 5.11: Modules acting in the task of sending a packet .. 62

Figure 5.12: DFD - Store packets to send in appropriate relationship 63

Figure 5.13: DFD - Emptying of the relationships.. 63

Figure 5.14: DFD - Receive packets and deliver to upper layer 64

Figure 6.1: Manufacturing field trial mechanical system layout..................................... 66

Figure 6.2: Manufacturing field trial network topology ... 67

Figure 6.3: Manufacturing field trial multimedia streams .. 68

Figure 6.4: Using a HMD in the manufacturing field trial.. 69

Figure 6.5: Manufacturing field trial Pocket PC Client Application snapshots 69

xv

Figure 6.6: Manufacturing field trial cyclic DPH traffic... 70

Figure 7.1: REMPLI Upper Layer Functionality (“inside” view)................................... 82

Figure 7.2: REMPLI login processing .. 84

Figure 7.3: REMPLI logout Processing.. 85

Figure 7.4: REMPLI Network Layer example layout... 87

Figure 7.5: Slave timer concept in REMPLI system... 88

Figure 7.6: REMPLI priority queues processing .. 89

Figure 7.7: REMPLI Alarm service.. 90

Figure 8.1: REMPLI Transport Layer internal architecture.. 92

Figure 8.2: OMNeT++ simulation and HyNet implementation...................................... 93

Figure 8.3: OMNeT++ simulation network layout ... 94

Figure 8.4: Implementation of multi-master simulation ... 95

Figure 8.5: OMNeT++ Simulation “Bridge” and “TL” modules.................................... 96

Figure 8.6: REMPLI message processor concepts.. 96

Figure 8.7: REMPLI TRM/QM messages .. 98

Figure 8.8: REMPLI NLI messages.. 99

Figure 8.9: REMPLI RCI messages..100

Figure 8.10: REMPLI PDU processing (direct connection) ... 102

Figure 8.11: REMPLI PDU processing (via Bridge) .. 103

Figure 8.12: REMPLI Fragmentation Headers for Unicast Data Services.................... 104

Figure 8.13: Memory Blocks in a Unicast service (Linux HyNet System)................... 106

Figure 8.14: REMPLI Status Information Algorithm ... 107

Figure 8.15: REMPLI Fragmentation Headers for Non-Unicast Data Services 108

Figure 8.16: The Alarm Service Fragment Status – Simplified Concept...................... 110

Figure 8.17: The Alarm Service Bridge Dual-Queue Architecture............................... 111

Figure 9.1: Nodes connected in REMPLI Network Emulators..................................... 116

Figure 9.2: Transport Layer Simulator Architecture... 118

 Table of Figures

xvi

Figure 9.3: Network Layer performance histograms .. 121

Figure 9.4: Queue size average delay and last transmission... 122

Figure 9.5: Delivery delays histogram.. 123

Figure 9.6: Unicast Requests - 1 fragment – Mixed destinations 124

Figure 9.7: Unicast Requests – Bridges Only – Round Robin Policy........................... 124

Figure 9.8: Unicast Requests – Bridges Only – Pick First Policy................................. 125

Figure 9.9: Request/Response, 1 to 4 fragments, Nodes only....................................... 126

Figure 9.10: Alarm Service, 1 vs 2 Fragments, Bridges 201 and 202........................... 127

Figure 9.11: Alarm Service, 1 Fragment, Node 310 ... 127

Figure 9.12: Alarm Service with AP-to-Node traffic.. 128

Figure 9.13: Headers choices and effective usable payload.. 129

Figure 9.14: Unicast Service, Individual Requests (101� 310)................................... 131

Figure 9.15: Bridge routing test concept... 133

1

 Part I
Research Context

3

 Chapter 1
Overview

There is a growing trend in industrial computer networking to incorporate new
services and to provide adequate levels of Quality-of-Service (QoS) as an added-
value to the users. This is in some way defines some of the technological context
of this Thesis..This chapter presents the context, defines the hypothesis,
summarises the main contributions and provides a view of the overall organization
of this Thesis.

1.1 Introduction

In the last few decades, there has been a proliferation of fieldbus and other application-
specific communication networks. Due to the quality-of-service (QoS) requirements
usually imposed by industrial monitoring/control applications, namely timeliness, most
of these network protocols rely on master/slave paradigms, where one or more master
stations control medium access, granting other stations (namely slaves) permission to
acknowledge or to respond to master station’s requests.

In many situations, it is preferable to extend an existing network technology to
support additional services/functionalities, rather than designing new solutions from
scratch. This idea forms the baseline for this Thesis.

In this Thesis, two distinct industrial communication frameworks were re-designed
to support functionalities that were previously unavailable, in a way that the original
applications quality of service requirements would still be respected.

Firstly, a well-known fieldbus protocol – Profibus2 (PROFIBUS, 2008) – was
redesigned and extended to support multimedia TCP/IP (Transport Control Protocol /
Internet Protocol) applications, without interfering with the timeless requirements of the
control traffic. That research framework is described in Section 1.2 of this chapter.

Secondly, a power-line communication-based energy management system was also
re-designed, extended and adapted to be able to provide end-to-end quality of service in
large-scale deployments. That research framework is briefly described in Section 1.3.

In this chapter the Hypothesis is stated in Section 1.4, and the contributions of this
research work are summarized in Section 1.5.

2 The official representation is “PROFIBUS”, all caps. In this thesis, we will in

most cases a more text-friendly version with only the capital “P” to refer to the same
standard.

 Part I
Research Context

4

1.2 Factory Automation Scenario

The factory-floor looks rather hermetic to innovative technologies, eluding the
widespread usage of the so-called gadgets in everyday such as cellular phones, personal
data assistants and digital cameras, even with less technological-aware users.

After the fieldbus revolution on the 80’s in the last century, the factory-floor has
seen an increased use of more and more powerful programmable logic controllers and
user interfaces, but the way they are used remains almost the same. Too many times the
“new” graphical user interfaces are simple copies of the previous synoptic boards with
light bulbs and buttons replaced by pixels on a screen. We believe (Pacheco and Tovar,
2002) however that new user-computer interaction techniques, including multimedia and
augmented reality combined with now affordable technologies such as wearable
computers and wireless networks, can change the way the factory personal work together
with the machines and the information system on the factory-floor. This new age is
already in place with innovative uses of communication networks on the factory-floor
either using "standard" networks (Pokam et al., 1995) or through enhanced industrial
networks with multimedia (Tovar et al., 2001) and wireless capabilities (Pereira et al.,
2001).

The RFieldbus project (RFieldbus Project, 2008) aimed at facilitating the use of
these solutions by enabling TCP/IP usage over traditional factory-floor fieldbus
networks, without detrimental side effects on the original (control-oriented) network
usage.

Figure 1.1: Example of a System TCP/IP services coexisting with fieldbus services

To illustrate some of the concepts and challenges, consider Figure 1.1. In the
system described, two video cameras are connected to the fieldbus network and
eventually the video streams generated by them are then used by a remote video
monitoring system in a network station connected to the Ethernet network. Therefore,

Video
Interface

Ethernet Cable

I/O

PLC

I/O

Fieldbus Cable

 TCP/IP
Mutlimedia

Streams

TCP/IP or Fieldbus
High-level

Control

Fieldbus
Time-Critical

Control
Video Cameras

Monitor

Video
Server

Control
+

Gateway

Factory Floor

 Offices

Control
Application

TCP/IP
High-level

Control

 Chapter 1
Overview

5

there will be video streams eventually “circulating” in the fieldbus network. While these
may not impose end-to-end time guarantees, they cannot jeopardize the timeliness
guarantees required for the time critical control traffic in the fieldbus network. This
imposes some careful design options on how to support this multimedia type of traffic
with the fieldbus network.

Also typically, the remote video monitoring applications will use standard TCP/IP
Application Program Interfaces (APIs) to communicate. This is a natural application
productivity requirement. Per se it poses and important challenge into the system design:
IP applications are typically symmetric in the sense that any IP network node can have
communication assess while in typical fieldbus networks some nodes (e.g., slaves) will
not have communication initiative.

Also important, typical fieldbus networks are optimized for short messages related
to sensor reading or actuation. Conversely, multimedia information such as video or
audio involves higher amounts of bytes in simple transactions.

Another functionality that should be supported and is illustrated in Figure 1.1 is a
high-level Control Application connected via TCP/IP to a Gateway and the latter
connected via a fieldbus to a Programmable Logic Controller (PLC). The time-critical
control may be performed within the fieldbus level between the PLC and I/O stations but
eventually also through the Gateway between the Control Application and the PLC using
TCP/IP over Ethernet and the fieldbus.

Both solutions are possible in the RFieldbus architecture, thus enabling a much
greater flexibility at the factory-floor. The I/O stations can be common fieldbus stations
that are “unaffected” by the TCP/IP traffic at the fieldbus level.

1.3 Energy Distribution Management Scenario

Like discrete manufacturing companies, utility providers (energy, water, heating, etc.)
have also considered using emerging technologies to optimise and improve the set of
offered services and at the same time to reduce costs.

One service considered strategic by utility companies is to have cost-effective
remote meter reading technologies. Utility companies benefit from these technologies by
obtaining detailed information about how energy is consumed by the end-users. They
can even take corrective measures since the data can be gathered in real-time (although
this can limit the scalability of the system).

In addition, remote metering technologies can also be used to harvest
information about the status of the energy distribution grid itself. Based on the
availability of fine-grained energy consumption data at the end-users site, the energy
flow is easier to control and leakages detected more efficiently. In particular, peak load
situations can be better managed with extreme benefits for both the utility providers and
the consumers given the fact (Rowlands, 2007) that in peak situations a very small
increase in load can have a dramatic effect in the energy cost to the utility company.
Additional services such as the remote switching or termination of the supply of energy
can also be supported, if required for either management services or services not yet
generally available in the market (e.g., pre-paid systems or time-bounded uses).

 Part I
Research Context

6

This type of systems could also be used to provide additional information such
as monthly energy cost on the actual metering device and make new interactive services
available like user-selectable alternative billing services.

This is the context of the Real-time Energy Management via Power-Lines and
Internet (REMPLI) European project (Pacheco et al., 2005a). The project aimed at
designing and implementing a communication infrastructure for real-time distributed
data acquisition and control operations, exploiting the power-line as the communication
medium; therefore exploiting a Power-Line Communication (PLC) system.

According to the overall project goals, the primary usage of this infrastructure is
remote meter reading and remote control. Besides that, the communication platform is
open to various types of add-on services. Figure 1.2 illustrates the architecture of the
communication network.

Figure 1.2: Energy Management System

KWh Metering

Node

Node

 Bridge

 Bridge

 Access Point

Data Collection
Loss Detection
Local Control

Medium Voltage (10/20kV)
Low Voltage (230/400 V)
Transformer Station

DMS
EDN

Planning
Data Archive

Application server(s) with
Internet Interface, firewall

Application server(s):
SCADA, metering
systems, etc.

Internet
Access

Wireless
Access

Climate Control
Switching Control

Burglar Alarm

Private

Network

Internet

 Chapter 1
Overview

7

There are diverse systems available to access remote information on meters using
telephony, radio frequency and satellite communications technologies. However, PLC
systems have the clear advantage in the electrical utility market that the medium is
available in all client sites.

There is however a number of challenges that needed to be tackled in order to
attain such a system. Most of them result from the fact that power-line communications
are typically based on robust time-slotted master-slave communication paradigms
(Sebeck and Bumiller, 2000) while electrical networks may have rather non-linear and
multi-tiered topologies as will be explained in Chapters 3 and 7 of this thesis.

1.4 Hypothesis

The main hypothesis in this thesis is that providing add-ons to existing protocols to
achieve the required level of quality of service and additional functionalities would
present major advantages over all-new network protocols or using stripped-down
versions of existing network protocols.

Taking into account the research and technological context briefly presented in the
previous sections, the approach was to devise in fact the appropriate solutions to network
ensembles built upon existing and proved low-level master-slave communication
network mechanisms. As can be inferred from the rest of this Thesis, this hypothesis is
confirmed through the design of novel architectures that are validated through actual
implementations and simulations.

1.5 Research Contributions

This thesis contains a number of important contributions. As it will become clear in
Section 1.6, this thesis is organised into two main parts, one related to the contributions
for factory communications and another related to power-line communication systems.
Therefore, the contributions are organized according these to main parts.

Concerning factory communications, the main contributions are the following:
1. The specification of a dual stack architecture that provides traffic independence

between TCP/IP applications and native Profibus applications. This
architecture also provides transparent access of both types of applications to the
network allowing for rapid deployment of mixed systems.

2. A system that provides TCP/IP traffic selection and system-wide scheduling
capabilities. Traffic generated by TCP/IP applications can be divided in best
effort or in several classes with diverse quality of service parameters. These
levels of service are guaranteed even if the TCP/IP application resides on a
slave (Profibus) station.

3. A methodology for determining the parameters for setting up a RFieldbus-like
network. The correct operation of a RFieldbus-like system relies on the proper
setting of several configuration parameters that influence the timeliness
properties and overall performance of the system.

 Part I
Research Context

8

4. The definition of a test system architecture for the contributions listed above
providing validation of the results.

Regarding the energy management communication system, the main contributions
of this thesis are the following:

5. The design of a dual-level network architecture that is easily deployed in the
last two voltage levels of most electrical power distribution grids. This
architecture provides transparent access to stations regardless of their location
in the grid.

6. The definition of a set of utility-oriented services that are scalable not only
concerning the number of stations reachable but also concerning the
deployment over large geographical areas. Features like a flat address space, a
run-time editable mapping mechanism between stations and the address space
and the close integration of the base network services enable an end-to-end set
of services focused on metering applications not only for electrical power but
also on other utilities.

7. The deployment of a distributed traffic-selection mechanism. The base system
forwards remote queue and link quality information to the network entry points.
This “global view” of the network is then used to select the best route for
requests. The scheduler can be easily upgraded and tested using the
simulation/emulator tools developed within the timeframe of the project.

8. The definition of a development/simulation architecture where the same
transport layer code can be used for simulation tests and end-device execution
enables not only an easier deployment but also future developments and
research.

1.6 Structure of the thesis

This thesis is structured as follows.
There are essentially 4 parts. The first part is devoted to research context. It

includes Chapter 1 (Overview), Chapter 2 (Related Work on Factory Communications)
and Chapter 3 (Related Work on Power-Line Communication Systems).

Chapter 2 provides a description and discussion of research issues and technology
related to the factory communications research framework developed in this thesis.
Besides a general background on fieldbus networks and issues related to the
interoperability of these with TCP/IP networks, the chapter provides, with some
emphasis, details on Profibus networks. In fact, Profibus is used as the basis for the
RFieldbus approach.

Chapter 3 provides also research and technology context for energy management
communication systems. Likewise the previous chapter, related work is described and
discussed. Emphasis is given to the base power-line network used as the building block
for the wider approach. Intended services to provide to higher layers by the transport
layer are discussed as well. Finally, since most of the approach is validated also through
simulation, the OMNeT++ simulation system, over which the transport layer
development was built and validated, is briefly presented.

 Chapter 1
Overview

9

The second part (Part II) of this thesis is devoted to the contributions related to the
factory communications framework. It includes Chapter 4 (Protocol Stack Architecture),
Chapter 5 (Other Design and Implementation Issues) and Chapter 6 (Validation).

In Chapter 4, the main concepts of the (dual) protocol stack are presented,
including the various sub-layers (IP Mapper, DP Mapper, IP ACS, and the DP/IP
Dispatcher) used to achieve the required functionalities at the required qualities of
service. The slave initiative mechanism, traffic classes, IP fragmentation, scheduling,
routing and other mechanisms that allow the coexistence of Profibus and (tunnelled) IP
traffic in the same bus are discussed, proposed and detailed.

Chapter 5 deals with implementation specificities of the concepts and mechanisms
described and proposed in Chapter 4.

Finally, to close Part II, Chapter 6 describes a pilot implementation and field trial
tests that used to validate the proposed system. The results of the tests and respective
conclusions are discussed accordingly.

The contributions related to the energy management communication system
framework of this thesis are organized in Part III, which has basically the same chapter
organization of Part II.

Therefore, in Chapter 7 the main concepts related to the transport layer is discussed
and novel solutions are proposed. The routing and network topology information
gathering system is described, followed by a specific solution for the slave initiative
issues and the distributed scheduling mechanisms. The alarm service, due to its
specificity is also discussed in that chapter.

In Chapter 8 the main implementation-related issues are dealt with, including the
base network services and the mixed simulation/development system based on
OMNeT++. Fragmentation issues are given additional emphasis stress the difficulties
resulting from the limited resources available in the stations and network that occur
typically with the extreme range of packet lengths therefore leading to very specific
PDU header structures. Implementation options of the algorithms for the main services
provided by the transport layer are discussed.

Finally, Chapter 9 deals with the validation of the system done via simulation
scenarios. Several tests and related results are presented and discussed.

The thesis concludes with Part IV, that summarizes, in Chapter 10, the various
contributions, and, on Chapter 11, potential future work.

11

 Chapter 2
Related Work on Factory

Communications

An overview of technologies related to factory automation networks is provided in
this chapter. The first section presents the historic context of fieldbus networks
followed by details on the diverse standards available and the Profibus protocol in
particular.

2.1 Overview of fieldbus networks

Since one of the research frameworks of this thesis is factory communication systems
based on a fieldbus network, we first start with a historic perspective of the area.

Typically a computer-controlled system can be decomposed into a set of three
subsystems: the controlled object; the computer system; and the human operator
(Kopetz, 1997). The job of the computer system is to react to stimuli from the controlled
object or the operator. The computer system should be able to accept status data of the
controlled object, compute new instructions according to the references provided by the
user, and transmit those new commands to actuators.

A computer-controlled system can have a centralised architecture, with the field
devices (e.g., sensors and actuators) connected to the computer system via point-to-point
analogue or digital links. In traditional systems, there was a main control box in a central
location and wires were connected to each sensor and actuator using analogue signals.
The analogue signals had problems with limited distance, wire-to-wire noise and lack of
unified protocols. The usage of digital links made it possible to cover much larger
distances and reduce the noise problems dramatically. It also made much easier to use
digital processing units on the central location. However, the protocol problem remained
since each manufacturer had its own digital protocol making device integration from
different manufacturers difficult or even impossible.

In addition, the wiring issue was not solved: even with digital links, there where
still end-to-end wires connecting each device to the central box. After the digital end-to-
end link, the obvious leap was to use a digital bus network. The main advantages
(Thomesse, 2005) include lower installation and maintenance costs, bidirectional
communication, more accurate information, easier interface to the data (possible using
handheld devices on the field), and easier expansion due to the modular nature of the
network. The ability to support distributed control algorithms is another advantage
achievable by the use of field level networks.

 Part I
Research Context

12

Most computer-controlled systems are also real-time systems, e.g. systems that
must react within a pre-defined maximum delay. In general, the issue of guaranteeing
real-time requirements is one of checking, prior to run-time, the feasibility of the
system’s task set; that is, checking if the worst-case response time of the tasks is smaller
than their admissible response time. In distributed computer-controlled systems, where
some of the application tasks are also communicating tasks, one has to take into account
the transmission delays when considering the real-time characteristics of the system.

The timing constraints needed to guarantee real-time characteristics in fieldbus
networks have, however, some drawbacks that should be taken into account when using
them. First, there is the planning problem: even the most complex real-time networking
protocol will fail if it is overloaded with traffic not planned adequately. Secondly, there
are the efficiency issues: in order to guarantee the maximum delays, packets have to be
limited in length; and this leads to a significant overhead when using the fieldbus
network to send large data payloads. Scheduling and dispatching techniques help on the
first point making it easier to guarantee that the planned traffic does not affect the real-
time characteristics of the network. The second point is not normally taken into account
since these networks where designed precisely to send very small packets very quickly.
However, new applications are pushing the networks to the limit and efficient solutions
for this issue are possible.

A solution that has very low cable costs is a “bus network”: all stations are
electrically interconnected to the data wires of the network. The physical layout of a bus
network is normally very flexible improving even further the cabling costs including
line, star and tree topologies. In a bus network, Protocol Data Units (PDUs) are
transmitted from a source station to destination station(s) via the shared communication
medium. As in any broadcast network, it is necessary to control – using a Medium
Access Control (MAC) mechanism – the situations where two or more stations attempt
to send PDUs via the shared medium at about the same time.

Considering this scenario there are several solutions for the MAC that can be used:
Time-Division Multiple Access (TDMA), Carrier Sense Multiple Access/Bitwise
Arbitration (CSMA/BA) and master/slave systems are some of the most used.

On a TDMA network, the bus is divided into time “slots” and the system
guarantees that each slot is used by, at most, one network station. Besides the obvious
issue of guaranteeing the time synchronization between stations, the assignment of the
slots and their duration is a problem with multiple solutions from the simple fixed
allocation scheme to complex systems with dynamic allocation of slots in runtime. One
of the dynamic allocations schemes is the Timed Token (Malcom and Zhao, 1994),
where a token is rotated between stations with timing limitations to guarantee
responsiveness and bandwidth usage to each station.

CSMA/BA networks, such as the CAN (Controller Area Network) fieldbus, use
another approach: the physical layer has the capability to accept simultaneous
transmission of bits and guarantee that one of the logical levels is “dominant” over the
other. If two (or more) stations send the same bit, all the receiving stations (including the
ones transmitting) receive the bit correctly. However, if the bits are different then the
result is always the “dominant” bit. This enables a bit-wise priority mechanism where
lower-priority stations will back-off when they detect that their bit transmissions where
changed by a dominant bit sent by another station. With the adequate planning, this

 Chapter 2
Related Work on Factory Communications

13

protocol guarantees (Tindell and Burns, 1994) real-time message response in the
network.

On the other hand, master/slave networks are simple in their approach: one station
controls all the communications on the bus and decides when to contact the other
stations and if they have or not the chance to send a PDU back. With appropriate timing
constrains it is relatively simple to implement a real-time network with this paradigm.
Some fieldbus networks extend the basic master/slave concept with extensions enabling
multiple-master capability, dynamic network configuration and slave-initiative PDUs
under controlled circumstances

2.2 Fieldbus standards

In the beginning of the 1980s several national fieldbus projects where initiated
(Thomesse, 2005). In 1982 with the support of the French government the FIP fieldbus,
now known as WorldFIP, was presented. In Denmark a set of institutions were involved
in the development of P-NET, while in Germany it was the same concerning the
Profibus project (PROFIBUS Nutzerorganisation e.V., 1992) in 1984. In terms of
industry players, Bosch developed the specifications (Robert Bosch GmbH, 1991) of the
Controller Area Network (CAN) in 1983, which was initially targeted to in-vehicle (e.g.,
cars) applications.

Then, the international level process started within the TC65 of the International
Electrotechnical Committee (IEC) that was supported as well by the Instrument Society
of America group SP50. However, only in 1993 the physical layer specification was
approved (IEC DIS 1158-2) and it did not include the de facto standards Profibus and
WorldFIP. In 1996, CENELEC decided that it was better to have three standards than no
standards at all and soon the European standard (EN 50170) was approved containing
three different profiles: part 1 for P-NET (Danish national standard), part 2 for Profibus-
FMS (German national standard) and part 3 for WorldFIP (Franch national standard). In
2000 the EN 50170 had an addendum to include Foundation Fieldbus, ControlNet and
Profibus-PA.

In 1996, CEN and CENELEC started preparing the EN 50254 under the title high
efficiency communication subsystems for small data packages. This was approved in
1998 also as a multi-profile document that included Interbus, Profibus-DP and
WorldFIP.

In March 1998 part 3 (Data Link Service Definition), part 4 (Data Link Protocol
Specification) and parts 5 and 6 (Application Layer Service and Protocol) of IEC FDIS
61158 were submitted to a vote and not approved. However, 6 of the negative votes were
later discarded due to being justified by general, not technical opinions and merely
untrue statements (Instrument Society of America, 1999), and so the document was
approved in November 2000. On this standard there where 8 Types of non-interoperable
link layer networks (defined in parts 3 and 4): Type 1 – Proposed compromise
(Foundation Fieldbus based); Type 2 – ControlNet; Type 3 – Profibus (including DP, PA

 Part I
Research Context

14

and FMS); Type 4 - P-NET; Type 5 - Fieldbus Foundation3's High-Speed Ethernet
(HSE); Type 6 – SwiftNet; Type 7 – WorldFIP; Type 8 – Interbus. In addition to these
eight Types, there are two additional Types for the Application Layer standard (defined
in parts 5 and 6): Type 9 – Foundation Fieldbus H1 and Type 10 – PROFInet.

Outside the IEC 61158 are sensor networks that were included in the IEC 62026
standard including DeviceNet, SDS, CANOpen and AS-i. On Europe EN 50325
included also profiles derived from the CAN protocol (DeviceNet, SDS, CANOpen) and
EN 50295 defines the actuator and sensor protocol (AS-i),

Figure 2.1: IEC 61784-1 (2nd Ed.) and -2 (1st Ed.) communication profiles

One issue with the IEC 61158 standard was that each fieldbus could have features
in each layer assigned to different types. The solution for this problem was the EN 61784
where Communication Profile Families (CPF) specifies the complete stack of each

3 “Fieldbus Foundation” is the organization that promotes the “Foundation

Fieldbus” communications standard

Fieldbus over
Ethernet

TCP/IP over
fieldbus

Fieldbus over
TCP/IP

CP2/2
EtherNet/IP

CP2/3
DeviceNet

CPF1
Foundation Fieldbus

CPF2
CIP

CPF3
Profibus

CPF4
P-NET

CPF5
WorldFIP

CPF6
INTERBUS

CP3/1
Profibus-DP

CP2/1
ControlNet

CP3/2
Profibus-PA

CP4/1
P-NET RS-485

CP4/2
P-NET RS-232

CP5/1
WorldFIP

CP5/2 WorldFIP
with subMMS

CP6/1
INTERBUS

CP6/3 INTERBUS
minimal

CP3/4-6 PROFInet I/O
Class –A/-B/-C (IRT)

CP4/3
P-NET on IP

CPF9
HART

CPF11
TCnet

CPF12
EtherCAT

CPF13
Ethernet Powerlink (EPL)

CPF14
EPA

CPF15
Modbus RTPS

CPF16
SERCOS

CP9/1
HART

CP12/1
I/O

CP13/1
EPL

CP14/1
UDP

CP15/1
Modbus TCP

CP16/1
I

 -1 -2

CPF8
CC-Link

CP8/1
CC-Link/V1

CP8/2
CC-Link/V2

CP6/3
CC-Link/LT

CPF10
VNET/IP

CP10/1
VNET/IP

CP11/2
TCnet loop

CP12/2
Mailbox+Synch

CP14/2
RTE

CP15/2
RTPS

CP16/2
II

CP16/3
III

CP6/2 INTERBUS
TCP/IP

 Fieldbus
MAC

CP3/3
PROFInet CBA

CP5/3 WorldFIP
minimal for TCP/IP

CP6/4-6 INTERBUS
+ PROFInet -A/-B-/-C

CP11/1
TCnet

CP1/1
H1

CP1/2
HSE

CP1/3
H2

 Chapter 2
Related Work on Factory Communications

15

fieldbus based on the technical data in IEC 61158. The first part EN 61784-1 covers
“current” CPFs and was approved in 2003, for example, the Foundation Fieldbus is CPF
1, with H1 specified in CPF 1/1, and HSE specified in CPF 1/2. In mid-2003 the work
started on IEC 61784-2 that includes “new” CPFs including PROFInet, EtherCAT, etc.

IEC 61158 was revised in March 2003 with adjustments on existing Types, new
Type 6, 9 and 10. The 3rd edition of IEC 61158-2 follows this changes (April-May 2003)

IEC 61158-1 had a 2th edition (November 2007) with removal of Type 6
(SwiftNet), inclusion of Types 11 to 20; generalization of Type 1 radio and sub-division
of parts 3, 4, 5 and 6 (e.g. IEC 61158-6-2, etc); IEC 61158-2 4th edition follows this
changes (December 2007)

IEC 61784-1 2nd edition (December 2007) synchronizes this standard with
61158:2007 including the addition of new Types: CPF 8 (CC-Link, IEC 61158 Type 18),
9 (HART, IEC 61158 Type 20) and 16 (SERCOS, IEC 61158 Type 16). Also in
December 2007, functional safety is included in part 3, and installation issues in part 5.

With the “pulverization” of the fieldbus standards by IEC, it is no surprise that IEC
itself provides a CD-ROM with the title “Industrial Communication Networks –
Fieldbus – The complete collection” (January 2008), a pack that contains 79 standards
covering 15 Communication Profile Families and 20 Types. These include IEC 61158-1,
IEC 61158-2, IEC 61158-3-* (DLL Service Specification for Types 1, 2, 3, 4, 7, 8, 11,
12, 13, 14, 16, 17, 18, 19), IEC 61158-4-* (DLL Protocol Specification for Types 1, 2, 3,
4, 7, 8, 11, 12, 13, 14, 16, 17, 18, 19), IEC 61158-5-* (Application Layer Service
Specifications for Types 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20), IEC
61158-6-* (Application Layer Protocol Specification for Types 2, 3, 4, 5, 6, 7, 8, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20), IEC 61784-1 (CPF introduction), IEC 61784-2
(Additional CPF), IEC 61784-3 (General rules for functional safety, and Additional
specifications for CPF 1, 2, 3, 6), IEC 61784-5 (Installation profiles for CPF 2, 3, 6, 10,
11) and IEC 61918 (Installation in industrial premises).

The 15 Communication Profile Families in the latest version of IEC fieldbus
standards are (see Figure 2.1): 1. Foundation Fieldbus; 2. CIP; 3. PROFInet; 4. PNET; 5.
WorldFIP; 6. Interbus; 8. CC-Link; 9. HART; 10. Vnet/IP; 11. TCnet; 12. EtherCAT;
13. Ethernet Powerlink; 14. EPA; 15. MODBUS-RTPS and 16. SERCOS.

Some of these Communication Profile Families share characteristics like same
physical layer interface, however most Communication Profiles vary greatly in several
other characteristics including:

• Specification Availability – Some fieldbuses have their specifications available for
free or for very small fees, this contrasts with the usual cost of an IEC standard (the
collection for each CPF costs typically from to 550 EUR to 1800 EUR, the full
fieldbus collection costs 7500 EUR).

• Industrial Property Protection – some CPs are covered by patents and other
industrial property protection mechanisms and cannot be commercialized without
prior licensing.

• Detail – some CPs are defined in almost every detail from physical layer up to
functional details, others still have space for big interoperability issues.

• Market share/target – in raw numbers some CPs have huge market shares when
compared to others, however this comparisons do not reveal the true “success” of

 Part I
Research Context

16

each fieldbus. They do not take into account different market targets and the fact
that some CPs are targeted for specific levels of the industrial process (from
factory-wide control to more local/simple station interconnections). Some CPs are
targeted for specific areas of the industry (e.g. P-Net in shipbuilding, SERCOS in
drives…) or even regionally bounded (EPA documentation was only available in
Chinese until recently). Other issue here is that there is a huge difference in market
phases of the several CPs: some are well established with multiple products from
multiple vendors, others do not have a single implementation in the market.

• National or Regional Standards – from the first 3 European-based national
standards there is now an extended collection of standards including national
standards from USA (CIP), China (EPA), Japan (TCnet, Vnet/IP).

• Physical Layer – Some CPs are built over TCP/IP stacks, others use dual-stack
architectures over Ethernet, some use specific changes in Ethernet MAC, and some
use their own physical layer.

• Real-Time characteristics vs. standard MAC chipset – some CPs are designed for
very fast and time-guaranteed responses using specific chipsets (cycle time less
than 100 µs for EtherCAT, jitter less than 1 µs for some flavors of SERCOS and
PROFInet), others have less stringent response times (around 10ms) but are built
over garden-variety Ethernet chipsets.

• Application level – features available for applications also vary greatly… solutions
range from the application-controlled station poling mechanism to a system-
managed subscriber-consumer model and even high-level station profiles.

The Profibus organization announced (PROFIBUS & PROFINET International,

2008a) that more than 1.1 million PROFInet stations where installed by the end of 2007,
this value does not include infrastructure devices like switches. It also informed that 4.7
million Profibus stations where sold in 2007 bringing the total number of Profibus
stations in the field up to 23 million. In 2004 there where “only” 10 million Profibus
stations in the field (2008). 4 million Profibus stations in 2002 (Calandrini, 2003).

On the other hand, Fieldbus Foundation stated in February 2008 (Process
Engineering, 2008) that it has 68% of market share in sales values in the “Process
Industries” against 27% of Profibus. It also stated that about 1 million stations were
installed. The market share in 2006 was the same (Fieldbus Foundation, 2007b) in value.

According to ARC Report in 2006, the market of fieldbus in Process Industries was
831 million USD and forecasted a 2280 million USD for 2011 in a total for Automation
Systems of 30 billion USD in 2006 and forecasted 57 billion in 2011 (ABB, 2008)

In 2005 there where 625000 Foundation Fieldbus stations and 10000 systems
worldwide (Fieldbus Foundation, 2006), in 2004 there where 500000 stations and 8000
systems (Fieldbus Foundation, 2005).

2.3 Profibus overview

Profibus (PROFIBUS Nutzerorganisation e.V., 1992) was the selected base fieldbus for
the factory communication system framework. Like other fieldbuses, it uses a
master/slave paradigm for medium access control. There are two distinct stations in the

 Chapter 2
Related Work on Factory Communications

17

network: masters that control the access to the medium, and slaves that respond to
master requests.

Profibus uses a timed token passing mechanism that supports also multi-master
networks. The Profibus-DP standard does not however require inter-master user data
communication support. In practice a Profibus-DP network behaves like separated
logical networks each with its own master and, if properly configured, without
interferences between them.

Figure 2.2: Example Profibus data exchange

The token, that represents the right to access the bus, circulates in a logical ring
composed by the masters (see Figure 2.2).

Profibus allows distinguishing between high priority and low priority PDUs. The
latter can further be divided into three subtypes: cyclic low priority PDU cycles (Poll
Cycle), that represent the execution of the requests contained in the poll-list; acyclic low-
priority PDU cycles, which comprise application and remote management services; and
gap maintenance cycles, that are actions taken to determine the status of the others
station in order to support dynamic changes in the network.

The medium access control protocol,, the data transfer services as well as the
management services are defined according to the standards DIN 19 241-2, IEC 995,
ISO 8802-2, ISO/IEC JTC 1/SC 4960 and the all-encompassing IEC 61784 and IEC
61158 standard families, in particular CPF 3/1 (IEC 61784) and Type 3 (IEC 61158)
define Profibus-DP stack details. In order to provide transmission synchronism and some
redundancy, some characters are encoded in the UART character format: 11 bits with
start-stop synchronisation, one data octet and a parity bit.

M1

S7

S8

M2

S9

Send Ack Send Resp Token

Send Retry Resp Token

 Part I
Research Context

18

One important concept on the timing characteristics of Profibus is the Message
Cycle that includes the Action Frame sent by the initiator (always a master) and the
corresponding Acknowledge or Response Frame sent by the responder. After the
transmission of the action frame, the initiator waits for a response during the Slot Time
(TSL). If no response is received within that time span then the initiator tries again a
number of times up to max_retry_limit times.

Profibus has a mechanism to query and update a list of sensors and actuators
automatically using a Poll List. The processing of the requests in this list is a Poll Cycle.
The Poll Cycle requests are processed after the High Priority PDUs and before the
acyclic Low Priority PDUs. A Poll Cycle may span several token visits, however only
one Pool Cycle is allowed per token visit.

As for the token management, the token is simply passed to the next master in
rising address order. The highest address master sends the token to the lowest address
one.

In a mono-master network, the token is just passed back to the master, enabling the
usage of the same PDU processing mechanisms of multi-master networks. Profibus has
also procedures to detect token transmission errors and changes in the number of master
stations connected to the network.

Figure 2.3: Profibus Low Priority traffic affects High Pri ority traffic

When the token arrives, the master computes the Token Holding Time (TTH), the
time available to perform message cycles. This time is the difference between the Token
Target Rotation Time (TTR), the time that the token is expected to take to visit all
masters, and the Token Real Rotation Time (TRR), the effective time measured from the
last visit. The master sends one high-priority PDU even if the TTH is negative. The
remaining high-priority PDUs are processed until TTH expires.

High Priority

High Priority (delayed)
Low Priority

M1

M2

M3

TTR=7xHP+4xToken
TTH
TTH expired

Msg. Generation (e.g. = TTR)

 Chapter 2
Related Work on Factory Communications

19

Message Cycles in Profibus are never interrupted, if TTH expires after the cycle
start all the retry processing carries on as usual. After the high-priority PDU queue is
empty, then the Poll Cycle requests are processed and, finally, the low-priority acyclic
PDUs.

The processing of PDUs in Profibus is simple but leads to some unforeseen results
when used in practice even in mono-master networks. Since a message cycle is never
interrupted, if TTH expires then the token will be late in the next visit… this in turn means
that only one high-priority PDU can be sent. If we have a burst of high-priority PDU the
network has (Monforte et al., 2000) a awkward pattern like {token, 1 high-priority PDU,
token, n high-priority PDUs} until all the high-priority PDUs are exhausted.

In addition, it must be noted that if a high-priority PDU is queued right after the
token arrival and there are many low-priority PDUs, then the PDU can be delayed more
than TTH. For multi-master networks if one of the masters expires TTH then all (Tovar and
Vasques, 1999a) the remaining masters see a late token until the token is received again
by the master that expired TTH (see Figure 2.3).

In order to prevent the priority inversion, a constrain on the low-priority traffic is
proposed by (Tovar and Vasques, 1999b) that avoids late tokens without changing the
Profibus MAC. The idea is that if one limits the maximum low-priority traffic at each
master station and the TTR is set accordingly, then the token is never late due to low-
priority PDUs, and so the high-priority traffic is not affected by the low-priority traffic in
the network.

Regarding Profibus services, the Fieldbus Data Link (FDL) provides the functions
for sending and receiving data over the network (Data Link Layer functionality).
Protocol Data Units (PDU) are packaged, delivered and checked. Acknowledgements,
responses, retries and timeouts are used to guard against Line Protocol Errors (e.g.,
frame, overrun and parity) and Transmission Protocol Errors (e.g., start and end
delimiters, frame check, frame length and response times).

A Profibus PDU data payload is restricted to 246 bytes. For most industrial
applications, the PDU data size should not exceed 32 bytes to reduce transmission
delays. In addition to the data, a PDU of variable length contains an 8-byte header; a
PDU of fixed length (8 bytes) has a 6-byte header. Various acknowledgement and
response frames are also defined (see Figure 2.4).

The Profibus FDL offers three acyclic and one cyclic data transfer service: Send
Data with Acknowledge (SDA); Send Data with No Acknowledge (SDN); Send and
Request Data with Reply (SRD) and Cyclic Send and Request Data with Reply (CSRD).

The SDA service allows the initiators to send a PDU and immediately receive the
confirmation. The responder can either acknowledge the received data or respond
sending data itself. The SDN is an unacknowledged service. Therefore, it is mainly used
for multicast or broadcast transmissions.

Finally, the SRD is based on a reciprocal connection between an initiator and a
responder, and requires either an acknowledgement or a response. Using this service, the
initiator sends data in the request and it receives data from the addressed station in the
response.

 Part I
Research Context

20

Figure 2.4: Profibus most used frame formats

The Profibus FDL layer also offers a cyclic service (based on the acyclic SRD).
This service is Cyclic Send and Request Data with reply (CSRD), and is used to poll
simple field stations, such as sensors and I/O racks. The list of the stations to be polled is
called the Poll List.

Stations may have addresses from 0 up to 125; additionally address 127 is used to
broadcast PDUs. The eighth bit of the Address Field can be used for an extended
addressing mechanism used in networks with multiple segments. The FDL supports
optional Service Access Points identification, which provides similar functionality of the
TCP/IP port numbers and station addressing.

2.4 Wired/Wireless Profibus Networks

Systems like RFieldbus extend Profibus not only with new services but also with a new
transmission medium: wireless radio. In RFieldbus, the wireless medium has different
data rates as compared to wired Profibus. Rfieldbus also introduces additional headers
and trailers for the wireless messages. The RFieldbus includes also a mobility support
functionality that introduces some time overhead. These aspects are discussed in detail in
(Alves, 2003) and are briefly presented in the rest of this sub-section.

In terms of interconnection between heterogeneous medium (wired/wireless), the
RFieldbus solution is a physical-level one, using repeater-like interlinking devices. There
are alternative approaches such as the ones proposed in (Ferreira, 2005), which use
higher-level solutions but then requiring some modifications to the standard operation of
the stations.

SD1
0x10

DA SA FC FCS ED
0x16

SC
0xE5

SD3
0xA2

PDU
Len=8

DA SA FC FCS ED
0x16

SD2
0x68

LE

LEr

SD2
0x68

PDU
MaxLen=246

DA SA FC FCS ED
0x16

SD4
0xDC

DA SA

SD = Start delimiter
LE = Length of PDU
LEr = Length repeated
DA = Destination
address
SA = Source address
FC = Frame control
PDU= Protocol data unit
FCS = Frame checksum
ED = End delimiter

Fixed length, no data

Short Acknowledge

Fixed length, 8 octet data

Variable length

Token Passing

 Chapter 2
Related Work on Factory Communications

21

Figure 2.5: Profibus UART frame

Profibus specifies that master stations must leave the medium unused between

message cycles (see Figure 2.6) for a minimum Idle Time (TID1) that is given by:

),min,max(SDISDRSMSYN1ID TTTTT += (2.1)

where:
− TSYN is the synchronisation time, the minimum time interval during which

each station must receive idle state from the physical medium (33 bits);
− TSM is a safety margin;
− min TSDR is the minimum station delay of responders
− TSDI is the station delay of the initiator.

Figure 2.6: Profibus Idle Times and Slot Time

In addition, for unacknowledged PDUs we have:

* or Token or Ack

Request 1

Request 1

Response 1

Response 1* Slave

Master Request 2

TID1

* Unacknowledged request

Request 1

Request 1* Slave

Master Request 2

TID2

TSDR

TSL

0

Standard Profibus UART Character

 8 data bits P 1

Start bit

Stop bit

Parity bit

 Part I
Research Context

22

)min,max(SDRSMSYN2ID TTTT += (2.2)

The values of TID1 and TID2 are set in a per-station (master) basis.
Another important parameter is the Slot Time (TSL): after the master sends the last

bit of a confirmed request to a slave it waits for the response until TSL expires, if it
expires then the retry mechanism is started.

In more formal terms, there are two components for this value, TSL1 is used for
confirmed requests and is defined as follows:

 SMUARTSDRTD1SL TTTT2T +++⋅= max (2.3)

where TTD is the line transmission delay and TUART is the time needed to detect a
character (11 bits, see Figure 2.5)

TSL2 is used for Token transmission, and its value is defined as follows:

 SMUART1IDTD2SL TTTT2T +++⋅= max (2.4)

The final value of TSL is:

),max(2SL1SLSL TTT = (2.5)

This value is configured in all master stations of the network since it is a parameter
of the token passing mechanism.

It is clear that these parameters have to be adjusted when using a hybrid
(wired/wireless) network since the reaction times are different when the PDU is
forwarded between the different physical domains.

It is also necessary to avoid queuing delays (e.g. when one PDU is not forwarded
immediately because another one is still being transmitted) or else we cannot guarantee
the real time characteristics of the network. Since both request and responses are also
forwarded between multiple physical domains and not only the segments including the
master and the slave, it is then necessary (see Figure 2.7) to have an Inserted Idle Time.

Figure 2.7: Profibus Inserted Idle Time

The main concept is that a new request can only begin when it can be guaranteed
that it is not subject to queuing delays. The same reasoning applies to token

Req 1

Req1

Resp 1

Resp 1 Medium 2

Medium 1 Req 2

1. Inserted Idle Time here

Req1

2. Avoided queuing delay here

 Chapter 2
Related Work on Factory Communications

23

transmissions and for unacknowledged PDUs. This means that in hybrid networks there
will be higher values of TID1 and TID2 on the master stations and these values can be
different on each station depending on the PDU sizes and characteristics of the stations it
interacts with. Further details are available in (Alves, 2003).

2.5 Connecting Fieldbuses to TCP/IP and Ethernet networks

One of the objectives is to allow transparent interconnection between the TCP/IP and
fieldbus realms. There are diverse solutions and technologies used for this purpose.

TCP/IP and fieldbus interconnection solutions include IDA (Interface for
Distributed Automation), Ethernet/IP (DeviceNet based), Modbus/TCP (Modbus based)
and HSE - High Speed Ethernet (Foundation Fieldbus based).

These solutions enable remote control even over the Internet using standard
TCP/IP hardware and software including Virtual Private Network (VPN) tunnelling if
needed (Hoon et al., 2002).

For instance, Modbus/TCP (Modbus IDA, 2007) follows a Client/Server model
and exchanges data using TCP connections in port 502. Each Modbus/TCP PDU has a
header that is different from serial Modbus. Modbus/TCP header (see Figure 2.8) starts
with a 2-byte Transaction Identifier to support multiple open client requests to a
particular server; a 2-byte Protocol Identifier that enables multiple protocol support (for
Modbus/TCP this is always 0). The header has also a 2-byte Length field; this is required
since in TCP a single request in the source can be split into several blocks on destination.
It has also a 1-byte Unit Identifier that is used for intra-system routing like when a
Modbus/TCP server is used to connect several serial Modbus stations to the TCP
network. Since TCP guarantees the integrity of the data, no check information is needed
on the Modbus/TCP PDUs and so the Serial Modbus CRC field is not used.

Figure 2.8: Modbus/TCP and Modbus Serial PDU

The “over-IP” solutions have advantages like compatibility and hardware
availability, but lack both hard-real time performance and very quick response times

Func Code Data MBAP Header

Func Code Data Header Error Check

Addr CRC

 Trans ID Protocol ID (0) Length Unit ID

Modbus/TCP

Modbus

Same data payload

1 byte

 Part I
Research Context

24

since there are obvious overheads not only on the network with the physical layer
overhead and IP plus higher layer headers but also in the software stacks used.

PROFInet (Profibus based) and EtherCAT have Ethernet-specific capabilities using
specialized hardware (or embedded software) that aim to overcome these issues and even
beat traditional fieldbuses in terms of reaction time (Prytz, 2008). The economic cost
penalty of these solutions is small since the Ethernet MAC (see Figure 2.9) and
respective supporting hardware is standard. Both solutions support other Ethernet traffic
(e.g. TCP/IP) in the same network and can even have stations with fieldbus-protocol
capabilities and TCP/IP stacks. Both protocols also support standard IP communication.

Figure 2.9: EtherCAT Ethernet PDU

The EtherCAT shows another possible solution: slave stations have two Ethernet
connectors, when data is forwarded from connector A to connector B an EtherCAT-
specific Field-Programmable Gate Array (FPGA) reads and changes specific bits on the
EtherCAT Ethernet PDU, non-EtherCAT PDUs are forwarded unmodified. This
forwarding is very fast and this justifies the quick cycle times of 11µs for 256 bits of
data up to 300µs for 12000 bits of data (that fit a single Ethernet frame). The last station
on a branch puts data back on the connector A. PDUs on this "back-channel" using
Ethernet full duplex capability are forwarded until the master station. The master station
has a standard Ethernet card and the duplex capability can be used to realize a double
ring topology using two Ethernet cards on the master station. In case of a break in one
cable, the system forwards PDUs over the two open branches of the ring.

2.6 Multimedia content over fieldbus and automotive on-board networks

Outside the RFieldbus project, Profibus has been shown to be capable of sending image
data with limited capabilities (image data of 17 Mbps reduced by compression to 800
kbps) without impairing the control traffic (Sempere and Silvestre, 2003), careful
configuration of the Profibus network is also important as shown in (Silvestre et al.,
2002). These solutions have in common the fact that each implements its own method of
transferring the multimedia content over the network and interoperability issues where
not addressed.

A technology similar to RFieldbus in the multimedia capabilities is Interbus TCP, a
system that enables the transmission of TCP/IP data over an Interbus-S fieldbus. In a
500 kbps Interbus network this service provides a TCP/IP bandwidth equivalent to a

EtherCAT Ethernet Type: 88A4h

Ethernet

Type

EtherCAT

EtherCAT
HDR

Frame
HDR

Data SA DA

Ethernet

CTR FCS Padding

6 6 2 2 10 0…1486 2 0…32 4

Constant Header Process Data Counter Ethernet MAC

bits

 Chapter 2
Related Work on Factory Communications

25

14.4 kbps modem (Volz, 2001). Interbus TCP uses (Burmann et al., 2004) the Point-to-
Point Protocol (Simpson, 1994) to serialize the data on the Interbus link, and has
mechanisms to guarantee interoperability between TCP and non-TCP capable stations in
operations like software transfer using gateway stations. This solution relies on the serial
point-to-point capabilities of Interbus system and adds 2- to 10-byte overhead to each IP
packet.

Figure 2.10: MOST Frame Structure

The Media Oriented Systems Transport (MOST) bus is a multimedia capable
system for automobile distributed applications normally used over plastic optical fibber
with ring topology, but supports other topologies and cabling. It features data rates of 25
Mbps (MOST25) and 50 Mbps (MOST50) shared by asynchronous and synchronous
(sampling rates from 30 kHz to 50 kHz) data. Up to 64 stations can be interconnected. In
practice MOST25 supports 15 simultaneous stereo CD quality uncompressed audio
streams at a typical sampling rate of 44100 samples per second, or one 5.1 surround 24
bit uncompressed audio stream, but cannot handle uncompressed video streams, however
multiple MPEG compressed video streams are possible (SMSC, 2006). MOST50
supports up to 29 stereo channels of CD quality uncompressed audio at a typical sample
rate of 48000 samples per second.

The MOST technology specifies (MOST Cooperation, 2006) not only the physical
layer but also all the layers up to the application layer in order to provide interoperability
between different manufacturer stations.

MOST PDUs have pre-defined sizes and a variable boundary that divides stream
(synchronous) data and packet data (asynchronous) inside the “general data” payload of
a particular PDU (see Figure 2.10). In MOST25 networks, this boundary is fixed once
the network is setup and at most 60% of the bandwidth can be used for asynchronous
data. For MOST50 networks this boundary can be changed on the fly and so bandwidth
can be divided by asynchronous and synchronous data at will (in, fact to be precise, at
least one byte of synchronous data must be sent in a frame).

Preamble

(4 bit)

Control Data

General Data

0

1

60

63

MOST25

Parity

(1 bit)

61

62

Boundary

(4 bit)

Frame Ctrl.

(7 bit)

General Data

0

11

127

MOST50

6

Control Data

Management

7

10

 Part I
Research Context

26

Figure 2.11: MOST data structures

Besides the general multimedia data, MOST reserves a small section of the PDU
for control data (e.g. turn on/off devices, volume adjustment, etc…). MOST25 data
PDUs are 64 bytes long with 60 of general data plus 2 bytes of control data, while
MOST50 data PDUs are 128 bytes long with 117 bytes of general data plus 4 bytes of
control data (see Figure 2.11).

The synchronous capabilities of the MOST networks are guaranteed by a Timing
master station, and accurate synchronization is vital for the network in order to avoid the
need of buffering in MOST stations than handle synchronous data flows. The
management of the synchronous/asynchronous bandwidth is also done by the Timing
Master.

In MOST25, data can be grouped in blocks of 16 PDUs of 64 bytes each, totalling
1024 bytes. In MOST50 data can be grouped in blocks of variable size.

MOST also supports packaging of Ethernet frames into the asynchronous payload
(MOST Cooperation, 2003), the packaging is straightforward with the Ethernet MAC
14-byte header information converted to 4 bytes, 2 bytes are used in the MOST MAC
destination address, and the other 2 bytes are sent as asynchronous data of MOST.
Additional 4 bytes are used for packaging management resulting in a usable MTU of
1008 bytes. Using the packaging presented, real data rates of 800 kbps have been
recorded sending IP packets with 8000 bytes and using 28 bytes of the 60 bytes available
for general data in a MOST25 frame.

Arbitration

Target Addr

Length/4

Source Addr

Data

CRC

0

57

6

53

5

Data

CRC

1023

6

1019

Common start

48 byte payload
MOST25 only

1014 byte payload
MOST25 or MOST50

Asynchronous Packet Data

Control Data

Target Addr

Msg Type

Source Addr

0

8

Arbitration

Data

9

25

CRC

Transmission Status

Reserved

31

Split over 16 MOST25 PDUs or 8 MOST50 PDUs

27

 Chapter 3
Related Work on Power-Line

Communication Systems

The energy management communication architecture is built integrating power-
line communications (PLC) with higher level protocols. This chapter first provides
a brief introduction of the main PLC concepts relevant to the architecture and then
the overall description of the supported services and internal architecture is
provided.

3.1 The DLC1000 Power-Line Communication System

For the energy management system framework the communication services are based on
the DLC1000 Power-Line Communication System. The DLC1000 system provides time-
slotted master-slave communication (Sebeck and Bumiller, 2000) in single-voltage
networks. In DLC1000 systems, multiple networks may be supported in the same
medium using frequency division and/or time division.

In a frequency division solution, each network is assigned a particular frequency
range and there is no support to any type of inter-network communication. It is possible
for a station to “move” from one frequency band to another, but this operation takes
some time and results in loss of connectivity with the previous network (and thus loss of
the previous communication streams).

In a time-division solution (see Figure 3.1), different networks share the same
frequency band and other physical layer parameters. Masters in the network must be
synchronized and they manage the medium access via fixed pre-programmed time slots
cycles. A station may be in several time-division networks in the same frequency band,
being each time-division network accessed by a particular Network Unit on the station.

Figure 3.1: DLC1000 Network Layer time division

M1 time

1 cycle

M1 M2 M2 M1 M1 M2 M2 M1 M1 M2 M2

 Part I
Research Context

28

It is possible to mix these two solutions into one same system, with frequency
division used first to divide domains, and time-division used independently in each
domain.

In a particular DLC1000 network, a station is always either a master or a slave;
however a station with two network interfaces may be master in a network and a slave in
a different network.

Figure 3.2: DLC1000 Network Layer timing

A particular feature of this medium, and a consequence of hardware processing
delays, is that slave responses are time-interleaved in logical channels. With a time-
interleave of four slots − depicted in Figure 3.2 − the master sends four requests to slaves
in consecutive slots, and the slave responses (or forwarding PDUs) are expected four
slots after the request. This mechanism provides much better network bandwidth
utilization in a simple master/slave network. A side effect of this method is that from the
application point of view the system behaves as if it had parallel communication
channels (4 in the example above). The interleave factor is configurable with a minimum
value of three due to hardware processing delays.

In order to extend the network range it is possible to use slave stations as
forwarding agents to remote slaves. The master reserves several slots for a particular
request, and, in the additional slots, intermediate slaves forward the request to the final
destination slave.

DLC1000 supports two different forwarding mechanisms: in the pre-existent
Network Management System (NMS) mode (Bumiller, 2001) the master builds a map of
the slave routes, and when a request needs routing it is sent to a particular slave with the
routing information embedded in the request header. This solution is simple to
implement on the slave stations, but uses additional bandwidth for routing data. On the
master side, the resources needed for route calculation grow exponentially with the

Master

Slave 1

Slave 2

Slave 3

M

S1

S2

S3
SFN Additional Tx

Tx (NMS or SFN)

Rx

Processing
1 hop 2 hops

 Chapter 3
Related Work on Power-Line Communication Systems

29

number of slave stations. For these reasons, the number of hops in NMS is limited to
two.

An alternative forwarding mode, identified as “Single Frequency Network” or SFN
(Le Phu Do et al., 2005), uses specific hardware to build a forwarding “wave” of
requests: the master sends a request with a particular destination signalling the number
of hops needed; all the slaves that receive the request forward simultaneously back to the
network decrementing the hop-count. The process goes on until hop-count reaches zero.
This latter process is much simpler in terms of software management and uses less
network resources than the former process, but timing synchronization of the stations
may limit the forwarding capability in general networks.

SFN can also be used in very long network lines (that have only one station on
each end) with several requests flowing at the same time in different points of the line.
Two different frequency bands are used in this solution, one for master-to-slave and the
other in the opposite direction. Due to its advantages, SFN was selected and developed
within the context of the REMPLI project.

The services that the system supports are thus highly dependent of the underlying
communication medium. The data services for a master station include Unicast
Unconfirmed Request; Multicast (or broadcast) Unconfirmed Request; Unicast
Confirmed Request and Data Arrival.

Automatic retry of Confirmed Requests is configurable if needed. Multicast and
Broadcast requests are supported using an 8-bit Group Address: each slave is configured
with a list of the groups it belongs to, with all slaves belonging to group 255 (broadcast).
Unicast requests use 12-bit Network Layer Addresses that are assigned at the station’s
login to the network.

On a slave station, the main data services are Confirmed Request Data Arrival;
Unconfirmed Request Data Arrival; Multicast Request Data Arrival and Send Data
Request.

The Send Data simply puts the data in the slave output queue. It is not possible to
guarantee that the data is sent in response to a particular Confirmed Request. Due to the
network timing (and specially the time needed for the encoding and decoding of frames),
it is challenging to generate the Send Data Request in response of the Confirmed
Request Data Arrival event in time for the data to be usable. Using a larger interleave
factor would help on this matter, but then response times would be worsen for other
services. Since it is expected that the delay needed to query sensors connected to the
slave station are much larger than the request/response capabilities this is not a critical
issue to the system design. However, if packets have multiple fragments, then they
should be delivered as efficiently as possible.

The main reason for this efficiency-urge is that with the medium access
implementation used in REMPLI, automatic additional Confirmed Requests are
generated to empty the queues of each slave without the intervention of higher protocol
layers. Out-of-band information is sent by the lower level layer on the slave to inform on
the current queue state.

Data services requests are queued in priority queues; there are three priority queues
for masters and two for slaves. In the simplest implementation, higher-priority queues
are emptied before lower-priority queues are served. However, the system is built such

 Part I
Research Context

30

that other more complex scheduling algorithms can be later incorporated in particular
scenarios.

There are also special services for managing the status of the network. These
support services include login/logout notifications, link quality information and the
Status Pool service. The Status Pool service automatically queries each slave on the
network for its 8-byte Status Information; it provides a simple way to keep at the master
an image of slowly changing information of each slave.

When a slave station is activated, it starts by scanning the configured frequency
bands. When it finds an active frequency it tries to synchronize with it: the master sends
periodic special Physical Layer Configuration Packets for this feature. Afterwards, the
slave tries to logon to a master; once again the master sends special packets to enable
new slaves to start the logon process. This process involves exchanging Unique Serial
Numbers between master and slave, and assigning a 12-bit Network Layer Address
(NLAddr) for each newly connected slave. A slave may be connected to several masters
using one or more times slots in each cycle. The NLAddr of a slave is specific to each
master connection. The master keeps track of the link quality of each logged on slave
automatically pooling the station if needed.

3.2 The REMPLI System Services

The REMPLI communication infrastructure connects several Application servers (on a
Private Network) and devices in the power distribution grid providing end-to-end
connectivity (Figure 3.3). It consists of: low-voltage segments, which cover groups of
energy consumers (for example, a segment can span across one staircase of apartments
within an apartment block, or cover a single production branch); medium-voltage
segments between the primary and secondary transformer stations; TCP/IP or IEC 60870
based segments between the primary transformer stations and the Application server(s);
and TCP/IP communication between the Application Servers and their clients. The
interfaces provided by the Application Servers can be available only within the Private
Network or also by Internet clients (e.g., SCADA server/client communication).

The bottom-level of the communication infrastructure is comprised of REMPLI
Nodes, each coupled with a PLC interface (usually a low-voltage PLC modem, in certain
cases it can have a medium-voltage PLC modem). A Node is usually installed at the
consumer site, e.g., inside an apartment or apartment block, and has a number of
metering inputs (such as S0, for electrical energy meters). Nodes are also equipped with
digital outputs that allow switching off and on electrical/heat/gas/water supply for a
particular consumer, upon commands from the utility company.

At the top-level of the infrastructure is the TCP/IP-based REMPLI Private
Network, where Application Servers of utility companies are connected. Application
Servers perform dedicated functions, such as metering, billing or SCADA. Special
Application Servers can also offer access to data, collected and processed by the
REMPLI system, to end-user clients, located in the open Internet, or even to wireless
terminals.

 Chapter 3
Related Work on Power-Line Communication Systems

31

All Application Servers access Nodes in the PLC network via a REMPLI Access
Point (AP) – a station that interconnects TCP/IP and PLC-based segments and,
optionally, implements a number of additional services.

Figure 3.3: REMPLI Upper Layer Functionality (“outside” vi ew)

The software architecture of a Node allows running different types of applications,
each provided with an interface to the PLC environment. Any application running at the
Node is “visible” on the other side of the communication system. Hence, Application
Server(s) can access data collected by a Node application (e.g., retrieve metering values)
or provide inputs into the application (configure the application itself, or control
peripheral devices – such as relays – via the application).

A power-line network can contain other PLC stations (i.e. non-REMPLI) as well,
not represented in Figure 3.3. These stations are equipped with the same type of PLC
interface as REMPLI Nodes; however, they run different software and perform different
functions, whilst sharing the available PLC bandwidth with the REMPLI communication
infrastructure. The REMPLI system co-exists with them, although not providing any
facilities for communicating to foreign stations.

All Nodes within a typical REMPLI installation are connected to a cascaded
power-line network. The power-line network consists of one Low-Voltage and one
Mid-Voltage segment, with the word segment being used in the logical sense: several
independent wired segments may exist in each Low-Voltage and Mid-Voltage
“segments”. Communication at both levels is master/slave-based. Low- and Mid-Voltage
segments are coupled by one or more REMPLI Bridges, which are usually installed at

Access Point 1 Access Point 2

Node 3 Node 2 Node 4 Node 5 Node 1

Digital Meter

Meter Data Bus Type B Switching Device

AP Driver Interface

Node Device Interface

REMPLI TL
Netwok

Intranet (TCP/IP)

Bridge 1 Bridge 2 Bridge 3

Digital Meter

Meter Data Bus Type A

1

2

2

2

1
1 2

3 1 1 2
DE/MUX

ROUTING/LINK REDUNDANCY

Application Server A
APPLICATION SERVER REDUNDANCY

Application Server B

3 1
1 1

3

3 Driver 1 Links

 Part I
Research Context

32

the secondary transformer stations, between the two parts of the cascade. Physically, the
Bridge is comprised of a station that has both a high-voltage PLC modem and a
low-voltage PLC modem. The link, established by a Bridge, is transparent for the data
payload seen by applications: requests are forwarded from the upper part of the cascade
into the lower one, responses are passed back. Hence, the whole PLC network of two
segments becomes a single request/response communication environment.

In some installations, where a utility company needs to collect information from
the secondary transformer station itself or to control it, the Bridge can be combined with
a Node, i.e. all the services available in a Node are also available on the Bridge. It is also
possible to equip a secondary transformer station only with the Node, and not with the
Bridge. In the latter case, the transformer station becomes a communication end-point,
and no data transmission occurs into the Low-Voltage segment. Other Nodes can be
connected directly to the Mid-Voltage network, e.g. for utility internal metering control
purposes or for clients with direct Mid-Voltage electric power network supply (e.g.
industrial clients).

3.3 REMPLI System Internal Architecture

From the point of view of Applications that use REMPLI resources, the network presents
a flat address space (REMPLI Node Address) with direct connection from the Access
Point Driver Interface at each AP to the Node Driver Interface at the Nodes or Bridges
(Pacheco et al., 2005a).

APs provide interfaces on the Intranet network to multiple Application Servers.
Depending on the purpose of the system, a Server can be connected to one or more APs
(this redundancy in access can be managed by the Server). However, the REMPLI
system provides its own redundancy services between APs. This means that, if needed,
an Application Server can be connected to a single AP and still have access to all devices
in the network.

In order to implement the interfaces to the external word, e.g. some specific
Application Server and a Digital Meter, special modules (Drivers) are provided. Drivers
implement protocol-specific functionalities to the REMPLI network on top of the
Transport Layer providing services that connect each driver on the AP to a specific
driver on the Nodes. Typically, a different driver pair is used for each type of metering
or control devices.

Management of shared resources (e.g., if drivers share the same physical bus), has
to be implemented at the drivers’ level. In the example of Figure 3.4, Application Server
A and B can connect to AP Driver 1 Interface (e.g. a TCP Server Port) at either AP1 or
AP2, linking up to Nodes 1, 2, 3 and 4 and Bridges 1 and 3. At Node 2, Drivers 2 and 3
share the same data bus and thus some resource management mechanism must be in
place to avoid conflicts between the two modules.

In the REMPLI project, Drivers for IEC 1107/EN 62056, IEC 60870-5-104 and
EN 1443.3/M-Bus where implemented (REMPLI Project, 2008). The IEC 60870-5-104
implementation is a simple translate and tunnel interface. The IEC 1107 Driver,
however, had to implement local handshakes in order to cope with the standard’s
timings. In the M-Bus driver, the dialled number command used to connect applications

 Chapter 3
Related Work on Power-Line Communication Systems

33

to devices using phone-line modems was “translated” to a connection to a specific Node
(the number is the Node Address); in this case a proxy application is used in the
application server to forward communication port PDUs to the AP driver. A
“transparent” point-to-point driver was also implemented and this enabled the SSH and
Telnet standard Internet application connections to Nodes (used for instance in the field
trials for remote debugging of software).

Figure 3.4: REMPLI Upper Layer Functionality (“inside” vie w)

The DeMux layer interconnects all the Drivers in one station to the lower software
levels, merging the multiple driver data to a single channel. It also provides security
services integration including encryption and authentication of data travelling the PLC
network. The security services are supported by smartcard technology (Treytl et al.,
2004). The DeMux can also route requests made by a Driver in one AP to another AP
using the Intranet. Depending on the current network conditions the response is routed
back to the original AP automatically. In terms of implementation, the interfaces of the
DeMux are internal TCP connections as a server to Drivers, and as a client to the
Transport Layer.

The Transport Layer (the central layer of the architecture proposed in this thesis)
provides REMPLI with bi-directional end-to-end communication services between APs
and Nodes (Pacheco et al., 2005b). It deals with routing via Bridges when needed, with
providing QoS capabilities and with the support mechanisms to very large data payloads

Driver 1 Driver 2 Driver 3

AP Driver Interface

Node Device Interface

PLC
Network

Intranet (TCP/IP)

3 1 2

Application Servers

1
2

3

Driver 1 Driver 2 Driver 3

DeMux

Transport Layer

Transport Layer

DeMux

Internal Interface Bus Interface Bus Interface

PLC
Network

Transport Layer (Bridge)

Security

Security

 Part I
Research Context

34

(16 MiB in the current configuration, up to 4 GiB with code rebuild). The main services
provided by the Transport Layer include sending a packet from an AP to a Node;
sending a request from an AP to Node with response in the opposite direction; and
broadcasting a packet from an AP to all available Nodes. A Node can also send a packet
to, at least, one of the available APs, selected at run-time by the Transport Layer.
Finally, the Transport Layer manages system-wide link quality information and link
connection/disconnection information.

The PLC Network is the base master/slave network with point-to-point
communication of small packets and link-quality information services. The interface
between the Transport Layer and the Network Layer is a Linux character device driver.
From the point of view of the Transport Layer, the Network provides services in a
master station like send data, send confirmed data, data reception and status information
reception. On slave stations, the services are data transmission, data reception and status
information setting. Since the Network Layer supports TDMA for multiple-master
capability, a station can have multiple Master Network Units, each managing a group of
TDMA slots, and multiple Slave Network Units (each connected to a single master).
Bridges have both master and slave interfaces active. Connection between masters and
slaves is dynamic and fully automatic: when a slave is started up, it searches for
information on the current network characteristics (the REMPLI network can use
multiple frequency bands and multiple TDMA configurations) and tries to connect to the
available masters. All stations have a REMPLI Unique Serial Number (RUSN) that is
used to keep track of the slave logins at the master but can also be used to build simple
“access lists” that forbid certain slaves to login in certain masters. This feature is more a
management feature than a security question.

35

 Part II
Factory Communications Framework

37

 Chapter 4
Protocol Stack Architecture

This section presents a novel architecture for supporting multimedia TCP/IP
services over a standard fieldbus protocol − Profibus. This communication
architecture enables the transmission of multimedia traffic such as sound and
video, in conjunction with the “traditional” real-time control traffic, through
appropriate admission control, scheduling and traffic differentiation mechanisms.

4.1 Introduction

One of the main objectives of the RFieldbus system architecture (RFieldbus Project,
2000) is to allow that multimedia TCP/IP applications and native Profibus-DP
(PROFIBUS & PROFINET International, 2008b) applications coexist transparently
supported by the same physical network infrastructure. Traffic differentiation must be
guaranteed, i.e. different traffic classes must be defined in a way that real-time traffic is
not affected by “multimedia” traffic, typically best-effort traffic. The solution that is
proposed and discussed is achieved through a DP/IP Dispatcher that merges TCP/IP
traffic and “native” Profibus-DP traffic (see Figure 4.1).

Figure 4.1: RFieldbus Protocol Stack Architecture

TCP/IP
Applications

Profibus
Applications

TCP/IP Stack

AL

IP Mapper

Profibus DLL

Profibus
Management

LLI DDLM

DP Mapper

Profibus PHY

IP ACS

DP/IP Dispatcher

Layer 7 Layer 7 Protocols

Layers 3-6

Layer 2

Layer 1

empty

 TCP/IP Profibus RFieldbus

 Part II
Factory Communications Framework

38

Traffic from each protocol stack is divided into five classes: DP High-Priority, DP
Low-Priority, DP Best Effort, IP with QoS requirements and IP Best Effort. The DP/IP
Dispatcher (or just “Dispatcher”, for short) can reserve a minimum bandwidth for each
of the traffic classes. It can also guarantee that local Profibus traffic does not impact real-
time traffic generated by other network stations, which is something that even the
standard original Profibus protocol could not guarantee without some care in configuring
the diverse network parameters (Tovar and Vasques, 1999a).

Since an objective is to rely on an unchanged Profibus DLL (Data Link Layer), the
Dispatcher does not use the token arrival information. Alternatively, it executes
periodically controlling the medium utilization time by means of transmissions time
estimations of each frame sent. The Dispatcher receives these time values from the IP
Mapper and DP Mapper sub-layers.

A structural limitation must also be overcome: the Profibus protocol follows a
master/slave paradigm (stations play different roles), while the TCP/IP protocol does
not. The basic concept in master/slave networks is that some stations – the masters -
control the access to the medium and other stations – the slaves – only respond to
requests from the masters. On the other hand, in TCP/IP networks all stations have equal
initiative rights. Therefore, in order to support TCP/IP applications it is essential that
slave stations can behave like IP traffic sources without previous explicit consent from a
master station.

To grant slaves initiative, without changing the base network protocol, it must be
guaranteed that all slaves (or at least the ones requiring initiative) receive a
request/response PDUs periodically.

In our proposal, this is achieved through two main mechanisms. First, the IP ACS
Scheduler at the master side reserves some data slots for Request with Response PDUs
for a particular slave. These are sent even if the applications at the master do not issue
any request to the slave. The reserved slots are also used for application data, if that data
is available. In this way, it is possible to guarantee a minimum bandwidth for the slave-
to-master communication, but additionally an equivalent bandwidth is also available to
master-to-slave traffic. Secondly, when a master receives a packet, it checks if it is for
itself or to another station. In the latter case, the message is forwarded to the appropriate
destination; note that the destination can be an IP station outside the fieldbus network if
the master embeds a gateway, or a slave station in the fieldbus network.

The implementation of these mechanisms imply just some small additions to the IP
ACS Scheduler. The IP Mapper routing mechanism becomes also quite straightforward.
The main difficulty is using the correct packet identifiers for the fragments that are sent
back to the network.

This was solved using an ID Generation mechanism that is used when new packets
are sent to the network and when packets are forwarded. Figure 4.2 depicts an illustrative
example: on the left end side, a simple master/slave connection; in the middle M1
forwards a packet from S2 to S3; on the right end side S2 sends a packet to a standard
TCP/IP Ethernet host (A).

 Chapter 4
Protocol Stack Architecture

39

Figure 4.2: Slave initiative examples in a symmetrical scheme

Another issue requiring careful design concerned converting Profibus addresses to
and from IP addresses, and the routing of IP packets.

Given the fact that Profibus has a limited 7-bit addressing space, a natural solution
is to make the direct mapping of Profibus addresses into IP Class C Host addresses –
with the higher bit set to zero. The remaining 3 bytes (see Figure 4.3), including the
Class C prefix of the IP Class C address, are programmed in each station and known as
RFieldbus Network ID (similar to the implicit network address programming in TCP/IP
stations given an IP address and a network mask).

Figure 4.3: RFieldbus Profibus-IP addressing scheme

S2

M1

1
2

PROFIBUS

M1

S2

S2

M1

1
2

S2 S3

S3

3

S2

M1

1
2

S2

A

3
TCP/IP
Ethernet

Real traffic:

Traffic view from a TCP/IP Application:

A

RFieldbus
Network ID

PROFIBUS
Address

IP Network ID IP Node ID 110
(Class C)

LSB MSB

0

 Part II
Factory Communications Framework

40

Concerning the IP routing, the solution is a complement of the slave routing via
masters. When a station receives an IP packet from the Profibus network, the IP Mapper
performs the following algorithm (regardless of being a master or slave station):

1. Check if the IP Destination Address matches its own address. If so, the
packet is delivered to the local TCP/IP stack.

2. Check if the three higher bytes of the IP Destination Address match its own
RFieldbus Network ID. If so, it forwards the packet to the Profibus network
using the Host ID of the IP Destination Address as Profibus Destination
Station removing the most significant bit.

3. Check if a Gateway station is configured. If it is the case, the packet is
forwarded to the Gateway station.

4. If everything else fails, the packet is delivered to the local TCP/IP stack. The
local TCP/IP stack makes the decision to discard the packet or to send it to
another host or router in the TCP/IP network.

On a correctly configured network, Steps 2 and 3 should only be relevant for
master stations.

Figure 4.4: Multicast/Broadcast scenarios in RFieldbus

For broadcast packets, the processing will be the same. Note that the IP Broadcast
Host ID (255) is translated to the Profibus Broadcast Address (127) by the above
algorithm. Multicast IP address translation is not supported inside the RFieldbus system.

S2

1
2 Profibus

S2

M1

1
2

S2

4

TCP/IP
Ethernet

Real traffic:

Traffic view from a TCP/IP Application:

M1

3

M1, S2… A, B, …

Router

S2

M1

1
2

S2

3

S3
3

A, B, …

Router
S2

 Chapter 4
Protocol Stack Architecture

41

However, the above address-processing algorithm makes it possible for an RFieldbus
station to send a multicast stream to stations outside the RFieldbus network.

In Figure 4.4, three examples of broadcast initiated by a slave station are presented:
on the left, same IP network (sharing the same Class C network ID); in the middle,
different IP networks using TCP/IP stack routing; on the right, different IP networks
using RFieldbus Gateway.

The details on each of the components of the dual-layer stack are described in the
next sub-sections.

4.2 IP Mapper

The IP Mapper sub-layer is located directly below the standard TCP/IP protocol stack,
converting TCP/IP services into Profibus DLL services (and vice-versa). It performs the
identification, fragmentation and re-assembly of the IP packets to/from Profibus DLL
frames. In master stations, the IP Mapper is also responsible for routing slave TCP/IP
packets to other stations. It also estimates the network usage of each fragment sent.

Figure 4.5: IP Mapper Internal Architecture

ID Tagger (Receive/Route)

Fragment
Tracking
Table

Fragment + FragID + PacketID +
Destination DLL Addr

Fragment + FragID + PacketID +
Source DLL Addr

Fragment
+ FragID
+ Packet ID

IP Packet

ID Generation

Fragmentation

Check
ID

New
ID

Fragment
+ FragID

Get
New

ID

ID

IP Packet

Reassembly

Fragment
+ FragID

+ PacketID

ID Tagger (Send)

Send / Route /
Discard

 Part II
Factory Communications Framework

42

Traffic class assignment, e.g. IP Best Effort (IPBE) or IP High Priority (IPH) is
done in the IP ACS sub-layer, as presented in Section 4.4.

The IP Mapper includes several entities and functionalities, briefly illustrated in
Figure 4.5 and described next.

The Fragmentation function receives an IP packet from the TCP/IP stack and
divides it in fragments of appropriate size for the Profibus network; each fragment is also
marked with a Fragment ID. IP datagrams that do not need fragmentation are marked
with Fragment ID zero. Note that the IP Fragments that the IP Mapper passes to its
lower layers take into account the limitations that are imposed by the underlying
(Profibus) network. In this context, the IP Mapper may receive from the TCP/IP Stack an
already fragmented IP packet and re-fragment it according to these limitations.

For local fragments, the ID Generator assigns new Packet IDs for each IP Packet
from a pool of 256 possible values. For remote (routed) fragments, the ID Generator first
checks if the remote Packet ID is in use. If not, then it is returned unchanged, while if
the ID is used then a new ID is generated and the Fragment Tracking Table (FTT) entry
is updated accordingly. The Release ID function (not represented in Figure 4.5) is called
every time a fragment is discarded or when a packet is completely sent or received.

The Send/Route/Discard functionality first checks if the IP Network Address of the
packet matches the IP Network Address of the station and the IP Host Address. If both
addresses match, then the packet is delivered to the Reassembly entity. If only the IP
Network Address matches, then the packet is delivered to the IP ACS using the IP Host
Address as the Profibus Destination DLL Address. If they do not match, it means that the
destination is not in the local network but in a remote IP network and therefore a
gateway station must be used. If there is a gateway for this station, then its Destination
DLL Address is used, if not the fragment is discarded.

All fragments of a particular IP packet received from the fragmentation module are
assigned a new Packet ID (at transmission time) by the ID Tagger (Send).

For received fragments, the ID Tagger (Receive/Route) uses the FTT. The first
fragment generates a new entry in the FTT with the Source DLL Address, Original
Packet ID and a locally generated Packet ID. When receiving other fragments, the ID
Tagger fetches a matching Source DLL Address and Original Packet ID from the FTT.
If no entry is found then the fragment is discarded, while if a match is found than the ID
Tagger replaces the remote Packet ID by the local Packet ID.

The Reassembly function rebuilds IP packets to be delivered to the TCP/IP stack.
When the first fragment is received, a memory buffer of the total IP packet size is
reserved (the packet size information is in the IP header that is always available in the
first fragment). Subsequent fragments are concatenated as they are received. Since low
error rates are assumed, there are no special provisions for data retransmission, and an
out-of-order reception voids the entire packet (it is assumed that a fragment was lost).

 Chapter 4
Protocol Stack Architecture

43

4.3 DP Mapper

The DP Mapper is the Profibus-DP equivalent to the IP Mapper in TCP/IP (refer to
Figure 4.1), and it is specified in detail in the RFieldbus Data Link Layer Specification
(RFieldbus Project, 2001a).

The DP Mapper is located below the standard Profibus-DP Application Layer. It
incorporates the already existing mapping functionality of the Profibus Data Link Layer
Management entity (DDLM) while enabling new features relevant to the integration of
DP Traffic and IP Traffic. The DP Mapper takes care of traffic identification of DP
traffic. Based on relevant System Management MIB (Management Information Base)
Objects, DP Traffic is classified into DP High Priority (DPH) Traffic, DP Low Priority
(DPL) Traffic and DP Best Effort (DPBE) Traffic. It also calculates the maximum
transaction time of each PDU. Finally, it passes the PDU to the appropriate queue of the
underlying DP/IP Dispatcher layer. DP Traffic fills three of the five queues of the DP/IP
Dispatcher Layer − DPH, DPL and DPBE.

4.4 IP ACS

The IP Admission Control and Scheduling (ACS) sub-layer is responsible for the
control/limitation of the use of network resources by the TCP/IP applications. Each IP
packet is classified according to the IP Header fields, such as destination address and
port. Given this classification, the corresponding fragments are placed in a specific
queue. Moreover, this sub-layer implements the appropriate scheduling policies, in order
to provide the required QoS for multimedia applications.

In each master, the available IPH slots must be used to convey the IP traffic
imposing QoS requirements. The ACS sub-layer (see Figure 4.6) is composed of several
Relationship Entities (REs) and a Scheduler. Essentially each RE relates to a particular
TCP/IP stream flow (with a particular QoS service level) identified by the IP Mapper.
Each RE includes a First-In-First-Out (FIFO) queue, used to store the IP fragments
coming from the IP Mapper. Fragments pending in these queues are passed to the
Dispatcher sub-layer by the Scheduler. Each RE has a configurable maximum queue
size; when this value is reached, requests are discarded. When a fragment is discarded
due to queue overflow, all pending fragments of the same packet are also discarded.

The Scheduler is responsible for the appropriate emptying of the different
Relationship Entity Queues so that all different QoS requirements are fulfilled. The
Scheduler uses a service interface, internal to the ACS, for the emptying of the different
Relationship Entity Queues or the acquisition of information relevant to their contents.
When a request for a fragment is issued by the Scheduler to an empty Relationship
Entity Queue, then the Relationship Entity generates a special frame if the Slave Poll
Option is chosen. This feature of the Relationship Entities is used by slave stations to
support multimedia capabilities. In practice, it guarantees slave-to-master TCP/IP
bandwidth by ensuring that the slave station has the chance to send a packet to the
master at programmed intervals, even when no master-to-slave traffic exists.

 Part II
Factory Communications Framework

44

Figure 4.6: IP ACS Architecture

As previously mentioned, the multimedia traffic can be of two types: traffic that
does not impose stringent timing requirements (denoted as IP Best Effort traffic – IPBE);
and multimedia traffic characterised by specific QoS characteristics, namely bandwidth
and jitter (referred to as IP High Priority – IPH). At the ACS sub-layer, there is one RE
(for both IPH and IPBE traffic) for each TCP/IP stream flow. Each RE has also
associated timing parameters that are used by the Scheduler.

The Scheduler uses an interface to the DP/IP Dispatcher layer in order to determine
whether it is allowed to fill the DP/IP Dispatcher queues or not. The queues that may be
fed by the ACS layer are the IPH queue and the IPBE queue.

The Scheduler is executed periodically with an interval defined as TDCY. There are
two main strategies to perform the Scheduling of the Relationship Entity queues; off-line
or on-line, as outlined next.

If scheduling is done off-line, a table in the Station Management gives the actual
schedule of the different Relationship Entity queues. This schedule is created a priori,
taking into account all needed information so that the diverse QoS requirements of the
different Relationship Entity queues are met. In this case, the Scheduler actually works
as a dispatcher for IP Traffic. In case the scheduling is done on-line, a table in the
Station Management provides the parameters needed by the Scheduling Algorithm so
that the actual schedule is determined every time the Scheduler is executed. In addition
to these QoS-specific parameters, the Scheduling algorithm has to take into account the
time allocated for IP HP traffic and the remaining time for BE traffic.

The above procedures apply to the IPH traffic. On the other hand, IP BE Traffic
Queues are delivered to the dispatcher in a round robin fashion. Fragments delivered by

Relationship

Scheduler

Relationship

Max Queue Size

MxQS Discarder

Slave Support

IPH
IPBE

Can be Simplified or Removed in Slaves

Classification

 Chapter 4
Protocol Stack Architecture

45

the Scheduler attach information about the traffic class (IPH or IPBE) and about network
usage estimation.

The following example illustrates some of these principles. The scheduler micro-
cycle is equal to TDCY, the worse rotation time of the token. For this example
TDCY = 10 ms and TIPH = 2 ms for a particular master station. We consider five TCP/IP
data flows with 200-byte fragments, characterized as described in Table 4.1.

Table 4.1: Example configuration

Flow At every “n” TDCY Transaction duration Multimedia data throughput
IPH1 1 100 µs 100 · 1600 = 160 kbps
IPH2 3 200 µs 33.3 · 1600 = 27 kbps
IPH3 3 200 µs 33.3 · 1600 = 27 kbps
IPH4 4 400 µs 25 · 1600 = 40 kbps
IPH5 4 1000 µs 25 · 1600 = 40 kbps

The Transaction Durations depend on the locations of the stations and the data

payloads. Spawning multiple domains (wired/wireless) results in additional delays. Also
smaller data payloads result in smaller transaction times. However, for most TCP/IP
traffic the maximum fragment size is used except in some particular applications, e.g.
applications than send small User Datagram Protocol (UDP) packets.

Figure 4.7: Scheduling example at IP ACS level

For this example configuration, a simple Rate Monotonic scheduling solution is
presented, where each stream is scheduled according to its periodicity. This particular

TIPH=2.0 ms

1 1 1 1 1 1 1 1 1 1 1 1

2

3

4

5

2

3
4

2

3

2

3
4

5

1.9 ms
(min TIPH)

Available
time

TDCY=10 ms
= Micro-cycle Macro-cycle = 120 ms

1 2 3 4 5 6 7 8 9 10 11 12

5

 Part II
Factory Communications Framework

46

solution is simple but needs a value of TIPH of at least 1.9 ms (see Figure 4.7); more
complex scheduling algorithms can be used to reduce this value. Other implementation
alternatives and design options will be discussed in Chapter 5, Section 5.1.

Besides the scheduling table (or a runtime implementation of the scheduling table
algorithm), the IP ACS Scheduler can also include a runtime mechanism that
compensates for empty IP queues in subsequent micro-cycles. The reader is referred to
Section5.1 for more details.

The traffic scheduled by the IP ACS is then fed into the DP/IP Dispatcher where it
is mixed with other traffic.

4.5 DP/IP Dispatcher

The DP/IP Dispatcher layer (RFieldbus Project, 2001b) resides under the IP ACS Layer
and the DP Mapper (see Figure 4.8). Both DP Traffic and IP Traffic pass through this
sub-layer, which is responsible for transferring both kinds of traffic to the Profibus FDL.

The DP/IP Dispatcher sub-layer considers three traffic classes, which are supported
by five different FIFO queues according to the traffic source (Figure 4.9).

The Guaranteed High-Priority traffic, which is Profibus high priority traffic that
must be always scheduled on time. This traffic class is intended to support DP high
priority traffic with real-time requirements (DPH).

Figure 4.8: Dispatcher functionality and interfaces

The Guaranteed Low-Priority traffic, which is Profibus low priority traffic that is
scheduled on time after the guaranteed high priority traffic. This class of traffic is
intended to support the two sub-classes: DP low priority traffic with timing requirements
(DPL) and IP traffic with QoS requirements (IPH).

The Best-Effort traffic, which is Profibus low priority traffic that is scheduled after
the guaranteed traffic, without any guarantees of timely delivery. This traffic class is

Fieldbus Interface IP Interface

Profibus FDL

DP/IP Dispatcher
IPH IPL DPH DPL BE

Hi Low

IPH DPH DPL BE BE IPL

Fieldbus Interface IP Interface

Profibus FDL

DP/IP Dispatcher

SEND RECEIVE

SAP == 11 SAP != 11

 Chapter 4
Protocol Stack Architecture

47

intended to support two sub-classes: IP traffic without QoS requirements (IP-BE) and
non real-time DP low priority traffic (DP-BE).

Figure 4.9: Dispatcher traffic classes

The dispatching algorithm is executed periodically every TDCY, using an
independent timer of the IP ACS Scheduler (that also runs every TDCY). The algorithm
uses bandwidth reservation parameters that are provided as different MIB (Management
Information Database) objects and are determined pre-run-time (during System
Planning). These objects define the time limits for the different kinds of traffic that are to
be served at each cycle. DPH traffic may be constrained to an appropriate time value
(TDPH) calculated during system planning or left unconstrained so that all DPH traffic
generated is fed to the FDL High Priority Queue in every dispatcher cycle. The DPH
option is configurable for each station. The other traffic has time constrains which are
the DPL Time Limit (TDPL) for DPL Traffic, the IPH Time Limit (TIPH) for IPH Traffic
and the BE Time Limit (TBE) for the combined DPBE and IPBE Traffic. The traffic is
constrained in the above-defined order.

Upon setting these time constraint parameters, the Dispatching algorithm passes
the appropriate amount of traffic from the five different queues to the FDL High and
Low Priority queues. The IP ACS layer is responsible for providing an optimal filling of
the guaranteed QoS IP dispatcher queues, but sometimes the available time may be
reduced by higher priority DP traffic.

The dispatcher uses an estimate of the network usage time for each fragment to be
sent. The IP Mapper and DP Mapper sub-layers calculate this time using several
variables. These variables include: the topology of the system, since the communication
between peers through a number of hopping stations (the complete system supports
networks with multiple wired and wireless segments) poses greater delays to
communications between peers in the same e.g. wired segment; the DLL Service used
(confirmed requests take longer than non-confirmed requests); the number of bytes that

DP high-priority traffic
(DPH)

DP low-priority traffic
with timing requirements
(DPL)

DP low-priority traffic
w/o timing requirements
(DP-BE)

IP traffic
with QoS requirements
(IPH)

IP traffic
w/o QoS requirements
(IP-BE)

High-priority
Profibus

Traffic

Low-priority
Profibus

Traffic

Guaranteed (or real-time)
traffic

Best Effort (or non real-time)
traffic

 Part II
Factory Communications Framework

48

the fragment contains (to account for the transmission delays of the fragment itself); and
the Delays due to hardware/software constrain (e.g. delays on module-to-module
communication, hardware interface delays, etc.).

With reference to the target message cycle time, corresponding to a worst-case
message cycle duration including the request and reply and taking into account idle time,
the dispatcher algorithm may be configured to work according to three schemes: Direct,
Direct Tabular and Computing. In the Direct schema, the target message cycle time is
given as one object in station management for all kinds of fragments. In the Direct
Tabular scheme, there is a table containing the calculated target message cycle time
values for different options of peer connections. This data is stored in the station
management database. The calculations are done at system planning, taking into account
the different system aspects. Finally, in the Computing schema the target message cycle
time is calculated by the Dispatcher for each different fragments, taking into account the
system management parameters.

The target message cycle time is a significant parameter for the fieldbus system
since it is used by both the DP/IP Dispatcher and the IP ACS Layers and is relevant to
the selection of the appropriate fragments to be transmitted, so that all timing
requirements imposed by the applications are met.

The Dispatcher sub-layer interfaces the DP Mapper and the IP ACS to the Profibus
DLL. For transmission, it provides several queues concerning the priority of service
requests. The Dispatcher transfers requests from these queues to the DLL, limited by the
master allocation time. The requests are transferred at least within the Dispatcher Cycle
Time and according to the queue priority.

According to the fragment model, a pre-defined set of dispatching rules imposes
that, at each master station, the Dispatcher cyclically transfers to the FDL layer a number
DPH PDUs depending on the DPH processing option. These PDUs are followed by DPL
PDUs up to configurable TDPL usage estimation limit and then IPH fragments up to
configurable TIPH usage estimation limit. If station time is available, DP-BE PDUs and
IP-BE fragments are sent.

Such dispatching strategy generates predictable traffic scenarios, where the token
holding time (TTH) is never overran (provided that TTR is set according to the rules of the
constrained low priority traffic profile).

Each queue of the Dispatcher must hold the traffic needed for one dispatcher cycle.
The Dispatcher is implemented on a cyclic basis, and the dispatching algorithm is
triggered every TDCY. At each dispatcher cycle, the Dispatcher serves its queues and
transfers traffic to the FDL queues. When the dispatcher algorithm is triggered, it starts
by processing DPH. After processing DPH traffic, the dispatcher serves DPL traffic until
the TDPL is consumed or there is no more available time for the current dispatcher cycle.
After processing DPL traffic, the dispatcher serves IPH traffic until the TIPH is consumed
or there is no more available time for the current dispatcher cycle. Finally, after
processing the IPH traffic, the dispatcher serves Best Effort traffic: one PDU from DP-
BE queue if it fits the remaining time of the dispatcher cycle; one fragment from IP-BE
queue if it fits the remaining time of the dispatcher cycle; this is repeated until the
queues are empty or no traffic from the queues fit the remaining time of the dispatcher
cycle. This process is illustrated and exemplified in Figure 4.10.

 Chapter 4
Protocol Stack Architecture

49

Figure 4.10: Dispatcher traffic classes and timing concepts

In each dispatcher cycle, the DPH Traffic that is forward to the FDL may be
processed in three alternative ways:

1. all DPH PDUs are sent (results in standard Profibus processing of this kind of
PDUs);

2. DPH PDUs up to the dispatcher cycle time are sent (guarantees that this
station does not delay the token):

3. DPH PDU up to TDPH usage estimation limit are sent (guarantees that DPH
traffic does not starve IPH traffic).

The alternative to be used is a configuration parameter of the station.

Figure 4.11: Dispatcher and token timing

Ideally, the dispatching activities should be synchronised with the token arrivals at
the FDL layer, maximising the available throughput, since at each token arrival there
would be, at most, the agreed number of PDUs to be transferred. However, such
synchronisation is not trivial, since it would imply modifications to the Profibus FDL.

Dispatcher

FDL Token

20 ms 20 ms 20 ms

15 ms 18 ms 12 ms 15 ms

DPH Traffic
DPL Traffic

Station 1

Station 2

Station 3

token

token token

IPH Traffic
DP BE Traffic
IP BE Traffic

 Part II
Factory Communications Framework

50

Then, in order to guarantee that the assumptions of the constrained low priority traffic
profile are always satisfied, it is considered that the token arrives at the station at the
same rate that the Dispatcher is executed, i.e. every TDCY.

Consequently, the traffic throughput cannot be maximised, since there are some
token arrivals when there is no traffic to be transferred at the FDL layer. For example, if
TDCY=20 ms and Tcycleaverage=15 ms, the traffic at station k would be processed as
presented in Figure 4.11. However, the scheduling guarantees are always meet if the
token is never late, this can be achieved using options 1 or 2 of the DPH processing at
the dispatcher in all stations or guaranteeing that this condition is fulfilled by the
application.

51

 Chapter 5
Other Design and Implementation Issues

This chapter addresses a few details on how to implement the mechanims proposed
in Chapter 5, namely concerning the Admission Control and Scheduling (ACS)
mechanism, how packet fragmentation works and how to implement and configure
a network scenario using commercial technology.

5.1 IP ACS Scheduler

While in Section 4.4 a simple scheduling algorithm was proposed, the RFieldbus
implementation can use any other scheduling policies that might eventually be more
adequate for each specific application scenario. As an example, we present a Deferred-
Release scheduling algorithm adapted from (Tovar and Vasques, 2001), that aims to
minimize the minimum TIPH value, thus allowing the fulfilment of traffic with more
stringent time requirements.

functionfunctionfunctionfunction deferred_release;

inputs:
 niph /* IPH data flows */
 k[i] /* array with number of fragments per period for each data flow */
 /* ordered ascendingly */
 /* i goes from 1 to niph */
 Ttmc [i] /* transaction duration */
 /* (TMC paramenter)*/
 Tdcy /* TDCY value, the scheduler cycle */
 Mcy /* number of micro-cycles in a macro-cycle */

outputs:
 sched[i,cycle] /* scheduling table */
 /* cycle goes from 1 to n_µcy */
 offset[i] /* offset relative to first micro-cycle */
 Tiph /* TIPH value */

begin
1: /* offset calculation */
2: forforforfor i = 1 totototo niph dodododo
3: min_load = MAXINT;
4: forforforfor cycle = 1 totototo (Ttmc[i] div Tdcy) dodododo
5: cycle1 = cycle;
6: max_load = 0;
7: repeatrepeatrepeatrepeat
8: ifififif load[cycle1] > max_load thenthenthenthen
9: max_load = load[cycle1];
10: end ifend ifend ifend if;
11: cycle1 = cycle1 + (Ttmc[i] div Tdcy)
12: untiluntiluntiluntil cycle1 > Mcy;
13: ifififif max_load < min_load thenthenthenthen
14: cycle_min = cycle;
15: min_load = max_load;
16: end ifend ifend ifend if;
17: end for;
18: end for;
19: cycle = cycle_min;
20: offset[i] = cycle_min - 1;
21:
22: /* update each cycle workload */
23: /* build scheduling table */
24: repeat
25: load[cycle] = load[cycle] + Ttmc[i];
26: sched[i,cycle] = 1;
27: cycle = cycle + (Ttmc[i] div Tdcy);
28: untiluntiluntiluntil cycle > Mcy;
29:
30: /* get TIPH value */
31: tiph = 0;
32: forforforfor i = 1 totototo Mcy dodododo
33: ifififif load[i] > Tiph thenthenthenthen
34: Tiph = load[i];
35: end if;
36: end for;
returnreturnreturnreturn sched, offset, Tiph;

Figure 5.1: IP ACS Deferred-Release algorithm

 Part II
Factory Communications Framework

52

Decreasing the value of TIPH results in more network bandwidth available for other
traffic in other stations, or other traffic in the same station, but there is less “headroom”
for compensating missed IP fragments (i.e. fragments that were expected in a given
period from the TCP/IP stack but that for some reason were slightly delayed). The
algorithm delays some fragments by one or two micro-cycles but never more than the
data flow period so the final QoS of the flow is unaffected.

The algorithm presented in Figure 5.1, results in the scheduling scenario as
illustrated in Figure 5.2.

Figure 5.2: IP ACS Deferred-Release scheduling example

Another condition to take into account is when the scheduler has a slot available in
a micro-cycle for a particular data flow but, for some reason, no fragment is available.
This can occur due to the way applications generate data flow (that can be slightly bursty
and not a perfect constant rate), due to TCP connection control mechanisms, Operating
System and TCP/IP stack delays and even IP Mapper fragmentation delays.

An on-line compensation mechanism can be implemented to overcome this
situation. The concept is that when there is a “miss” on the scheduler slot this can be
compensated in the next micro-cycles if there is enough free TIPH time. In order to avoid
a burst of compensation cycles in the future, a limit on the maximum number of
compensated fragments must be set. In (Ferreira et al., 2001) the value of this limit is
defined according to the maximum acceptable jitter (Ji) for the application with period
(Ti) and presented in Eq. (6.1).

TIPH=2.0 ms

1 1 1 1 1 1 1 1 1 1 1 1

2
4

5

2 3

4

2 3 2 3

4
5

New min TIPH

1.3 ms

TDCY=10 ms
= Micro-cycle Macro-cycle = 120 ms

Available
time

3

1 2 3 4 5 6 7 8 9 10 11 12

5

Original
1.9 ms

 Chapter 5
Other Design and Implementation Issues

53

 







=

i

i
i T

J
N (5.1)

The result of this compensation for an example scenario is presented in Figure 5.3.
IPH1 generates fragments in a variable way, from zero to three fragments in each micro-
cycle. However, the average for the full macro-cycle is one fragment per micro-cycle.

Figure 5.3: IP ACS Deferred-Release Scheduling with Jitter compensation

This compensation mechanism can be implemented over an off-line scheduling
table, using an enhanced dispatcher, or it can be integrated in an on-line scheduling
algorithm.

5.2 Configuring the RFieldbus Network

As seen in Section 2.4, configuring a Profibus network with wired and wireless segments
involves setting correct timing parameters such as TTR, TSL, TID1 or TID2. While this
configuration is usually done in an intuitive way, this approach is inadequate when
tackling more complex networks such as the ones supported by the RFieldbus
architecture (multiple wired and wireless segments). A systematic presentation of this
configuration was performed The main aspects of the approach are described next.

The starting point for the approach consists in summing up all the required master
allocations and guarantee that TDCY is greater than that value. TTR is then set accordingly.
Figure 5.4 illustrates the reasoning.

TIPH=1.3 ms

1

1 1 1 1 1 1 1 1 1 1
2

4

5

2
3

4

2 3 2 3

4
5

Available
time

3

1 2 3 4 5 6 7 8 9 10 11 12

5

1

1

1

Missed
slots

Compensation

1
1 1

1
1
1

1
1

1

1

1 1

1
1

1

Compensation
after µcycle

1
1

1
1

1 1

Arrivals
before µcycle

IPH1 Queue:

 Part II
Factory Communications Framework

54

Figure 5.4: Basic temporal parameters for network configuration

In a more formal way:

 MIN

n

i

i
MADCY TTT ≤=∑

=1

 (5.2)

Since TDCY is the maximum time that the token can take between visits to a
particular master, this value must be smaller than the requested network response time
(TMIN), an application-dependent parameter. Ti

MA, the allocation time for each master can
be calculated by:

 i
token

i
BE

i
IPH

i
DPL

i
DPH

i
MA TTTTTT ++++= (5.3)

In Figure 5.4, the TTR value is also illustrated. It is fundamental that TTR is high
enough so that the token is never late. This means that TTR must allow for a complete
TDCY cycle plus the transmission of all PDUs (including token passing) in the master with
the largest TMA.

 { } { }i
MA

i

n

i

i
MA

i
MA

i
DCYTR TTTTT maxmax

1

+=+= ∑
=

 (5.4)

All these values are calculated depending on the transaction duration for each
scenario. In case of an SRD message (confirmed request) this duration is:

 1IDrespSTreqMCSRD TCTCT +++= (5.5)

DPH Traffic
DPL Traffic

M1

M2

MoM token

token token

IPH Traffic
DP BE Traffic
IP BE Traffic

Beacon
trigger

Inserted
Idle Time

token token

TTR

TDCY

T1MA

T2MA

T3MA T1MA

 Chapter 5
Other Design and Implementation Issues

55

In addition, for the simpler SDN message (unconfirmed request) this duration is:

 2IDreqMCSDN TCT += (5.6)

In these last two equations, Creq and Cresp can be computed using the message size
(in bits) and the bit rate. For simplicity, we use the largest possible value for these
variables.

Regarding TID1, this parameter must be carefully calculated on RFieldbus systems
due to the PDUs being relayed between mediums with different bit rates and frame
formats. If TID1 is too small this can lead to buffer overflow in the relaying stations and
thus to unpredictable PDU end-to-end delays. Setting TID2 has a similar impact, but now
regarding SDN transactions. Finally, TST, the “timeout” value for a response of a slave
must take into account delays due to queuing and bit rates.

Lastly, for the MoM (Mobility Master) station, an additional idle time TID2 must be
inserted such that the wireless stations have enough time to perform radio channel
assessment and hand-off, regardless of their location in the RFieldbus network (some
mobile stations can be closer to the MoM than other). When the MoM sends the Beacon
Trigger it is forwarded by all relaying stations in the network and detected by wireless
slaves. After forwarding the Beacon Trigger, the base stations start sending a series of
beacons spanning all pre-defined radio channels, during the mobility management
period. In parallel, the mobile stations start probing each available radio channel and
select (hand-off) the best available channel. The number of beacons each base station
must send sufficient must take into account the delay in the beacon trigger relaying
(eventually involving multi-hop) and the worst-case duration of the channel assessment
by the wireless stations.

The complete reasoning for the computation of TID1, TID2 and TSL and of the
mobility management parameters is available in (Alves, 2003)

5.3 Profibus Fragmentation Needs

As presented in Chapter 2, Profibus supports up to 246 bytes of data per PDU. However,
small stations can be limited to 32-64 bytes of data.

In contrast, a standard TCP/IP packet can have up to 64 Kbytes of data, which can
be fragmented automatically by IP to match the Maximum Transmission Unit (MTU) of
the forwarding networks. The minimum MTU is limited by the need to send one full IP
Header per fragment, and has a theoretical minimum value of 68 (Postel, 1981). Most
applications expect networks that can send fragments of around 1500 bytes − e.g.
Ethernet − and up to more than 9000 bytes − e.g. ATM using AAL5 (Atkinson, 1994).

For instance, in a network with a MTU of 1500 bytes, a standard (i.e. with a
20 byte header) IP packet with 4000 bytes of data is divided into three fragments: two
fragments with 1500 bytes (1480 bytes of data) and one fragment with 1060 bytes (1040
bytes of data). This means that there will be two extra IP headers due to fragmentation,
and out of the total 4060 bytes, 40 are used to that purpose alone, meaning an overhead
of 1% of the original data.

 Part II
Factory Communications Framework

56

The same example in a network with very small MTU results in an excessive
overhead. In a network with a MTU of 128 bytes, an IP Packet with 4000 bytes of data is
divided in 38 fragments: 37 fragments of 128 bytes (108 bytes of data) and 1 fragment
with 24 bytes (4 bytes of data). In this situation, the additional 37 IP headers due to
fragmentation will now be 740 bytes, i.e. 18.5% of the original data. For a MTU of 64
bytes the overhead of the example packet goes up to 83% (!), and in the best-case
Profibus scenario (MTU of 246) we have an overhead of 4.5%.

As a result, an RFieldbus-specific fragmentation scheme was devised. Each
RFieldbus PDU has a 2-byte header (Figure 5.5). The first byte identifies the original IP
packet (and is unsurprisingly named Packet ID), and can have values between 0 and 255.
Each RFieldbus station generates its own Packet IDs, and so, Packet IDs are unique for
each source. This circumstance limits the maximum number of concurrent (i.e. with
interleaved fragments) IP packets that can be sent from a station to a maximum of 256.
The second byte is used to identify the order of the fragment (Fragment ID) and can
range from 0 up to 127. Value 0 is used to identify non-fragmented packets. Values
higher that 127 are reserved for future use.

On reception, the actual length of the Packet is obtained from the IP Header in the
first fragment. This limits the current protocol to be used on IP (version 4) packets, but it
can be extended using the reserved range of the Fragment ID.

Figure 5.5: RFieldbus packet format

This solution has a minimum PDU data size of 22 bytes if IP packets without IP
options are used, or 62 bytes to support all possible IP packets. Since we have a
maximum of 127 fragments per packet, the maximum IP packet size (i.e. the MTU seen
from the TCP/IP layers) will be around 8000 bytes even for Profibus networks with
limited PDU data length of 60 bytes.

The overhead of the previous examples is now reduced significantly: a 4000-bytes
IP packet has an overhead due to fragmentation of only 3,25% in a 64-byte Profibus
network; and in the best-case scenario of a 246-byte Profibus network this goes down to
0,85%.

It should be noted that the current implementation is PC-based and the PDU length
limit is not actually an issue, but in future implementations at more resource-limited
stations, the problem may arise.

The maximum IP packet used in a network can also be limited due to the time
needed to transmit the packet that can be relevant in time-critical applications. However,
a Profibus-DP network at 12 Mbps takes only about 8 ms to send 8000 bytes of

Packet
ID

Fragment
ID

8 bit 8 bit

0: not fragmented
1-127: fragment number
128-255: reserved for future use

Payload

0-244 bytes

 Chapter 5
Other Design and Implementation Issues

57

unconfirmed data ((8000 data bytes + 33 * 11 header bytes) * 11 bits on the network per
usable byte / 12 Mbps), a delay that might be acceptable for most TCP/IP applications.

Other side-effects that may limit the usage of very large MTUs in IP include Cyclic
Redundancy Check (CRC) resiliency with MTUs greater than 10000 bytes (Jain, 1990),
but Profibus has its own error-control scheme and our fragmentation mechanism
discards the full packet if there is an error in any fragment.

The usage of large IP packets is possible due to the high reliability of the Profibus
network itself. Since the network has a low error rate and IP has its own methods to
overcome errors (using automatic resend for TCP Streams, UDP applications are aware
that packets may be lost) no mechanism was implemented to resend lost fragments at the
RFieldbus network. A simple timeout is implemented so that a lost fragment results in a
discarded packet; with very large packets this may have a significant impact on the
network performance. It is viable to implement such a mechanism in the future.

5.4 Windows NT Network Drivers

The IP Mapper and Dispatcher were integrated on the Windows NT Network Drivers
architecture, which is described next.

The Microsoft TCP/IP protocol suite is comprised of core protocol elements,
services, and the interfaces between them, as illustrated in Figure 5.6. The Transport
Driver Interface (TDI) and the Network Device Interface (NDIS) are public and their
specifications are available from Microsoft. In addition, there are a number of higher-
level interfaces available to user-mode applications. The two most commonly used are
Windows Sockets and NetBIOS.

Figure 5.6: Windows NT TCP/IP network model overview

Windows
Sockets

NetBIOS
Support

NetBT

TCP

UDP

ICMP IGMP

ARP

IP

Network Card Driver(s)

Network Media

user

kernel

TDI
interface

NDIS
interface

 Part II
Factory Communications Framework

58

5.4.1 The NDIS interface and below

Microsoft networking protocols communicate with network card drivers using the NDIS.
NDIS defines a fully abstracted environment for Network Interface Card (NIC) driver
development. For every external function that a NIC driver needs to perform, it can rely
on NDIS routines to perform the operation. This includes the entire range of tasks
performed by a NIC driver, from communicating with protocol drivers, to registering
and intercepting NIC hardware interrupts, and communicating with underlying NICs
through manipulating registers, port I/O, and so forth. Therefore, NIC drivers can be
written entirely in platform-independent high-level languages such as C. These drivers
can then be recompiled with a system-compatible compiler to run in any NDIS
environment.

NDIS includes features that simplify the driver development and integration
including: single driver instance used to control all network adapters supported; a fully
abstracted interface (ndis.sys); symmetric multiprocessor support; loopback support;
multiprotocol support (protocols can be bounded to NDIS NIC drivers independently of
implementations, including native Windows ARCNET and WAN Support); simplified
administration; single or multiple packet per send request interfaces; additional
information can be attached to packets (like QoS parameters) and full duplex operation
on SMP machines.

5.4.2 Intermediate drivers

A NDIS intermediate driver usually exports MiniportXxx functions at its upper edge and
ProtocolXxx functions at its lower edge. Less commonly, an intermediate driver can
export MiniportXxx functions at its upper edge and a private interface to an underlying
non-NDIS driver at its lower edge (Figure 5.7).

An intermediate driver is typically layered over one or more NDIS NIC drivers and
under a transport driver (possibly multilayered), that supports TDI at its upper edge.
Theoretically, an intermediate driver could be layered above or below another
intermediate driver, although such an arrangement is unlikely to exhibit good
performance.

An example of intermediate drivers is a LAN-emulator intermediate driver layered
below a legacy transport driver and above a miniport NIC driver for a non-LAN
medium. Such a driver receives packets in a LAN format at its upper edge, translates
them to another NIC-native medium format and sends them on to an NDIS miniport for
that NIC. On receives, this intermediate driver translates packets indicated up from the
underlying NIC driver to a LAN-compatible format and indicates these converted
packets to the upper level transport driver.

An intermediate driver can also be deployed below NDIS, when the Intermediate
Driver depends on an underlying driver of a device other than a NIC. For example, an
intermediate driver might handle network I/O requests for a device connected to a serial
port. Such an intermediate driver would export a set of MiniportXxx functions to
communicate with NDIS at its upper edge and use standard Windows NT I/O Request
Packets (IRPs) to communicate with the underlying serial device driver at its lower edge.

 Chapter 5
Other Design and Implementation Issues

59

Figure 5.7: Supported intermediate driver configurations

5.5 RFieldbus Prototype Implementation

The implementation of the RFieldbus prototypes is based on existing software, which
supports Profibus master and slave functionalities. It consists of three main parts: the
Profibus firmware; the NDIS miniport driver and the NDIS intermediate driver (Figure
 5.8). In addition, a card driver Dynamic Link Library (DLL) is necessary for the Profibus
control application.

Since Windows NT4.0 was used in the RFieldbus field trials, an NDIS miniport
driver was needed in order to support the adequate interface to the TCP/IP stack or to
underlying intermediate layers. On the other hand, an interface to the Profibus
applications was necessary. These applications run in the user mode, wherefore the
NDIS interface is not usable. That is why a Windows Driver Model (WDM) interface
was also implemented, to support interfaces to both the Profibus application and the
TCP/IP stack.

The device driver has to perform two main tasks: to set up the hardware access
according to the different board types and to manage the exchange of service primitives
between the TCP/IP protocol and the Profibus firmware.

The Device Driver is started with the Windows boot process. However, it rejects
all send packet requests from the network protocols until the Profibus firmware is
initialized. It is the task of the Profibus application to start-up the hardware via the
Hardware Management features of the Miniport Driver. The initialization is performed
in three steps. First, the Profibus application prompts the device driver to make a
hardware reset to the board, maps the DPRAM (hardware interface) into the user mode

N
D
I
S

N
D
I
S

Transport
Driver

Transport
Driver

Intermediate
Driver

Intermediate
Driver

Device
Driver NIC

Driver

ProtocolXxx - MediaX
Driver

ProtocolXxx - MediaX
Driver

ProtocolXxx - MediaY
Driver

MiniportXxx - MediaY
Driver

MiniportXxx - MediaX
Driver

MiniportXxx - MediaX
Driver

Private Interface
Driver

Private Interface
Driver

Device

NIC

 Part II
Factory Communications Framework

60

address space and returns the virtual DPRAM address. Then, the application initializes
the required firmware protocol (master or slave) and forwards the offset of the IP
command area of the DPRAM interface to the driver. The driver initializes its private
interface to the Profibus firmware. Lastly, the Profibus application loads the network
parameters into the firmware to activate the connection to the Profibus system.

Figure 5.8: RFieldbus NDIS implementation architecture

After a successful firmware initialization, the device driver forwards send packet
requests from the network protocols to the Profibus firmware and receive packet
indications from the firmware to the protocols. Send packets are returned to the network
protocols together with state information, when receiving the related send confirmations.

Receiving service primitives from the Profibus firmware is done by polling the
report area of the DPRAM interface.

The Intermediate Driver is responsible for interfacing with upper level protocols
(i.e. TCP/IP) on its upper edge, and with the lower Miniport. Mainly, the Intermediate
Driver implements IP Mapper and IP ACS functionalities.

Figure 5.9 depicts the NDIS Intermediate Driver internal interface. Both IP Mapper
and IP ACS modules rely on a common driver support facility, and interact using a
defined function interface. The Intermediate Driver’s entry/exit functions are NDIS
standard calls.

WDM + NDIS miniport driver

TCP/IP
Applications

Profibus
Application

TCP/IP
Applications

TCP/IP
Applications

TCP/IP Stack

NDIS
intermediate driver

RFieldbus hardware interface

RFieldbus hardware (and Firmware)

NDIS
wrapper

DLL

kernel

user

Profibus
data

Hardware
management

TCP/IP data

WDM NDIS

 Chapter 5
Other Design and Implementation Issues

61

Figure 5.9: RFieldbus NDIS Intermediate Driver Interfaces

To send packets, TCP/IP indicates to the Intermediate Driver “send” function the
data (represented by a NDIS defined structure) to be transmitted, using a standard NDIS
call. In the opposite case, where a reassembled IP packet is ready to be forwarded to
TCP/IP, another standard NDIS call is used to forward the data to the TCP/IP stack. To
send and receive fragments, the IP ACS uses standard NDIS calls to communicate with
the lower Miniport in a similar manner.

As for the IP Mapper/IP ACS interface, the three service functions described next
are utilized. Upon reception of fragments from the lower layers, the IP ACS uses the
Fragment Delivery Indication service function to forward them to the IP Mapper. By
calling this function, the IP ACS passes to the IP Mapper the pointer to the fragment as
well as its source address. This extra information is necessary for the identification of
the fragment.

On the other hand, for fragments destined to the lower layers, the Fragment
Delivery Request service function is used to send them to the IP ACS. For every
fragment sent to the IP ACS, the IP Mapper expects a confirmation indicated by the
service function Fragment Delivery Confirmation. This confirmation, sent by the IP
ACS, depends on the delivery status of the fragment to the lower layers.

The Dispatching functionality is implemented in firmware.

5.5.1 NDIS Intermediate Driver details

The Profibus NDIS Driver implements most of the functionalities of the IP Mapper and
ACS sub-layers, as illustrated in Figure 5.10.

NDIS Intermediate Driver

IP Mapper

IP ACS

Fragment
Delivery
Request

Fragment
Delivery
Indication

Fragment
Delivery
Confirmation

 Part II
Factory Communications Framework

62

Figure 5.10: RFieldbus NDIS intermediate driver functionality

5.5.2 Sending packets

When the transport layer has a packet to send down to the network, it indicates this to
NDIS that, in turn, calls the appropriate function registered during initialization. This
was set to the “send” function of the Profibus NDIS Driver. This function is also
responsible for the packet identification, making decisions about whether to send the
packet or discard it, its fragmentation, and queuing in the proper Relationship.

Figure 5.11: Modules acting in the task of sending a packet

A timer function is triggered at predetermined intervals. When the timer function
triggers, the state of the Relationships is checked, and the scheduling of the fragments to
send is defined. The fragments are then sent according to this scheduling. The

NDIS Intermediate Driver

Mapper

ACS

Relationship
Management

Scheduling/Dispatching

Fragmentation

Reassembly

Switching

ID Generation ID/Routing

timer function

IMDriverSend(Packet)

IP Mapper

Relationship
Management Scheduling/Dispatching

 Chapter 5
Other Design and Implementation Issues

63

scheduling takes into account several parameters of the different IP streams to serve,
according to a proper algorithm as described in Section 5.1.

In Figure 5.11 the functionality modules impacting the task of sending a packet are
described.

The diagram in Figure 5.12 shows the processes involved when a packet is sent
from the transport layer, until its fragments are stored in the appropriate relationship.

Packet

Discarded
Packet

Packet (with ID
information)

Fragment (with ID
information)

Fragment
(with ID
information)

Relationship

Discarded
Packet

ID Generation
entity

Fragmentation

Packet
Identification

Discarding

Relationship
Management

Transport
Layer

Figure 5.12: DFD - Store packets to send in appropriate relationship

When the timer function triggers, the relationships are checked, and emptied
according to a scheduling algorithm as briefly illustrated in Figure 5.13.

Relationship

Check
Relationship

Make

Schedule

Relationship
information

Queuing in

IPH and
IPBE

Fragments

Relationship information

Schedule information

NIC

Fragments

Send

Fragments

Fragments

Figure 5.13: DFD - Emptying of the relationships

 Part II
Factory Communications Framework

64

5.5.3 Receiving data

The reception of fragments is a simple task, as the NDIS Miniport passes up to the NDIS
Intermediate Driver the received fragments. Upon this, the several fragments are
buffered until the whole packet is received; at this time, the data is delivered to the upper
layer, as presented in Figure 5.14.

Check/
Identify

 fragment

Reassemble

packet

Fragment (with ID
information)

Deliver
packet to
transport

Fragments

Packet

NIC

Packet
Transport Layer

Discarding

Discarded
fragment

ID Generation entity

ID information

Figure 5.14: DFD - Receive packets and deliver to upper layer

65

 Chapter 6
Validation

This chapter addresses the experimental validation of the mechanisms proposed in
Chapter 5 and for which some implementation details were provided in Chapter 6.
The Manufacturing Automation field trial of the RFieldbus European Project was
used as a testbed. This enabled us to test and validate the feasibility and
correcteness of the proposed mechanisms in a real and application-rich scenario.

6.1 Introduction

The RFieldbus features presented in this thesis were tested in the RFieldbus
Manufacturing Field Trial, which is described in Sections 6.2 and 6.3. Configuration,
tests and discussion of results are described in subsequent section of this chapter.

6.2 The Manufacturing Automation Field trial

The manufacturing automation field trial (IPP Hurray, 2002) involved the use of
traditional Distributed Computer Control Systems (DCCS) and ‘factory-floor-oriented’
multimedia (e.g. voice, video) application services, supporting both wired and
wireless/mobile communicating stations (mobile vehicles, for example). It was also a
major goal that the manufacturing automation field trial would provide a suitable
platform for RFieldbus timing (e.g. guaranteeing deadlines for time-critical tasks) and
dependability (e.g. reliability) requirements to be assessed.

RFieldbus mobility requirements impose the use of wireless stations such as
transportation vehicles and handheld terminals for supervision and maintenance. The
manufacturing automation field trial also involved the use of wired segments, i.e. a
hybrid wired/wireless fieldbus network.

One very important issue that was addressed in the manufacturing automation field
trial was bringing multimedia applications into the factory-floor. Applications such as
(mobile) on-line help for maintenance purposes and hazardous or inaccessible location
monitoring are examples. The manufacturing automation field trial was designed to be
an adequate test-bed to assess the suitability of the RFieldbus system to support both
real-time control data and multimedia data in the same transmission medium, as deeply
addressed in this Thesis.

To have an application gathering all the previously referred characteristics, an
industrial (sub) system that transports, classifies and distributes parts according to a

 Part II
Factory Communications Framework

66

certain criterion was specified (RFieldbus Project, 2002). The mechanical system
imposes stringent timing and fault-tolerance requirements for the communication
network supporting the diverse I/O points (sensors/actuators/servos).

6.2.1 Layout and Components

The manufacturing automation field trial implements a system that transports, classifies
and distributes parts according to their type. Roller belts and different pneumatic
equipment are used to transport and distribute parts to output buffers, according to their
type. When output buffers are full, they are moved to the respective unload station, in
order to be emptied. This operation is done either by an Automatic Guided Vehicle
(AGV), a robot arm and an operator or just by an operator. Considering the classification
criteria, we assume, at this moment and for the sake of simplicity, that a part type is
distinguished by its colour. The physical layout is presented in Figure 6.1.

Figure 6.1: Manufacturing field trial mechanical system layout

The input buffer (B1) stores black, white and grey (defective) parts, which are
sequentially pushed into the roller belt (RB1). SA2 (a swivelling double arm with
suction cups) pushes grey parts to RB2. Grey parts go into B5. If this buffer is full or in
transit grey parts must circulate around RB1-RB2. When B5 is full, AGV1 moves to U1,
for unload operation carried out by a robot arm (R1) and an operator, and then returns to
the initial position. White and black parts go into RB3, and white parts are pushed into
output buffer (B2). When B2 is full, an operator is warned, in order to unload it.
Meanwhile B3 must be used to receive white parts. If both B2 and B3 are non-
operational (full or in transit), white parts must circulate in RB1-RB2. Black parts go
into B4, until it is full or if it is in transit. When B4 is full, AGV2 moves to U2, for
unload operation carried out by R2. Black parts must circulate around RB1-RB2, if B4 is
unavailable.

B1

Unload
Station 2

Unload
Station 3

Unload
Station 1

B2 B3 AGV2
line-guided

C1

RB3

RB2

C
2

C
3

AGV1
full motion

R1

R2

RB1

SA1 SA2

≈ 4 meters

> 40 meters

B5

B4

IR Barriers
Color Cameras
Time-critical sections (precision aprox 100ms)
Time-critical sections (time less than 10 s)

 Chapter 6
Validation

67

6.2.2 RFieldbus Communication Subsystem

The RFieldbus Communication Subsystem includes all the RFieldbus equipment
necessary to interconnect all the wired and wireless components of the distributed
system. In order to test, validate and demonstrate the technical capabilities of the
RFieldbus approach, a network infrastructure (Figure 6.2 - Left) including a wired
segment and two radio cells was devised, forcing communication between wired and
wireless stations and the handoff between radio cells.

In order to have a structured wireless network supporting mobility, the
RFieldbus network infrastructure is composed of two Link Base Stations (LBS1, LBS2)
that interconnect the two wireless domains (WL1, WL2) and the wired segment (WR).
All stations are Profibus slaves (PC2-6, I/O1-2, PLC1 and Drive1-2), except PC1 and
MoM, which are Profibus master stations.

Figure 6.2: Manufacturing field trial network topology

6.2.3 Multimedia Streams

Several multimedia applications are used for control, monitoring and interpersonal
communication. The correspondent data streams on the RFieldbus network are presented
in Figure 6.3 and described next.

TCP/IP Remote Part Classification (MM1, MM2): Two cameras in PC6 acquire
images of the moving parts at a predefined rate. These images are down sampled and
compressed to greyscale JPEG files. This data is then sent using TCP/IP connection to
the remote machine (PC1). On the monitoring side (PC1), each received image is
decompressed, processed to identify the presence of a piece and classify it.

TCP/IP Remote Video Monitoring (MM3, MM4): This application enables the
operator in the central control PC (PC1) to visually monitor the area in the trajectory of

WL2

IO1

IO2

WL1

WR

Ethernet TCP/IP (Intranet)

PC2

RC1

RC2

RS232

RS232

MoM

Drive2

Drive1

PLC1

PC5

LBS1

PC3

LBS2

PC4

PC1

PC6

 Part II
Factory Communications Framework

68

the AGVs (AGV1 and AGV2). It must also have basic control facilities like start and
stop the video stream.

Figure 6.3: Manufacturing field trial multimedia streams

TCP/IP Voice Connection (MM5): This is a simple point-to-point TCP/IP bi-
directional voice application connecting PC1 and PC4. The only controls needed to the
operator are "dial", "answer" and "hang-up".

TCP/IP Remote Position Detection (MM6): The autonomous vehicle (AGV1)
may slightly deviate from the ideal loading/unloading position. Therefore, a visual
position detection mechanism was implemented in order to make the appropriate
position corrections for the robot arm to manipulate the buffer. On the capture side
(PC2), images are captured by request of the monitoring machine (PC1) and sent using
TCP/IP connection to PC1. Each received image is decompressed and processed to
identify the presence and location of the buffer in the Robot 3D coordinate system.

Remote Robot Control Services (MM7, MM8): In order to be able to remotely
control the two robots of the field trial, support to FTP and HTTP is provided (in PC2,
PC4). The FTP servers are configured to enable the transference of program files to a
specific directory on the computer. The WWW application enables the transfer of these
files to the robot and interact with the Robot system itself.

Intranet Interface Services: Several services are available for system monitoring
and control using standard TCP/IP stations in the Intranet attached to PC1. Two ways to
access this information where deployed. The WWW Server provides several HTML
pages and forms where that the user can browse to check the current system status and
interact (give the proper credentials) with the system. Any WWW browser can access
this information. The UDP Server supports efficient broadcasting of information to
several stations on the network. Specific clients where developed to interact with this
server.

WL2 WL1

WR
PC1

Ethernet TCP/IP (Intranet)

RC1

RC2

RS232

RS232

MobM

MM1

MM2

MM5

MM3

MM4

MM6

MM7

MM8

images for control (real-time)

 other image/video streams

HTTP and FTP traffic

 Voice traffic

LBS2

LBS1

PC3

PC4

PC5

PC6

PC2

 Chapter 6
Validation

69

6.2.4 Supporting Technologies

In order to exploit the multimedia characteristics of the RFieldbus field trial, several
additional technologies were integrated in the industrial automation system. Some of
these technologies are not common in the factory floor now but there is a clear eagerness
to start their widespread use with clear benefits (Pacheco et al., 2002).

Wireless Network: Despite the fact that RFieldbus wireless modems share the
same unlicensed spectrum of the IEEE 802.11b wireless network standard, a Windows
Laptop PC and a Pocket PC where integrated in the field trial with connections speed of
up to 11Mbps and significant mobility with transparent connection to the field trial
Ethernet segment using a IEEE 802.11b bridge.

Figure 6.4: Using a HMD in the manufacturing field trial

Head Mounted Display: the HMD technology opens a new level in the way
information is presented to the user. The display is in front of the user’s eye giving (due
to the lenses used) the sensation of a big monitor. A simple monocular gray-scale
monitor was used, presenting basic information about the system status, alarms or need
of user intervention, as illustrated in Figure 6.4.

Figure 6.5: Manufacturing field trial Pocket PC Client Application snapshots

Available since more than a decade, Personal Data Assistants (PDAs) have been
used almost exclusively for they main purpose: as an electronic version of the traditional

 Part II
Factory Communications Framework

70

pocket agenda. In the last years many new applications and several operating systems
have appeared. The latest generation of Pocket PCs has advanced features like: fast
processors, full-colour displays, TCP/IP and WWW support, connectivity (irDA,
802.11b, Bluetooth), expandability (using PCMCIA, SecureDigital, etc.), GPS and more.
In the manufacturing automation field trial, a PDA was used to fine-control the system
and to get information about all stages of the trial (see Figure 6.5).

The system featured also a simple GSM SMS (Shot Message Service) gateway,
and selected alarm classes were automatically forwarded to a particular phone with full
text descriptions.

6.3 Low-level communication flows characteristics

This sub-section presents a detailed view on all the expected traffic flows of the
manufacturing automation field trial.

6.3.1 Cyclic DPH Traffic

Figure 6.6 depicts the traffic flows for the DP High Priority Traffic, used for real-
time control functions.

Figure 6.6: Manufacturing field trial cyclic DPH traffic

PC1 sends cyclic DPH PDUs to 9 slaves in the system, to update its outputs and to
read its inputs. The swivel arms functionality is controlled by PLC1, a PLC with a
Profibus DP module. It is possible to start a rotation operation on either swivel arms and
to get information when the operation is complete and upon error events.

The roller belts are controlled by Drive 1 and Drive 2, two variable speed motor
drives with Profibus DP modules. It is possible to start or stop each drive and to select
the speed or get status information (like current speed).

WL2

IO1

IO2

WL1

WR
PC2

RC1

RC2

RS232

RS232

MobM

Drive2

Drive1

PLC1

PC5

LBS1

PC3

LBS2

PC4

PC1

PC6

Master

Slave

 Chapter 6
Validation

71

Robotic arms R1 and R2 are controlled via PC2 and PC4, two PCs with Profibus
DP network cards. The Profibus DP application enables remote start of a transfer
operation and informs on the status of the operation (stopped, running, error). PC4 is
also used to control AGV2 stop/start at the remote load/unload station and to detect its
presence there.

AGV1 operation is controlled via PC3, a mobile PC with Profibus DP interface
with wireless capabilities that is carried by the vehicle. AGV1 has full motion
capabilities but the DP interface simply tells it to go to load/unload station 1 or 2 and
gets information on current status (moving to 1, moving to 2, stopped, error).

IO1 and IO2 are Profibus DP Digital I/O modules used to control pneumatic
cylinders, indicators and to get information on parts sensors and buffer status. IO2 is also
used to control AGV2 stop/start and arrival at the local load station.

PC6 is used as a Profibus DP sound generator: specific DP commands activate a
different sound like soft bell, telephone ring or warning message. It is a PC with Profibus
DP interface, a sound card and speakers, it is an output-only station from the DP point of
view. Finally, PC5 has Profibus DP capabilities and bandwidth reservation but these
where not used by applications in the field trial.

6.3.2 Non-Cyclic DPL Traffic

The non-cyclic DPL Traffic is not related to the field trial application control, but only to
“internal” Profibus DP generated traffic: logical ring maintenance, live list, etc. This is
taken into account in the configuration of the master.

6.3.3 TCP/IP Traffic over Profibus DP

There are two main classes of TCP/IP traffic in the system:
− Guaranteed service (IPH): traffic that is essential for the correct functionality of

the system as a whole. These include images used for part classification that
must be transferred from PC6 to PC1 in a limited time, the voice-link
application between PC4 and PC1 that must have adequate QoS parameters to
be useful; video feeds from cameras at AGV1 and AGV2 (UDP traffic from
PC3 and PC5 to PC1); and finally a frame capture application that is used to
detect the precise position of AGV2 in UL1 and adjust the robotic arm
operation accordingly.

− Best-effort service (IPBE): traffic that can be served after the critical parts of
the system. This includes HTTP and FTP traffic used to manage the programs
in the robotic arms (PC1 to PC2 and PC4).

 Part II
Factory Communications Framework

72

6.4 System configuration

The system is configured using a System Planning Application (SPA) developed in the
RFieldbus project (Alves et al., 2003). Given the temporal characteristics of the base
networks and the characterization of the several information flows and endpoints the
SPA calculates de system parameters for correct operation or informs the user that it
cannot guarantee the system performance for the given scenario.

The basis for the SPA application are described in detail in (Alves, 2003) and
where introduced in Section 5.2. The first parameters to be used in the configuration are
the DLL characteristics summarized in the following table.

Table 6.1: Field trial network configuration parameters

Parameter Value
Bits per DLL character 8 bits
Maximum PDU size 255 chars
Minimum PDU size 6 chars
Token size 3 chars
Interconnection delay 25 µs
TIDmin 100 bits
Minimum TSDR 10 µs
Maximum TSDR 50 µs

The Mobility-related parameters were considered as illustrated in Table 6.2:

Table 6.2: Field trial mobility management parameters

Parameter Value
Beacon Trigger PDU size 10 chars
Number of radio channels 2
Beacon duration 200 µs
Beacon interval 25 µs
Radio channel switching delay 700 µs
Buffering delay 25 µs

The parameters for wired/wireless interoperability support as described in Table 6.3.

Table 6.3: Field trial wired/wireless parameters

Parameter Wired Wireless
Transmission rate 1.5 Mbps 2 Mbps
Header size 0 bits 180 bits
Trailer size 0 bits 32 bits
UART character size 11 bits 8 bits
Offset 33 bits 148 bits

Provided this data, the SPA can calculate TMC for all information flows in the

system. The value depends also on the data payload length, the type of requests and the

 Chapter 6
Validation

73

path between stations. Although the system has multiple link stations, the architecture
can be simplified for timing calculations and reduced to a wired bus (with master, slaves
and MoM) and a wireless domain (with slaves). In this simplified scenario, there are
only exchanges between the master and a generic slave on the wired segment and
exchanges between the master and a generic slave on the wireless domain.

Table 6.4: Data flows for field trial configuration

SPA Flow Master Slave Creq Cresp
A1 Wired Wired 11 chars 11 chars
A2 Wired Wired 6 chars 255 chars
A3 Wired Wired 12 chars 13 chars
A4 Wired Wired 21 chars 21 chars
A5 Wired Wired 25 chars 25 chars
A6 Wired Wireless 6 chars 255 chars
A7 Wired Wireless 11 chars 11 chars
A8 Wired Wireless 39 chars 255 chars
A9 Wired Wireless 255 chars 255 chars

Other system parameters that had to be calculated include the TDCY value, which is

equal to the maximum period between requests so the application can work correctly. On
the manufacturing automation field trial case, the time-critical events occur between the
detection of a part using the infrared sensors and the time to activate one of the actuators
(pneumatic cylinders or swivel arms). If the delay between requests is too high, there is
the risk that the actuators do not handle the part correctly; a value too small overburdens
the network with no direct benefit.

The system was put into operation with several TDCY values and we concluded that
a value smaller or equal to 100 ms resulted in adequate system performance. A more
formal approach could take into account the roller belt speed (0.15 m/s), the acceptable
positioning error (about 20 mm), the sensor delay (2 ms), the combined valve and
actuator delay before hitting the part (25 ms). Some of these values, in particular the
actuator delay and the position error, are only available as an estimation. The final TDCY
value is then:

ms106ms27

150

020
ms25ms2

v
T

TTTT

RB

Pos
DCY

ActuatorSensorPositionDCY

=−=−−=

−−=

.

.
max

max

ε (6.1)

The values for TID1 and TID2 are calculated by SPA for each master in the system
and for the token. This resulted in TID1 = 293 bits, TID2 = 3442 bits and TID1token = 393
bits. The values for Profibus configuration are min{ TSDR} and max{TSDR}, and given the
fact that other values that could affect this sets are two small when compared to the
results we can set min{TSDR} = 393 bits (the greater of TID1 and TID1token) and max{TSDR}
= 3442 bits.

 Part II
Factory Communications Framework

74

Table 6.5: Transaction and token delays for the field trial

Flow Type Stations TST Transaction Duration
S1 DPH PC1↔PC6 710 bits
S2 DPH PC1↔PC3 2205 bits
S3 DPH PC1↔PC5 2205 bits
S4 DPH PC1↔PC4 2205 bits
S5 DPH PC1↔PC2 710 bits
S6 DPH PC1↔Drive1 930 bits
S7 DPH PC1↔Drive2 930 bits
S8 DPH PC1↔IO1 743 bits
S9 DPH PC1↔IO2 643 bits
S10 DPH PC1↔PLC1 1018 bits
S11 IPH PC1↔PC6 3427 bits
S12 IPH PC1↔PC3 6023 bits
S13 IPH PC1↔PC5 6023 bits
S14 IPH PC1↔PC2 3713 bits
S15 IPH PC1↔PC4 8778 bits

Token PC1↔MoM 393 bits 443 bits

Transaction delays are used to set the TMC parameter of Profibus network, the

maximum transaction duration is 2205 bits and so this is the TMC value.
For the IP Mapper, the transaction delay is also used to estimate the Target

Message Cycle Time (TTMC) of each IP flow. The estimation can be done in three ways:
(i) using the same value for all data flows; (ii) using a table with flow IDs and the value;
and (iii) calculated on a PDU-by-PDU basis. On the manufacturing automation field-
trial, the second option was used, providing a balance between accuracy and system
complexity.

The SPA also calculated that 10 beacons were necessary for the given
configuration and TBT to be 180 bits. This results in an overhead for mobility
management TMAMoM ≈ 4100 bits. Combined with the aggregate intermediate allocation
AIM ≈ 25000 bits needed for the data flows we conclude that the network can easily
handle the load since TMAMoM + AIM (4100 bits + 25000 bits) is still much less then TDCY
(150000 bits).

6.5 Scheduling of TCP/IP Traffic

The micro-cycle to be used is the worst token rotation time, i.e. 150000 bits. While the
overall system involves six IPH flows, we reduced it down to five considering the traffic
from the two identical applications as S11 (but using them separately).

To determine the number of fragments per second used by each application, a
TCP/IP capture application was used testing the data flows during an adequate period.
For each capture, the number of fragments was calculated considering that IP packets
larger than 240 bytes are fragmented.

 Chapter 6
Validation

75

Table 6.6: Transaction and token delays for the field trial

Flow Frags/s Tfrag TCP/IP Application Stations
S11 (x2) 5 2 Color Detection Application PC1↔PC6
S12 10 1 Image Stream PC1↔PC3
S13 10 1 Image Stream PC1↔PC5
S14 1.67 6 Image Position Application PC1↔PC2
S15 * 0.5 Bidirectional Voice Call PC1↔PC4

Since the voice application (S15) generates a variable data flow, the correct value

was obtained via experimentation: several scheduling tables were used and the system
tested. The conclusion was that 2 fragments per each TDCY resulted in adequate
application behaviour, with lower values leading to a degradation of the voice quality.

Given this data and using the algorithm described in Section 5.1 we got the
scheduling table of IPH fragments at PC1.

Table 6.7: Scheduling table for IPH data flows in PC1

Micro-cycle 1 2 3 4 5 6
S15 2 2 2 2 2 2
S12 1 1 1 1 1 1
S13 1 1 1 1 1 1
S11 2 2 2
S14 1
TIPH (bits) 33315 36456 29602 36456 29602 36456

The maximum TIPH is aprox. 36500 and the network is still viable since AIM +

TMoM + TIPH (25000 + 4100 + 36500 = 65600 bits) is still much less than TDCY (150000
bits).

Finally, the TTR and TSL Profibus parameters must be adequately set. For the TTR
calculation there is the need to estimate the traffic allocation for PC1. Considering just
the IPH, DPL and IPH traffic we have TMAPC1= 2250·10+2205+36500+443 ≈ 61200 bits.
We can round up this value to 70000 bits and the remaining is used for BE traffic. This
results in a TTR of 150000+70000 = 220000 bits. Finally, for TSL, we look to the greatest
of TSL1 and TSL2 that takes the greatest value of TST and TSTtoken respectively. Since TSL1 is
2775 bits and TSL2 is 393 bits, TSL is set to 2775 bits for PC1.

6.6 Manufacturing automation field trial results

The manufacturing automation field trial applications behaved as planned (Machado,
2006), (Van Nieuwenhuyse and Behaeghel, 2003) with no interference between
multimedia (TCP/IP) traffic and control (Profibus) traffic. Both DP and TCP/IP
applications performed as expected and a Profibus network/protocol analyser enabled to
confirm that the traffic in the network was as expected, given the pre-defined data stream
scheduling. The only exception was the image identification application where
sporadically some pictures were not grabbed by the system.

 Part II
Factory Communications Framework

76

The system planning was done in a way to leave some extra bandwidth available
for encompassing new applications or modifications to the existing ones. Thus, after the
first tests phase the system was readjusted. Two of the applications that could most
benefit from additional network resources were the image position application (due to
the scheduling policy, an image would take about 30 seconds to be transferred over the
network) and the voice-call application (that had a start-up delay of about 1 second).

The first step was to solve the issues with the S11 stream. The solution was simply
to give more bandwidth to the application, as shown in Table 6.8.

Table 6.8: Revised scheduling table to improve S11

Micro-cycle 1 2 3 4 5 6
S11 2 2 2 2 2 2
S15 2 2 2 2 2 2
S12 1 1 1 1 1 1
S13 1 1 1 1 1 1
S14 1
TIPH (bits) 40851 37028 37028 37028 37028 37028

Afterwards, the scheduling parameters where changed and the image position

application response time was decreased from 30 to 10 seconds, by using a macro-cycle
of 2 instead of 6, resulting in 1 fragment every 2 micro-cycles for S14, instead of the
original 1 fragment every 6 micro-cycles. Another change was to use 3 fragments
(instead of 2) per micro-cycle for S15, the voice-call application, but this time this
adjustment resulted in a marginal start-up delay reduction and no noticeable voice
quality improvement.

All these changes where cumulative and did not affect in any way other
applications in the system. At this moment we had a TIPH that was about half of the
maximum TIPH so there was still room for further application bandwidth upgrading.

Things got more complicated when larger bandwidth was allocated for S11,
resulting in the following scheduling table:

The system responded with a fast degradation of transmission capabilities in all
applications until it completely crashed. This was unexpected since the allocated
bandwidth was still far from the maximum possible for TCP/IP traffic. Testing a similar
change with S15 (Voice) stream got similar results: system-wide degradation and lack of
TCP/IP functionality after a minute of operation.

Table 6.9: Revised scheduling table to 2nd improvement on S11

Micro-cycle 1 2
S11 5 5
S15 3 3
S12 1 1
S13 1 1
S14 1
TIPH (bits) 60768 56945

 Chapter 6
Validation

77

After low-level scrutiny (using Windows NT kernel level debugging capabilities)
we detected that the problem was related to the way Profibus hardware (IFAK _isPRO
ISA) used in the PCs handled large bursts of fragments. The system would not work
correctly when the dispatcher was configured to send more than 9 fragments per micro-
cycle. The problem was overcome by decreasing (if possible) cycle times.

Another problem detected was that TIPH cannot be too large, or the TCP/IP stack
stops working correctly due to timeouts. At the time, it was not investigated if Windows
NT parameters (of the stack) could be changed to avoid this situation.

Finally, a test was done to check the result of overflowing the IP ACS queues:
using an UDP application we sent 1 fragment per micro-cycle when in reality the
scheduler only handles 1 fragment per 2 micro-cycles. As expected, the fragments
started suffering long delays and some were lost (as seen from the application).
Unfortunately, it was not possible to test alternative configurations during the field trial,
like limiting the queue size at the REs and time-stamping of UDP data payload, so the
only conclusion is that the system does not crash when a queue overflows.

79

 Part III
Power-Line Communication System

81

 Chapter 7
Proposed Architecture

Power-line communication (PLC) provides a natural medium for electrical energy
distribution applications like metering and grid control. However, the medium
itself is a harsh one when considering long distances, large number of stations, and
wildly varied physical configurations used by each energy provider over the world.
This leads to the availability of a basic master-slave network, with resilient service
but limited capabilities. Taking advantage of the dual-level voltage used in the end
leafs of the distribution grid, the proposed Energy Management System connects
two master-slave networks and provides complete bi-directional, end-to-end,
services over this two-level system. This chapter provides both the system-wide
architecture details, to particular solutions found to ease the development of the
embedded software

7.1 System Objectives

As presented in Chapter 3, within the REMPLI system, the Transport Layer (TL) is the
fundamental communication layer dealing with setting up bi-directional, end-to-end,
communication in the energy management system. This layer allows a direct link
between the AP and Node devices, on top of the basic master-slave network provided by
the power-line communication subsystem.

It does so fulfilling the following main objectives:
1. implement high/level services like confirmed unicast packets, response request

service and alarms;
2. support of unlimited4 packet size in the above services;
3. fast reaction times for small requests;
4. enable usage of medium voltage and low voltage power distribution networks

as a single data network with a flat address space;
5. be resource conscious in terms of network usage, processing power and

memory needs;
6. provide a simple priority-based scheduler than can be updated to other

alternatives
Since the underlying REMPLI Network Layer is designed to be used directly by a

single application there is no direct support for application multiplexing at this level: the

4 Limited only by available memory and the impossibility of processing blocks

larger than 232 bytes in the target software/hardware system.

 Part III
Power-Line Communication System

82

REMPLI Transport Layer is the only client of the Network Layer; and the DeMux is the
only customer of the Transport Layer (see Figure 7.15). The services provided to the
DeMux by the TL were designed to be used by Metering and SCADA applications, also
enabling the deployment of new solutions in these areas. The Unicast service is focused
on commands, the Request/Response on gathering information and the Alarm service on
reverse direction transmission of events.

Figure 7.1: REMPLI Upper Layer Functionality (“inside” vie w)

SCADA and Metering applications have variable Quality of Service needs.
However, one common mandatory feature is that short packets (e.g. smaller than one
hundred bytes) are typically issued frequently and needing to be processed quickly by
the system. This is particularly valuable not only for remote control of devices but also
beneficial to an adequate scalability of the network. Also important is the possibility of
enabling some traffic, like urgent control commands, to “overpass” background traffic
like daily meter readings. The Transport Layer provides such services with the priority
based scheduler and diminutive network overheads. Nevertheless, it is also open
allowing the exploration of distributed scheduling mechanisms for new and improved
services (these are out of the scope of this work).

5 This is Figure 3.4 repeated here for completeness

Driver 1 Driver 2 Driver 3

AP Driver Interface

Node Device Interface

PLC
Network

Intranet (TCP/IP)

3 1 2

Application Servers

1
2

3

Driver 1 Driver 2 Driver 3

DeMux

Transport Layer

Transport Layer

DeMux

Internal Interface Bus Interface Bus Interface

PLC
Network

Transport Layer (Bridge)

Security

Security

 Chapter 7
Proposed Architecture

83

The target applications also imply the deployment of a large base of end-user
stations, meaning that the system must be cost-aware. To make this possible, the end-
user stations have to be inexpensive and efficient (as presented in point e) above) in the
list above. To put the objective in perspective one of the open paths of the project is to
implement the Nodes on low-budget 8051-class processors in the future. Also of
paramount importance is the possibility of updating the software (firmware, other
program files or data) in these stations in an efficient and simple form. This is simplified
considering that the Transport Layer services can be used unchanged for large packets.
In fact, even on the current version with “limited” 24-bit lengths (16 MiB) it is unlikely
that a Node station has enough memory to process the largest sized packet.

The usage of the power distribution grid as a communication medium eases some
typical deployment problems like placing new cables and providing power to stations.
However, stringent regulatory limitations restrict the usable bandwidth and the extreme
geographic distribution of some layouts implies error resilient coding at the cost of
bandwidth. The Transport Layer must take all this limitations in account and be aware
that both physical and logical network topologies can change over time. Power grids are
not a static arrangement of links and in normal operation new connections are
dynamically created and others are removed. This effect is also present in other areas of
the power grid in terms of propagation of the communication signals: activation and
deactivation of noise sources can occur in an unpredictable fashion. The Transport Layer
capability of connecting the Medium Voltage and Low Voltage networks in multiple
points makes it possible to overcome these drawbacks efficiently.

On the other hand, dynamic network configurations should not be an issue for the
end-user of the system (the utility companies) and so a flat address space is provided that
effectively hides the system hierarchy and topology. It also enables simple field station
replacement: the Node Address used by application is maintained and only the table that
maps addresses to serial numbers has to be updated.

The remaining of this chapter presents the main features of the Transport Layer,
starting with network layer login/logout and address conversion, needed for providing a
flat address space to drivers. Afterwards the routing and distributed link quality
mechanisms are explained, followed by the slave-to-master communication capabilities.
Traffic priority schemes and the Alarm service functionality conclude the architecture
overview.

7.2 Login/Logout processing and Address conversion

To gather base routing information about the system, the Transport Layer keeps track of
Login and Logout events. When a slave station connects to a master station at the
Network Layer level, the Transport Layer in each side receives information on the events
including the Unique Serial Number and the Network Address (NLAddr) assigned at the
moment to the slave station. This information is used for address conversion from the
“flat” address space seen by the Applications to the temporary login/logout addresses
(NLAddr) used by the Network Layer. A configuration table includes Unique Serial
Number and corresponding Node Address. This information is appended with the

 Part III
Power-Line Communication System

84

NLAddr provided by the Network Layer when a station logins, and in order to build the
route tables, the Transport Layer uses NL Login/Logout information and link quality
information forwarded from remote nodes. Figure 7.2 presents the complete Login
processing steps, which are managed by the Transport Route Manager (TRM) a sub-
module of the Transport Layer.

When a new Bridge is connected by the Network Layer to an AP, two Login events
arise: one at the AP and the other at the Bridge. The Bridge Login event includes
information on the newly active Network Unit (this information is stored by the TL in a
table with a fresh BridgeID). This BridgeID is used to inform the Nodes of the original
packet source when needed.

Meanwhile in the AP side the Login event includes not only NL addressing
information (NLUnit and NLAddr) but also the Unique Serial Number of the Bridge. All
this information is stored in the local routing table with the matching Node Address a
BridgeID of 0 (to signal that this is a direct connection). This data is needed not only for
routing, but also to access the Node functionality of the Bridge itself.

Figure 7.2: REMPLI login processing

The AP then sends a list with the authorized Nodes that can be connected to the
Bridge’s Network Layer. The configuration of these tables depends on the dimension of
the network: in simpler networks can be an “allow-all” list, a list shared by all bridges, or
a per-Bridge list on large systems. When a Bridge and a Node are newly connected,
another set of events occurs. At the Login event, the Node simply stores the activated
NLUnit identifier. This information is used to generate Alarm packets.

On the Bridge side, the Transport Layer starts by generating a new BridgeID and
storing the route information of the new node. Afterwards the Bridge forwards the new
route information (Unique Serial Number + BridgeID) to all the available APs. A Bridge
with attached Nodes that connects to a new AP sends this information to the newly

RUSN + RNAddr

AP

AP

Node n

AP j

Bridge k

Login

RUSN + NLAddr +
NLUnit

NLUnit

TRM PDU

Master NL Access
Tables (RUSNs)

RNAddr + NLAddr +
NLUnit + Bridge ID

NLUnit + ID (new)

Node Login Information
(RUSN + ID)

Bridge Master NL

RNAddr + NLAddr +
NLUnit + Bridge ID (0)

AP j

Bridge k

Bridge m

Login

(StartUp)

NLUnit

RUSN + NLAddr +
NLUnit

RNAddr + PLCAddr +
NLUnit + Bridge ID (0)

Bridge m

AP …

TRM PDU

 Chapter 7
Proposed Architecture

85

connected AP. On the AP side, the received information is included in the routing tables
that contain information on all the possible paths from this AP to a particular Node.

The process for a Node directly connected to the AP the new connection
information is stored at each side and no TRM PDUs are exchanged.For the Logout
processing (Figure 7.3) the main tasks is to clear the obsolete tables and to discard any
pending requests that where using the disconnected path.

If a Node logs out from a Bridge then the Bridge informs all the connected Access
Points of the event using a TRM PDU and they react accordingly.

When a Bridge disconnects from a particular AP, it does not inform the Nodes of
this event. The Bridge ignores any pending responses that the node tries to send back to
the disconnected AP. If needed, it is the task of Node Drivers and Applications to
generate traffic to guarantee that the link is still active.

Figure 7.3: REMPLI logout Processing

7.3 Routing and Link Quality information

Apart from the Login/Logout events, the routing tables on the Transport Layer are
updated periodically with link quality information and remote queue information to
enable more accurate scheduling/routing decisions at the AP (also a task of the Transport
Route Manager sub-module).

The Link Information provided by the Network Layer is the average number of
slots used to transmit PDUs to a particular station in the past. This value varies
depending on the number of retries needed for a successful delivery (the NL has a basic
retry mechanism) and the number of repeaters needed to reach a station. Hence, lower
values reflect better quality. On the other hand, this reflects the actual “quality” of the
link between the master and the slave.

Link information quality is gathered in Bridges and APs by periodically pooling
the NL for link quality data. The Bridge forwards the data to the AP when needed
together with the data queue depths. At the AP, the Transport Layer estimates the time

AP

AP

AP

Node

Bridge

AP

RUSN +
NLAddr + NLUnit

NLUnit

free ID

destroy all route
information regarding
this Access Point

RUSN +
NLAddr + NLUnit

NLUnit

TRM PDU

Node Logout
Information
(RUSN + ID)

destroy all route
information
regarding this Bridge

destroy all route
information regarding
the Node

Bridge

Logout

Logout

Bridge

free ID

destroy all route
information regarding
this Node

 Part III
Power-Line Communication System

86

that a non-confirmed fragment takes from the AP to a particular Node given not only the
link-quality of the connections but also the pending fragments on the intervening queues.

 NL
NkBj

B
NkNLUBj

NL
BjAPi

AP
BjNLUAPi

TRM
NkBjAPi d1qdqd →→→→→→ ⋅++⋅= ')'()()((7.1)

Where d are estimated delays in time slots, q are queue sizes in fragments for the
Network Unit that connects to station, q' and d' is based on forwarded information (from
Bridge to AP) and dTRM is the estimated delay for a particular path.

The forwarded information is updated regularly based on the network conditions,
e.g. if the Bridge sent a queue size of 4 to the AP, then this value is decremented
automatically by timed operation in the AP depending on the link quality information of
the Bridge itself. This reduces the need to update the “real” information frequently.

After calculating the delays, the TRM at the AP simply selects the fastest route
available to a particular Node. Since this calculation includes the queued fragments, it is
the natural behaviour of the TRM to distribute a sequence of big packets over all
available links.

Routing decisions are taken only at the AP and per request: all fragments of a
request follow the same path, and if there is a response, it also follows the same path as
the request. The BridgeID field is used in the fragments to transmit this information over
the network.

This solution has the following features: good use of the available network
resources; very small overhead on the network for data transmission; simple
implementation; and some additional resource are needed on the stations to keep track of
address conversions (BridgeIDs).

Link Information is also provided to higher levels giving an estimate of the delay
that takes a single fragment to be sent from a particular AP to a specific Node.

∑

→∈
→→→→

→

→

⋅++⋅

=

NkAPiSj

NL
NkBj

B
NkNLUBj

NL
BjAPi

AP
BjNLUAPi2

NkAPi

TL
NkAPi

d1qdq
S

1

d

')'()()(

 (7.2)

In Eq. (7.2) SAPi→Nk is the set of Bridges that connect AP (APi) and Node (Nk). The
square operation reflects the fact that if more than one path is available then, in average,
the packets (but not fragments of packets) are delivered faster since they can be sent in
two parallel channels.

If multiple APs have connection to a Node, it is the task of upper layers (e.g.
DeMux or Application Servers) to manage that redundancy eventually using this
information (Figure 7.4). Since this estimation includes queue information, it is highly
dynamic and periodically updated by the Transport Layer.

In similar fashion to the Link Quality Information service, the Transport Layer also
handles Node Status information transfers from Nodes to APs via Bridges.

 Chapter 7
Proposed Architecture

87

Figure 7.4: REMPLI Network Layer example layout

7.4 Sending fragments from slaves to masters

As presented before, the base communication channel on the REMPLI system is a
master/slave network. However, there are two specific higher-level services where slaves
have the initiative: in the Alarm service slaves send data spontaneously; and in the
Request/Response service the slave can send a single Response in a rather large time
window overcoming the usual “reserved response slot” paradigm of master/slave
systems.

These services are tightly integrated with two Network Layer specific features. The
first feature is that the NL guarantees that a particular slave station is visited (i.e. a
request-response is sent) regularly with a maximum run-time configurable delay. A
second specific feature is that after visiting a slave the master tries to fetch all the data in
the slave station’s queue. These features were developed inside the REMPLI project
itself and enable the “spontaneous” transmission of packets from the slave to the master
with timing parameters controlled on the fly by the Transport Layer.

Given this scenario, the task of the Transport Layer is to configure the timing
parameters correctly (a task of the TRM) and to put the adequate data on the Network
Layer queues at the slave side (a task of the QM). For the Alarm service, a system-wide
maximum delay is configured that guarantees a minimum QoS. For the Response service
the system-wide maximum delay is used by default but the Node applications can
indicate a smaller delay if needed.

Access
Point 1

Access
Point 2

Bridge 1 Bridge 2 Bridge 3

Node 2 Node 3 Node 4 Node 1

Digital Meter

Meter Data Bus

Switching
Device

NL Master

NL Slave

NL (LV)

NL (MV)

Node 5

Intranet (TCP/IP)

TL INTERNAL
REDUNDANCY

Application
Servers

NL Links

 Part III
Power-Line Communication System

88

Figure 7.5: Slave timer concept in REMPLI system

Figure 7.5 presents the main timing mechanism of the Network Layer. In step 1 the
NL queues on master station 1 (M1) have one packet for slave station 2 (S2) and one
packet for S3; the NL queues on S2 have three packets and the NL queues on S3 have
one packet. When the NL sends the first packet from M1 to S2, the reply has not only TL
data but also an NL flag that signals that more data is available on the slave. The NL in
M1 automatically issues further confirmed requests until no more data is available. The
NL in M1 then moves on to the next slave (step 2) and sends a confirmed request that
has an immediate response, no more data is in the queues. In M1 separate timers are used
for S1 and S2. When they expire the NL issues empty requests automatically (steps 3
and 4). If no data is available then the timers are restarted. When TL sends a confirmed
request to a station (step 5) the NL resets the timer for that station. On step 6 the timer
for S2 has expired and the NL has retrieved one packet from the NL.

To set the slave-specific delay, the Transport Layer on the slave side keeps track of
open transactions and respective expected delays in response. The expected delay for a
response is a service then can be used by a Node driver to give a hint on when the
response will be available. To simplify implementation the TL uses half this value as the
ideal periodic visits needed to serve the response, and selects the minimum value of all
open requests to set the NL parameter. The NL automatically forwards this value to the
master in the next empty NL response. Only then, the new parameter is effective, since it
is the master’s side task to handle the timers.

S2

M1

S3

Tx

Rx

NL Only TL+NL

NL Flag ON

NL Flag OFF

S3 timer

S2 timer

1 2 3 4 5 6

S2 S2
S3

Queued TL packet

Steps:

 Chapter 7
Proposed Architecture

89

7.5 Traffic prioritization and queuing

Traffic differentiation is provided by an 8-bit priority identifier that can be used by
applications to signal different importance. The Transport Layer uses a simple “serve all
higher-priority” mechanism with round-robin service for same-priority traffic. In order
to provide priority on the responses and over bridges, priority information is
encapsulated in some Transport Layer headers.

The Network Layer supports up to three priority classes (only two are usable at the
slave side). All Transport Layer traffic is sent using the lowest Network Layer priority,
except if the application chooses one of the two special priority identifiers (-1 and -2)
that are mapped directly to the two higher priority queues of the Network Layer.

Figure 7.6: REMPLI priority queues processing

To make sure that no time slots are lost due to Network Layer queues starvation,
the Transport Layer feeds a programmable number of fragments to the Network Layer
queues even before the queues are empty. The Network Layer has a feedback channel
(see Figure 7.6) to inform Transport Layer that a fragment was removed from the
queues.

The disadvantage of this scheme is that when a fragment arrives in the Transport
Layer it may be delivered to the network later than lower-priority fragments already
queued into the Network Layer. The two “special” priorities overcome this problem
since these are delivered directly to specific queues on the Network Layer and can pass
in front of normal priority fragments.

On slave stations the Network Layer has only two queues and requests for High
and Very High priorities are treated as a single queue. Nevertheless, this is transparent to
the Transport Layer, which delivers the two special priorities to the Network Layer.

Transport Layer Network Layer

High

 Very High

Normal

 TL Priorities (0..127)

 High Priority (-1)

 Very High Priority (-2)

Feedback

Channel
Available

Send

 Part III
Power-Line Communication System

90

7.6 The Alarm Service

The Alarm Service makes it possible for any Node to send a packet to, at least, one AP.
The Node cannot choose the destination station, and it is possible that more than one AP
receives the generated alarm. The Node can set the Priority and the relative Timeout of
the request.

Figure 7.7: REMPLI Alarm service

The implemented algorithm is based in the possibility of multiple paths for
delivering the fragments (Figure 7.7). It is possible for AP 1 to have the complete data
receiving some fragments from either bridge. Another feature is that when each station
has confirmed the delivery of a fragment to all network units it can safely discard the
data block preserving memory in the stations. At the state presented in the picture, the
AP 1 would start to inform the other stations on the network that the Alarm delivery was
successful. Since this is a distributed mechanism, it is possible that other APs gather all
the fragments of the packet while this finishing process is ongoing.

Access
Point 1

Access
Point 2

Bridge 1 Bridge 2

Node 2
NL Master

NL Slave

NL (LV)

NL (MV)

2

3 3

1 Send Alarm

4 Alarm Rx

6 OK

5 OK

91

 Chapter 8
Implementation Issues

This chapter presents further details on how to implement the mechanims proposed
in Chapter 7. It starts by presenting an overview of the software architecture of the
Transport Layer, providing afterwards the main implementation details of each
service.

8.1 Transport Layer Software Architecture

The REMPLI Transport Layer architecture was designed and tested using OMNeT++
(OMNeT++, 2007), a public-source software suite. OMNeT++ is a discrete event
simulation environment with focus on the simulation of communication networks. Since
it has a generic and flexible architecture, it is also used in other areas like the simulation
of complex IT systems, queuing networks and hardware architectures as well.

Programming of components (modules) is done in C++. Modules can be nested
and inter-connected into larger components using the NED high-level language.
OMNeT++ runs on Linux and Windows and has full GUI support.

The base OMNeT++ code does not include any models. There are several
simulation models and frameworks available directly at omnetpp.org website, these
include Mobility Framework (focused on OSI layers 1 and 2) and INET Framework
(focused on higher OSI layers). For example, INET Framework includes not only
protocols like IP and UDP/TCP but also models of IEEE 802.11, PPP, IPv6 and others.

To run a simulation in OMNeT++, it is necessary to implement the components
and interconnections, and specify the simulation parameters. The simulation results can
be recorded using OMNeT++’s tools or the users records.

Transport Layer code was built in order to be used unchanged in both OMNeT++
and the end-system embedded Linux easing the deployment and testing of the system
(Marques and Pacheco, 2007).

The Transport Layer was designed from the start to be compatible between the
simulation environment under Windows or Linux and the deployment in the field on
embedded Linux using the same source code (Marques and Pacheco, 2007). The main
blocks of the Transport Layer are presented in Figure 8.1Error! Reference source not
found.. It is divided into four modules, the RCI Manager (RCIM), the Transport Route
Manager (TRM), the Queue Manager (QM) and the NL Interface (NLI). Interface with
the higher layers of the system is done through the Rempli Communication Interface
(RCI), with TCP/IP based streams, whilst the interface to the lower layer is done through

 Part III
Power-Line Communication System

92

a Linux character driver (for efficiency reasons, the lower Network Layer is within the
Linux kernel).

The higher-level connection with the DeMux is controlled by the RCI Manager.
This thin module does routing of messages from the Rempli Communication Interface
(RCI) to the QM or TRM depending on the message type. It also forwards messages
from QM and TRM to the RCI. Some not implemented RCI functionality (like Access
Point Connect) results in an immediate response from the RCIM without interference
from other TL modules.

The RCI uses an IPC Transaction Identifier and a Thread Identifier (the later helps
DeMux internal tasks) for each RCI Request. These identifiers are recorded by the
RCIM for all messages received from the RCI. Responses from the internal TL modules
only have the IPC Transaction Identifier, and the RCIM adds the matching Thread
Identifier to the response. Events generated by the TL do not use either identifier. The
RCIM distinguishes Events – that do not used identifiers – from Responses – that use
Transaction Identifiers and Thread Identifiers – by the message type.

Figure 8.1: REMPLI Transport Layer internal architecture

Similarly to the RCIM, the NLI function is to route messages from QM and TRM
to the Master NL or to the Slave NL. Again, routing is done using the message type.
Some messages from the TL to the NL are of a request/response nature. For example: a
TL_MASTER_SEND_CONFIRMED message is eventually followed by a matching
response from the NL. The NL pairs these messages using the NL Transaction ID.
However, for the internal TL modules, the NL Transaction ID is not used and the Queue
ID is used instead since it maps directly to multi-fragment data. The NLI handles
conversions from TL Queue IDs and NL Transaction IDs and the automatic
generation/disposal of NL Transaction IDs.

To ease the task of the QM, some additional information like Fragment ID and
Queue Type is also stored with the Queue ID.

The QM is the larger TL module, and it handles most of the data processing and
transfer functions of the system including fragmentation, forwarding and most of the
request adaptation tasks (RCI to NL and vice-versa). In addition, it provides data

TL

TRM QM

RCIM

NLI

DEMUX

Master NL Slave NL

RCI

Linux Device Driver

TL Messages

Routing
QoS

Data / PDU
processing &

transfer

 Chapter 8
Implementation Issues

93

communication services for the TRM. On the other hand, the QM relies on the TRM for
routing information (i.e. address conversion) and scheduling of transmission tasks.

The TRM has a global view about the network status, keeping track not only of
login and logout events but also on link quality information and queue sizes in a
distributed fashion. In the current implementation the TRM uses this information to
make route selection based on fragment delay estimation However, it supports the
addition of more advanced scheduling policies. The TRM also handles some accessory
functions like Link Status information.

The main tasks of QM and TRM are presented in the next paragraphs. Most of the
code of the Transport Layer is used (Figure 8.2) in both the OMNeT++ simulation and
the final-system HyNet (Hyperstone, 2007) board; the main difference is the addition of
a Message processing system that handles the interface between the Transport Layer
blocks and the “outside world”.

Figure 8.2: OMNeT++ simulation and HyNet implementation

The code sharing is possible because the Transport Layer code was written from
the start having this objective in mind. At a first stage of the project, a C Object-Based
implementation was considered but some analysis of the code architecture made us
switch to a more efficient implementation. In particular, the REMPLI code had the
following specific features: there is no direct C++ inter-module communication, i.e. all
inter-module communication is done via messages not via C++ inter-object calls; there is

OMNeT++ TL Module 1

TL Module 2

TL Module 3

NL
Module

DeMux
Module

NL
Emulator

TCP
Connection

HyNet
Message
Processor

REMPLI
NL

REMPLI
DeMux

OMNeT++
Messages

Message
Processor
Calls

TCP
Connections
(IPC)

Linux
Driver
Interface

HyNet Board
(Linux)

TL Module 1

TL Module 2

TL Module 3

OMNeT++
(Windows or Linux)

 Part III
Power-Line Communication System

94

only one instance of each module object in each HyNet target machine; OMNeT++
message communication functionality is implemented by a C module specific for HyNet.

The REMPLI code of each module was inserted into a simulation using OMNeT++
network design tools and some simulation-specific modules. A main network layout
(Figure 8.3) was used with a dual PLC network that was used for both bridged services
simulation with several Nodes and for direct services simulation using the integrated
Node functionality the Bridges.

Figure 8.3: OMNeT++ simulation network layout

The PLC Network module is used to replace the Network Layer functionality, thus
the messages on the network connections in the Figure are at the TL/NL interface level.
The OMNeT++ module itself only handles serialization/de-serialization of these
messages to the TCP connection for the separate Network Layer emulator application.
The current Network Layer emulator only supports single-master networks, therefore, in
order to provide a simulation environment with multi-master capability, each PLC
Network module connects to multiple TCP server ports (and corresponding applications)
using the network unit identifiers to map the traffic between the connections (Figure
 8.4). In practice, for the presented network layout this means that for each simulation we
have four Network Layer emulator applications running.

When a message is received by the PLC Network module from other OMNeT++
modules, it routes the request depending on the following rules:

− for master requests (OMNeT++ ports 0 and 1) the destination TCP socket index
is the same of the request and the station identifier on the TCP message is zero;

− for slave requests (up to 8 slaves are supported on the current configuration),
the destination TCP socket is selected depending on the Net Unit identifier and

The network can have
virtually any number of
nodes here (parameter)

Access Points
have IDs 101 and 102

for simulation only

Bridges have
Node Address
201 and 202

Nodes have
Node Addresses
equal or above 301

 Chapter 8
Implementation Issues

95

the station identifier of the TCP message is equal to the OMNeT++ port minus
one.

On the reverse direction, the following rules are applied to messages received on
the TCP interface:

− master related messages are routed to the OMNeT++ port with the same
identifier of the TCP socket, the Net Unit identifier is also set to the identifier of
the TCP socket – master-related messages from the NL Emulator have always
Station Identifier equal to zero;

− slave related messages are routed to the OMNeT++ port with the identifier of
the Station Identifier in the TCP message plus one.

The PLC Network module also handles timed self-messages to trigger the
simulation process on the NL Emulator. Since we are using two NL Emulators to
simulate two masters each simulation is triggered every two slot time intervals.

There is one exception on the above message processing: multicast requests are
handled by the PLC Network module by sending a unicast request to a pre-defined slave
station. When the PLC Network module receives a TCP message with the predefined
station identifier, it duplicates the message to all OMNeT++ slave ports. This exception
was needed since multicast is not supported on the available NL Emulator. The
drawback of this approach is that the timing behaviour of the multicast service is not
reflected into the simulation.

Figure 8.4: Implementation of multi-master simulation

Finally, Figure 8.5 presents the internal modules of the Transport Layer in the
OMNeT++ simulation. On the left, there is the Bridge module, which simply uses a

OMNeT++
PLC Network

AP

Node

0

1

2

3

4

Master

Slave

OMNeT++ messages

TCP connection

NL Emulator
1

NL Emulator
2

StationID NetUnit

0

1

AP

Node

Node

 Part III
Power-Line Communication System

96

Bridge Transport Layer that has connections to the Master NL port and the Slave NL.
The Access Point module and the Node module are similar but a special Dummy module
shunts the missing ports. Despite the label, the Bridge Transport Layer is exactly the
same module that is used inside the Access Point and the Node modules.

On the right side of Figure 8.5 the same modules and connections that were
conceptually presented in Error! Reference source not found. are now portrayed in the
OMNeT++ simulation. There are also three connections to the “outside”: Driver De/Mux
port; Master NL port and Slave NL port.

Figure 8.5: OMNeT++ Simulation “Bridge” and “TL” modules

8.2 Message Processor

After developing the functional modules of the Transport Layer on OMNeT++, as
presented in the previous section, an important part of the layer was developed to enable
inter-module and inter-layer communication outside of OMNeT++.

Figure 8.6 depicts the main blocks and characteristics of the Message Processor.

Figure 8.6: REMPLI message processor concepts

TL Module

cx_HandleMessage

cx_msg_*

Transport Layer

QM

TRM

RCIM

NLI

Driver
De/Mux

NL

TL Message
Processing
Engine
(Multi-thread)

Single-Thread
Modules

One exclusive
call per Module

TL Message
Processing
Engine
(Multi-thread)

Multiple messages
sent by module

to Master NL

to Slave NL to Master NL

to Slave NL
to “Driver”

 Chapter 8
Implementation Issues

97

This “Message Processor” is in fact the main process of the Transport Layer when
running on the target devices. Although the modules were developed to be compatible
with both Windows and Linux systems (and were tested in the two on OMNet++), the
Message Processor was developed specifically for the HyNet board.

The Message Processor is a multi-thread module, which manages TCP/IP
connections to the Driver De/Mux and Linux Driver interface to the Master NL and
Slave NL, adapting internal TL messages to these channels. The module also stores
internal messages that will be later delivered to internal modules or one of the outside
interfaces, including both event- and time-triggered messages. Each instance of the
module is guaranteed to run in single-thread fashion, but different modules may be
running at the same time.

8.3 Inter-module messages

In terms of message exchange, one of the more active internal TL connections is the
QM/TRM link. The main tasks of the TRM are (i) to inform the QM of the destination
path for a request/response, and (ii) to trigger the transmission of particular fragments.
This also means that any change on QM queues must be forwarded to the TRM so the
later has an up-to-date view of the pending requests.

Figure 8.7 presents the main messages exchanged by these two modules. There are
messages for the QM to signal new queues (with Node Addresses) and respective route
responses from the TRM. Route information includes NLAddr, Bridge IDs and NL Units
depending on the situation. Each queue type has a different message type since each type
has its own set of parameters. Requests and responses are associated by QM’s Queue ID,
being this association unique for the “creation” messages. Other message types do not
require this unique mapping, and the QM may issues several messages with the same
Queue ID to the TRM before receiving the matching responses.

When the TRM wants to delete a QM queue, or when a QM queue does not have a
viable path, it sends one of the QueueRoute messages with the NLUnit set to zero. After
a first valid route message the TRM can send a delete route message afterwards if the
connection to a station is lost.

There is a simple protocol to TRM signal to QM when new fragments should be
delivered to the NL (ServeSlot) and respective results (ServedSlot, UnusedSlot). The QM
can also signal that a queue was updated or destroyed (QueueUpdate, DestroyQueue).
The update messages are always with relative values, i.e. increment or decrement any of
the queues characteristics.

Although some messages are specific for certain station types, (e.g. NewAPQueue
can only be issued in an Access Point) the code is the same in all stations to simplify
development. Different configurations are supported through specific annotations in the
code that can be later pre-processed (for instance to create a “Node-only” version of the
Transport Layer in the future).

 Part III
Power-Line Communication System

98

Figure 8.7: REMPLI TRM/QM messages

A specific set of messages is also used for communication to and from the Network
Layer Interface (Figure 8.8). The first distinguishing point is that above this interface
(i.e. to QM and TRM) the requests and responses are matched using the QM’s Queue ID,
while below the interface (i.e. to the Network Layer) the NL Indication IDs are used (in
this context, “requests” are defined as the messages sent from the TL to the NL
direction). In fact, it is the main task of the interface to handle the creation and
translation of theses IDs when needed. Nevertheless, a small sub-set of the messages,
like SlaveStatusUpdate, do not use IDs.

QM TRM
Queue ID
Priority
Node Addr
Frag To Send

NewAPQueue

Queue ID
Priority
Frag To Send
AP Table ID

NewBridgeAPQueue

Queue ID
Priority
Frag To Send
Node Table ID

NewBridgeNodeQueue

Queue ID
Priority
Frag To Send
NL Unit
Bridge ID

NewNodeQueue

Queue ID
Queue Type

UnusedSlot

Queue ID
NL Unit
NL Addr
Bridge ID

APQueueRoute

Queue ID
NL Unit

BridgeAPQueueRoute

Queue ID
NL Unit

BridgeNodeQueueRoute

Queue ID
NL Unit **

NodeQueueRoute

Queue ID
Frag To Send
Queue Type

ServeQueue

or

Queue ID
Queue Type

ServedSlot

Queue ID
Inc Frag To Send*
Inc Frag Pending*

QueueUpdate

* (+) increment, (-) decrement
** Equal to received NL Unit except if
TRM wants to destroy the Queue Unit. In
this case NL Unit = 0.

Implementation:
QM_*
TRM_*

Queue ID

DestroyQueue

 Chapter 8
Implementation Issues

99

Figure 8.8: REMPLI NLI messages

The NLI also routes messages between master and slave NL and the QM and TRM
modules according to the message type as presented in the figure. For example, all
MasterReceiveData messages are delivered to the QM after being morphed to
MasterData messages. This is the case even if these messages include TRM data: it is

Q
ue

ue
 ID

NL Interface

QM

Slave NL

MessageReaded

ConfirmationReceived

Master NL

TransactionCanceled

TransmitFinished

TransmitCompleted

MessageReaded

ConfirmationReceived

TransactionCanceled

MasterReceiveData

TransmitFinished

 Indications
NLI_IND_*
NL_IND_*

MasterData

SlaveData

MasterSendConfirmed

MasterSendNotConfirmed

SlaveSend

MasterSendConfirmed

MasterSendNotConfirmed:

MasterStatusUpdate

MasterSendMulticast

MasterSendMulticast

TRM

MasterStatusUpdate

SlaveStatusUpdate

 Master NL related Messages
NLI�QM/TRM: NLI_MASTER_*
NL�NLI: NL_MASTER_*
QM/TRM�NL/NLI: MASTER_*

Slave NL related Messages
NLI�QM/TRM:
NLI_SLAVE_*
NL�NLI: NL_SLAVE_*
QM/TRM�NL/NLI: SLAVE_*

MasterLogin

MasterLogout

SlaveLogin

SlaveLogout

MasterLogin

MasterLogout

TransmitCompleted

SlaveConfRequestReceived

SlaveNotConfUCastReceived

SlaveNotConfMCastReceive
d
SlaveLogin

SlaveLogout

SlaveSendData

SlaveStatusUpdate

Result Error

 Error Results
NLI_ERR*
NL_ERR_*

Result Error

N
L

In
d

ID

 Part III
Power-Line Communication System

100

the QM task to extract the TL header and from this header distinguish the final
destination of the data.

Figure 8.9: REMPLI RCI messages

QM

APSendReqNoResp

APSendReqResp

APSendReqMCast

TRM

 AP Driver related Messages
Driver�TL: AP_*
TL�Driver: TL_AP_*
RCIM�QM/TRM: RCIM_AP_*
QM�RCIM/TRM: QM_AP_*
TRM�RCIM: TM_AP_*
TRM�QM: TRM_AP_SEND_*

RCIM

AP Driver Node Driver

NodeSendResp

NodeSendAlarm

NodeSetStatus

APResponseReceived

APAlarmReceived

APLiveListChanged

APTransactionCanceled

NodeRequestRespReceived

NodeRequestNoRespUCastReceiv

NodeRequestNoRespMCastReceiv
ed

NodeNodeListChanged

APResponseReceived

APAlarmReceived

APLiveListChanged

APTransactionCanceled

NodeSetStatus

NodeNodeListChange

NodeSendResp

NodeSendAlarm

NodeRequestRespReceived

NodeRequestNoRespUCastReceiv

NodeRequestNoRespMCastReceiv
ed

APSendReqNoResp

APSendReqResp

APSendReqMCast

Node Driver related Messages
Driver�TL: NODE_*
TL�Driver: TL_NODE_*
RCIM�QM/TRM: RCIM_NODE_*
QM�RCIM/TRM: QM_NODE_*
TRM�RCIM: TM_NODE_*
TRM�QM: TRM_NODE_SEND_*

Messages with
TransID

TRM-Generated
Data Traffic

TRM_*_SEND

QM_TRM_*_RCV

 Chapter 8
Implementation Issues

101

As expected, the messages in the NLI are a faithful representation of the available
Network Layer services including master/slave separation, confirmed and non-confirmed
requests, login/logout events and status update information. In these services, stations are
identified by (run-time) NLAddr and Unit IDs and the data payload sizes are very
limited.

Figure 8.9 provides the flow of messages at the RCI interface, between the
QM/TRM and the Access Point and Node Drivers. The services are the ones provided by
the RCI: Request with Response, Request With No Response, Multicast Data, Alarm
Service, Status Update and Live List information. All the data-related services support
very large data payloads and destinations are identified by Node Addresses.

Importantly, the TRM can also use the data-related services of the QM, as a Driver
would. The only limitation is that TRM services are never fragmented and therefore the
data payload is always restricted in size.

8.4 Processing Requests

In order to understand the behaviour of the Transport Layer, it is important to understand
how requests are handled. Figure 8.10 depicts the processing of a confirmed request,
where:
1. The TL receives an RCISendConfirmed request, with the RCIPacket data, and

related Node Address and Access Point TL Transaction ID.
2. The TL converts the Node Address to {NLAddr; NLUnit; Bridge ID}. Since the

depicted example is for a direct connection, Bridge ID is always 0. Then the TL
generates a new PDU ID to group the fragments of the request on the PLC
network. PDU IDs are unique for each NLAddr and NLUnit. Finally, the TL saves
the AP TL Transaction ID for this request.

3. The TL sends fragments using the NL for the NLAddr, NLUnit destination adding
its own header with PDU ID and Bridge ID.

4. The Node NL receives the fragment
5. The TL of the Node rebuilds the fragments of the request (the current

implementation supports selective acknowledge mechanism to complete this task),
generates a new Node Trans ID and stores corresponding PDU ID / Bridge ID /
NLUnit.

6. The TL delivers the complete request with the attached Node TL Transaction ID to
the DeMux, which eventually delivers it to the Node Driver.

7. The Node Driver processes the request and prepares the adequate response. The
answer is delivered via the DeMux to the TL. The Node TL Transaction ID is used
to match request and response.

8. The TL now fragments the response and sends it back to the AP. The fragments of
a response have the same PDU ID and Bridge ID of the original request, so the
first task is to retrieve this information, saved in step 5.

9. Fragments are sent to the AP using the same NLUnit of the request. The Bridge ID
and PDU ID are included in the TL header information.

 Part III
Power-Line Communication System

102

Figure 8.10: REMPLI PDU processing (direct connection)

10. The AP receives the fragments

Node
 (or Bridge)

AP
Driver

AP
Driver

Node/Bridge
Driver

TL

TL

NL

NL

SendConfirmed

RCISendConfirmed

RCIPacket

PLPacket

SendConfirmedRecv

RCISendConfirmedRecv

SendResponseRecv

RCISlaveResponse

RCIPacket

PLPacket

SendResponse

RCISendResponse

PLC

Node Trans ID

Node Addr
AP Trans ID AP Trans ID

NL Addr
NL Unit
PDU ID
Bridge ID

Node Trans ID

RCIPacket RCIPacket

NL Addr
NL Unit
PDU ID
Bridge ID

Notes:
PDU ID and Bridge ID are transferred inside the PLPacket data payload (TL Header)
For direct Access Point �� Node communication the BridgeID field is always 0 (explicitly or using a specific TL Header
Type)

Convert (TRM)
Node Addr � NL Addr / NL Unit / Bridge ID

Generate new PDU ID for this NL Addr / NL Unit
combination

Store
PDU ID NL Addr / NL Unit �� AP Trans ID

Convert
PDU ID / NL Addr / NL Unit �
AP Trans ID

Delete PDU ID information

Generate new Node Trans ID

Store
PDU ID / Bridge ID / NL Unit �� Node Trans ID

Convert
Node Trans ID �
PDU ID / Bridge ID / NL Unit
Delete Node Trans ID information

1

2

3

4

5

6 7

8

9

10

11

12

PLPacket PLPacket

NL Unit
Bridge ID
PDU ID

NL Unit
Bridge ID
PDU ID

 Chapter 8
Implementation Issues

103

11. After receiving all fragments of the response the TL matches the response to the
original AP Driver request

12. The response is delivered to the AP Driver. The AP TL Transaction ID is used to
match the request and the response.

Figure 8.11: REMPLI PDU processing (via Bridge)

Bridge

TL

Master NL

SendConfirmed SendResponseRecv

NL Addr 2
NL Unit 2
PDU ID 2
Bridge ID 2

NL Addr 2
NL Unit 2
PDU ID 2
Bridge ID 2

PLPacket PLPacket

Node

AP AP
Driver

NodeDriver

TL

TL

Slave NL

Master NL

SendConfirmed

RCISendConfirmed

SendConfirmedRecv

RCISendConfirmedRecv

SendResponseRecv

RCISlaveResponse

SendResponse

RCISendResponse

PLC

Node Addr
AP Trans ID

AP Trans ID

NL Addr
NL Unit
PDU ID
Bridge ID

NL Unit 2
Bridge ID2
PDU ID 2

Node Trans ID

NL Addr
NL Unit
PDU ID
Bridge ID

NL Unit 2
Bridge ID 2
PDU ID 2

PLPacket PLPacket

PLC

Slave NL
SendConfirmedRecv

PLPacket

SendResponse

PLPacket

NL Unit
Bridge ID
PDU ID

NL Unit
Bridge ID
PDU ID

Generate
NL Addr 2 / NL Unit 2 from Bridge ID
Bridge ID 2 from NL Unit
New PDU ID 2 for the NL Unit 2 / NL Addr 2 Combination

Store
PDU ID / NL Unit �� PDU ID 2

Generate
Bridge ID from NL Addr 2 / NL Unit 2

Recover
PDU ID / NL Unit from PDU ID 2

Delete
PDU ID 2 Information

Bridge
Driver

BridgeID = 0 ?

NO YES

RCIPacket RCIPacket

Node Trans ID

PLPacket PLPacket

RCIPacket RCIPacket

 Part III
Power-Line Communication System

104

For a bridged request most of the processing is similar (Figure 8.11), with some
exceptions:

− When a Node connects to a Bridge, the Bridge assigns this Node a Bridge ID.
When the Access Point wants to communicate with the Node it uses this Bridge
ID to address it at one particular Bridge. On the reverse direction (Node to
Access Point via Bridge) a similar mechanism is used. The advantage of this
method is that TL header space is reduced significantly without compromising
scalability of the system.

− If the Access Point wants to communicate directly to the Bridge (i.e. using the
Node functionality of the Bridge itself) it uses the reserved Bridge ID of zero.

− Each network segment has its own PDU IDs, Bridge IDs, etc.
− All the fragments of a request and matching response (when applicable) follow

the same route.

8.5 Fragmentation and Headers

Like in Profibus networks, the REMPLI NL is also limited to small PDU size in order to
improve system responsiveness. The TL is built over the NL layer to provide very large
data payload services to applications.

The need to combine fast response services with large data lengths (up to 16 MiB
on the current configuration) on the same system lead to solution with three different
headers (Figure 8.12):

Figure 8.12: REMPLI Fragmentation Headers for Unicast Data Services

0 17

25

Minimum Header

Small Header

Large Header

41 18

 R Header PDU ID Frag. ID

0 17

 R Header PDU ID Frag. ID Small Length

0 17

 R Header PDU ID Frag. ID

 Large Length

(Padding)

 Chapter 8
Implementation Issues

105

− a Minimum Header with Request Type (2 bits), Header Type (4 bits), PDU ID
(6 bits) and Offset (6 bits), with a total of 18 bits or 3 bytes;

− a Small PDU Header with the same information fields of the Minimum Header
plus a 8-bit Data Length field, with a total of 26 bits or 4 bytes;

− a Large PDU Header with the same information fields of the Minimum Header
plus a 24-bit Data Length field, with a total of 42 bits or 6 bytes.

The first field identifies the type of PDU, Request/Response, Unicast, Response

and TRM Data. The second field Header Type is used to distinguish between the 15
available header configurations at the current version. The PDU ID field is unique per
source (i.e. the master or slave of a particular station) and identifies a group of fragments
as belonging to a packet. In the current header architecture it would possible to share
PDU IDs between some groups of header types but to reduce complexity this is not
implemented at the moment. The 6-bit Frag. ID identifies the order (starting at 0) of
each fragment in the set of fragments of a given packet.

When sending fragments, the first fragments (a compilation-time constant,
TLH_NumberBigHeaders, with a typical value of 3) are with length fields, and the
following fragments use only minimum headers. Since the system can only store data
fragments after a successful reception of a header with a length field, the number of
fragments with packet length information is configurable depending on the expected
error rates of the network and also on the probability of out-of-order delivery.

In addition, the bit lengths for “small” and “large” PDUs can be easily pre-
configured and can have up to 32 bits (4 GiB). Decision on the length sizes of headers is
dependent on the specific system and the predicted traffic patterns.

The fragmentation functions handle most of the data reception and transmission
tasks for typical services. For transmissions, the fragmentation starts after the QM is
aware of the maximum length available for a particular request. It creates
(NodeCreateFragments, AlarmCreateFragments, etc) a linked list with fragment
information and ready-to-use PDUs data blocks, complete with headers. If applicable
(see below), the fragmentation process handles the different headers used in one request,
that is, only the first fragments have “complete headers” thus the remaining fragments
have more space for data payload. Fragment information varies with the type of queue
but typically includes TTL counter, PDU final size, absolute fragment number (starting
at 0) and delivery status (e.g, DataToBeSent, Sent, Confirmed).

After creating the fragments, the original data block is discarded. This means that
there is a temporary duplication of the data payload on the station, but the advantage is
that as soon as each fragment is confirmed the data can be discarded and memory
released gradually. The other reason to choose ready-to-use PDUs is to guarantee that
when a queue is scheduled, fragments are delivered as fast as possible to the Network
Layer. The disadvantage is a higher worst-case memory footprint.

This is also dependent on the possibility of simultaneous use of different sized
network layer units. If this was not foreseen, fragmentation could be done immediately
when the data is received at the DeMux interface moving part of this functionality from
the QM to the RCIM. The QM would later add the headers to the fragments.

 Part III
Power-Line Communication System

106

Figure 8.13: Memory Blocks in a Unicast service (Linux HyNet System)

When receiving, the first fragment triggers the allocation of the full packet.
Afterwards, it is simply a task of placing each fragment in the correct position. The only
caveat is positioning the fragments: the smaller payload of the first fragments has to be
taken into account when calculating the byte offset of each fragment in the reception
buffer. In order to control delivery of fragments, at every 16 fragments (or when the
packet is complete) a confirmation packet is sent back to the source of the PDU with
fragment status information. This is done creating a new TxQueue that is scheduled by
the TRM eventually.

Since the system may experience out-of-order delivery and bandwidth is scarse, a
bit-oriented fragmentation confirmation mechanism is used enhancing the standard
sliding window mechanism. The ideia is that instead of using one PDU to confirm each
fragment (or a group of consecutive confirmed fragments) we can set the status of a
group of fragments at a time. This data is sent in a QMStatus structure that has a PDU
ID, an absolute 32-bit offset of the first missing fragment (like a standard sliding
window mechanism), and 24 bits with the status of 24 fragments after the first one.
There are two reasons for this enhancement: (i) on transmission fragment blocks can
freed earlier and (ii) on bridge forwarding it is possible to implement a forwarding
service oriented to the fragment (and not to the sliding window) optimizing memory
usage.

A straightforward algorithm to build this status information is presented in Figure
 8.14. On the other station, the process of detecting if a fragment is confirmed or not is
adapted accordingly. Please note that this process eventually generates a PDU from the
station that is receiving the Data PDU to the station that is transmitting the Data PDU.

NLI

QM

RCIM

DataPayload

TCP

NL

Frag

Linux Driver

DeMux

Driver

Socket

Socket Message
Pointer

Other
Pointer

Memory
Block

TL Msg
Transfer

NLI

QM

RCIM

TCP

NL

Linux Driver

DeMux

Driver DataPayload

Socket

Socket

DataPayload

Defrag

PLC

DSP I/O DSP I/O

DataPayload

 Chapter 8
Implementation Issues

107

On the TL, the offset is signed, and if lower than zero then all fragments are
confirmed6. On the side that is sending the Data PDU several tasks have to be fulfilled. If
all fragments are confirmed the transmission is complete. Depending on the station and
queue type, this can originate an event for the driver (e.g. NodeOkAlarm) and/or the
destruction of the queue itself. For partial lists, all the fragments with offsets lower than
the first fragment are released (since they are confirmed implicitly), the bit-by-bit
confirmed fragments are also released. For the “not-confirmed” bits a simple retry
mechanism was implemented: after the reception of two “not-confirmed” bits for the
same fragment, the fragment is placed back in the “to send” state (and is scheduled in
due course). For unicast requests, the first 64 (QueueSegmentSize) fragments are
numbered in sequence starting at 0 up to 63, the next ones from 0 to 63 and so on. A
sliding window mechanism is used to keep track of which section of the fragment list are
being dealt with. The first fragment value of the QMStatus structure sets the first
fragment of the “window” and only up to 32 fragments ahead of it are sent. Like
“traditional” sliding window implementations, the window can only move when a new
QMStatus structure is received.

// STATION RECEIVING THE DATA PDU

// Assume that:

// a. when a fragment is received a structure is placed in an ordered linked
// list with the absolute fragment offset.
// b. block->frags{0} reads or sets the first bit, {1} the second and so on
// c. block->frags{0..4}=true sets the fist 5 bits, etc

// function GenerateQMStatusBlock

// Return a pointer to Status Block for
// one Reception Queue, or NULL if all fragments
// are received

(StatusBlock *) GenerateQMStatusBlock(rxQueue) {
 // temporary var to store the block
 StatusBlock * block;

 // 1. find first missing fragment or unconfirmed fragment

 curFrag = 0;
 aux = rxQueue->firstFragment;
 while (aux!=null) {
 if (aux->offset != curFrag)
 break;
 aux = aux->next;
 curFrag++;
 }

 if ((aux == null) && (curFrag == rxQueue->numFrags)
 return null; // we have all fragments

 // 2. build the status block and set the first fragment value

 block = new StatusBlock();
 block->firstFragment = curFrag;
 block->frags{0..23} = true;

 // 3. build the bit list of other fragments
 curFrag=0;
 aux = aux->next;
 while (aux!=null || curFrag > 24) {
 deltaFrag = aux->offset - block->firstFragment + 1
 if (deltaFrag != curFrag) {
 if (deltaFrag >= 24) {
 block->frags{curFrag..23} = false;
 break;
 } else {
 block->frags{curFrag..deltaFrag-1} = false;
 curFrag += deltaFrag-1;
 }
 }
 curFrag++;
 aux = aux->next;
 }

 // 4. we are done!
 return block;
}

Figure 8.14: REMPLI Status Information Algorithm

6 In terms of programming this is almost the same as checking if the offset is equal

(or greater) to the number of fragments in the PDU, but it eases debugging tasks.
Another difference is that the number of bits used system-wide is configurable at
compilation time.

 Part III
Power-Line Communication System

108

For non-unicast services, the main difference is that no “minimum headers” are
used (Figure 8.15) and the headers have the absolute order number of the fragment. The
benefit is that all fragments have the necessary information to start the data reception.

In order to conserve bandwidth, the “internal” TL traffic “piggybacks” several data
blocks inside a Network Layer PDU, aligned at byte boundaries.

For the internal traffic between TRM units in different stations, the system fills the
available data space with a series of TRM data blocks, each with its own function. It is
possible for example to send several link quality update notifications mixed with status
service updates in one single NL packet. QM uses a similar procedure for its own
packets, e.g. the QMStatus described in the Confirmation process above.

Figure 8.15: REMPLI Fragmentation Headers for Non-Unicast Data Services

8.6 Direct Unicast Service

The TL unicast service aims to provide reliable transmission of packets from the Access
Point to a Node over the two-level network. The base network does not guarantee the
order of delivery of packets and has a very limited payload per PDU so this service is a
major improvement over the existing system. However, it was important for the
implementation that small packets could be delivered fast (but not necessarily confirmed
as fast) and the service has this in consideration.

The algorithm of the unicast service is summarized in the next paragraphs for the
non-bridged version; the bridged version is very similar to the alarm processing that is
presented in the next sub-chapter.

1. Access Point Driver issues a Unicast Request directed to a Node
When a request is issued by the driver the packet data is delivered first to the

DeMux and then to the RCIM and finally to the Queue Manager
(CreateApTxQueueUnit).

The Queue Manager saves the PDU data pointer for later processing. It also assigns
a Queue ID (unique for this station) to the request and saves the queue information in the
list of Transmission Queues (InsertTxQueueUnit). It then waits for the Transport Route
Manager for an available route to the given Node Address destination.

0 17
Small Length Header

Large Length Header

55

25 11

32

 R Header PDU ID Abs. Ofs. Small Length

0 17 31 11

 R Header PDU ID Large Absolute Offset

 Large Length

 Chapter 8
Implementation Issues

109

The Transport Route Manager then calls the Fragment Scheduler and sends either a
route to the QM or an message signalling than no route is available. In the latter, the QM
destroys the queue information and issues an error message that is later delivered to the
driver.

If a route is available, (UpdateApTxQueueUnitInfo) the QM assigns a new PDU ID
(unique for each Network Layer Unit). The route information also includes the
maximum data length for the path and it can now create (APCreateFragments) the
fragment information. The PDUs created have the request type of ReqNoResp. If for
some reason fragments cannot be created, the QM informs TRM to remove the Queue
Unit information.

It then sends an update message back to the TRM with information on how many
fragments are to be sent. The QM uses a sliding window in order to support very large
packets. Only fragments up to the sliding window size are marked as “available to be
sent” to the TRM. The queue is identified in these messages by the Queue ID.

This message starts the cycle of fragments transmission: when the network is
available the TRM informs the QM to send (ServeTxQueue) one or more fragments to
the Network Layer. When the Network Layer processes the fragment (e.g. when the
fragment is about to be sent to the physical network) the QM informs the TRM that a
slot is available and the process is repeated until there are no more fragments to send.

When a fragment is processed by the Network Layer it does not guarantee that it is
correctly delivered. The fragment is kept as “pending” on the fragment list. When a
confirmation is received from the NL then the fragment is considered to be “delivered”.
If an error is received from the NL then the fragment is set as “available to be sent”
again.

The Fragmentation process controls the delivery of all fragments
(ReceiveQmMasterData) and delivers the OK message to the DeMux when the process
is complete.

2. Node Transport Layer Receives Data
When the Node receives a fragment with ReqNoResp request type it starts by

building the new queue information (CreateRxQueueUnit). This process first checks if
the queue already exists, e.g. if there is any RxQueueUnit with the same PDU ID and
NLUnit.

If it does not exist then it creates it. It saves the base queue unit parameters (like
priority, length, PDU ID and NLUnit), and the event type that is used to transfer the data
do the DeMux (in this case NodeUcastReceived). Since this is a reception queue it does
not have a Queue ID.

After creating the queue, or if the queue already existed, the fragment reception
process (ReceiveRxFragment) is run. If all the fragments are received the data pointer is
transferred to the DeMux using the previously stored event type. Finally, the last step is
deleting the queue unit information (DeleteRxQueueUnit). This function simply removes
the structure from the linked list and frees the used memory.

3. Timeout and error processing
For simplicity timeout, processing was not included in this description. The main

concept is that the Queue Manager calculates the deadline for the packet and forwards
this value to both the Bridge and the Node. This solution was chosen since the

 Part III
Power-Line Communication System

110

synchronization of the clocks in all stations is guaranteed by other REMPLI components
(Gaderer et al., 2006).

The processing of typical errors, including retry operations are handled by the
ReceivedRxFragment function.

Except for timeout checks in the Queue Manager and the Live List Cost updates in
the Transport Route Manager, all the processing inside the Transport Layer is driven
from external events: TL progression is only activated when there is an external input
(from the DeMux or from the NL).

8.7 Bridged Alarm Service

The Alarm Service makes it possible for any Node to send a confirmed packet to, at
least, one Access Point. The Node cannot choose the destination station, and it is
possible that more than one Access Point receives the generated alarm. Therefore it can
be classified as an “anycast” service originated in the Nodes.

The Node can set the Priority and the relative Timeout of the request.

Figure 8.16: The Alarm Service Fragment Status – Simplified Concept

The concept is based in the possibility of multiple paths for delivering the
fragments (Figure 8.16). It is possible for Access Point 1 to have the complete data
receiving some fragments from either bridge. Another feature is that when each station
has confirmed the delivery of a fragment to all network units it can safely discard the
data block preserving memory in the stations. At the state presented in the picture, the
Access Point 1 would start to inform the other stations on the network that the Alarm
delivery was successful. Since this is a distributed mechanism, it is possible that other
Access Points gather all the fragments of the packet while this finishing process is
ongoing.

Access
Point 1

Access
Point 2

Bridge 1 Bridge 2

Node 2
NL Master

NL Slave

NL (LV)

NL (MV)

1 2 3 4

1 2 3 4

1 2 3 4

2

2

2

Released

Received

Missing

Send OK

1 2 3 4

OK!

1 2 3 4

 Chapter 8
Implementation Issues

111

In the REMPLI Transport Layer the process is more complex due to the support of
multiple sized Network Layers: the received fragments can have a different size of the
transmit fragments. This is possible since the network layers can be configured
differently depending on the physical medium characteristics.

Consequently, a dual-queue architecture was designed to enable support of
different data lengths in master and slave side of the Bridge: a collection of
QueueSegments gathers blocks of received information from the Node; and fragments
ready-to-send to the Access Point are attached when possible to a transmit QueueUnit.

Figure 8.17: The Alarm Service Bridge Dual-Queue Architecture

Received data is released in a segment block when all the data of that block is
completely received and has been transferred to the transmission queue. Transmission
data is released on a fragment-by-fragment basis like any other transmission queue.

This process is summarized in Figure 8.17. Nevertheless, a clarification must be
made in terms of memory usage. At the reception, each SegmentQueues is allocated at
once to store user data of several fragments and released when possible. In transmission
memory is only allocated when needed by a fragment, and released when the fragment is
confirmed. In terms of the figure, this means that the gray boxes at the “To AP:” side are
not allocated yet, but the gray boxes on the “From Node” side are already allocated but
not filled up. However, SegmentQueues are only allocated when needed: in the example
above the second segment was only allocated when the first of fragments 5 or 8 arrived.

The choice for SegmentQueues was done to mimic as far as possible the normal
non-bridged reception without wasting too many resources.

1. Node Driver sends Alarm request
At the Node side the process begins with a NodeSendAlarm request from the Node

Driver. As usual this request is passed to the Driver and to the RCI and, finally, to the
Queue Manager.

The Queue Manager starts by (CreateAlarmQueueUnit) saving in a list the basic
information about the request, priority, size, data payload, etc. It also appends to the data
payload an absolute timeout value. It then passes scheduling information to the TRM.

To AP:

From Node: 1 2 3 4 5 6 7 8

1 2 3 4 5 6

To AP:

From Node: 1 2 3 4 5 6 7 8

1 2 3 4 5 6

4 Received
from Node

To AP:

From Node: 1 2 3 4 5 6 7 8

1 2 3 4 5 6

To AP:

From Node: 1 2 3 4 5 6 7 8

1 2 3 4 5 6

Confirmed
by AP

1 2

 Part III
Power-Line Communication System

112

The TRM stores the information and issues a AlarmAddNetUnit message for the
QM regarding each available network unit on the station. This enables the “reverse”
broadcast nature of the Alarm service.

Back on the QM side, the first message triggers the fragmentation process
(AlarmCreateFragments). In the Alarm Queues each fragment has status information
regarding each network unit so it can track the delivery independently. Only after
confirmation in all units is the fragment is released. The QM issues an update message to
the TRM with the number of fragments pending for the given net unit.

At this point, the TRM Fragment Scheduler can select one of the alarm units to be
served depending on the current pool of pending requests. In this, Alarm priorities are
treated like any other queue priority, but advanced Schedulers could differentiate queue
types.

When the Fragment Scheduler selects a particular Alarm queue and unit the QM
scans (ServeAlarmQueue) the fragment list for fragments to be sent. If found they are
marked as “not confirmed” and a copy of the fragment PDU delivered to the slave NL
(via NLI). Multiple fragments can be scheduled with a single TRM request.

2. Bridge receives fragments from Node
The first fragment originates a new Queue Unit (CreateBridgeAlarmQueueUnit),

other fragments are “added” to the queue unit data (ReceiveAlarmBridgeFragment).
When creating the QueueUnit the QM sends a BridgeGetBridgeID message to the

TRM, with network unit and address of the Node. The TRM eventually sends back a
BridgeGetBridgeIDResponse message with the matching BridgeID that is used to
identify the original node in the fragments to the Access Points, transmission fragments
are only created after receiving this information since it is needed for the fragment
headers. The QM also issues a NewAlarmQueue for TRM scheduling purposes. The last
step in creating the queue is calling CreateAlarmBridgeQueue. This allocates memory
for one AlarmBridgeQueue structure and the first AlarmBridgeQueueSegment structure.

The received fragment data is saved in the data block of one of the
AlarmBridgeQueueSegment structures (if needed a new structure is allocated). As
referred above, when possible, e.g. when contiguous memory is available, received
fragments are rebuilt into fragments (AlarmBridgeReconstructFragments) ready to be
sent in the slave side of the Bridge stored in the AlarmQueueUnit structure like other
transmit queues. When all the data in a particular AlarmBridgeQueueSegment is
transferred to the AlarmQueueUnit the AlarmBridgeQueueSegment is released. The new
fragments originate UpdateQueue messages to the TRM.

If an AlarmOK PDU is received a confirmation is sent back. The need for this “re-
confirmation” is that the Node is not able to confirm via the Network Layer if the PDU
was actually delivered or not. This PDU is sent back even if there is no matching queue
unit in the Bridge. All the remaining AlarmBridgeQueueSegment data, and the
AlarmBridgeQueueSegment structure, is released at this point.

3. Node receives fragments confirmation
Eventually the slave station receives special QM PDUs with Alarm information.

Each PDU includes information about the AlarmID, if the Alarm was delivered to one
destination (AlarmOK), and fragment confirmation data.

If the AlarmOK bit is set, the QM releases (ReceiveQmAlarmHeader) all the
fragments and set the status as “finished”. If this was the first AlarmOK PDU for this
queue then the Node Driver receives the confirmation that the alarm was sent.

 Chapter 8
Implementation Issues

113

8.8 Request with Response Service

The processing of Request with Response service is similar to the Unicast service on the
AP-to-Node direction followed by a “single-route” Alarm service on the Node-to-AP
direction.

One of the differences it that at the Node side a special queue is kept in “open”
state while the Node driver processes the Request. The Node driver can opt to send a
Response with any data length (including 0) or a special NoResp command. The
Response is matched to the Request by the TL Transaction ID.

If the queue timeout expires before a response is issued, a NoResp PDU is sent to
the AP Driver by the Transport Layer and the TL Transaction ID is invalidated. There is
no way for the AP Driver to know if the NoResp was due to a timeout or really issued by
the Node Driver. The AP Driver only receive timeout errors for the transmission phase
of the request.

An a additional feature is that the Node Driver can send a RespTimes command for
a particular TL Transaction ID with information on the expected delay till the Response
command. Periodically the Transport Layer scans all open requests in the Node and
selects the smallest of these delays to setup the timeout sub-system of the Network Layer
(as presented in Section 7.4). The timeout is set to half the minimum value indicated by
the Node drivers.

115

 Chapter 9
Validation

This chapter addresses the experimental validation of the mechanisms proposed in
Chapter 7 and for which some implementation detail was provided in Chapter 8.
This validation was based in extensive test cases in a simulation environment,
which allowed to build an application-rich scenario and comparison with
performance in actual field tests.

9.1 Introduction

With the test scenarios devised to validate the REMPLI Transport Layer, particular
attention was given to the advanced features which were the focus of the previous
chapters. These consisted in the new end-to-end services, routing in a two-level network,
scheduler performance and resource usage. Extensive test cases were implemented in a
simulation environment, whilst field test results allowed to confirm the adequateness of
the approach.

9.2 Simulation Environment

By design, the Transport Layer was prepared to be tested in the OMNeT++ simulation
environment. However, this environment did not support the REMPLI physical and
network layers, thus a new emulator was designed by a group within one of the project
partners (iAd). This application emulates the physical layer behaviour of the PLC system
in a single time slot using a simplified (and fast) mathematical model of the network,
which deals with successful or successful data delivery between several network points
at the same time. For example, if two stations in different network positions send a PDU
to the physical medium, the emulator calculates all the positions that received each PDU
and delivers the respective data considering possible mutual interferences. These
network models where obtained from a much more complex (and time-consuming)
simulation system of the physical layer, including channel encoding and synchronisation,
and estimated response of the physical layer considering the signal responses of actual
power lines.

The emulator included data files for topologies like Ring, Open Ring and Random
Area (a central point with several “trees” radiating). Depending on the models, the
number of positions varied from 10 to 200 stations.

 Part III
Power-Line Communication System

116

On top of this emulator, a version of the Network Layer was developed by another
partner (Loria), therefore building a complete environment for testing. This was
integrated with the OMNeT++ simulation tool via a TCP channel. The simulation sends
new data packets to the emulator where they are queued. In each “time slot”. an
emulation cycle is requested to the emulator that sends back the resulting data packets
and the respective stations. Since the emulator supported only single-master networks,
multi-master networks were supported using two (or more) emulators in parallel, and the
number of used slots adjusted accordingly. Nevertheless, multiple master networks
sharing the same TDMA slots (e.g. in “distant” points of the network) are not supported
in the current version of the simulation system. This would require changes to support
multiple network layers in parallel and move each master to a programmed position in
the grid (currently they are always in position 1).

Figure 9.1: Nodes connected in REMPLI Network Emulators

Figure 9.1 presents the physical layout of the nodes of the physical layer emulator;
the curves surround the slaves that connected to the master in the centre of the network.
The difference between the simulations is only on the seed of the random number
generator used for the physical layer emulator. In these physical layer simulation
scenarios, all 100 stations were connected after 140 simulation seconds. Also presented
are the selected node positions for simulation: 2 to 10 and 60. Looking at the map it is
possible to conclude that positions 4, 7 and 8 never receive data, and positions 3, 6, 9, 10

1
2

3

4

5

6

7

8

9

10 11

12
13

14

15

16
17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36
37

38

39

40

41
42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57
58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86
87

88

89

90

91

92

93

94

95

96 97 98

99
100

Positions 2 to 10, 60
used in simulations

2

1
4

3
M

AP AP

B

N N

B

1

4

2

3

N

Position 64 used for
multicast emulation

 Chapter 9
Validation

117

and 60 always connect successfully. Other positions connect only in some of the
emulators. Position 60 has the best reception possible on the network in terms of delays
with a high probability of not using repeaters at all; other positions may be subject to
repeater delays, especially the ones nearer the borderline.

Emulators 1 and 2 are used in the low voltage segment and Emulator 3 and 4 in the
high voltage segment. Table 9.1 presents the map positions with corresponding Node
Address and connection capability. On Emulators 3 and 4 only Node Addresses 201 and
202 are presented since only two bridges were used in the simulations; Node Addresses
301 to 310 are for Nodes. These values are only for the Transport Layer and Drivers.
The Network Layer and Physical Layer still behave according to the scenario of 100
stations in each network, including internal management activity to keep track of all
logged stations.

Table 9.1: Channel conditions in each REMPLI emulator position

Position���� 2 3 4 5 6 7 8 9 10 60
Node Address 301 302 303 304 305 306 307 308 309 310
Emulator 1 OK OK OK OK OK
Emulator 2 OK OK OK OK OK OK OK
Node Address 201 202 --- --- --- --- --- --- --- ---
Emulator 3 OK OK OK OK OK OK OK

Emulator 4 OK OK OK OK OK OK

Apart the Network Layer Module, simulation-specific Access Point and Node

Driver Modules were designed for OMNeT++. Other modules like TRM, QM, NLI and
RCIM use the same source code as the target implementation.

The Access Point Driver module is specific for the simulation scenarios. In a real
station, the drivers would receive requests from external applications and translate them
into protocol requests to the DeMux. In the simulation there are no applications making
requests, as the Access Point Driver module emulates these requests in each simulation
station depending on the features to be tested. The Access Point Driver can generate
confirmed requests, unconfirmed unicast requests, unconfirmed multicast requests and
status requests. Since we have two different PDU headers in the system depending on
data lengths, the simulation also takes this fact into account.

On the other end of the network are the Node Drivers, which are also simulation
specific. In this case the only requests are the Alarm Service and Status Service Updates.
Depending on the station, the Node Driver can also issue automatic responses
(eventually with a delay) to confirmed requests of the Access Point.

In the end system there is a DeMux layer between the Transport Layer and the
(multiple) Drivers per station, but for simulation this was not critical since the service
interface and functionality is comparable for modeling purposes. Although the name, the
“Drivers” in these simulations emulate the DeMux functionality including additional
fields in the transfers with the TL when appropriate.

 Part III
Power-Line Communication System

118

Figure 9.2: Transport Layer Simulator Architecture

9.3 Base Network Layer Characteristics

The base network emulator was configured matching the laboratory test bed
configuration that was also successfully in the field trial: 64-byte packets (51 available
after Network Layer) and a slot time of 9.5 ms.

Since we are using a dual master network sharing equal parts of the time slots with
a normal interleave of four, the parameters for the emulators were adjusted accordingly.
Each emulator was configured with an interleave-value of two and each pair is called in
alternating slots. In reality, each emulator is activated every 19 ms. Apart this
configuration parameters the network emulator is treated in a black box fashion in this
section.

In order to be able to obtain higher sensitivity regarding the Transport Layer
performance, it is interesting to use information about the underlying Network Layer.
With this data, it is possible to compare not only the end-to-end additional delays
included by the additional Transport Layer mechanisms, but also to have some
information on the issues create by lower layers delays and errors (also having the base
average bandwidth). In order to be a faithful representation of the future tests base
network, this test only sends PDUs to slaves that logged in and it is used in the other
tests (i.e. Node Addresses 301-310 and 201-202).

The first test was to produce the maximum allowed load in the network with
unconfirmed requests from all masters, registering the delays until the PDU was
delivered to the slaves and/or possible error indications. For this test, the NLI was
adapted to provide the desired scenario, including careful synchronization with the
emulator slot timer, while remaining TL functionality was disabled. This

OMNeT++

TL

TRM QM

RCIM

NLI

AP Driver or Node Driver

PLE OMNeT++
Messages

Emulator Emulator

TCP
Channel

Generic Code
(OMNeT++ & Linux)

Simulation Code
(inside MNeT++)

Emulator Code
(outside OMNeT++)

There are multiple NLIs
connected to each PLE.

 Chapter 9
Validation

119

synchronization was possible since the NL generates an event every time it reads a
packet from an output queue. This process guarantees that an emulator slot occurs
immediately after the Master Network Layer generates a new request with an effective
null time difference and with minimal queuing. In the normal operation of the Transport
Layer, there is no such synchronization since the timing is controlled by external entities
(the Drivers) that do not have the need for a precise synchronization with the Network
Layer. In practice this means that “real-life” results should have in average an additional
delay of half a slot in a mono-master network (in the worse case the PDU has to wait
almost an entire time slot), or in a dual-master network with interleaved slots (e.g. M1-
M2-M1-M2 and so on…) the average delay increases to a full time slot.

The tests results are summarized in tables 9.2 to 9.4.

Table 9.2: Network Layer Performance Tests

Table 9.3: Network Layer Unconfirmed Requests performance test

Global paramenters Slots
Slot time (“real”) 9.5 ms
Interleave factor (“real”) 4
Number of networks (“real”) 2
Number of masters per network 2
Number of slots per interleave cycle for one Master 2
Physical layer raw data rate (both networks) 107786 bps
Physical layer raw data rate per master 26947 bps

Unconfirmed Requests Results Slots
Total possible slots 31578
Slots used / Packets issued 20597
Network availability 65%
Average Tx data rate (TL Payload) per master 14006 bps
Minimum network access delay 0 ms 0.0
Average network access delay 11 ms 1.1
Maximum network access delay (99.5% best) 57 ms 6.0
Maximum network access delay 3382 ms 356.0
Packets delivered 18945
Packet Error Rate 8%
Average correct Tx data rate (TL Payload) per master 12883 bps
Minimum transmission delay 38 ms 4.0
Average transmission delay 64 ms 6.7
Maximum transmission delay (99.5% best): 152 ms 16.0
Maximum transmission delay 3420 ms 360.0

 Part III
Power-Line Communication System

120

Table 9.4: Network Layer Confirmed Request performance test

Analysing these results, the first conclusion is that a large part of the network raw

capability is “lost” in the current setup. A part of it is lost in headers (64 bytes turn into
51 bytes usable by the Transport Layer: a 20% drop), but most of the “lost” slots are
used by the network layer repeater mechanism to increase the coverage area (some are
lost in network layer’s management). Although the fact that we are connecting only a
few stations to the OMNeT++ simulation, the emulator, which includes the network
layer functionality, uses the complete network of 100 stations. Since the selected nodes
are distributed in the “connection” area, some have the minimum delay (4 slots) but in
average they need at least two repeaters (8 slots) and some need three (12 slots).
However, less than 0.5% of the requests show extremely large delays, much larger than
the repeating slots and more in the order of 3 seconds. A quick review of the test logs
shows that the network did not generate any traffic during these delays, but data stays on
the Network Layer queues, therefore it is possible to assume they reflect internal
network maintenance cycles (also possible that the network detects a fault and stopps
sending packets temporarily). These outages have a great impact in the network.
Considering the unconfirmed request case, the 0.5% worse cases (101 requests) occupy
5662 slots. If we deduct from this value the time used in average for the other 99.5%
requests, in order to process 101 requests we have 5056 slots “wasted”. This is around
20% of the usable slots.

Confirmed Requests Results Slots
Total possible slots 42104
Slots used / Packets issued 13024
Network availability 31%
Average Tx data rate (TL Payload) per master 6642 bps
Minimum network access delay 0 ms 0.0
Average network access delay 89 ms 4.5
Maximum network access delay (99.5% best) 285 ms 30.0
Maximum network access delay 5890 ms 342.0
Packets delivered 13020
Packet error rate 0.03%
Average correct Tx data rate (TL Payload) per master 6640 bps
Minimum transmission delay 38 ms 4.0
Average transmission delay 102 ms 10.8
Maximum transmission delay (99.5% best) 437 ms 46.0
Maximum transmission delay 3287 ms 346.0
Confirmations received 13017
Deliveries non confirmed 0.02%
Minimum confirmation delay 76 ms 8.0
Average confirmation delay 154 ms 16.3
Maximum confirmation delay (99.5% best) 513 ms 54.0
Maximum confirmation delay 3325 ms 350.0

 Chapter 9
Validation

121

Concerning error rates, for unconfirmed PDUs, 8% of the requests did not reach
their destination. Nevertheless, this results vary wildly depending on the link studied, for
example the connection between 101 and 201 is consistently worse (minimum 8.0,
average 12.1 slots) than the connection between 101 and 202 (minimum 4.0, average 5.6
slots). This result is expected from the mere observation of the connection map where
position 2 (station 201) is in the borderline of the connection area and position 3 (station
202) much nearer the centre of the map.

For confirmed PDUs, there is a residual packet error rate (4 errors in 13024
requests); in the test we also reporter very few missing confirmations for correctly
delivered packet (just 3 missing confirmations in 13020 delivered packets). Therefore,
the simulated network is extremely reliable when using confirmed requests when
compared to the unconfirmed request performance in this parameter.

In terms of delays, it takes at least 4 time slots for a PDU to go from A to B. For
confirmed requests, the average is 6.7 slots for data to be delivered from the master to
the slave, and this value increases to 10.8 slots for confirmed requests (see Figure 9.3).
The additional delay in confirmed requests is due to the automatic retry mechanism
supported by the Network Layer: if an error is detected, additional time slots are used to
retry the request and, as seen in the final error rates, the Network Layer behaves well in
this aspect. These delays also influence the queuing time before PDUs are sent.

Unconfirmed Requests

0

2000

4000

6000

8000

10000

12000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 More

Time Slot

M
es

sa
g

es

Tx Rx

Confirmed Requests

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 2 4 6 8 10 12 14 16 18 20 22 24 26 More

Time Slot

M
es

sa
g

es

Tx Rx ok

Figure 9.3: Network Layer performance histograms

It was also possible to repeat the confirmed request tests with echo functionality
from the slave station. The results were similar to the table above and most of the
confirmations at the master were followed by the slave data in the same slot. 11859 slave
responses arrived to the masters, which means a loss of about 9%. Slave to master data
payloads are typically sent by the Network Layer in the confirmation of master request,
but they are not re-confirmed. For a particular master to slave confirmed request a PDU
can be generated by the slave with a data payload and not make it all the way to the
master. The network layer at the master side reissues the original request if needed but
the slave data is lost anyway.

Another effect was that approximately 20 PDUs were queued for delivery after the
last confirmation at master 201 and 202, while in master 101 and 102 only 3 PDUs
where delivered late. Most of these “queued” PDUs were delivery to the master in a

 Part III
Power-Line Communication System

122

burst with only 2 to 6 slots intervals between PDUs. Since the slave-to-master channel
was being used at this time, the network data rate for correctly delivery data went up to
12679 bps - that is almost the same as the results for non-confirmed data.

Another test was setup with duplicated echo PDUs. In this scenario, the Network
Layer tries to empty the slave’s queues as soon as possible and uses more bandwidth for
the slave-to-master channel. This resulted in only 5256 confirmed requests generated,
one of them being lost during transmission and 9556 PDUs being received back in the
master (again 9% less than the generated).

In global 14812 slots where used for this last test of the around 42104 possible. In
the tests with responses a lot of additional slots where used since the slave replies
continued after the last transmission for more 5 seconds in bridge 202 and around 2.5
seconds for the other masters. On non-echo tests this additional slots where much more
limited (maximum 288 slots) and were not taken into account.

9.4 Unicast Test and the TL Queued Requests Parameter

Apart the basic address conversion tables that assign Unique Serial Numbers to Node
Addresses, the Transport Layer has multiple configurable parameters concerning not
only fragmentation-related information but also timeouts, thresholds, and queue sizes.

 The optimal set of parameters is highly application dependent, but for all
applications one parameter in particular has a likely direct impact on the timing
performance of the system. This parameter is the number of pending Network Layer
requests that the TL leaves open before stopping sending new requests.

In theory, a higher queue parameter guarantees that the NL queues are never
unnecessarily starved (e.g. a transmission slot is available but the Transport Layer failed
to fill it up in time); on the other hand smaller queues guarantee faster response to
priority packets.

Figure 9.4: Queue size average delay and last transmission

0

20

40

60

80

100

120

0 2 4 6 8 10 12 14
Queue Size

L
as

t
T

ra
n

sm
is

si
o

n
 (

ti
m

e
sl

o
ts

)

0

2000

4000

6000

8000

10000

12000

14000

A
ve

ra
g

e
D

el
ay

 (
ti

m
e

sl
o

ts
)

Average delay

Last Transmission

 Chapter 9
Validation

123

For this test, small sized packets (that fit in a single fragment) were used. The tests
sent 500 packets from each master to all stations logged in the network, including the
Bridges. A total of 2000 packets were injected in the network (one for each master, and
one for each reply). Up to 10 packets were sent with 1 ms interval. After this, new
packets where generated when the TL replied to a previous request.

The node echoes the packet back in the same simulation instant. Since the AP
Driver is not synchronized with the NL, there may be an additional delay up one time
slot, which is almost irrelevant in this scenario.

For a queue size of one, the test ended before all the packets where processed since
the delay was extremely larger than in other tests (see Figure 9.4). For the other queue
sizes, the average is almost the same (around 105) and the last transmission happens
later (6400 for queue size 2) for smaller queue sizes, but is practically the same for
queue sizes of 8 to 12 (around 4500).

The histogram in Figure 9.5 allows a slightly different analysis: the queue size of 1
behaved well and delivered more than 300 packets with a delay smaller than 40 time
slots between transmission and delivery; however, this effect was destroyed by the
amount of time the confirmation response took to go back to the AP Driver.

Analysing the other queue sizes, size 2 delivers most packets in the 40-60 slots
interval and other intervals follow an almost linear response but with a long tail. Size 8
and 12 show two irregular bell curves with queue 8 having the norm at 100 and queue 12
at 120.

Queue Size

0

50

100

150

200

250

0 20 40 60 80 100 120 140 160 180 200

Time Slot

M
es

sa
g

es

1 2 8 12

Figure 9.5: Delivery delays histogram

The main conclusion from this analysis is that if there are no stringent
requirements to deliver higher priority packets in front of other traffic, a queue value
between 8 and 12 is a reasonable balance between delivery times and faster
confirmations. Therefore, a value of 8 was selected for the next tests.

 Part III
Power-Line Communication System

124

The following histogram in Figure 9.6 shows the side-result of this first test set: the
temporal behaviour of the Unicast service for very small data payloads (i.e. single-
fragment).

Unicast Messages - 1 fragment - Mixed Destinations

0

50

100

150

200

250

300

350

400

450

0 20 40 60 80 100 120 140 160 180 200 220 240 More

Delay (time slots)

N
u

m
b

er
 o

f
M

es
sa

g
es

Node Reception
AP Confirmation

Figure 9.6: Unicast Requests - 1 fragment – Mixed destinations

This test was performed sending packets to all stations. Since the majority of
stations are nodes behind the bridges, it is natural that the final performance is not ideal.
The next test set shows the requests only for direct-connection destinations 201 and 202.
Here the variability is much limited and, even with 1000 packets generated in each AP,
the system experiences very small variations.

Unicast Messages - 1 vs. 2 fragment - Bridges Only
Round Robin Policy

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240More

Delay (time slots)

N
u

m
b

er
 o

f
M

es
sa

g
es

1 Frag - Node Reception
1 Frag - AP Confirmation
2 Frag - Node Reception
2 Frag - AP Confirmation

Figure 9.7: Unicast Requests – Bridges Only – Round Robin Policy

 Chapter 9
Validation

125

However, the fragmentation performance could be considered unexpected (see
Figure 9.7). The average delay for the Node Reception with one fragment was 48 time
slots, but with two fragments, this average went to 147 time slots. The issue here is the
round-robin scheme of the Fragment Scheduler: since up to 10 packets are scheduled in
parallel, the second fragment has to wait for the round robin cycle to be complete.

Unicast Messages - 1 vs. 2 fragment - Bridges Only
Pick First Policy

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240More

Delay (time slots)

N
u

m
b

er
 o

f
M

es
sa

g
es

1 Frag - Node Reception
1 Frag - AP Confirmation
2 Frag - Node Reception
2 Frag - AP Confirmation

Figure 9.8: Unicast Requests – Bridges Only – Pick First Policy

In theory, this method shares the available slot more evenly between the queues.
On the other hand, the pick first policy guarantees fast delivery for most packets, but if
there is a network problem then a small group of packets suffers long delays (see Figure
 9.8). The principle of round robin applies well to multiple sized packets, but the pick
first policy induces additional delays for small packets, that have to wait for big packets
to be completely delivered.

9.5 Request/Response Service

In the Request/Response service, an Access Point Driver can send a packet to a
particular node and the Node Driver responds with another packet (that can be empty).
In the first test, each AP Driver sends a uniform distribution of packets with 1 to 4
fragments to all connected Nodes. The Node Drivers respond immediately with the same
data block. The histogram in Figure 9.9, shows the delays until the Node receives the
request packet, and the AP receives the response packet (based on the original message
transmission time).

 Part III
Power-Line Communication System

126

ReqResp Messages - 1 to 4 fragment - Nodes

0

10

20

30

40

50

60

70

80

90

100
0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

50
0

52
0

54
0

56
0

58
0

M
or

e

Delay (time slots)

N
u

m
b

er
 o

f
M

es
sa

g
es Node Reception

AP Reception

Figure 9.9: Request/Response, 1 to 4 fragments, Nodes only

9.6 Alarm Service

The Alarm service enables a Node station (or the Node functionality in a Bridge) to send
a confirmed packet to at lest one of the available Access Points. The Transport Layer
manages the reliability and data management features, but it benefits from the Network
Layer capability of “picking” fragments from slaves. The Network Layer task is eased
by the fact that not only confirmation traffic from masters to slaves but also internal
TRM-to-TRM traffic “opens” slots for data transport in the reverse channel.

The first test of this service uses both Bridges, with 150 requests sent sequentially
one at a time with a small delay between the OK and the new request at each bridge. In
the current implementation, the TRM does not try to select better paths for slaves and it
simply serves the queues based on priorities.

In the one fragment test, 66% of the packets were received first by AP 101 and
34% by AP 102. The minimum delay of an AP event was just 4 slots and the average 79
slots. On the other hand, the average delay for confirmations on the Node was 95 slots
since the start of the node request. On this test the requests were generated at the Node
two seconds after the confirmation, and of the 300 packets generated, 20 overrun this
delay and might had their performance affected by the new request on the network.

For the two fragments test, the minimum delay for delivery was 10 slots with an
average 105 slots, an increase of 26 slots compared to the one-fragment test. For the
confirmations the average was 121 slots, again an increase of 26 slots compared to the
one-fragment test. The distribution of the first alarm between AP 101 and AP 102 was
very similar to the one-fragment test (see Figure 9.10). The requests were generated 4
seconds after the confirmation and none was overrun. In the one-fragment test, all alarms
were received by both APs, while on the two-fragment test only 2 out of the possible 600
were not received.

 Chapter 9
Validation

127

Alarm Messages - 1 vs. 2 fragment - Bridges Only

0

10

20

30

40

50

60

0 16 26 36 46 56 66 76 86 96 106 116 126 136 146 156 166 176 186 196 206 216 226 More

Delay (time slots)

N
u

m
b

er
 o

f
M

es
sa

g
es

1 Frag - AP Reception
1 Frag - Bridge Confirmation
2 Frag - AP Reception
2 Frag - Bridge Confirmation

Figure 9.10: Alarm Service, 1 vs 2 Fragments, Bridges 201 and 202

For the Nodes, 50 requests were generated in active Node 310, the “best”
connected station in the network. The average delay for the first AP delivery was 188
slots, and the confirmations were received at 212 slots average. 60% of the requests were
received first at AP 101 and 40% at AP 102.

Alarm Messages - Node 310 - 1 or 8 Queued Requests at Node

0

10

20

30

40

50

60

70

80

0 16 26 36 46 56 66 76 86 96 106 116 126 136 146 156 166 176 186 196 206 216 226 More

Delay (time slots)

N
u

m
b

er
 o

f
M

es
sa

g
es

1 - AP Reception
1 - Node Confirmation
8 - AP Reception
8 - Node Confirmation

Figure 9.11: Alarm Service, 1 Fragment, Node 310

 Part III
Power-Line Communication System

128

The test was repeated with eight fragments queued at the Node side. The
performance improvement was significant. The average delay for the first AP delivery
was 80 slots, and the confirmation received at 193 average slots. Looking at the
histogram in Figure 9.11 it is clear that a significant part of the deliveries are in the 26 to
35 slot range when they were much more scattered in the one-fragment scenario.
However, the largest delay increased to 2086 slots, when it was around 400 slots for the
tests with only one-fragment queues.

The main point on these two tests is that when a single request with no traffic on
the network is present, it is up for the network layer polling cycle to fetch the data, and
this operation can take several slots. When several requests are queued together, the
network polling cycle fetches all the pending requests in a fast sequence reducing the
average delay.

This conclusion led to another test: to issue Alarms and Unicast services in the
same network. A small alarm test was performed with 50 Unicast requests and 50 Alarm
requests. The average delay for the Unicast delivery was 153 slots, but the average delay
for the Alarm packets was only 24 slots, showing a significant improvement on the
Alarm performance. The results can be compared in Figure 9.12, where the results
without AP-to-Node traffic are the same as presented previously but scaled down to
match the 50-packet scenario.

Alarm Messages - Node 310 - 8 Queued request
With AP-to-Node Traffic

0

5

10

15

20

25

30

35

0 16 26 36 46 56 66 76 86 96 106 116 126 136 146 156 166 176 186 196 206 216 226 More

Delay (time slots)

N
u

m
b

er
 o

f
M

es
sa

g
es ON - AP Reception

ON - Node Confirmation

OFF - AP Reception*

OFF - Node Confirmation*
*scaled dow n to 50-message range

Figure 9.12: Alarm Service with AP-to-Node traffic

These results show that a good performance may be obtained from the Alarm
service but there is a trade-off between “wasting” network bandwidth at the Network
Layer level, for more frequent pooling requests, and limiting the expected delay for the
Alarm service. However, if the network is used periodically by the application then this
already used bandwidth is beneficial for decreasing the Alarm delays, differently from
the “traditional” way network bandwidth is characterized.

Given the connectivity losses experienced by the physical layer emulator, the
maximum delay of the Alarm is dependent on the network interruptions and not on the
Transport Layer capabilities.

 Chapter 9
Validation

129

9.7 Unlimited packet size and fragmentation

One of the design features of the REMPLI Transport Layer is to use multiple headers
depending not only on the size of the packet but also on the number of fragments. In
particular for the Unicast service there is a “Small Header” that takes 4 bytes and
handles PDU lengths up to 255 bytes (28-1); a “Large Header” that takes 6 bytes and
handles PDU lengths up to 16 MiB (to be precise 224-1); and finally a “Minimum
Header” that takes only 3 bytes. All this length limits are compile time options and can
be easily changed depending on a particular deployment.

The objective is to have very large packets on the system without compromising
the real-time performance of the very small packets.

On the current test set, the TL can issue fragments with up to 51 bytes to the
Network Layer. This means that, in practice, the usable data payload per fragment is 48
bytes for minimum headers, 47 bytes for small headers and 45 bytes for large headers.

With these parameters the number of fragments per packet is:

 

 



⋅≥+⋅−
⋅<

=
111

1

47,48/)(

47,/
),(

NLifNSNL

NLifSL
SLn (9.1)

Effective usable bit rate Bapp available for applications in bits per time slot is:









>⋅
≤⋅

=
1

1

,8))45,(/(

,8))47,(/(

LLifLnL

LLifLnL
Bapp (9.2)

where L is the packet size in bytes, N1 is the number of starting headers, before switching
to minimum headers (3). L1 is the length limit for using small length headers (255).

The graphics in Figure 9.13 present the usable bit payload per packet and give
some insight on the consequences on choosing the length parameters.

Small Length Headers

0

50

100

150

200

250

300

350

400

450

0 100 200 300 400 500

User Message Length (Bytes)

U
se

r
B

it
s

p
er

 P
ac

ke
t

8-bit Small Length

14 bit Small Length

NL Payload (408)

Min Header Payload (384)

Large Length Headers

0

50

100

150

200

250

300

350

400

450

0 100 200 300 400 500 600 700 800

User Message Length (Bytes)

U
se

r
B

it
s

p
er

 P
ac

ke
t

24-bit Large Length

32 bit Small Length

NL Payload (408)

Min Header Payload (384)

Figure 9.13: Headers choices and effective usable payload

 Part III
Power-Line Communication System

130

For the small length headers it is clear that using 8-bits results in better bandwidth
usage than using 14-bits. However, this 8-bit choice means that we can only use small
headers for packets up to 255 bytes; after that, the large length headers start to be better.

In addition, when it comes to large headers it is obvious that a header with 32-bit
length takes more space than one with a 24-bit length field, even if we consider that they
are only used in the first three fragments. This difference starts to fade with bigger
packets, but it is very significant for smaller packets and a large portion of the bandwidth
can be wasted in a system that issues many small packets.

For systems that really need 32-bit length packets, it may be necessary to use small
length headers larger than 8-bits, in order to avoid the performance hit on packets larger
than 256 bytes. However, for systems where the time-critical packets are very small and
there are not that many packets in the 256+ borderline, the 8-bits could be the best
solution. The current setup of 8-bit small length and 24-bit large length provides a
smooth transition and does not waste too much bandwidth in the smaller packets.

For system configurations with larger Network Layer payloads, the predominant
factor for very small packets is not the header sizes but the fact a single fragment is sent
in each slot resulting in poorer real-time performance.

Finally, another issue to take into account is the number of start fragments: in the
current setup, with an interleave factor of 4, it is very unlikely that after sending 3 start
headers and a minimum header the minimum header fragment arrives before all the other
fragments. If this happens, the minimum fragment is discarded, but the other fragments
are received correctly. In systems with low repetition rates at the network layer level, it
is possible to send even less start headers without loosing packets, thus this can be an
interesting option (depending on the traffic characteristics of the network).

9.8 Small size packets delivered quickly over bi-level network

Most of the previous tests have “occupied” the network by issuing new requests when
the previous ones were completed. The following test issues packets separated by one-
second interval, basically “isolating” each request. The idea is to measure the time it
takes to complete a unicast request in the network when there is no other traffic.

A total of 50 requests were issued from Access Point 101 to Node 310. The TRM
Scheduler used only Bridge 202 in this test. The average delays for reception at the Node
were 18 slots and 26 slots for 1 and 2 fragments respectively. The best case took only 10
and 18 slots, which are near the best theoretical values possible. For one fragment case,
it takes 4 slots for the Access Point to Bridge transmission, plus 4 slots for the Bridge to
Node transmission. The two other slots are lost due to probabilities: 1 since the
probability of having 4 transmission slots in both networks is very low, and the other
since the probability of having 0 slots of network access in both networks is also very
low. With a larger data set some occasional values of 9 or 8 slots might occur. For the
average case, the network delays are larger (due to NL’s internal traffic and also possible
repetitions), and the access delays are more random, again due to NL’s internal traffic.

The histogram in Figure 9.14 also presents the delays for one fragment for unicast
directly to Bridge 202, where it is possible to conclude that the one fragment unicast for

 Chapter 9
Validation

131

node 310 is almost a copy more “spreaded” (due to additional jitter) and shifted four
slots.

Unicast Messages - Individual requests - 101->310
Node Reception Delay

0

5

10

15

20

25

30

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 More

Delay (time slots)

N
u

m
b

er
 o

f
M

es
sa

g
es

1 Frag - 202

1 Frag - 310

2 Frag - 310

Figure 9.14: Unicast Service, Individual Requests (101���� 310)

9.9 Priority processing

To test the traffic priority mechanism, the network was flooded with up to 10 queued
unicast 1-fragment packets of priority 10 from AP 101 to Bridge 202. In parallel, at
every 500 ms a different priority unicast packet is sent from AP 101 to Bridge 202. 200
packets where generated in total, including 15 of different priority. For the bridged
request from AP 101 to Node 310, 50 packets were generated in total, including 10 to 12
of different priority generated every 200ms.

The results are displayed in Table 9.5.
The effect of the priority values is clear in these tests. The (large) difference

between the “normal” TL Priority of 5 and the “special” priority of -1 is due to the
queuing in the NL Layer. In this test set (like in most of the other tests in this section),
the maximum number of queued requests by the Transport Layer to the Network Layer
was set to 8. This means that when a request with priority 5 appears it is likely that it
already has 7 requests “in front” at the Network Layer queue with priority 10 and it
cannot overpass them. If the special priority is used, then the Network Layer handles the
priority and the request with priority -1 is processed in front of the 7 pending “priority
10” requests.

 Part III
Power-Line Communication System

132

Table 9.5: Transport Layer unicast priority test

The duration of the test is limited by the number of packets. In the last test set from

AP 101 to Node 310 with priority -1, there was a side-effect of this policy: the flooding
requests were significantly delayed by the presence of the higher-priority traffic and so
12 high-priority packets were generated instead of the 10 in the other tests.

Since the higher priority requests were generated every 200 ms, i.e. every 21 time
slots, this may be the result of a rush-in effect. If two higher priority requests overlap the
lower priority traffic requests, they delay all the pending lower priority request. This
effect is minor in the test with priority 5 due to the damping effect of the Network Layer
queues, whichlimits the number of affected pending lower priority requests. To test the
theory, a test re-run was done with the Driver queued requests increased to 15 (instead of
the original 10) and keeping the 8 requests at the NL queues. The tests were done with
same-priority and with priority 5 requests. There was a 31% increase in the delay of the
normal traffic when the priority 5 requests were included in this scenario.

9.10 Best route selection

The objective of this test was to analysed the behaviour of Transport Layer routing in
dynamic traffic situations. The test is based in the fact that only Bridge 202 connects AP
102 to Node 301 due to the emulator network seeds selected. On the other hand, both
Bridges are available by AP 101 to reach Node 310.

 Average
Slots

Maximum
Slots

Same Priority Test – 101� 202
Flood Priority = 10 58 84
Timed with Priority = 10 58 85

Higher Priority Test – 101� 202
Flood with Priority = 10 60 90
Timed with Priority = 5 37 42

NL Higher Priority Test – 101� 202
Flood with Priority = 10 62 90
Timed with Priority = -1 10 19

Same Priority Test – 101� 310
Flood Priority = 10 84 190
Timed with Priority = 10 84 135

Higher Priority Test – 101� 310
Flood with Priority = 10 89 185
Timed with Priority = 5 66 89

NL Higher Priority Test – 101� 310
Flood with Priority = 10 145 361
Timed with Priority = -1 37 63

 Chapter 9
Validation

133

Figure 9.15: Bridge routing test concept

To test this application the TRM internal link quality values were updated every
200 ms. In the first test, the queue updates from Bridges to AP where used as normal; in
the second test the code was changed to remove the fragment count update at the AP
side. 40 packets were generated by AP 101 and sent to Node 310, AP 102 sent 40
packets to Node 301. Both bridges could route packets from AP 101, and Bridge 202
was the only route for packets from AP 102 (see Figure 9.15). The results are
summarized in Table 9.6.

Table 9.6: Transport Layer bridge routing test

The average delay improved significantly for packets from AP 101 to Node 310,

and the overall system performance was superior in the system with fragment feedback
enabled. This makes sense, since without this information the system tries to send more
fragments to Bridge 202 only for them to be waiting in queues.

However, looking at the log files it was possible to determine that other
improvements could be performed. The fragmentation feedback system uses a sampling
method, thus when a timer expires or a link quality changes too much, a sample is taken
at the Bridge and sent to the AP. During this particular test, despite the fact that the
network was being slightly flooded with requests (we only used a Driver queue of 5
pending requests), many of the values transmitted from Bridge 202 were equal to zero.
Therefore, averaging the number of fragments between the samples could improve the
results.

 Average
Slots

Maximum
Slots

With Fragment Information Active – Global: 90 167
101 � 310 77 167
102 � 301 104 162
Bridge 201 used 7 times, 202 used 73 times
With Fragment Information Inactive – Global: 110 202
101 � 310 111 191
102 � 301 108 202
Bridge 201 used 2 times, 202 used 78 times

N310 N301

AP101

B201

AP102

B202

TRM in AP 101 should be aware
of N301 traffic at B202 and

select B201 more often

Queue
Updates

135

 Part IV
Conclusions & Future Work

137

 Chapter 10
Conclusions

This chapter concludes this Thesis, by providing an overview of the main
achivements.

10.1 Overview of research objectives

Industrial communication networks following the master/slave paradigm usually provide
limited-length data transfers between stations with guaranteed timings. These limitations
are a natural consequence of their target market: control systems focused on low-latency
and high reliability transmission of many small packets. However, there are several
situations where these constraints make the integration of broader services very difficult
or even impossible.

This Thesis addressed the design, implementation, test and validation of additional
services over master/slave networks without loosing their native control timing
characteristics. This was instantiated in factory automation and power-line
communication networks.

10.2 TCP/IP integration with Profibus

In the first context, multimedia applications over TCP/IP and Profibus-DP control
applications were merged into a single Profibus network.

Traditionally TCP/IP over fieldbus has been seen with suspicious eyes from both
the control-oriented experts, that do not expect much from TCP/IP, and from the
multimedia-oriented field, where the modest bandwidth capabilities of the fieldbus
networks look unpromising.

Nevertheless, by implementing a trouble-free dispatching method and a dual-stack
architecture it was possible to run TCP/IP applications over a Profibus network
preserving full backward compatibility with existing fieldbus stations and with
advantages for both multimedia and control applications. With this architecture,
multimedia applications can be placed directly in the factory floor without additional
wiring, on the other hand, control applications can use TCP/IP as a flexible data
communication method. The presented architecture enables end-user network-wide
traffic isolation between the protocols.

The dispatcher system can be used like a traditional Profibus system where all
high-priority packets are transmitted if so required by a particular deployment, but it can

 Part IV
Conclusions & Future Work

138

also be configured to guarantee that additional traffic in one station does not have
detrimental effects on the other stations deadlines, in fact improving the original
Profibus protocol characteristics.

On the other hand, the implemented QoS mechanism not only guarantees network-
wide traffic parameters but also enables to transparently in Profibus slave stations,
overcoming the “lack of initiative” problem, as reported in this Thesis.

The proposed fragmentation mechanism overcomes the packet size limits of
Profibus so that TCP/IP applications can use typical packet sizes available on Ethernet
networks. Services like World Wide Web, File Transfer Protocol and even Voice
connections are now easily deployed using traditional (unmodified) TCP/IP applications.

The system was validated via a factory automation field trial involving not only the
merging of TCP/IP traffic and native control-oriented Profibus traffic, but also
successfully including TCP/IP traffic in the real-time control-loop.

10.3 QoS aware end-to-end system over dual-level power-line communication
network

While the network context previously addressed focused on factory-floor networks, this
second target domain, a power-line communication system, widens the geographic span
of the network stations.

End-to-end geographically dispersed low-delay metering-oriented services are of
paramount importance to Utility companies, however this deployment has been delayed
due to lack of adequate technology combining performance and low cost. We believe
that the REMPLI solution, based on a two-level master/slave PLC network, is a further
step into the dissemination of such large-scale metering systems.

The REMPLI system overcomes the base master/slave network limitations and
allows the transmission of very large information blocks between utility servers and
metering devices at customers’ premises, with QoS guarantees.

The support of large data blocks usually implies larger PDU headers that have a
detrimental impact on small-length packet delays. However, the use of different headers
for large and small packets guarantees a minimal impact on the fast response capabilities
of the network for small packets. On the other end, the sliding-window mechanism
enables forwarding of large packets via bridging stations with limited memory.

Bi-directional services are also available and the system can overcome the
transmission path changes due to electromagnetic interferences and physical network
reconfiguration. This was achieved through an efficient distributed-scheduling
mechanism.

Due to the transmission medium, the system was designed with electrical energy as
the main starting point, but can be used directly to measure any other utility product like
water, heating, gas, etc. User-oriented services like security and remote control can also
be integrated in the system.

 Chapter 10
Conclusions

139

These objectives are viable using nodes (the more numerous stations in the
network) with modest capabilities that are effortlessly deployed and remotely
configurable.

The tests (simulation-based) demonstrated that the proposed services are efficient
and use limited resources, as initially envisaged.

140

 Chapter 11
Future Work

This section gives an overview on future developments beyond this Thesis..

Both REMPLI and RFieldbus projects represent a significant integration work of very
diverse technologies and solutions, aiming at extending existing communication
infrastructures with additional functionalities and guaranteeing end-to-end quality-of-
service (QoS) requirements.

While clearly developed in synergy with these two European-level efforts, this
Thesis explored and instantiated several scientific and technological contributions on
what we dubbed “Intermediate-Level Protocols”, that in some way were common to both
projects. In this context, relevant inputs to the scientific and industrial communities
resulting from this Thesis were clearly recognized.

Nevertheless, even more important than the direct benefits resulting from the
research findings and engineering solutions provided within this Thesis for the projects
stakeholders (e.g. companies involved in the two projects) is to identify how these can be
leveraged for a wider spread use in the context of emerging paradigms in Information
and Communication Technologies.

As we witness computers being increasingly embedded in the physical
environments, scaling down in size and up in number, new research challenges emerge.
The dawn of large-scale networked embedded systems will bring an undefined number
of new cyber-physical applications that will improve our quality of life, some of them
yet to be unveiled. What we can forecast is that the trend is for most of these applications
to be largely geographically distributed and computing devices to be tightly embedded in
their physical environments. Ambient intelligence, assisted living, home and building
automation, monitoring/controlling large physical infrastructures such as roads, electrical
and gas grids are just examples.

It is also accepted that the underlying large-scale network infrastructures will likely
support many applications and services, most probably each of them with different
quality-of-service requirements, e.g. depending on spatiotemporal issues. In this context,
the research findings in this Thesis may be of extreme importance. Issues such as the
provision of admission control and scheduling mechanisms can be used for achieving
traffic differentiation, assigning packet priorities according to each application/task
requirements. Packet fragmentation/defragmentation strategies will be of paramount
importance when we think, for instance, on achieving a more pervasive Internet running
into “smart objects” with limited processing, memory, energy and communication
capabilities. The 6loWPAN protocol is just an example highlighting the need for
subdividing (longer) IP packets to fit (smaller) IEEE 802.15.4 packets.

141

Conceiving QoS-aware Transport and Network level protocols for these large-scale
networked embedded systems is also an enormous challenge. Could we apply the
REMPLI Powerline Communications methodologies that were proposed in this Thesis to
large-scale networked embedded systems? In fact, powerline communication systems
and wireless sensor networks seem to have several commonalities, such as the
unreliability of the links, low bandwidth, and network dynamics.

References

142

References

ABB. (2008). "ABB tops Process Automation System market share worldwide (Press
Release)."

Alves, M. (2003). "Real-Time Communications over Hybrid Wired/Wireless
PROFIBUS-Based Networks."

Alves, M., Tovar, E., Marques, L., Behaeghel, S., and Nieuwenhuyse, K. (2003).
"Engineering Hybrid Wired/Wireless Fieldbus Networks - a case study." In: nd
International Workshop on Real-Time LANs in the Internet Age (RTLIA03),
Porto, Portugal.

AMRA. (2008). "AMRA - Automatic Meter Reading Association." 2008-02-12,
http://www.amra-intl.org.

Atkinson, R. (1994). "RFC 1626 - Default IP MTU for use over ATM AAL5."

Bumiller, G. (2001). "Network Management System for Telecommunication and
Internet Application." In: Power-Line Communications and Its Applications,
5th International Symposium on, Malmö, Sweden, 129-134.

Burmann, C., Matthias, J., Bent, R., and Beine, K.-J. (2004). "Automation system and
connecting apparatus for communication between two networks that use two
different protocols with conversion between TCP/IP and PCP." U. Patent, ed.,
Phoenix Contact GmbH & Co. KG, USA.

Calandrini, D. (2003). "The Benefits of Fieldbus Technology in Power Plants." InTech
Protocol.

DS 21906. (1990). "P-Net, MultiMaster, MultiNet Fieldbus for Sensor, Actuator and
Controller Communications."

143

EtherCAT Technology Group. (2007). "EtherCAT - Ethernet for Control Automation
Technology." 2007-08-29, http://www.ethercat.org/.

Ferreira, L. (2005). "A Multiple Logical Ring Approach to Real time Wireless-enabled
PROFIBUS Networks."

Ferreira, L., Machado, S., and Tovar, E. (2001). "Scheduling IP TRaffic in Multimedia
Enabled PROFIBUS Networks." In: 8th IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA'2001), Antibes - Juan
les Pins, France.

Fieldbus Foundation. (2005). "Study shows strong global growth for Fieldbus
Foundation technology." In: Fieldbus Facts Online.

Fieldbus Foundation. (2006). "2005: Banner year for Fieldbus Foundation." In: Fieldbus
Facts Online.

Fieldbus Foundation. (2007a). "Fieldbus Foundation Website." 2007-08-29,
http://www.fieldbus.org.

Fieldbus Foundation. (2007b). "Study results: FOUNDATION dominates process
fieldbus protocols." In: Fieldbus Facts Online.

Gaderer, G., Loschmidt, P., Sauter, T., and Bumiller, G. (2006). "Investigations on fault
tolerant clock synchronization within a powerline communication structure." In:
IEEE International Symposium on Power Line Communications and Its
Applications (ISPLC 2006), Orlando, Florida, U.S.A.

Hoon, P. S., Huan, Y. R., Berge, J., and Sim, B. (2002). "Foundation/spl trade/ Fieldbus
high speed Ethernet (HSE) " In: International Symposium on Intelligent
Control, 777-782.

Hyperstone. (2007). "hyNet XS - Network Communication Controller." 2007-09-20,
http://www.hyperstone.com/products_hynet_xs_en,15474.html.

IDA. (2007). "IDA - Interface for Distributed Automation." 2007-08-29,
http://www2.modbus-ida.org/idagroup/.

Instrument Society of America. (1999). "IEC 61158 survives as technical specification."
In: InTech.

References

144

Interbus. (2007). "INTERBUS Homepage " 2007-08-29, http://www.interbusclub.com/.

IPP Hurray. (2002). "RFieldbus Manufacturing Field Trial Website." 2002-01-20,
http://www.hurray.isep.ipp.pt/rfpilot/.

Jain, R. (1990). "Error characteristics of fiber distributed data interface (FDDI)."
Communications, IEEE Transactions on, 38(8), 1244-1252.

Kopetz, H. (1997). Real-Time Systems: Design Principles for Distributed Embedded
Applications, Kluwer Academic Publishers.

Le Phu Do, Hrasnica, H., and Bumiller, G. (2005). "Investigation of MAC protocols for
single frequency network technique applied in powerline communications." In:
Power Line Communications and Its Applications, 2005 International
Symposium on, Vancouver, Canada, 22-26.

Machado, S. (2006). "Parametrização e Análise de Funcionamento de Redes de
Comunicação RFieldbus," Faculdade de Engenharia, Universidade do Porto,
Porto.

Malcom, N., and Zhao, W. (1994). "The timed-token protocol for real-time
communications." In: Computer, 45-41.

Marques, L., and Pacheco, F. (2007). "REMPLI Discrete Event Simulation System."

Modbus IDA. (2007). "Modbus IDA Website." 2007-08-29, http://www.modbus.org.

Monforte, S., Alves, M., Tovar, E., and Vasques, F. (2000). "Designing Real-Time
Systems Based on Mono-Master Profibus-DP Networks." In: 16th IFAC
Workshop on Distributed Computer Control Systems (DCCS'2000), Sydney,
Australia, 36-43.

MOST Cooperation. (2003). "MAMAC Specification - Rev 1.1 - 12/2003."

MOST Cooperation. (2006). "MOST Specification - Rev 2.5 - 10/2006."

MOST Cooperation. (2007). "MOST Cooperation Website." 2007-08-30,
http://www.mostcooperation.com.

ODVA. (2007). "ODVA Website." 2007-08-29, http://www.odva.org/.

145

OMNeT++. (2007). "OMNeT++ Community Site." 2007-08-31,
http://www.omnetpp.org.

Pacheco, F., Lobashov, M., Pinho, M., and Pratl, G. (2005a). "A power line
communication stack for metering, SCADA and large-scale domotic
applications." In: Power Line Communications and Its Applications, 2005
International Symposium on, Vancouver, Canada, 61-65.

Pacheco, F., Pereira, N., Marques, B., Machado, S., Marques, L., Pinho, L. M., and
Tovar, E. (2002). "Industrial Multimedia put into Practice." In: 7th CaberNet
Radicals Workshop, Bertinoro, Forlì, Italy.

Pacheco, F., Pinho, L. M., and Tovar, E. (2005b). "Queuing and routing in a hierarchical
powerline communication system." In: 10th IEEE Conference on Emerging
Technologies and Factory Automation (ETFA 2005), Catania, Italy, 59-66.

Pacheco, F., and Tovar, E. (2002). "User-interface Technologies for the Industrial
Environment: Towards the Cyber-factory." In: 6th CaberNet Radicals
Workshop, Madeira Island.

Pereira, N., Kalogeras, A., Pacheco, F., and Tovar, E. (2001). "Supporting Internet
Protocols in Master-Slave Fieldbus Networks." In: 4th IFAC FET Conference,
Nancy, France, 285-291.

Pokam, M. R., Guillaud, J.-F., and Michel, G. (1995). "Integrate multimedia in
manufacturing networks using ATM." In: 20th Conference on Local Computer
Networks, Nancy, France, 280-288.

Postel, J. (1981). "RFC 791 - Internet Protocol."

Process Engineering. (2008). "Fieldbus needs skills to grow." In: Process Engineering.

PROFIBUS & PROFINET International. (2008a). "Number of PROFIBUS and
PROFINET nodes very impressive (Press Release)."

PROFIBUS & PROFINET International. (2008b). "Profibus-DP." 2007-08-28,
http://www.profibus.com/pb/profibus/factory/.

PROFIBUS Nutzerorganisation e.V. (1992). "PROFIBUS Standard DIN 19245 part I
and II."

References

146

PROFIBUS Nutzerorganisation e.V. (2008). "ProfiNET." 2007-08-29,
http://www.profinet.com/.

Prytz, G. (2008). "A performance analysis of EtherCAT and PROFINET IRT." In: IEEE
International Conference on Emerging Technologies and Factory Automation
(ETFA 2008).

REMPLI Project. (2008). "REMPLI Deliverable 9.2 - Publishable Final Project Report."

RFieldbus Project. (2000). "D1.1 Requirements for the RFieldbus System."

RFieldbus Project. (2001a). "RFieldbus - Data Link Layer Specification." IST-1999-
11316.

RFieldbus Project. (2001b). "RFieldbus - Higher Layer Specification." In: IST-1999-
11316.

RFieldbus Project. (2002). "D1.5 Specification of Pilot Applications and Field Trials."

RFieldbus Project. (2008). "IST-1999-11316 - R-Fieldbus Project Website (Archived)."
2007-02-21, http://www.hurray.isep.ipp.pt/rfieldbus.

Robert Bosch GmbH. (1991). "Bosch CAN Specification—Version 2.0, 1991."

Rowlands, I. (2007). "Demand Response in Ontario: Context and Research." In: Spring
Conference of the Peak Load Management Alliance, Toronto, Ontario.

Schulz, V. (2008). "Cover Story - The Year In Question." In: Control Engineering Asia.

Sebeck, M., and Bumiller, G. (2000). "A Network Management System for Power-Line
Communications and its Verification by Simulation." In: 4th International
Symposium on Power Line Communications and Its Applications, Limerik,
England, 225-232.

Sempere, V. M., and Silvestre, J. (2003). "Multimedia Applications in Industrial
Networks: Integration of Image Processing in Profibus." IEEE Transactions on
Industrial Electronics, 50(3), 440-448.

Silvestre, J., Sempere, V. M., and Montava, M. A. (2002). "Optimization of the capacity
of Profibus for the transmission of images and control traffic." In: 4th IEEE

147

International Workshop on Factory Communication Systems, Västerås,
Sweden, 133 - 140.

Simpson, W. (1994). "RFC 1661 - The Point-to-Point Protocol (PPP)."

SMSC. (2006). "Japan: MOST Interconnectivity Conference - MOST 50 - Double
Bandwidth and Electrical Physical Layer."

Thomesse, J.-P. (2005). "Fieldbus Technology in Industrial Automation." Proceedings of
the IEEE, 93(6), 1073-1101.

Tindell, K., and Burns, A. (1994). "Guaranteed Message Latencies For Distributed
Safety-Critical Hard Real-Time Control Networks ", Dept. of Computer
Science, University of York.

Tovar, E., and Vasques, F. (1999a). "Cycle time properties of the PROFIBUS timed-
token protocol." Computer Communications, Elsevier Science, 22(13), 1206-
1216.

Tovar, E., and Vasques, F. (1999b). "Real-Time Fieldbus Communications Using
Profibus Networks." IEEE Transactions on Industrial Electronics, 46(6), 1241-
1251.

Tovar, E., and Vasques, F. (2001). "Distributed computing for the factory-floor: a real-
time approach using WorldFIP networks." Computers in Industry, 44(1), 11-31.

Tovar, E., Vasques, F., Pacheco, F., and Ferreira, L. (2001). "Industrial Multimedia over
Factory-Floor Networks." In: 10th IFAC Symposium on Information Control
Problems in Manufacturing (INCOM 2001), Vienna, Austria.

Treytl, A., Roberts, N., and Hancke, G. P. (2004). "Security Architecture for Power-line
Metering System." In: IEEE International Workshop on Factory
Communication Systems, 2004, Vienna, Austria.

Van Nieuwenhuyse, K., and Behaeghel, S. (2003). "Timing performance of a hybrid
wired/wireless PROFIBUS-based network," Polytechnic Institute of Porto
(ISEP/IPP)-Portugal, Porto.

Volz, M. (2001). "Technical Article: Quo vadis Layer 7?" In: Industrial Ethernet Book.

References

148

149

List of Publications

During the time-span of this Thesis.

Journals

1: "A Scalable and Efficient Approach to Obtain Measurements in CAN-based Control
Systems" (HURRAY-TR-061102) Andersson, B., Pereira, N., Elmenreich, N.,
Tovar, E., Pacheco, F., Cruz, N. Published in IEEE Transactions on Industrial
Informatics (TII), Volume 4, Issue 2, May 2008, pages 80-91

Conference Proceedings

2: "A Complex Protocol Layer as a linux User-Space Process" (HURRAY-TR-
061006) Barros, A., Pacheco, F., Pinho, L. Published in the Work in Progress
session of the IEEE Symposium on Industrial Embedded Systems – IES’2006,
Antibes Juan-Les-Pins, France, October 2006.

3: "Queuing and Routing in a Hierarchical Powerline Communication System"
(HURRAY-TR-050901) Pacheco, F., Pinho, L., Tovar, E. in 10th IEEE
International Conference on Emerging Technologies and Factory Automation -
ETFA'05, Catania, Italy, September 2005, Volume 2, pp 59-66

4: "A Power Line Communication Stack for Metering, SCADA and Large-scale
Domotic Applications" (HURRAY-TR-050402) Pacheco, F., Lobashov, M., Pinho,
L., Pratl, G. Published in the 2005 International Symposium on Power Line
Communications and its Applications, Vancouver, Canadá, pp 61-65.

5: "Characterizing the Timing Behaviour of Power-Line Communications by Means of
Simulation" (HURRAY-TR-0429) Marques, L., Pacheco, F., Pinho, L. Published
in Proceedings of the 2004 International Workshop on Real-Time Networks,
Catania, Italy, pp. 81-84

6: "Bringing Industrial Multimedia to the Factory-Floor: What is at stake with
RFieldbus" (HURRAY-TR-0311) Tovar, E., Pinho, L., Pacheco, F., Alves, M. in
Proceedings of the 5th IFAC International Conference on Fieldbus Systems and
their Applications - FET03, Aveiro, Portugal, 7-8 July 2003, pp 131-138

7: "Industrial Multimedia put into Practice" (HURRAY-TR-0218) Pacheco, F.,
Pereira, N., Marques, B., Machado, S., Marques, L., Pinho, L., Tovar, E. Published

List of Publications

150

in the Proceedings of the 7th CaberNet Radicals Workshop, Bertinoro, Forlì, Italy,
October 2002.

8: "Integration of TCP/IP and PROFIBUS Protocols" (HURRAY-TR-0216) Pereira,
N., Pinho, L., Prayati, A., Nikoloutsos, E., Kalogeras, A., Hintze, E., Adamczyk, H.,
Rauchhaupt, L., Pacheco, F. WIP Proceedings of the 4th IEEE International
Workshop on Factory Communication Systems, Vasteras, Sweden, August 2002.

9: "Workload Balancing in Distributed Virtual Reality Environments" (HURRAY-TR-
0212) Ditze, M., Pacheco, F., Batista, B., Tovar, E., Altenbernd, P. Proceedings of
the 1st Intl. Workshop on Real-Time LANs in the Internet Age, Satellite Event to
the 14th Euromicro Conference on Real- Time Systems, Technical University of
Vienna, Austria, June 18th, 2002, pp. 71-74

10: "User-interface Technologies for the Industrial Environment: Towards the Cyber-
factory" (HURRAY-TR-0201) Pacheco, F., Tovar, E. Published in the Proceedings
of the 6th CaberNet Radicals Workshop, Funchal, Madeira Island, February 2002.

11: "Supporting Internet Protocols in Master-Slave Fieldbus Networks" (HURRAY-
TR-0119), Kalogeras, A., Pereira, N., Pacheco, F., Tovar, E. Published in the
Proceedings of the 4th IFAC International Conference on Fieldbus Systems and
Their Applications (FET'2001), Nancy, France, November 2001, pp. 260-266.

12: "A High Performance Wireless Fieldbus in Industrial Multimedia-Related
Environment" (HURRAY-TR-0130) Tovar, E., Alves, M., Pacheco, F., Ferreira, L.,
Pereira, N., Machado, S. Published in the Proceedings of the 4th CaberNet Plenary
Workshop, Pisa, Italy, October 2001.

13: "Industrial Multimedia over Factory-Floor Networks" (HURRAY-TR-0124) Tovar,
E., Vasques, F., Pacheco, F., Ferreira, L. Published in the Proceedings of the 10th
IFAC Symposium on Information Control Problems in Manufacturing (INCOM
’01), Vienna, Austria, September 20-22, 2001.

Technical Reports (not published in conference proceedings or journals)

14: "Intranet UDP Message Format in the RFieldbus Multimedia Field Trial"
(HURRAY-BTR-0204) Pacheco, F., Marques, B. R-Fieldbus Project Internal
Report, September 2002

15: "Manufacturing Automation Field Trial: October 2002 Report" (HURRAY-BTR-
0206) Pinho, L., Pacheco, F. R-Fieldbus Project Internal Report, October 2002

16: "Specification of the Manufacturing Automation Field Trial" (HURRAY-BTR-
0131) Pinho, L., Francisco, V., Pacheco, F., Alves, M., Tovar, E. R-Fieldbus
Project Internal Report, December 2001

17: "Data Link Layer Specification" (HURRAY-TR-0117) Hähniche, J., Hammer, G.,
Heidel, R., Kalogeras, A., Adamczyk, H., Huang, T., Poschmann, A., Krogel, P.,
Rauchhaupt, L., Luttenbacher, J., Roether, K., Pacheco, F., Alves, M., Tovar, E. R-
Fieldbus Project Internal Report, April 2001

151

18: "A Framework for Realistic Real-Time Walkthroughs in a VR Distributed
Environment" (HURRAY-TR-0125) Pacheco, F., Tovar, E., Hansson, H.,
Altenbernd, P. White Paper, May 2001

19: "Higher Layer Specification" (HURRAY-TR-0116) Kalogeras, A., Huang, T.,
Rauchhaupt, L., Luttenbacher, J., Roether, K., Pacheco, F., Alves, M., Tovar, E.,
Vasques, F. R-Fieldbus Project Internal Report, March 2001

20: "A Survey of Techniques and Technologies for Web-Based Real-Time Interactive
Rendering" (HURRAY-TR-0108) Tovar, E., Pacheco, F. White Paper, March 2001

21: "Basic Multimedia Functionalities for R-Fieldbus" (HURRAY-BTR-0007)
Kalogeras, A., Speckmeier, P., Pacheco, F., Ferreira, L., Tovar, E. R-Fieldbus
Project Internal Report, August 2000

22: "D1.3 General System Architecture of the RFieldbus" (HURRAY-TR-0016) Alves,
M., Bangemann, T., Batista, B., , R., Ferreira, L., Hähniche, J., Hammer, G., Heidel,
R., Kalivas, G., Kalogeras, A., Kapsalis, V., Koubias, S., , C., Kutschenreuter, M.,
Monforte, S., Pacheco, F., Roether, K., Speckmeier, P., Tovar, E., Vasques, F. R-
Fieldbus Project Deliverable, August 2000

23: "D1.1 Requirements for the R-FIELDBUS system" (HURRAY-TR-0002) Pipinis,
H., Batista, B., Ferreira, L., Pacheco, F., Hammer, G., Heidel, R., Kalivas, G.,
Kalogeras, A., Kapsalis, V., Karavasilis, C., Koubias, S., Koukourgiannis, A.,
Papadopoulos, G., Alves, M., Pinho, L., Rebakos, N., Speckmeier, P., Tovar, E.,
Vasques, F. R-Fieldbus Project Deliverable, April 2000

24: "R-Fieldbus - Multimedia User Requirements" (HURRAY-BTR-0004) Pacheco, F.,
Tovar, E. R-Fieldbus Project Internal Report, March 2000

25: "Comments on the R-Fieldbus User Requirements Questionnaire" (HURRAY-TR-
0008) Alves, M., Pinho, L., Ferreira, L., Pacheco, F., Tovar, E., Vasques, F. R-
Fieldbus Project Internal Report, March 2000

List of Publications

152

153

Abbreviations & Clarification of Terms

Abbreviation Clarification
802.11 IEEE 802.11 Wireless Network Standards

AAL ATM Adaptation Layer (Networks)
ACS IP Admission Control and Scheduling (RFieldbus)
AGV Automated Guided Vehicle

AL Application Layer (Profibus)
AP Access Point (REMPLI)

ARCNET Attached Resource Computer Network (Networks)
ARP Address Resolution Protocol (TCP/IP)

ASCII American Standard Code for Information Interchange
ATM Asynchronous Transfer Mode (Networks)

BE Best Effort
Bridge A kind of REMPLI station than interconnects LV and MV

networks
COM RS-232 Serial Communication Port (PC)
CRC Cyclic Redundancy Check

CSRD Cyclic Send and Request Data with Reply (Profibus)
DA Destination Address (Profibus)

DCCS Distributed Computer Control System
DeMux De/Multiplexer (REMPLI)
DDLM Direct Data Link Mapper (Profibus)

DFD Data Flow Diagram
DLL (i) Data Link Layer (Networks)
DLL (ii) Dynamic Link Library (Microsoft Windows)

DMA Direct Memory Access
DMS Distribution Management System (Power distribution)

DP Decentralized Peripherals (Profibus DP)
DPH DP High Priority (RFieldbus)
DPL DP Low Priority (RFieldbus)

DPRAM Dual-Ported Random Access Memory
DSP Digital Signal Processor
EDN Electricity Distribution Network (Power distribution)

FC Frame Control (Profibus)
FCS Frame Checking Sequence (Profibus)
FDL Fieldbus Data Link (Profibus)

FIFO First In, First Out

Abbreviations & Clarification of Terms

154

Abbreviation Clarification
FPGA Field-Programmable Gate Array

FTP File Transfer Protocol (TCP/IP)
FTT Fragment Tracking Table (RFieldbus)
GB Gigabyte: 109 bytes
GiB Gibibyte: 230 bytes

GSM Global System for Mobile communications (Mobile
Telephony)

GUI Graphical User Interface
HMD Head Mounted Display

HP High Priority
HSE High Speed Ethernet (Fieldbus Network)

HTML Hypertext Mark-up Language (Internet)
HTTP Hypertext Transfer Protocol (Internet)
ICMP Internet Control Message Protocol (TCP/IP)

IDA Interface for Distributed Automation (Fieldbus Network)
IEEE Institute of Electrical and Electronics Engineers

IGMP Internet Group Management Protocol (TCP/IP)
I/O Input/Output

IOCTL Input/Output Control
IP Internet Protocol (TCP/IP)

IPC Inter-process Communication (Operating Systems)
IPH IP High Priority (RFieldbus)
IPL IP Low Priority (RFieldbus)

irDA Infrared Data Association
IRP I/O Request Packet (Microsoft Windows)

JPEG Joint Photographic Experts Group image compression format
KB Kilobyte: 103 bytes, i.e. 1000 bytes

Kbps Kilobit per second: 103 bits per second
KiB Kilibyte: 210 bytes, i.e. 1024 bytes

LAN Local Area Network
LBS Link Base Station (RFiedlbus)

LE Length of PDU (Profibus)
LLI Lower Layer Interface (Profibus)
LP Low Priority

LSB Less Significant Bit
LV Low Voltage (Power Distribution Grid)

MAC Medium Access Control
MANET Mobile Ad-hoc Network

MB Megabyte: 106 bytes
Mbps Megabit per second: 106 bits per second

MEER Ministry of Energy and Energy Resources of Bulgaria
MiB Mibibyte: 220 bytes
MIB Management Information Base (RFieldbus)

MoM Mobility Master (RFieldbus)
MOST Media Oriented Systems Transport (Multimedia Network)

MSB Most Significant Bit

155

Abbreviation Clarification
MTU Maximum Transfer Unit length
MV Medium Voltage (Power Distribution Grid)

NDIS Network Device Interface (Microsoft Windows)
NetBIOS Network Basic Input/Output System (Microsoft Windows)

NetBT NetBIOS Over TCP/IP (Microsoft Windows)
NIC Network Interface Card
NFS Network File System (RFC 1094, RFC 1813, and RFC 3530)
NL REMPLI Network Layer

NLI REMPLI Network Layer Interface
NLIM NLI Manager (REMPLI Transport Layer)

NLAddr REMPLI Network Layer Address
NLUnit REMPLI Network Layer Unit Identifier

NMS Network Management System (REMPLI Network Layer)
Node A kind of REMPLI station

Node Address Used to identify nodes at RCI Interface at APs (REMPLI)
Packet A block of data (used in higher-level protocols)

PC Personal Computer
PCI Peripheral Component Interconnect

PCMCIA Personal Computer Memory Card International Association
PDA Personal Data Assistant
PDU Protocol Data Unit (used at lower-level protocols)
PHY Physical Layer
PLC Power Line Communication
PPP Point to Point Protocol

PSTN Plain Standard Telephone Network
QM Queue Manager (REMPLI Transport Layer)
QoS Quality of Service
RCI REMPLI Communication Interface

RCIM REMPLI TL RCI Manager
RE RFieldbus Relationship Entity

RFC Request for Comments
Rx Receiving

RUSN REMPLI Unique Serial Number
SCADA Supervision Control and Data Acquisition. Can be local or

distributed
SA Source Address (Profibus)

SAP Service Access Point (Profibus)
SD Start Delimiter (Profibus)

SDA Send Data With Acknowledge (Profibus)
SDN Send Data with No Acknowledge (Profibus)
SFN Single Frequency Network (REMPLI Network Layer)
SMP Symmetrical Multiprocessing
SMS Short Message Service (Mobile Telephony)
SRD Send and Request Data with Reply (Profibus)

Station A device with networking capabilities
TCP Transmission Control Protocol (TCP/IP)

Abbreviations & Clarification of Terms

156

Abbreviation Clarification
TCP/IP The TCP/IP Protocol Stack, including UDP, IGMP and other

protocols
TDCY Dispatcher Cycle Time (RFieldbus)
TDI Transport Driver Interface (Microsoft Windows)
TDPL Usage Estimation Limit for RFieldbus DP Low Priority

Traffic
TIPH Usage Estimation Limit for RFieldbus IP High Priority Traffic
TL Transport Layer (REMPLI)

TRM Transport Route Manager (REMPLI Transport Layer)
TTH Token Holding Time (Profibus)
TTR Token Target Rotation Time (Profibus)
Tx Transmission

UDP User Datagram Protocol (TCP/IP)
USB Universal Serial Bus
VPN Virtual Private Network

WAN Wide Area Network
WDM Windows Driver Model (Microsoft Windows)

WWW World Wide Web

