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Intermediate-Level Protocols to Provide
Quality of Service in
Master/Slave Communication Infrastructures

Abstract

Industrial communication networks have suffered ranthtic change over the last
decades. There has been a proliferation of “trawmgd’ fieldbuses and other more
application-specific networks, such as the onegmglon power-line communications.

Industrial Ethernet solutions have gained a sigaift market share too. Due to the
stringent quality-of-service (QoS) requirementsimdustrial monitoring and control

applications, most of the protocols for this tydeapplications rely on a master/slave
paradigm where one or more master stations cotiielccess to the communication
medium, granting medium access to slave stations.

This Thesis was developed in synergy with the Ribies and REMPLI European
Union projects. Although operating at opposite metwscales, they share one main
characteristic: a master/slave network was enhangiél communication features
previously unavailable.

In the context of the RFieldbus framework, a staddieldbus network was
extended to support multimedia services and wis#tesbility capabilities. These
multimedia services run over the TCP/IP stack thaurn runs over the fieldbus low
layers network protocols. Since these multimediaices and the “traditional” control
traffic converge in the use of the same commuracathedium, appropriate admission
control and scheduling mechanisms were conceivéatrimduce different traffic classes,
in such a way that real-time control traffic is radtected by multimedia traffic which in
some cases is typically of best-effort type.

The REMPLI approach is based on a power-line conication protocol that was
enhanced with additional capabilities such as th#ity of supporting large-scale
deployments - both in terms of number of netwosgktishs and in terms of geographical
area under coverage - and new metering-focusedceadd services. This required a
rethinking of the Data Link, Network and Transpbayer protocols in a cross-layered
perspective that had end-to-end QoS requirememsnd.

The initial hypothesis was that providing add-omsexkisting protocols to achieve
the required level of QoS and additional functidtieed would present major advantages
over all-new network protocols or using strippedvdoversions of existing network
protocols. This hypothesis is confirmed throughezkpental and simulation validations.

Keywords Real-time Systems, Master/Slave Networks, Qualit$ervice, Fieldbus,
Power-Line Communications, Network middleware, Grhayered Design






Protocolos de Nivel Intermédio para Conferir
Qualidade de Servico a Infra-estruturas de
Comunicacao Baseadas em Protocolos Mestre/Escravo

Resumo

As redes de comunicacdo industrial passaram por mmndanca extraordinaria nas
Ultimas décadas, observando-se uma proliferacdedts “tradicionais” e outras redes
mais especificas, tais como as baseadas em comp@imipala rede de energia eléctrica.
A chamadéEthernetindustrial também conquistou uma representativedsignificativa
em poucos anos. Os rigorosos requisitos de qualidadservico (QoS) das aplicagbes
industriais de controlo e monitorizagdo levaram we qnuitas destas solucdes se
baseassem no paradigma mestre/escravo, segundd, aiopa ou mais estacdes mestre
controlam o acesso ao meio de comunicagdo, condedentdo acesso as estagdes
escravo.

Esta Tese foi desenvolvida em sinergia com os giajeeuropeus RFieldbus e
REMPLI. Embora de certa forma situados em extreopastos do espectro das redes de
dados, as redes utilizadas no ambito desses dgjscfrs possuem uma caracteristica
comum: redes com controlo do acesso ao meio baseag@aradigma mestre/escravo
foram utilizadas como base para a introducéo dasyfuncionalidades de comunicagéo.

Na abordagem RFieldbus, uma rede de comunicac¢acstiied normalizada foi
actualizada com mecanismos inovadores que permistgortar servicos multimédia e
funcionalidades de rede sem fios/mobilidade. Osiges multimédia operam sobre a
pilha de protocolos TCP/IP que por sua vez opelnaesos protocolos de nivel baixo da
rede de comunicacao industrial. Tendo em contaegtes novos servigos e o trafico de
controlo “tradicional” convergem na utilizacdo da mesmo meio de comunicagéo, foi
necessario desenvolver mecanismos de controlordisséb e escalonamento de trafego
apropriados de modo a introduzir diferentes clageetrafico, permitindo assim que o
trafego de controlo tempo-real ndo seja afectatiotpifico multimédia.

A abordagem REMPLI foi baseada num protocolo dewooacdo de dados pela
rede de energia eléctrica, o qual foi complementamio funcionalidades adicionais
adequadas ao suporte de redes de grande dimerpder -em termos de numero de
estacBes de rede, quer em termos de distribuicdaremngeografica — e novos servigos
focados na gestdo da distribuicdo de energia. Estdkoramentos obrigaram a um
reequacionar dos diversos niveis da pilha protocalaa perspectiva holistica e tendo
em conta os requisitos de QoS entre os pontossgerbilizacdo dos servigos.

A hipétese validada por esta tese é a de que estdods protocolos existentes de
forma a atingir os niveis requeridos de qualidaglsatvico e de funcionalidades, resulta
em vantagens relevantes quando comparado com eslugternativas baseadas em
sistemas de rede desenhados de raiz ou usandoewersduzidas de redes de
comunicacdo existentes. A hipotese foi confirmadavas de validacdo experimental e
simulagéo.

Palavras-chave Sistemas de Tempo-real, Redes mestre/escravdid@im de servico,
Servigos de comunicacdo de dados, software deinfeemédio para redes de dados.






Protocoles de Niveau Intermédiaire pour offrir
Qualité du Service en Infrastructures
Maitre/Esclave de Communication

Résumé

Les réseaux de communication industriels ont camma évolution notable durant ces
dernieres années du fait de la prolifération decaés traditionnels et d'autres
applications réseaux spécifiques tels que cellsgdmsur les réseaux électriques. Les
solutions Ethernet industrielles ont également @bépun gain significatif du marché au
sein de quelques années.

de contrble industriel ont notamment conduit & temd nombre de solutions reposant
sur le paradigme Maitre/ Esclave. De ce fait, urplusieurs machines Maitre stations
contrélent l'accés aux moyens de communication éwugarantissant un acceés aux
stations de type Esclave.

Cette these a été développée en collaborationlesgwojets Européens RFieldbus
et REMPLI. Bien que ces réseaux soient situésxrémité opposée de la gamme de
réseaux ordinaires de données, ils ont une caist@@e en commune présentée par
'amélioration des réseaux Maitre/ Esclave par dasfigurations de communication
précédemment invalides.

Dans le Project RFieldbus, un réseau de commuaitatidustriel normalisé a été
étendu pour le support des services multimédiaestfdnctionnalités réseaux sans fil/
mobilité. Les services multimédia fonctionnent sa@P/IP qui, & son tour, fonctionne
sur le réseau de communication industrielle.

Etant donné que ces nouveaux services et le tddiccontrle "traditionnel”
existant dans le méme moyen de communicationaylése important de concevoir et de
mette en place des mécanismes appropriés de coramendd’ordonnancement
d'admission pour définir différentes classes diictrale telle maniere que le trafic de
contrOle temps réel ne soit pas affecté par léctdsf multimédia de meilleur-effort.

Le projet REMPLI, construit sur la base d'un protecde communication de
données pour le réseau électrique, a été compl&é des fonctionnalités
supplémentaires. A travers ces nouveaux foncti@@salde nouveaux services axés sur
la gestion de la distribution d'énergie ainsi geeslipport des déploiements a grande
échelle que ce soit en termes de nombre de statlonséseau, que en termes de
répartition par une vaste zone géographique onhété&n place.

Ceci a exigé une révision des couches liaison daéks, réseau et transport dans
une perspective multi-couche tout en tenant comegeconditions de QdS bout en bout.
L'hypothése initiale était I'extension des protesoexistants pour atteindre le niveau
exigé de QdS et les fonctionnalités additionnelf@gsenteraient des avantages
importants par rapport aux nouveaux protocoles oguk existants. Cette hypothése a
été confirmée par des validations expérimentaléegsimulations.

Mots-clés Réseaux Maitre/Esclave, Qualité de Service, Besvide Réseaux de
Communications
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Chapter 1
Overview

There is a growing trend in industrial computerwegking to incorporate new

services and to provide adequate levels of Quafit$ervice (QoS) as an added-
value to the users. This is in some way definesesofithe technological context
of this Thesis..This chapter presents the contedfines the hypothesis,

summarises the main contributions and providegw wf the overall organization

of this Thesis.

1.1 Introduction

In the last few decades, there has been a prdlderaf fieldbus and other application-
specific communication networks. Due to the quadifyservice (QoS) requirements
usually imposed by industrial monitoring/controlpéipations, namely timeliness, most
of these network protocols rely on master/slavegigms, where one or more master
stations control medium access, granting othefostgt(hamely slaves) permission to
acknowledge or to respond to master station’s regue

In many situations, it is preferable to extend aisteng network technology to
support additional services/functionalities, rathlean designing new solutions from
scratch. This idea forms the baseline for this Ehes

In this Thesis, two distinct industrial communicattiframeworks were re-designed
to support functionalities that were previously waitable, in a way that the original
applications quality of service requirements wastitl be respected.

Firstly, a well-known fieldbus protocol — Profifu§PROFIBUS, 2008) — was
redesigned and extended to support multimedia TCPVransport Control Protocol /
Internet Protocol) applications, without interferiwith the timeless requirements of the
control traffic. That research framework is desedlin Section 1.2 of this chapter.

Secondly, a power-line communication-based energyagement system was also
re-designed, extended and adapted to be able widprend-to-end quality of service in
large-scale deployments. That research framewdskiedly described in Section 1.3.

In this chapter the Hypothesis is stated in Sectidn and the contributions of this
research work are summarized in Section 1.5.

% The official representation is “PROFIBUS”, all sagn this thesis, we will in
most cases a more text-friendly version with oilg tapital “P” to refer to the same
standard.
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1.2 Factory Automation Scenario

The factory-floor looks rather hermetic to innovati technologies, eluding the
widespread usage of the so-called gadgets in eagrydch as cellular phones, personal
data assistants and digital cameras, even withtdessiological-aware users.

After the fieldbus revolution on the 80’s in thestlacentury, the factory-floor has
seen an increased use of more and more powerfgtgronable logic controllers and
user interfaces, but the way they are used renaimgst the same. Too many times the
“new” graphical user interfaces are simple copikthe previous synoptic boards with
light bulbs and buttons replaced by pixels on &eser We believe (Pacheco and Tovar,
2002) however that new user-computer interactichrigues, including multimedia and
augmented reality combined with now affordable tmdbgies such as wearable
computers and wireless networks, can change thelveafiactory personal work together
with the machines and the information system on fawory-floor. This new age is
already in place with innovative uses of commumicanetworks on the factory-floor
either using "standard" networks (Pokamal, 1995) or through enhanced industrial
networks with multimedia (Tovaet al, 2001) and wireless capabilities (Perestaal.,
2001).

The RFieldbus project (RFieldbus Project, 2008)eainat facilitating the use of
these solutions by enabling TCP/IP usage over tiomdi factory-floor fieldbus
networks, without detrimental side effects on thagional (control-oriented) network
usage.
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Figure 1.1: Example of a System TCP/IP services coexistimgth fieldbus services

To illustrate some of the concepts and challengessider Figurel.l. In the
system described, two video cameras are connettethet fieldbus network and
eventually the video streams generated by themttzea used by a remote video
monitoring system in a network station connectedhto Ethernet network. Therefore,
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there will be video streams eventually “circulatimg the fieldbus network. While these
may not impose end-to-end time guarantees, theyotajeopardize the timeliness
guarantees required for the time critical contralffic in the fieldbus network. This
imposes some careful design options on how to stiphis multimedia type of traffic

with the fieldbus network.

Also typically, the remote video monitoring appticas will use standard TCP/IP
Application Program Interfaces (APIs) to commurgcathis is a natural application
productivity requirementer seit poses and important challenge into the systesigh:

IP applications are typically symmetric in the setisat any IP network node can have
communication assess while in typical fieldbus meks some nodes (e.g., slaves) will
not have communication initiative.

Also important, typical fieldbus networks are ogtied for short messages related
to sensor reading or actuation. Conversely, mullimeénformation such as video or
audio involves higher amounts of bytes in simpdasactions.

Another functionality that should be supported andlustrated in Figurdl.1 is a
high-level Control Application connected via TCP/tB a Gateway and the latter
connected via a fieldbus to a Programmable Logintf@dler (PLC). The time-critical
control may be performed within the fieldbus lelvetween the PLC and /O stations but
eventually also through the Gateway between thdrGloApplication and the PLC using
TCP/IP over Ethernet and the fieldbus.

Both solutions are possible in the RFieldbus aechitre, thus enabling a much
greater flexibility at the factory-floor. The I/Qadions can be common fieldbus stations
that are “unaffected” by the TCP/IP traffic at freddbus level.

1.3 Energy Distribution Management Scenario

Like discrete manufacturing companies, utility gders (energy, water, heating, etc.)
have also considered using emerging technologiesptionise and improve the set of
offered services and at the same time to reduds.cos

One service considered strategic by utility compans to have cost-effective
remote meter reading technologies. Utility compatienefit from these technologies by
obtaining detailed information about how energyamsumed by the end-users. They
can even take corrective measures since the dathecgathered in real-time (although
this can limit the scalability of the system).

In addition, remote metering technologies can als used to harvest
information about the status of the energy distidou grid itself. Based on the
availability of fine-grained energy consumption alat the end-users site, the energy
flow is easier to control and leakages detectecenefficiently. In particular, peak load
situations can be better managed with extreme hierief both the utility providers and
the consumers given the fact (Rowlands, 2007) ithgieak situations a very small
increase in load can have a dramatic effect inethergy cost to the utility company.
Additional services such as the remote switchingeamination of the supply of energy
can also be supported, if required for either manant services or services not yet
generally available in the market (e.g., pre-p&&tems or time-bounded uses).
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This type of systems could also be used to proaitifitional information such
as monthly energy cost on the actual metering deaid make new interactive services
available like user-selectable alternative billgggvices.

This is the context of the Real-time Energy Managetwvia Power-Lines and
Internet (REMPLI) European project (Pacheebal, 2005a). The project aimed at
designing and implementing a communication infragtire for real-time distributed
data acquisition and control operations, exploiting power-line as the communication
medium; therefore exploiting a Power-Line Commutitra(PLC) system.

According to the overall project goals, the primaigsage of this infrastructure is
remote meter reading and remote control. Besidats the communication platform is
open to various types of add-on services. Figuillustrates the architecture of the
communication network.
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Figure 1.2: Energy Management System
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There are diverse systems available to access eeimformation on meters using
telephony, radio frequency and satellite commuiioat technologies. However, PLC
systems have the clear advantage in the electuidieth market that the medium is
available in all client sites.

There is however a number of challenges that neéaldik tackled in order to
attain such a system. Most of them result fromféut that power-line communications
are typically based on robust time-slotted madteres communication paradigms
(Sebeck and Bumiller, 2000) while electrical netgomay have rather non-linear and
multi-tiered topologies as will be explained in @texs 3 and 7 of this thesis.

1.4 Hypothesis

The main hypothesis in this thesis is tipabviding add-ons to existing protocols to
achieve the required level of quality of serviced aadditional functionalities would
present major advantages over all-new network proi® or using stripped-down
versions of existing network protocols

Taking into account the research and technologicatext briefly presented in the
previous sections, the approach was to devisecirtli@ appropriate solutions to network
ensembles built upon existing and proved low-lewgdhster-slave communication
network mechanisms. As can be inferred from the g&this Thesis, this hypothesis is
confirmed through the design of novel architectuttest are validated through actual
implementations and simulations.

1.5 Research Contributions

This thesis contains a number of important contiims. As it will become clear in
Section 1.6, this thesis is organised into two npairts, one related to the contributions
for factory communications and another related dwgy-line communication systems.
Therefore, the contributions are organized accgortliese to main parts.

Concerning factory communications, the main contidns are the following:

1. The specification of a dual stack architecture thadvides traffic independence
between TCP/IP applications and native Profibus lapgions. This
architecture also provides transparent accesstbftppes of applications to the
network allowing for rapid deployment of mixed sysis.

2. A system that provides TCP/IP traffic selection aydtem-wide scheduling
capabilities. Traffic generated by TCP/IP applications can bedéid in best
effort or in several classes with diverse qualifyservice parameters. These
levels of service are guaranteed even if the TCRfplication resides on a
slave (Profibus) station.

3. A methodology for determining the parameters fatire up a RFieldbus-like
network.The correct operation of a RFieldbus-like systefies on the proper
setting of several configuration parameters thdtuémce the timeliness
properties and overall performance of the system.
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4. The definition of a test system architectdioe the contributions listed above
providing validation of the results.

Regarding the energy management communicationrays$bte main contributions
of this thesis are the following:

5. The design of a dual-level network architecturet tisaeasily deployed in the
last two voltage levels of most electrical powestrdbution grids This
architecture provides transparent access to statiegardless of their location
in the grid.

6. The definition of a set of utility-oriented sendcthat are scalable not only
concerning the number of stations reachable buto atoncerning the
deployment over large geographical are&eatures like a flat address space, a
run-time editable mapping mechanism between sttiord the address space
and the close integration of the base network sesvenable an end-to-end set
of services focused on metering applications ndy for electrical power but
also on other utilities.

7. The deployment of a distributed traffic-selectioachranism The base system
forwards remote queue and link quality informatiorthe network entry points.
This “global view” of the network is then used telect the best route for
requests. The scheduler can be easily upgraded tesigd using the
simulation/emulator tools developed within the tiraene of the project.

8. The definition of a development/simulation arcttitee where the same
transport layer code can be used for simulatiots t@3d end-device execution
enables not only an easier deployment but alsordutlevelopments and
research.

1.6 Structure of the thesis

This thesis is structured as follows.

There are essentially 4 parts. The first part igotkxd to research context. It
includes Chapter 1 (Overview), Chapter 2 (RelatemfR\bn Factory Communications)
and Chapter 3 (Related Work on Power-Line CommutioiaceSystems).

Chapter 2 provides a description and discussiaes#arch issues and technology
related to the factory communications research énaork developed in this thesis.
Besides a general background on fieldbus netwonkd Bsues related to the
interoperability of these with TCP/IP networks, tlebapter provides, with some
emphasis, details on Profibus networks. In facgfiBus is used as the basis for the
RFieldbus approach.

Chapter 3 provides also research and technologtexbfor energy management
communication systems. Likewise the previous chraptdated work is described and
discussed. Emphasis is given to the base powemnkhgork used as the building block
for the wider approach. Intended services to prvi higher layers by the transport
layer are discussed as well. Finally, since moshefapproach is validated also through
simulation, the OMNeT++ simulation system, over ethithe transport layer
development was built and validated, is brieflygerged.
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The second part (Part Il) of this thesis is devdtethe contributions related to the
factory communications framework. It includes Cleapt (Protocol Stack Architecture),
Chapter 5 (Other Design and Implementation Issaed)Chapter 6 (Validation).

In Chapter 4, the main concepts of the (dual) maitcstack are presented,
including the various sub-layers (IP Mapper, DP p&p IP ACS, and the DP/IP
Dispatcher) used to achieve the required functiteal at the required qualities of
service. The slave initiative mechanism, traffiasdes, IP fragmentation, scheduling,
routing and other mechanisms that allow the coemcst of Profibus and (tunnelled) IP
traffic in the same bus are discussed, proposedaraied.

Chapter 5 deals with implementation specificiti@she concepts and mechanisms
described and proposed in Chapter 4.

Finally, to close Part Il, Chapter 6 describeslatpmplementation and field trial
tests that used to validate the proposed system.r@$ults of the tests and respective
conclusions are discussed accordingly.

The contributions related to the energy managentembmunication system
framework of this thesis are organized in Partwhich has basically the same chapter
organization of Part Il.

Therefore, in Chapter 7 the main concepts relatetd transport layer is discussed
and novel solutions are proposed. The routing aaetiark topology information
gathering system is described, followed by a speciblution for the slave initiative
issues and the distributed scheduling mechanisrhe dlarm service, due to its
specificity is also discussed in that chapter.

In Chapter 8 the main implementation-related isaaresdealt with, including the
base network services and the mixed simulationidpmeent system based on
OMNeT++. Fragmentation issues are given additi@maphasis stress the difficulties
resulting from the limited resources available le tstations and network that occur
typically with the extreme range of packet lengtherefore leading to very specific
PDU header structures. Implementation options efalgorithms for the main services
provided by the transport layer are discussed.

Finally, Chapter 9 deals with the validation of tegstem done via simulation
scenarios. Several tests and related results asemqed and discussed.

The thesis concludes with Part IV, that summarizeSChapter 10, the various
contributions, and, on Chapter 11, potential futuozk.
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An overview of technologies related to factory am&bion networks is provided in
this chapter. The first section presents the histoontext of fieldbus networks
followed by details on the diverse standards alidland the Profibus protocol in
particular.

2.1 Overview of fieldbus networks

Since one of the research frameworks of this thissfactory communication systems
based on a fieldbus network, we first start withistoric perspective of the area.

Typically a computer-controlled system can be dgmused into a set of three
subsystems: the controlled object; the computetesys and the human operator
(Kopetz, 1997). The job of the computer systenoigetict to stimuli from the controlled
object or the operator. The computer system shbeldble to accept status data of the
controlled object, compute new instructions acawgdb the references provided by the
user, and transmit those new commands to actuators.

A computer-controlled system can have a centralaetiitecture, with the field
devices (e.g., sensors and actuators) connectbe momputer system via point-to-point
analogue or digital links. In traditional systerti®gre was a main control box in a central
location and wires were connected to each sensbraatuator using analogue signals.
The analogue signals had problems with limitedaaice, wire-to-wire noise and lack of
unified protocols. The usage of digital links maitigpossible to cover much larger
distances and reduce the noise problems dramgtit¢aklso made much easier to use
digital processing units on the central locationwedver, the protocol problem remained
since each manufacturer had its own digital prdtowaking device integration from
different manufacturers difficult or even impossibl

In addition, the wiring issue was not solved: ewvéth digital links, there where
still end-to-end wires connecting each device todéntral box. After the digital end-to-
end link, the obvious leap was to use a digital basvork. The main advantages
(Thomesse, 2005) include lower installation and mtesiance costs, bidirectional
communication, more accurate information, easigriace to the data (possible using
handheld devices on the field), and easier expargdiee to the modular nature of the
network. The ability to support distributed contralgorithms is another advantage
achievable by the use of field level networks.

11
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Most computer-controlled systems are also real-tgystems, e.g. systems that
must react within a pre-defined maximum delay. émeyal, the issue of guaranteeing
real-time requirements is one of checking, priorrtm-time, the feasibility of the
system’s task set; that is, checking if the woestecresponse time of the tasks is smaller
than their admissible response time. In distributethputer-controlled systems, where
some of the application tasks are also communigatisks, one has to take into account
the transmission delays when considering the rea-tharacteristics of the system.

The timing constraints needed to guarantee rea-tifmaracteristics in fieldbus
networks have, however, some drawbacks that shmikdken into account when using
them. First, there is the planning problem: evenriost complex real-time networking
protocol will fail if it is overloaded with traffimot planned adequately. Secondly, there
are the efficiency issues: in order to guaranteentaximum delays, packets have to be
limited in length; and this leads to a significamterhead when using the fieldbus
network to send large data payloads. Schedulingdéspmhtching techniques help on the
first point making it easier to guarantee that phenned traffic does not affect the real-
time characteristics of the network. The seconatpisi not normally taken into account
since these networks where designed preciselyrid gery small packets very quickly.
However, new applications are pushing the netwtokihie limit and efficient solutions
for this issue are possible.

A solution that has very low cable costs is a “metwork”™: all stations are
electrically interconnected to the data wires & tietwork. The physical layout of a bus
network is normally very flexible improving evenrfioer the cabling costs including
line, star and tree topologies. In a bus networigtd®ol Data Units (PDUs) are
transmitted from a source station to destinati@aticst(s) via the shared communication
medium. As in any broadcast network, it is necgssarcontrol — using a Medium
Access Control (MAC) mechanism — the situations neh®/o or more stations attempt
to send PDUs via the shared medium at about the sam.

Considering this scenario there are several salsitior the MAC that can be used:
Time-Division Multiple Access (TDMA), Carrier Sensklultiple Access/Bitwise
Arbitration (CSMA/BA) and master/slave systems some of the most used.

On a TDMA network, the bus is divided into time d&” and the system
guarantees that each slot is used by, at mostnetveork station. Besides the obvious
issue of guaranteeing the time synchronization eetwstations, the assignment of the
slots and their duration is a problem with multigelutions from the simple fixed
allocation scheme to complex systems with dynarhication of slots in runtime. One
of the dynamic allocations schemes is the TimedehoMalcom and Zhao, 1994),
where a token is rotated between stations with nfgmlimitations to guarantee
responsiveness and bandwidth usage to each station.

CSMA/BA networks, such as the CAN (Controller Aratwork) fieldbus, use
another approach: the physical layer has the chiyalio accept simultaneous
transmission of bits and guarantee that one ofdgieal levels is “dominant” over the
other. If two (or more) stations send the samedltiithe receiving stations (including the
ones transmitting) receive the bit correctly. Hoam\if the bits are different then the
result is always the “dominant” bit. This enablebiawise priority mechanism where
lower-priority stations will back-off when they @et that their bit transmissions where
changed by a dominant bit sent by another staligith the adequate planning, this

12
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protocol guarantees (Tindell and Burns, 1994) tiead message response in the
network.

On the other hand, master/slave networks are simpgleeir approach: one station
controls all the communications on the bus and dé#eciwhen to contact the other
stations and if they have or not the chance to seR®U back. With appropriate timing
constrains it is relatively simple to implementealrtime network with this paradigm.
Some fieldbus networks extend the basic mastegstancept with extensions enabling
multiple-master capability, dynamic network configtion and slave-initiative PDUs
under controlled circumstances

2.2 Fieldbus standards

In the beginning of the 1980s several nationaldbek projects where initiated
(Thomesse, 2005). In 1982 with the support of tten€h government the FIP fieldbus,
now known as WorldFIP, was presented. In Denmag&taf institutions were involved
in the development of P-NET, while in Germany itswiée same concerning the
Profibus project (PROFIBUS Nutzerorganisation e.¥992) in 1984. In terms of
industry players, Bosch developed the specificatidgRobert Bosch GmbH, 1991) of the
Controller Area Network (CAN) in 1983, which wastially targeted to in-vehicle (e.g.,
cars) applications.

Then, the international level process started withie TC65 of the International
Electrotechnical Committee (IEC) that was suppogsdvell by the Instrument Society
of America group SP50. However, only in 1993 the/gital layer specification was
approved (IEC DIS 1158-2) and it did not include tie factostandards Profibus and
WorldFIP. In 1996, CENELEC decided that it was &etb have three standards than no
standards at all and soon the European standards(EN0) was approved containing
three different profiles: part 1 for P-NET (Danisational standard), part 2 for Profibus-
FMS (German national standard) and part 3 for WelRd(Franch national standard). In
2000 the EN 50170 had an addendum to include Fdiemdgieldbus, ControlNet and
Profibus-PA.

In 1996, CEN and CENELEC started preparing the BR58 under the titlbigh
efficiency communication subsystems for small g¢etekages This was approved in
1998 also as a multi-profile document that includiederbus, Profibus-DP and
WorldFIP.

In March 1998 part 3 (Data Link Service Definitippart 4 (Data Link Protocol
Specification) and parts 5 and 6 (Application Lagervice and Protocol) of IEC FDIS
61158 were submitted to a vote and not approvetieder, 6 of the negative votes were
later discarded due to being justified by genenalt technical opinions and merely
untrue statements (Instrument Society of Americ@99), and so the document was
approved in November 2000. On this standard thérerev8 Types of non-interoperable
link layer networks (defined in parts 3 and 4): @&yp — Proposed compromise
(Foundation Fieldbus based); Type 2 — ControlNgper3 — Profibus (including DP, PA
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and FMS); Type 4 - P-NET; Type 5 - Fieldbus Fourmds High-Speed Ethernet
(HSE); Type 6 — SwiftNet; Type 7 — WorldFIP; Type-8nterbus. In addition to these
eight Types, there are two additional Types forAlpplication Layer standard (defined
in parts 5 and 6): Type 9 — Foundation FieldbusaHd Type 10 — PROFInet.

Outside the IEC 61158 are sensor networks that vmetaded in the IEC 62026
standard including DeviceNet, SDS, CANOpen and A®n Europe EN 50325
included also profiles derived from the CAN protb@@eviceNet, SDS, CANOpen) and
EN 50295 defines the actuator and sensor protéiy,

CPF1 | CP1/1 CP1/2 CP1/3
Foundation Fieldbus | H1 HSE H2
_______ L |
CPF2 | CP2/1 CP2/2 1 CP2/3 !
CIP | ControlNet | EtherNet/IP | DeviceNet |

CPF3 | CP3/1 CP3/2 CP3/3 CP3/4-6 PROFInet I/O 1
Profibus | Profibus-DP Profibus-PA PROFInet CBA | Class —A/-B/-C (IRT) :
CPF4 | cPa/L CP4/2 CPa/3 1
P-NET | P-NET RS-485 | P-NET RS-232 | P-NETonIP 1
________ a
CPF5 | CP5/1 CP5/2 WorldFIP CP5/3 WorldFIP
WorldFIP | WorldFIP with subMMS minimal for TCP/IP
CPF6 | CP6/1 CP6/2 INTERBUS | CP6/3 INTERBUS ! CP6/4-6 INTERBUS |
INTERBUS | INTERBUS |- TCP/IP minimal + PROFInet -A/-B-/-C 1
CPF8 | CP8/1 CP8/2 CP6/3
CC-Link | CC-Link/V1 | CC-Link/V2 | CC-Link/LT

CPF9 | CP9/1
HART | HART
T g s
CPF10 1 CP10/1 | CPF14 | CP14/1 | CP14/2 1
VNET/IP : VNET/IP 1 EPA 1 UDP 1 RTE 1
______ 1 L T
———-- P — - - —————--
CPF11CP11/1 |CP11/2 CPF15 ! CP15/1 | cP1s/2 1
TCnet :_TCnet TCnet loop Modbus RTPS | Modbus TCP | RTPS 1
CPF12 | CP12/1 | CP12/2 1 CPF16 | CP16/1 | CP16/2 | CP16/3 |
EtherCAT | I/O 1 Mailbox+Synch 1 SERCOS | | 1l 1 1
CPF13 | CP13/1 |
Ethernet Powerlink (EPL) | EPL 1
TCP/IP over Fieldbus over Fieldbus over
4 I7% & Eieldbus fieldbus Ethernet TCP/IP
L1 L] [] Fiew & O O

Figure 2.1: IEC 61784-1 (¥ Ed.) and -2 (£' Ed.) communication profiles

One issue with the IEC 61158 standard was that felchbus could have features
in each layer assigned to different types. Thetswifor this problem was the EN 61784
where Communication Profile Families (CPF) spesiftae complete stack of each

® “Fieldbus Foundation” is the organization that moies the “Foundation

Fieldbus” communications standard
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fieldbus based on the technical data in IEC 6118& first part EN 61784-1 covers
“current” CPFs and was approved in 2003, for examihle Foundation Fieldbus is CPF
1, with H1 specified in CPF 1/1, and HSE specifiecCPF 1/2. In mid-2003 the work
started on IEC 61784-2 that includes “new” CPF&uiting PROFInet, EtherCAT, etc.

IEC 61158 was revised in March 2003 with adjustrment existing Types, new
Type 6, 9 and 10. The%edition of IEC 61158-2 follows this changes (Apviay 2003)

IEC 61158-1 had a "™ edition (November 2007) with removal of Type 6
(SwiftNet), inclusion of Types 11 to 20; generalian of Type 1 radio and sub-division
of parts 3, 4, 5 and 6 (e.g. IEC 61158-6-2, etEX] 161158-2 # edition follows this
changes (December 2007)

IEC 61784-1 ¥ edition (December 2007) synchronizes this standarth
61158:2007 including the addition of new Types: GREC-Link, IEC 61158 Type 18),
9 (HART, IEC 61158 Type 20) and 16 (SERCOS, IEC58LType 16). Also in
December 2007, functional safety is included irt Baand installation issues in part 5.

With the “pulverization” of the fieldbus standarolg IEC, it is no surprise that IEC
itself provides a CD-ROM with the title “IndustrisCommunication Networks —
Fieldbus — The complete collection” (January 20@8pack that contains 79 standards
covering 15 Communication Profile Families and 3@8&s. These include IEC 61158-1,
IEC 61158-2, IEC 61158-3-* (DLL Service Specificatifor Types 1, 2, 3, 4, 7, 8, 11,
12,13, 14, 16, 17, 18, 19), IEC 61158-4-* (DLL faao! Specification for Types 1, 2, 3,
4, 7, 8, 11, 12, 13, 14, 16, 17, 18, 19), IEC 613588(Application Layer Service
Specifications for Types 2, 3, 4,5, 7, 8, 9, 1D, 12, 13, 14, 15, 16, 17, 18, 19, 20), IEC
61158-6-* (Application Layer Protocol Specificatifor Types 2, 3, 4,5, 6, 7, 8, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20), IEC 61784-PKdntroduction), IEC 61784-2
(Additional CPF), IEC 61784-3 (General rules fondtional safety, and Additional
specifications for CPF 1, 2, 3, 6), IEC 61784-5st#flation profiles for CPF 2, 3, 6, 10,
11) and IEC 61918 (Installation in industrial preas).

The 15 Communication Profile Families in the latgstsion of IEC fieldbus
standards are (see Fig@rd): 1. Foundation Fieldbus; 2. CIP; 3. PROFIAe®NET; 5.
WorldFIP; 6. Interbus; 8. CC-Link; 9. HART; 10. Wi®; 11. TCnet; 12. EtherCAT;
13. Ethernet Powerlink; 14. EPA; 15. MODBUS-RTP# 46. SERCOS.

Some of these Communication Profile Families shdraracteristics like same
physical layer interface, however most Communicatwofiles vary greatly in several
other characteristics including:

» Specification Availability — Some fieldbuses haweit specifications available for
free or for very small fees, this contrasts wita tlsual cost of an IEC standard (the
collection for each CPF costs typically from to 550R to 1800 EUR, the full
fieldbus collection costs 7500 EUR).

» Industrial Property Protection — some CPs are @aldry patents and other
industrial property protection mechanisms and caitmeocommercialized without
prior licensing.

» Detail — some CPs are defined in almost every détin physical layer up to
functional details, others still have space foribigroperability issues.

» Market share/target — in raw numbers some CPs hage market shares when
compared to others, however this comparisons doewaal the true “success” of

15



Part |
Research Context

each fieldbus. They do not take into account diffiermarket targets and the fact
that some CPs are targeted for specific levelshef industrial process (from
factory-wide control to more local/simple statiori@rconnections). Some CPs are
targeted for specific areas of the industry (e-8Ne® in shipbuilding, SERCOS in
drives...) or even regionally bounded (EPA documéortatvas only available in
Chinese until recently). Other issue here is thatd is a huge difference in market
phases of the several CPs: some are well estadblisiie multiple products from
multiple vendors, others do not have a single imgletation in the market.

* National or Regional Standards — from the first 8rdpean-based national
standards there is now an extended collection afdstrds including national
standards from USA (CIP), China (EPA), Japan (TCvieet/IP).

» Physical Layer — Some CPs are built over TCP/IRkstaothers use dual-stack
architectures over Ethernet, some use specificggdgim Ethernet MAC, and some
use their own physical layer.

» Real-Time characteristics vs. standard MAC chipsebme CPs are designed for
very fast and time-guaranteed responses using f&pebipsets (cycle time less
than 100 ps for EtherCAT, jitter less than 1 psdome flavors of SERCOS and
PROFInet), others have less stringent responses tlam®und 10ms) but are built
over garden-variety Ethernet chipsets.

» Application level — features available for applioas also vary greatly... solutions
range from the application-controlled station pglimechanism to a system-
managed subscriber-consumer model and even highdeation profiles.

The Profibus organization announced (PROFIBUS & PRET International,
2008a) that more than 1.1 million PROFInet statiwhere installed by the end of 2007,
this value does not include infrastructure devides switches. It also informed that 4.7
million Profibus stations where sold in 2007 brimgithe total number of Profibus
stations in the field up to 23 million. In 2004 tbewhere “only” 10 million Profibus
stations in the field (2008). 4 million Profibusbns in 2002 (Calandrini, 2003).

On the other hand, Fieldbus Foundation stated ibru#aey 2008 (Process
Engineering, 2008) that it has 68% of market shiarsales values in the “Process
Industries” against 27% of Profibus. It also statkdt about 1 million stations were
installed. The market share in 2006 was the samedd{ftis Foundation, 2007b) in value.

According to ARC Report in 2006, the market ofdialis in Process Industries was
831 million USD and forecasted a 2280 million USi» 2011 in a total for Automation
Systems of 30 billion USD in 2006 and forecastedbflion in 2011 (ABB, 2008)

In 2005 there where 625000 Foundation Fieldbusosttand 10000 systems
worldwide (Fieldbus Foundation, 2006), in 2004 ¢hethere 500000 stations and 8000
systems (Fieldbus Foundation, 2005).

2.3 Profibus overview

Profibus (PROFIBUS Nutzerorganisation e.V., 1992swhe selected base fieldbus for
the factory communication system framework. Likeheot fieldbuses, it uses a
master/slave paradigm for medium access contra@reél bre two distinct stations in the
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network: masters that control the access to theiumedand slaves that respond to
master requests.

Profibus uses a timed token passing mechanismsthgtorts also multi-master
networks. The Profibus-DP standard does not howesguire inter-master user data
communication support. In practice a Profibus-DRwoek behaves like separated
logical networks each with its own master and, bpgerly configured, without
interferences between them.

Send | [ Ack Send Resp Token
V 000

ML| O :
(57) - %g \l IT A

g ................................... - _...,,SE,}E] @ryj &‘Slﬂ LT@
vz A
M2 ] - -

=) 11

Figure 2.2: Example Profibus data exchange

The token, that represents the right to accesdbtise circulates in a logical ring
composed by the masters (see Figug).

Profibus allows distinguishing between high pripr@ind low priority PDUs. The
latter can further be divided into three subtypmalic low priority PDU cycles (Poll
Cycle), that represent the execution of the reguamttained in the poll-list; acyclic low-
priority PDU cycles, which comprise application amtnote management services; and
gap maintenance cycles, that are actions takereterrdine the status of the others
station in order to support dynamic changes imttevork.

The medium access control protocol,, the data fearservices as well as the
management services are defined according to #reatds DIN 19 241-2, IEC 995,
ISO 8802-2, ISO/IEC JTC 1/SC 4960 and the all-eqmassing IEC 61784 and IEC
61158 standard families, in particular CPF 3/1 (I&C784) and Type 3 (IEC 61158)
define Profibus-DP stack details. In order to pdeviransmission synchronism and some
redundancy, some characters are encoded in the UZkRfacter format: 11 bits with
start-stop synchronisation, one data octet andity .
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One important concept on the timing characteristit$rofibus is theMessage
Cycle that includes thé\ction Framesent by the initiator (always a master) and the
correspondingAcknowledgeor Response Frameent by the responder. After the
transmission of the action frame, the initiator twdor a response during tisdot Time
(Ts)- If no response is received within that time spla@n the initiator tries again a
number of times up tmax_retry_limittimes.

Profibus has a mechanism to query and update aflisensors and actuators
automatically using &oll List. The processing of the requests in this list ol Cycle
The Poll Cycle requests are processed afterHigd Priority PDUs and before the
acyclic Low Priority PDUs. A Poll Cycle may span several token viditayever only
one Pool Cycle is allowed per token visit.

As for the token management, the token is simplysed to the next master in
rising address order. The highest address mastels gbe token to the lowest address
one.

In a mono-master network, the token is just pabsett to the master, enabling the
usage of the same PDU processing mechanisms of mastter networks. Profibus has
also procedures to detect token transmission eammischanges in the number of master
stations connected to the network.

Msg. Generation (e.g. = Tr)

—\ N NA N>
I%El — N X ¥ X
]
M2
M3
X— 7 XX
[1High Priority Trz=7xHP+4xToken
X High Priority (delayed) T
[ Low Priority r— T7 expired

Figure 2.3: Profibus Low Priority traffic affects High Pri ority traffic

When the token arrives, the master computesTtiieen Holding Tim&T+y), the
time available to perform message cycles. This isrtee difference between theken
Target Rotation TimgTyg), the time that the token is expected to take igit \all
masters, and th€oken Real Rotation Tim@gg), the effective time measured from the
last visit. The master sends one high-priority PBUén if theTry is negative. The
remaining high-priority PDUs are processed Ui expires.
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Message Cycles in Profibus are never interruptedyd expires after the cycle
start all the retry processing carries on as ushfaér the high-priority PDU queue is
empty, then the Poll Cycle requests are processddfimally, the low-priority acyclic
PDUs.

The processing of PDUs in Profibus is simple batifeto some unforeseen results
when used in practice even in mono-master netw@kse a message cycle is never
interrupted, ifTty expires then the token will be late in the nexitvi. this in turn means
that only one high-priority PDU can be sent. If asve a burst of high-priority PDU the
network has (Monfortet al, 2000) a awkward pattern like {token, 1 high-pitipiPDU,
token,n high-priority PDUs} until all the high-priority PDs are exhausted.

In addition, it must be noted that if a high-prigrPDU is queued right after the
token arrival and there are many low-priority PDt&n the PDU can be delayed more
thanTy4. For multi-master networks if one of the masteqsies T+ then all (Tovar and
Vasques, 1999a) the remaining masters see a kaa totil the token is received again

by the master that expirddy (see Figur.3).

In order to prevent the priority inversion, a coast on the low-priority traffic is
proposed by (Tovar and Vasques, 1999b) that aVatdstokens without changing the
Profibus MAC. The idea is that if one limits the xitaum low-priority traffic at each
master station and thErR is set accordingly, then the token is never late tb low-
priority PDUs, and so the high-priority traffic i@t affected by the low-priority traffic in
the network.

Regarding Profibus services, the Fieldbus Data I(FiBL) provides the functions
for sending and receiving data over the networktgDeink Layer functionality).
Protocol Data Units (PDU) are packaged, delivered ehecked. Acknowledgements,
responses, retries and timeouts are used to gugmitish Line Protocol Errors (e.g.,
frame, overrun and parity) and Transmission Prdtdeoors (e.g., start and end
delimiters, frame check, frame length and respdinses).

A Profibus PDU data payload is restricted to 24@eby For most industrial
applications, the PDU data size should not exce2doyBes to reduce transmission
delays. In addition to the data, a PDU of varidelegth contains an 8-byte header; a
PDU of fixed length (8 bytes) has a 6-byte head&arious acknowledgement and

response frames are also defined (see Figdne

The Profibus FDL offers three acyclic and one eydata transfer service: Send
Data with Acknowledge (SDA); Send Data with No Aokriedge (SDN); Send and
Request Data with Reply (SRD) and Cyclic Send aeduest Data with Reply (CSRD).

The SDA service allows the initiators to send a P&nid immediately receive the
confirmation. The responder can either acknowletlye received data or respond
sending data itself. The SDN is an unacknowledgedice. Therefore, it is mainly used
for multicast or broadcast transmissions.

Finally, the SRD is based on a reciprocal connactietween an initiator and a
responder, and requires either an acknowledgenmentesponse. Using this service, the
initiator sends data in the request and it recedasa from the addressed station in the
response.
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Fixed Iength, no data SD = Start delimiter

SD1 DA SA EC ECS ED LE = Length of PDU
0x10 0x16 LEr = Length repeated
DA = Destination
address
Short Acknowledge s o el e
SC FC = Frame control
OXES5 PDU= Protocol data unit
FCS = Frame checksum
Fixed length, 8 octet data ED = End delimiter
SD3 DA SA FC PDU FCS ED
O0xA2 Len=8 0x16

Variable length

SD2 LE LEr SD2 DA SA FC PDU FCS ED
0x68 0x68 MaxLen=246 0x16

Token Passing

SD4 DA SA
0xDC

Figure 2.4: Profibus most used frame formats

The Profibus FDL layer also offers a cyclic servibased on the acyclic SRD).
This service is Cyclic Send and Request Data vétilyr (CSRD), and is used to poll
simple field stations, such as sensors and I/Ostahe list of the stations to be polled is
called thePoll List.

Stations may have addresses from 0 up to 125;ieddlity address 127 is used to
broadcast PDUs. The eighth bit of tReldress Fieldcan be used for an extended
addressing mechanism used in networks with multgggments. The FDL supports
optionalService Access Poinidentification, which provides similar functionigliof the
TCP/IP port numbers and station addressing.

2.4 Wired/Wireless Profibus Networks

Systems like RFieldbus extend Profibus not onljhwiéw services but also with a new
transmission medium: wireless radio. In RFieldlthe, wireless medium has different
data rates as compared to wired Profibus. Rfielddss introduces additional headers
and trailers for the wireless messages. The RHRisldbcludes also a mobility support
functionality that introduces some time overhedtese aspects are discussed in detail in
(Alves, 2003) and are briefly presented in the oéshis sub-section.

In terms of interconnection between heterogeneoedium (wired/wireless), the
RFieldbus solution is a physical-level one, usiegeater-like interlinking devices. There
are alternative approaches such as the ones pubpos@-erreira, 2005), which use
higher-level solutions but then requiring some rfiodiions to the standard operation of
the stations.
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Standard Profibus UART Character

T T T T T T T
|0| 8 data bits |F’|l|

‘ Stop bit

Start bit

Parity bit

Figure 2.5: Profibus UART frame

Profibus specifies that master stations must lgaeemedium unused between
message cycles (see Figa:é) for a minimumidle Time(Tp,) that is given by:

Tio1 =MaxTsyy * Tey, MiNTgpe, Top)) (2.1)
where:
— Tsvnis the synchronisation time, the minimum time im&rduring which
each station must receive idle state from the glaysnedium (33 bits);
— Tswmis a safety margin;
— min Tsoris the minimum station delay of responders
— Tsoiis the station delay of the initiator.
* or Token or Ack
TSDR
Slave | Request 1 IHI Response 1* | R
‘} »
Master | Request 1 | | Response 1 | | Request 2 -
<> <>
| TSL | | TIDl |
* Unacknowledged request
Slave | Request 1* | R
4\ »
Master | Request 1 | | Request 2 -
<>
TID2

Figure 2.6: Profibus Idle Times and Slot Time

In addition, for unacknowledged PDUs we have:
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TID2 :maX(TSYN + TSM ' minTSDR) (22)

The values offp; andTp, are set in a per-station (master) basis.

Another important parameter is tBéot Time(Ts)): after the master sends the last
bit of a confirmed request to a slave it waits foe response untils_ expires, if it
expires then the retry mechanism is started.

In more formal terms, there are two componentstlicg value,Ts; is used for
confirmed requests and is defined as follows:

TSL‘L = 2 |:I-TD +maXTSDR +TUART +TSM (23)

where Trp is the line transmission delay af@art is the time needed to detect a

character (11 bits, see Figuteb)
Ts1ois used for Token transmission, and its valuesfinéd as follows:

TSL2 = 2 |:rTD +maXTID1 +TUART +TSM (24)

The final value offg, is:
Tg =max(Tg;, g ,) (2.5)

This value is configured in all master stationshaf network since it is a parameter
of the token passing mechanism.

It is clear that these parameters have to be adjusthen using a hybrid
(wired/wireless) network since the reaction timee different when the PDU is
forwarded between the different physical domains.

It is also necessary to avoid queuing delays (glgn one PDU is not forwarded
immediately because another one is still beingstratied) or else we cannot guarantee
the real time characteristics of the network. Siboth request and responses are also
forwarded between multiple physical domains andordy the segments including the

master and the slave, it is then necessary (seedzd/) to have an Inserted Idle Time.

2. Avoided queuing delay here

A4
Medium 2 | Reql | | Respz | | Reql |

/
Medum1| Real | | Respi | Req 2 -

1. Inserted Idle Time here

v

Figure 2.7: Profibus Inserted Idle Time

The main concept is that a new request can onlinbelgen it can be guaranteed
that it is not subject to queuing delays. The samasoning applies to token

22



Chapter 2
Related Work on Factory Communications

transmissions and for unacknowledged PDUs. Thisnséaat in hybrid networks there
will be higher values off\p; andTp, on the master stations and these values can be
different on each station depending on the PDUssir®l characteristics of the stations it
interacts with. Further details are available ifvgés, 2003).

25 Connecting Fieldbuses to TCP/IP and Ethernet netier

One of the objectives is to allow transparent taenection between the TCP/IP and
fieldbus realms. There are diverse solutions ackint@logies used for this purpose.

TCP/IP and fieldbus interconnection solutions idelulDA (Interface for
Distributed Automation), Ethernet/IP (DeviceNet &d)s Modbus/TCP (Modbus based)
and HSE - High Speed Ethernet (Foundation Fieldiased).

These solutions enable remote control even overltibernet using standard
TCP/IP hardware and software including Virtual Rter Network (VPN) tunnelling if
needed (Hooet al, 2002).

For instance, Modbus/TCP (Modbus IDA, 2007) followsClient/Server model
and exchanges data using TCP connections in p@rtBéch Modbus/TCP PDU has a
header that is different from serial Modbus. Modb@ header (see FiguBe8) starts
with a 2-byte Transaction Identifierto support multiple open client requests to a
particular server; a 2-byterotocol Identifierthat enables multiple protocol support (for
Modbus/TCP this is always 0). The header has akbwelengthfield; this is required
since in TCP a single request in the source casplieinto several blocks on destination.
It has also a 1-byt&nit Identifier that is used for intra-system routing like when a
Modbus/TCP server is used to connect several sét@dbus stations to the TCP
network. Since TCP guarantees the integrity ofd&i®, no check information is needed
on the Modbus/TCP PDUs and so the Serial Mod@REfield is not used.

T T T
Trans ID | | Protocol ID (0) | | Length | | Unit ID |
1 1 1

Modbus/TCP | MBAP Header || Func Code || Data |

‘ Same data payload

MOdbU5| Header || Func Code || Data || Error Check |

T
= ]

Figure 2.8: Modbus/TCP and Modbus Serial PDU

The “over-IP” solutions have advantages like corilgildy and hardware
availability, but lack both hard-real time perfonmea and very quick response times
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since there are obvious overheads not only on #tevark with the physical layer
overhead and IP plus higher layer headers butialige software stacks used.

PROFInet (Profibus based) and EtherCAT have Etlesmecific capabilities using
specialized hardware (or embedded software) that@iovercome these issues and even
beat traditional fieldbuses in terms of reactiandi(Prytz, 2008). The economic cost
penalty of these solutions is small since the HEwieMAC (see Figure2.9) and
respective supporting hardware is standard. Bdtitiesas support other Ethernet traffic
(e.g. TCP/IP) in the same network and can even B&ations with fieldbus-protocol
capabilities and TCP/IP stacks. Both protocols alggport standard IP communication.

Ethernet EtherCAT Ethernet
Frame |EtherCAT :
DA | SA | Type HDR HDR Data CTR Padding FCS
6 6 2 2 10 0..1486 bits

2 1 0..32 4
1

Counter |  Ethernet MAC
1

Process Data

1
1
Constant Header :
|

EtherCAT Ethernet Type: 88A4h

Figure 2.9: EtherCAT Ethernet PDU

The EtherCAT shows another possible solution: skte¢ions have two Ethernet
connectors, when data is forwarded from connectdo Aonnector B an EtherCAT-
specific Field-Programmable Gate Array (FPGA) readd changes specific bits on the
EtherCAT Ethernet PDU, non-EtherCAT PDUs are fodear unmodified. This
forwarding is very fast and this justifies the duitycle times of 1jis for 256 bits of
data up to 30@s for 12000 bits of data (that fit a single Ethérineme). The last station
on a branch puts data back on the connector A. P@rUthis "back-channel” using
Ethernet full duplex capability are forwarded utie master station. The master station
has a standard Ethernet card and the duplex capat@h be used to realize a double
ring topology using two Ethernet cards on the nrastiation. In case of a break in one
cable, the system forwards PDUs over the two opandhes of the ring.

2.6 Multimedia content over fieldbus and automotive doard networks

Outside the RFieldbus project, Profibus has beemsho be capable of sending image
data with limited capabilities (image data of 17 pdlbreduced by compression to 800
kbps) without impairing the control traffic (Sempeend Silvestre, 2003), careful
configuration of the Profibus network is also imjaot as shown in (Silvestret al,
2002). These solutions have in common the factahah implements its own method of
transferring the multimedia content over the nekwand interoperability issues where
not addressed.

A technology similar to RFieldbus in the multimedmpabilities is Interbus TCP, a
system that enables the transmission of TCP/IP oga an Interbus-S fieldbus. In a
500 kbps Interbus network this service providesGP/TP bandwidth equivalent to a
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14.4 kbps modem (Volz, 2001). Interbus TCP usesr{Buanet al, 2004) the Point-to-
Point Protocol (Simpson, 1994) to serialize theadah the Interbus link, and has
mechanisms to guarantee interoperability betweelR & non-TCP capable stations in
operations like software transfer using gatewatjcsta. This solution relies on the serial
point-to-point capabilities of Interbus system aullis 2- to 10-byte overhead to each IP
packet.

MOST25
0 1 60 61 62 63
H 1T T T
| | General Data Control Data | |
H Il 1 g
Preamble Boundary Frame.CtrI. PariFy
(4 bit) (4 bit) (7 bit) (1 bit)
MOST50
0 6 7 10 11 127
1T T T T 1T
Management Control Data General Data
1L 1 1 1 1L

Figure 2.10: MOST Frame Structure

The Media Oriented Systems Transport (MOST) bus imultimedia capable
system for automobile distributed applications ralfynused over plastic optical fibber
with ring topology, but supports other topologiesl @abling. It features data rates of 25
Mbps (MOST25) and 50 Mbps (MOST50) shared by asywmtus and synchronous
(sampling rates from 30 kHz to 50 kHz) data. U4ostations can be interconnected. In
practice MOST25 supports 15 simultaneous stereo q@Blity uncompressed audio
streams at a typical sampling rate of 44100 sang@esecond, or one 5.1 surround 24
bit uncompressed audio stream, but cannot handienypressed video streams, however
multiple MPEG compressed video streams are posgiBMSC, 2006). MOST50
supports up to 29 stereo channels of CD qualityomressed audio at a typical sample
rate of 48000 samples per second.

The MOST technology specifies (MOST CooperatiorQ@ot only the physical
layer but also all the layers up to the applicatayer in order to provide interoperability
between different manufacturer stations.

MOST PDUs have pre-defined sizes and a variabledemy that divides stream
(synchronous) data and packet data (asynchronosislei the “general data” payload of
a particular PDU (see Figu210). In MOST25 networks, this boundary is fixette
the network is setup and at most 60% of the bantiidn be used for asynchronous
data. For MOST50 networks this boundary can be gbdion the fly and so bandwidth
can be divided by asynchronous and synchronousadatall (in, fact to be precise, at
least one byte of synchronous data must be senframe).
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Asynchronous Packet Data

0 5

T T
Common start | Arbitration Target Addr | Length/4 | Source Addr
1 1
6 53 57
1T T T T
48 byte payload Data CRC
MOST25 only 1L 1 I I
6 1019 1023
1T T T T
1014 byte payload Data | CRC |
MOST25 or MOST50 1 1 1 1
Control Data
i Split over 16 MOST25 PDUs or 8 MOST50 PDUs .
T T T T T
| Arbitration | Target Addr | Source Addr | Msg Type
1 1 1 1 1
9 25 31
1T T T T
| Data CRC | Transmission Status | Reserved |

Figure 2.11: MOST data structures

Besides the general multimedia data, MOST reseavemall section of the PDU
for control data (e.g. turn on/off devices, volumdjustment, etc...). MOST25 data
PDUs are 64 bytes long with 60 of general data @lusytes of control data, while
MOST50 data PDUs are 128 bytes long with 117 bgfegeneral data plus 4 bytes of
control data (see Figuge11).

The synchronous capabilities of the MOST netwones guaranteed by a Timing
master station, and accurate synchronization & fat the network in order to avoid the
need of buffering in MOST stations than handle &yooous data flows. The
management of the synchronous/asynchronous bartvediiso done by the Timing
Master.

In MOST25, data can be grouped in blocks of 16 PBfU&4 bytes each, totalling
1024 bytes. In MOST50 data can be grouped in blo€ksiriable size.

MOST also supports packaging of Ethernet frames tim¢ asynchronous payload
(MOST Cooperation, 2003), the packaging is stréigtard with the Ethernet MAC
14-byte header information converted to 4 bytebyt®s are used in the MOST MAC
destination address, and the other 2 bytes are aemsynchronous data of MOST.
Additional 4 bytes are used for packaging manageémesulting in a usable MTU of
1008 bytes. Using the packaging presented, rea dztts of 800 kbps have been
recorded sending IP packets with 8000 bytes antyu8 bytes of the 60 bytes available
for general data in a MOST25 frame.
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The energy management communication architectutmuils integrating power-
line communications (PLC) with higher level prottscdrhis chapter first provides
a brief introduction of the main PLC concepts ral@vto the architecture and then
the overall description of the supported servicesl @nternal architecture is
provided.

3.1 The DLC1000 Power-Line Communication System

For the energy management system framework the comcation services are based on
the DLC1000 Power-Line Communication System. The&€DQ00 system provides time-
slotted master-slave communication (Sebeck and Banni2000) in single-voltage
networks. In DLC1000 systems, multiple networks nisy supported in the same
medium using frequency division and/or time diwisio

In a frequency division solution, each network $signed a particular frequency
range and there is no support to any type of inegwork communication. It is possible
for a station to “move” from one frequency bandatwother, but this operation takes
some time and results in loss of connectivity wité previous network (and thus loss of
the previous communication streams).

In a time-division solution (see Figu&1l), different networks share the same
frequency band and other physical layer parameMesters in the network must be
synchronized and they manage the medium accedix&thpre-programmed time slots
cycles. A station may be in several time-divisi@iworks in the same frequency band,
being each time-division network accessed by aquéat Network Unit on the station.

1 cycle

e M ) ime

»

Figure 3.1: DLC1000 Network Layer time division
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It is possible to mix these two solutions into s@me system, with frequency
division used first to divide domains, and timeigiion used independently in each
domain.

In a particular DLC1000 network, a station is alwajther a master or a slave;
however a station with two network interfaces maynmster in a network and a slave in
a different network.

i T [

Slave 3 l- >

-> Processing

.Rx

[[] Tx(NMS or SFN)

' 1 SFN Additional Tx

Figure 3.2: DLC1000 Network Layer timing

A particular feature of this medium, and a conseqaeof hardware processing
delays, is that slave responses are time-intertb@véogical channels With a time-
interleave of four slots depicted in Figur8.2 — the master sends four requests to slaves
in consecutive slots, and the slave responsesofarafding PDUS) are expected four
slots after the request. This mechanism provideshmibetter network bandwidth
utilization in a simple master/slave network. Aesiffect of this method is that from the
application point of view the system behaves agt ihad parallel communication
channels (4 in the example above). The interleag®f is configurable with a minimum
value of three due to hardware processing delays.

In order to extend the network range it is possitieuse slave stations as
forwarding agents to remote slaves. The masterveseseveral slots for a particular
request, and, in the additional slots, intermedsfages forward the request to the final
destination slave.

DLC1000 supports two different forwarding mechargsnin the pre-existent
Network Management System (NMS) mode (Bumiller, D0he master builds a map of
the slave routes, and when a request needs ratitsxgent to a particular slave with the
routing information embedded in the request headdris solution is simple to
implement on the slave stations, but uses additibaadwidth for routing data. On the
master side, the resources needed for route cabrulgrow exponentially with the
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number of slave stations. For these reasons, thib@uof hops in NMS is limited to
two.

An alternative forwarding mode, identified as “Sm&requency Network” or SFN
(Le Phu Doet al, 2005), uses specific hardware to build a forwagdiwave” of
requests: the master sends a request with a partdestination signalling the number
of hops needed; all the slaves that receive theestdorward simultaneously back to the
network decrementing the hop-count. The process goeauntil hop-count reaches zero.
This latter process is much simpler in terms oftwgafe management and uses less
network resources than the former process, bungnsiynchronization of the stations
may limit the forwarding capability in general netiks.

SFN can also be used in very long network lineat(trave only one station on
each end) with several requests flowing at the stime in different points of the line.
Two different frequency bands are used in thistgwiy one for master-to-slave and the
other in the opposite direction. Due to its advgeta SFN was selected and developed
within the context of the REMPLI project.

The services that the system supports are thusyhigipendent of the underlying
communication medium. The data services for a mastation include Unicast
Unconfirmed Request; Multicast (or broadcast) Utficored Request; Unicast
Confirmed Request and Data Arrival.

Automatic retry of Confirmed Requests is configleald needed. Multicast and
Broadcast requests are supported using an @tbitp Addresseach slave is configured
with a list of the groups it belongs to, with dkges belonging to group 255 (broadcast).
Unicast requests use 12-bNetwork Layer Addressdbat are assigned at the station’s
login to the network.

On a slave station, the main data services areil@ued Request Data Arrival;
Unconfirmed Request Data Arrival; Multicast Requ@sita Arrival and Send Data
Request.

The Send Data simply puts the data in the slavpubufueue. It is not possible to
guarantee that the data is sent in response tdiaytar Confirmed Request. Due to the
network timing (and specially the time needed fa& ¢éncoding and decoding of frames),
it is challenging to generate the Send Data Reguestsponse of the Confirmed
Request Data Arrival event in time for the datebéousable. Using a larger interleave
factor would help on this matter, but then respotmses would be worsen for other
services. Since it is expected that the delay ree¢dequery sensors connected to the
slave station are much larger than the requestnsgpcapabilities this is not a critical
issue to the system design. However, if packete haultiple fragments, then they
should be delivered as efficiently as possible.

The main reason for this efficiency-urge is thatthwithe medium access
implementation used in REMPLI, automatic addition@bnfirmed Requests are
generated to empty the queues of each slave witheuntervention of higher protocol
layers. Out-of-band information is sent by the loVexel layer on the slave to inform on
the current queue state.

Data services requests are queued in priority qgjehere are three priority queues
for masters and two for slaves. In the simplestlémgntation, higher-priority queues
are emptied before lower-priority queues are sertgvever, the system is built such
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that other more complex scheduling algorithms carlaber incorporated in particular
scenarios.

There are also special services for managing thristof the network. These
support services include login/logout notificatiprisk quality information and the
Status Pool service. The Status Pool service aticatig queries each slave on the
network for its 8-byteStatus Informationit provides a simple way to keep at the master
an image of slowly changing information of eactvela

When a slave station is activated, it starts bynsitey the configured frequency
bands. When it finds an active frequency it triesynchronize with it: the master sends
periodic special Physical Layer Configuration PasKer this feature. Afterwards, the
slave tries to logon to a master; once again thstenaends special packets to enable
new slaves to start the logon process. This proicestves exchangingnique Serial
Numbersbetween master and slave, and assigning a 1Rdtivork Layer Address
(NLAddp for each newly connected slave. A slave may bmeoted to several masters
using one or more times slots in each cycle. NhAddr of a slave is specific to each
master connection. The master keeps track of tikeduality of each logged on slave
automatically pooling the station if needed.

3.2 The REMPLI System Services

The REMPLI communication infrastructure connectgesal Application servers (on a
Private Network) and devices in the power distiutgrid providing end-to-end
connectivity (Figure3.3). It consists oflow-voltage segmentsvhich cover groups of
energy consumers (for example, a segment can spagsaone staircase of apartments
within an apartment block, or cover a single prdiuc branch); medium-voltage
segmentbetween the primary and secondary transformeaoe®iT CP/IP or IEC 60870
based segmentsetween the primary transformer stations and thpliéation server(s);
and TCP/IP communicatiorbetween the Application Servers and their cliefiise
interfaces provided by the Application Servers banavailable only within the Private
Network or also by Internet clients (e.g., SCADAvsg/client communication).

The bottom-level of the communication infrastruetus comprised oREMPLI
Nodes each coupled with a PLC interface (usually a iaitage PLC modem, in certain
cases it can have a medium-voltage PLC modem). deNs usually installed at the
consumer site, e.g., inside an apartment or apattrikck, and has a number of
metering inputs (such as SO, for electrical enengyers). Nodes are also equipped with
digital outputs that allow switching off and on alécal/heat/gas/water supply for a
particular consumer, upon commands from the utildgnpany.

At the top-level of the infrastructure is the TORBasedREMPLI Private
Network where Application Servers of utility companies® atonnected. Application
Servers perform dedicated functions, such as mmetetbiling or SCADA. Special
Application Servers can also offer access to datdlected and processed by the
REMPLI system, to end-user clients, located in dpen Internet, or even to wireless
terminals.

30



Chapter 3
Related Work on Power-Line Communication Systems

All Application Servers access Nodes in the PLGmvogk via aREMPLI Access
Point (AP) — a station that interconnects TCP/IP and #BkSed segments and,
optionally, implements a number of additional seegi

APPLICATION SERVER REDUNDANCY . i
Application Server A E """""""""""""" E Application Server B

Intranet (TCP/IP) AN

______________

,’ DE/MUX
ROUTING/LINK REDUNDANCY \ 1

REMPLI TL
Netwok

Node 2 Npore 3 ]Gndge 2) Gndge 3> No‘de 4 Node 5 ]
2
/‘ _@ @, ©1 ©.
Digital Meter 1 2 Digital Meter
'(‘EI @© AP Driver Interface
Meter Data Bus Type A -éfl © Node Device Interface

& - -~ Driver 1 Links
Meter Data Bus Type B Switching Device

Figure 3.3: REMPLI Upper Layer Functionality (“outside” vi ew)

The software architecture of a Node allows runrdifferent types of applications,
each provided with an interface to the PLC envirenmAny application running at the
Node is “visible” on the other side of the commuaion system. Hence, Application
Server(s) can access data collected by a Nodecafiph (e.g., retrieve metering values)
or provide inputs into the application (configureetapplication itself, or control
peripheral devices — such as relays — via the eatjpn).

A power-line network can contain other PLC stati¢ins. non-REMPLI) as well,
not represented in Figure 3.3. These stations gugged with the same type of PLC
interface as REMPLI Nodes; however, they run déférsoftware and perform different
functions, whilst sharing the available PLC bandtvidith the REMPLI communication
infrastructure. The REMPLI system co-exists witkerth although not providing any
facilities for communicating to foreign stations.

All Nodes within a typical REMPLI installation areonnected to a cascaded
power-line network. The power-line network consisfsone Low-Voltage and one
Mid-Voltage segment, with the word segment beingdum the logical sense: several
independent wired segments may exist in each LoWage and Mid-Voltage
“segments”. Communication at both levels is maskave-based. Low- and Mid-Voltage
segments are coupled by one or mBREEMPLI Bridges which are usually installed at
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the secondary transformer stations, between thepawts of the cascade. Physically, the
Bridge is comprised of a station that has both ghivioltage PLC modem and a
low-voltage PLC modem. The link, established byral@e, is transparent for the data
payload seen by applications: requests are forwlairden the upper part of the cascade
into the lower one, responses are passed back.eH#me whole PLC network of two
segments becomes a single request/response conatiomienvironment.

In some installations, where a utility company ree&al collect information from
the secondary transformer station itself or to kwrit, the Bridge can be combined with
a Node, i.e. all the services available in a Nageatso available on the Bridge. It is also
possible to equip a secondary transformer statidy with the Node, and not with the
Bridge. In the latter case, the transformer stalenomes a communication end-point,
and no data transmission occurs into the Low-Vetaggment. Other Nodes can be
connected directly to the Mid-Voltage network, day. utility internal metering control
purposes or for clients with direct Mid-Voltage @léc power network supply (e.g.
industrial clients).

3.3 REMPLI System Internal Architecture

From the point of view of Applications that use REM resources, the network presents
a flat address spac®REMPLI Node Addre}swith direct connection from th&ccess
Point Driver Interfaceat each AP to thdlode Driver Interfaceat the Nodes or Bridges
(Pacheceet al, 2005a).

APs provide interfaces on the Intranet network taltiple Application Servers.
Depending on the purpose of the system, a Servebeaonnected to one or more APs
(this redundancy in access can be managed by theergeHowever, the REMPLI
system provides its own redundancy services betwdn This means that, if needed,
an Application Server can be connected to a siAgl@nd still have access to all devices
in the network.

In order to implement the interfaces to the extemward, e.g. some specific
Application Server and a Digital Meter, special mleg (Drivers) are provided. Drivers
implement protocol-specific functionalities to tHREMPLI network on top of the
Transport Layer providing services that connecthedigver on the AP to a specific
driver on the Nodes. Typically, a different driyeir is used for each type of metering
or control devices.

Management of shared resources (e.g., if driveasesthe same physical bus), has
to be implemented at the drivers’ level. In theragle of Figure3.4, Application Server
A and B can connect to AP Driver 1 Interface (@ J.CP Server Port) at either AP1 or
AP2, linking up to Nodes 1, 2, 3 and 4 and Bridyyesd 3. At Node 2, Drivers 2 and 3
share the same data bus and thus some resourcgensrd mechanism must be in
place to avoid conflicts between the two modules.

In the REMPLI project, Drivers for IEC 1107/EN 6B)3EC 60870-5-104 and
EN 1443.3/M-Bus where implemented (REMPLI Proj&f08). The IEC 60870-5-104
implementation is a simple translate and tunneérfate. The IEC 1107 Driver,
however, had to implement local handshakes in otdecope with the standard’s
timings. In the M-Bus driver, the dialled numbemnuoand used to connect applications
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to devices using phone-line modems was “translate@’ connection to a specific Node
(the number is theéNode Addregs in this case a proxy application is used in the
application server to forward communication port BDto the AP driver. A
“transparent” point-to-point driver was also implkemted and this enabled the SSH and
Telnet standard Internet application connectionslddes (used for instance in the field
trials for remote debugging of software).

Application Servers E E
Intranet (TCP/IP) :
:
/1
Drlver 1 W Dr| r3
DeMux (O) Security |

Transpon Layer

PLC
Network :

| Transport Layer (Bridge) |

PLC :
Network :

| Transp% Layer |

De\M’ux (O) Security |

Bus Interface O Internal Interface
. ﬁ @© AP Driver Interface
3 .
= © © Node Device Interface

Figure 3.4: REMPLI Upper Layer Functionality (“inside” vie w)

Bus Interface

The DeMux layer interconnects all the Drivers ire@tation to the lower software
levels, merging the multiple driver data to a singhannel. It also provides security
services integration including encryption and antiwation of data travelling the PLC
network. The security services are supported byrteara technology (Treytet al,
2004). The DeMux can also route requests made Dgiveer in one AP to another AP
using the Intranet. Depending on the current nekvemnditions the response is routed
back to the original AP automatically. In termsimplementation, the interfaces of the
DeMux are internal TCP connections as a server riweBs, and as a client to the
Transport Layer.

The Transport Layer (the central layer of the dediture proposed in this thesis)
provides REMPLI with bi-directional end-to-end commmication services between APs
and Nodes (Pacheat al, 2005b). It deals with routing via Bridges whereded, with
providing QoS capabilities and with the support hasdsms to very large data payloads
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(16 MiB in the current configuration, up to 4 GiBtlwcode rebuild). The main services
provided by the Transport Layer include sendingaakpt from an AP to a Node;
sending a request from an AP to Node with respansine opposite direction; and
broadcasting a packet from an AP to all availabbel®és. A Node can also send a packet
to, at least, one of the available APs, selecteduattime by the Transport Layer.
Finally, the Transport Layer manages system-wid& Ljuality information and link
connection/disconnection information.

The PLC Network is the base master/slave networkh wpoint-to-point
communication of small packets and link-qualityoimhation services. The interface
between the Transport Layer and the Network Layex Linux character device driver.
From the point of view of the Transport Layer, tRetwork provides services in a
master station like send data, send confirmed data, reception and status information
reception. On slave stations, the services aretdatamission, data reception and status
information setting. Since the Network Layer suppof DMA for multiple-master
capability, a station can have multiple Master NetwUnits, each managing a group of
TDMA slots, and multiple Slave Network Units (eachnnected to a single master).
Bridges have both master and slave interfaceseaciennection between masters and
slaves is dynamic and fully automatic: when a slévestarted up, it searches for
information on the current network characteristitise REMPLI network can use
multiple frequency bands and multiple TDMA configtions) and tries to connect to the
available masters. All stations haveREMPLI Unique Serial NumbgRUSN) that is
used to keep track of the slave logins at the méstecan also be used to build simple
“access lists” that forbid certain slaves to logircertain masters. This feature is more a
management feature than a security question.
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This section presents a novel architecture for stip multimedia TCP/IP
services over a standard fieldbus protoeolProfibus. This communication
architecture enables the transmission of multimediffic such as sound and
video, in conjunction with the “traditional” re&ime control traffic, through
appropriate admission control, scheduling anditraifferentiation mechanisms.

4.1 Introduction

One of the main objectives of the RFieldbus systgohitecture (RFieldbus Project,
2000) is to allow that multimedia TCP/IP applicaso and native Profibus-DP
(PROFIBUS & PROFINET International, 2008b) applioat coexist transparently
supported by the same physical network infrastrecturraffic differentiation must be
guaranteed, i.e. different traffic classes musti&ned in a way that real-time traffic is
not affected by “multimedia” traffic, typically beeffort traffic. The solution that is
proposed and discussed is achieved through a OPidpatcher that merges TCP/IP
traffic and “native” Profibus-DP traffic (see Figut.1).

TCP/IP Profibus
Applications Applications
Layer 7 Layer 7 Protocols | AL | Profibus
Management
I |
L1 Hobim |

Layers 3-6 [ TCP/IP Stack |

| IP-Mapper I

IP-ACS | DP-Mapper I
| DP/IP-Dispatcher |

Layer 2 [ profibus DLL |

empty

Layer 1| profibus PHY |
[]JTcpnp [rrofibus  [[] RFieldbus

Figure 4.1: RFieldbus Protocol Stack Architecture
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Traffic from each protocol stack is divided intodiclasses: DP High-Priority, DP
Low-Priority, DP Best Effort, IP with QoS requirents and IP Best Effort. The DP/IP
Dispatcher (or just “Dispatcher”, for short) caser/e a minimum bandwidth for each
of the traffic classes. It can also guaranteeltet Profibus traffic does not impact real-
time traffic generated by other network stationdjiolh is something that even the
standard original Profibus protocol could not gnsea without some care in configuring
the diverse network parameters (Tovar and Vasdi$£9a).

Since an objective is to rely on an unchanged BusfDLL (Data Link Layer), the
Dispatcher does not use the token arrival inforomatiAlternatively, it executes
periodically controlling the medium utilization tenby means of transmissions time
estimations of each frame sent. The Dispatcherivesdhese time values from the IP
Mapper and DP Mapper sub-layers.

A structural limitation must also be overcome: mfibus protocol follows a
master/slave paradigm (stations play different gplevhile the TCP/IP protocol does
not. The basic concept in master/slave networkhias some stations — the masters -
control the access to the medium and other statiotise slaves — only respond to
requests from the masters. On the other hand, P/[Phetworks all stations have equal
initiative rights. Therefore, in order to suppoi€H/IP applications it is essential that
slave stations can behave like IP traffic sourci#sout previous explicit consent from a
master station.

To grant slaves initiative, without changing thesdaetwork protocol, it must be
guaranteed that all slaves (or at least the onegirneg initiative) receive a
request/response PDUs periodically.

In our proposal, this is achieved through two maechanisms. First, the IP ACS
Scheduler at the master side reserves some désaf@drequest with Response PDUs
for a particular slave. These are sent even ifafi@ications at the master do not issue
any request to the slave. The reserved slots soeuaked for application data, if that data
is available. In this way, it is possible to gudesna minimum bandwidth for the slave-
to-master communication, but additionally an eqigmtibandwidth is also available to
master-to-slave traffic. Secondly, when a masteeives a packet, it checks if it is for
itself or to another station. In the latter cabe, tnessage is forwarded to the appropriate
destination; note that the destination can be astdBon outside the fieldbus network if
the master embeds a gateway, or a slave statite ifieldbus network.

The implementation of these mechanisms imply jastessmall additions to the IP
ACS Scheduler. The IP Mapper routing mechanism imesoalso quite straightforward.
The main difficulty is using the correct packetntléers for the fragments that are sent
back to the network.

This was solved using an ID Generation mechanishishused when new packets
are sent to the network and when packets are fdesiaFiguret.2 depicts an illustrative
example: on the left end side, a simple mastegsieonnection; in the middle M1
forwards a packet from S2 to S3; on the right edd §2 sends a packet to a standard
TCPI/IP Ethernet host (A).
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Real traffic:

2 2
1T 1T . 1T
PROFIBUS 2

-------------- V] RN || (RN, | | | -

TCPI/IP
Ethernet @ 3

Traffic view from a TCP/IP Application:

|| [ ]

M1

Figure 4.2: Slave initiative examples in a symmetrical seme

Another issue requiring careful design concernadseding Profibus addresses to
and from IP addresses, and the routing of IP packet

Given the fact that Profibus has a limited 7-bitl@$sing space, a natural solution
is to make the direct mapping of Profibus addresstes|IP Class C Host addresses —
with the higher bit set to zero. The remaining 3eby(see Figurd.3), including the
Class C prefix of the IP Class C address, are progred in each station and known as
RFieldbus Network IEsimilar to the implicit network address programmin TCP/IP
stations given an IP address and a network mask).

110
(Class C) IP Network ID IP Node ID
_A— —/ N
mss | [[[[TTILETTT DT DT [T T ese
~ ~— — N —
RFieldbus q PROFIBUS
Network 1D Address

Figure 4.3: RFieldbus Profibus-IP addressing scheme
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Concerning the IP routing, the solution is a compat of the slave routing via
masters. When a station receives an IP packet therProfibus network, the IP Mapper
performs the following algorithm (regardless ofrigpa master or slave station):

1. Check if thelP Destination Addressnatches its own address. If so, the

packet is delivered to the local TCP/IP stack.

2. Check if the three higher bytes of thie Destination Addresmatch its own
RFieldbus Network IDIf so, it forwards the packet to the Profibuswuk
using theHost ID of the IP Destination Addresss Profibus Destination
Stationremoving the most significant bit.

3. Check if a Gateway station is configured. If ittle case, the packet is
forwarded to the Gateway station.

4. If everything else fails, the packet is deliveredtie local TCP/IP stack. The
local TCP/IP stack makes the decision to discaedpiéicket or to send it to
another host or router in the TCP/IP network.

On a correctly configured network, Steps 2 and 8ukh only be relevant for

master stations.

Real traffic:

=
1T - ? 1T ?
Profibus Z/DX 3

____________ ML oo

TCP/IP
Ethernet

I

Traffic view from a TCP/IP Application:

Figure 4.4: Multicast/Broadcast scenarios in RFieldbus
For broadcast packets, the processing will be dinees Note that the IP Broadcast

Host ID (255) is translated to the Profibus BroatlicAddress (127) by the above
algorithm. Multicast IP address translation is sipported inside the RFieldbus system.
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However, the above address-processing algorithmemitkpossible for an RFieldbus
station to send a multicast stream to statmutsidethe RFieldbus network.

In Figure4.4, three examples of broadcast initiated by aestation are presented:
on the left, same IP network (sharing the same sSCtasetwork ID); in the middle,
different IP networks using TCP/IP stack routingy; thie right, different IP networks
using RFieldbus Gateway.

The details on each of the components of the duedrlstack are described in the
next sub-sections.

4.2 IP Mapper

The IP Mapper sub-layer is located directly beltw standard TCP/IP protocol stack,
converting TCP/IP services into Profibus DLL seeddand vice-versa). It performs the
identification, fragmentation and re-assembly af tR packets to/from Profibus DLL
frames. In master stations, the IP Mapper is adspansible for routing slave TCP/IP
packets to other stations. It also estimates theark usage of each fragment sent.

lIP Packet P PacketT

Fragmentation Reassembly
E S|ERS
ID Generation
I I
: A W X
! Check | !ID Get 1 ! New Fragment Fragment
D New , ,ID + FraglD + FragID
. Do ¢ + PacketD
1
o i 4 v
1
' i ID Tagger (Send)
' il 4
ID Tagger (Receive/Route)
Fragment
+ FragID Send / Route /
+ Packet ID Discard
- -
>
< -
L
Fragment + FraglD + PacketlD + Fragment + FragID + PacketID +
Source DLL Addr Destination DLL Addr
v

Figure 4.5: IP Mapper Internal Architecture
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Traffic class assignment, e.g. IP Best Effort (IRRE IP High Priority (IPH) is
done in the IP ACS sub-layer, as presented in @e4ti.
The IP Mapper includes several entities and funefities, briefly illustrated in

Figure4.5 and described next.

The Fragmentationfunction receives an IP packet from the TCP/IRclstand
divides it in fragments of appropriate size for Brefibus network; each fragment is also
marked with aFragment ID IP datagrams that do not need fragmentation anded
with Fragment IDzero. Note that the IP Fragments that the IP Majpasses to its
lower layers take into account the limitations tlee imposed by the underlying
(Profibus) network. In this context, the IP Mappsy receive from the TCP/IP Stack an
already fragmented IP packet and re-fragment ibratiieg to these limitations.

For local fragments, thd Generatorassigns neWacket I3 for each IP Packet
from a pool of 256 possible values. For remotet@dufragments, the ID Generator first
checks if the remot@acket IDis in use. If not, then it is returned unchangetile if
the ID is used then a new ID is generated and~thgment Tracking Tablé=TT) entry
is updated accordingly. THeelease Idfunction (not represented in Figugeb) is called
every time a fragment is discarded or when a paskaimpletely sent or received.

The Send/Route/Discarflinctionality first checks if théP Network Addressf the
packet matches th® Network Addressf the station and th¥®> Host Addresslf both
addresses match, then the packet is deliveredet®Rélassemblentity. If only thelP
Network Addressnatches, then the packet is delivered to the IS A€ing thdP Host
Addressas theProfibus Destination DLL AddresH they do not match, it means that the
destination is not in the local network but in ancge IP network and therefore a
gateway station must be used. If there is a gatdarathis station, then itBestination
DLL Addresss used, if not the fragment is discarded.

All fragments of a particular IP packet receiveahfrthe fragmentation module are
assigned a neRacket ID(at transmission time) by thB Tagger (Send)

For received fragments, tH® Tagger (Receive/Routejses the FTT. The first
fragment generates a new entry in the FTT with $loeirce DLL AddresOriginal
Packet IDand a locally generatd@acket ID When receiving other fragments, th2
Taggerfetches a matchin§ource DLL AddresandOriginal Packet IDfrom the FTT.

If no entry is found then the fragment is discardetile if a match is found than thB
Taggerreplaces the remofeacket IDby the locaPacket ID

The Reassemblyunction rebuilds IP packets to be delivered t® TTCP/IP stack.
When the first fragment is received, a memory butié the total IP packet size is
reserved (the packet size information is in thenéder that is always available in the
first fragment). Subsequent fragments are conctadres they are received. Since low
error rates are assumed, there are no specialspyosifor data retransmission, and an
out-of-order reception voids the entire packeis(assumed that a fragment was lost).
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4.3 DP Mapper

The DP Mapperis the Profibus-DP equivalent to tihe Mapperin TCP/IP (refer to

Figure4.1), and it is specified in detail in the RFieldbData Link Layer Specification
(RFieldbus Project, 2001a).

The DP Mapperis located below the standard Profibus-DP Appiicatayer. It
incorporates the already existing mapping functibnhaf the Profibus Data Link Layer
Management entity (DDLM) while enabling new featurelevant to the integration of
DP Traffic and IP Traffic. The DP Mapper takes cafetraffic identification of DP
traffic. Based on relevant System Management MIBarigement Information Base)
Objects, DP Traffic is classified into DP High Rifp (DPH) Traffic, DP Low Priority
(DPL) Traffic and DP Best Effort (DPBE) Traffic. klso calculates the maximum
transaction time of each PDU. Finally, it passesRIDU to the appropriate queue of the
underlying DP/IP Dispatcher layer. DP Traffic fitlsree of the five queues of the DP/IP
Dispatcher Layer DPH, DPL and DPBE.

4.4 IP ACS

The IP Admission Control and Schedulind\CS) sub-layer is responsible for the
control/limitation of the use of network resourdgsthe TCP/IP applications. Each IP
packet is classified according to the Headerfields, such as destination address and
port. Given this classification, the correspondinggments are placed in a specific
gueue. Moreover, this sub-layer implements the @moate scheduling policies, in order
to provide the required QoS for multimedia applmas.

In each master, the available IPH slots must bel @ueeconvey the IP traffic
imposing QoS requirements. The ACS sub-layer (sger€&4.6) is composed of several
Relationship Entitie¢RES) and &cheduler Essentially each RE relates to a particular
TCP/IP stream flow (with a particular QoS serviegdl) identified by the IP Mapper.
Each RE includes a First-In-First-Out (FIFO) queused to store the IP fragments
coming from the IP Mapper. Fragments pending ins¢hgueues are passed to the
Dispatcher sub-layer by the Scheduler. Each REahaenfigurable maximum queue
size; when this value is reached, requests arardied. When a fragment is discarded
due to queue overflow, all pending fragments ofdhme packet are also discarded.

The Scheduleris responsible for the appropriate emptying of thiéerent
Relationship Entity Queues so that all differentSQeequirements are fulfilled. The
Scheduler uses a service interface, internal tAtb8, for the emptying of the different
Relationship Entity Queues or the acquisition dbimation relevant to their contents.
When a request for a fragment is issued by the didbe to an empty Relationship
Entity Queue, then the Relationship Entity generatespecial frame if th8lave Poll
Option is chosen. This feature of the Relationship Eetitis used by slave stations to
support multimedia capabilities. In practice, itagantees slave-to-master TCP/IP
bandwidth by ensuring that the slave station hasdfance to send a packet to the
master at programmed intervals, even when no mastave traffic exists.
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Figure 4.6: IP ACS Architecture

As previously mentioned, the multimedia traffic da® of two types: traffic that
does not impose stringent timing requirements (tkzhas IP Best Effort traffic — IPBE);
and multimedia traffic characterised by specificSQzharacteristics, namely bandwidth
and jitter (referred to as IP High Priority — IPHt the ACS sub-layer, there is one RE
(for both IPH and IPBE traffic) for each TCP/IP estm flow. Each RE has also
associated timing parameters that are used bydhedsler.

The Scheduler uses an interface to the DP/IP Dibpatayer in order to determine
whether it is allowed to fill the DP/IP Dispatclgueues or not. The queues that may be
fed by the ACS layer are the IPH queue and the IRB#tie.

The Scheduler is executed periodically with anrirdedefined adpcy. There are
two main strategies to perform the Scheduling efRelationship Entity queues; off-line
or on-line, as outlined next.

If scheduling is done off-line, a table in the &atManagement gives the actual
schedule of the different Relationship Entity queuEhis schedule is createdpriori,
taking into account all needed information so tihat diverse QoS requirements of the
different Relationship Entity queues are met. lis tase, the Scheduler actually works
as a dispatcher for IP Traffic. In case the schiaduis done on-line, a table in the
Station Management provides the parameters neeglédebScheduling Algorithm so
that the actual schedule is determined every theeScheduler is executed. In addition
to these QoS-specific parameters, the Schedulgmyitim has to take into account the
time allocated for IP HP traffic and the remaintimge for BE traffic.

The above procedures apply to the IPH traffic. @& other hand, IP BE Traffic
Queues are delivered to the dispatcher in a roabuh fashion. Fragments delivered by
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the Scheduler attach information about the trafiass (IPH or IPBE) and about network
usage estimation.

The following example illustrates some of thesegifles. The scheduler micro-
cycle is equal toTpcy, the worse rotation time of the token. For thisareple
Tpey = 10 ms andlpy = 2 ms for a particular master station. We consiide TCP/IP
data flows with 200-byte fragments, characterizedescribed in Table 4.1.

Table 4.1: Example configuration

Flow At every “n” Tpey Transaction duration Multimedia data throughput

IPH1 1 100 ps 100- 1600 = 160 kbps
IPH2 3 200 us 33.31600 = 27 kbps
IPH3 3 200 ps 33.3- 1600 = 27 kbps
IPH4 4 400 ps 251600 = 40 kbps
IPH5 4 1000 ps 25- 1600 = 40 kbps

The Transaction Durationgdepend on the locations of the stations and tha da
payloads. Spawning multiple domains (wired/wirelgssults in additional delays. Also
smaller data payloads result in smaller transactioes. However, for most TCP/IP
traffic the maximum fragment size is used excepsdome particular applications, e.qg.
applications than send small User Datagram Proi@ioP) packets.

Tipn=2.0 ms

1.9 ms

(min Tipy)

[]

Available
time

1 2 3 4 5 6 7 8 9 10 11 12
TDCY:]-O ms 9—‘6—

= Micro-cycle Macro-cycle = 120 ms

Figure 4.7: Scheduling example at IP ACS level

For this example configuration, a simple Rate Monat scheduling solution is
presented, where each stream is scheduled accadliitg periodicity. This particular
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solution is simple but needs a valueTafy of at least 1.9 ms (see Figu4er); more
complex scheduling algorithms can be used to rethisevalue. Other implementation
alternatives and design options will be discusee@hapter 5, Section 5.1.

Besides the scheduling table (or a runtime impleat&m of the scheduling table
algorithm), the IP ACS Scheduler can also includeruatime mechanism that
compensates for empty IP queues in subsequent-gyctes. The reader is referred to
Section5.1 for more details.

The traffic scheduled by the IP ACS is then fed itite DP/IP Dispatcher where it
is mixed with other traffic.

4.5 DP/IP Dispatcher

The DP/IP Dispatcher layer (RFieldbus Project, 2)0&sides under the IP ACS Layer
and the DP Mapper (see Figute8). Both DP Traffic and IP Traffic pass througtist
sub-layer, which is responsible for transferringhbkinds of traffic to the Profibus FDL.

The DP/IP Dispatcher sub-layer considers threéidralfasses, which are supported
by five different FIFO queues according to theficagource (Figure.9).

The Guaranteed High-Prioritytraffic, which is Profibus high priority traffic #t
must be always scheduled on time. This traffic clssintended to support DP high
priority traffic with real-time requirements (DPH).

SEND RECEIVE
IP Interface Fieldbus Interface IP Interface Fieldbus Interface
IPH 1PL BE DPH  DPL BE
DP/IP Dispatcher . . oo os s DP/IP Dispatcher
[@ | SAP == 11\ / SAP 1=11
, , t
Profibus FDL Hi % Profibus FDL

Figure 4.8: Dispatcher functionality and interfaces

The Guaranteed Low-Prioritytraffic, which is Profibus low priority traffic thas
scheduled on time after the guaranteed high pyidraffic. This class of traffic is
intended to support the two sub-classes: DP lowripyitraffic with timing requirements
(DPL) and IP traffic with QoS requirements (IPH).

The Best-Efforttraffic, which is Profibus low priority traffic thds scheduled after
the guaranteed traffic, without any guaranteesiroély delivery. This traffic class is
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intended to support two sub-classes: IP traffichauit QoS requirements (IP-BE) and
non real-time DP low priority traffic (DP-BE).

High-priority i DP high-priority traffic i i
Profibus !| (DPH) : :
Traffic ! : :
I et S '
] [} ]
! DP low-priority traffic ! DP low-priority traffic !
Lo e ! with timing requirements || w/o timing requirements !

- DPL /| (DP-BE
Profibus {000 ;| (OPBD) |
e i IP traffic i IP traffic i
'| with QoS requirements ‘| w/o QoS requirements )
1| (IPH) 1| (IP-BE) -
| 1 |
_____________ =__________________-----JI_______________________l

1
Best Effort (or non real-time) |
traffic :

Guaranteed (or real-time)
traffic

Figure 4.9: Dispatcher traffic classes

The dispatching algorithm is executed periodicallyery Tpcy, using an
independent timer of the IP ACS Scheduler (thatb algys everylpcy). The algorithm
uses bandwidth reservation parameters that arédewas different MIB (Management
Information Database) objects and are determineetrym-time (during System
Planning). These objects define the time limitstfar different kinds of traffic that are to
be served at each cycle. DPH traffic may be com&dato an appropriate time value
(Topn) calculated during system planning or left uncoaieed so that all DPH traffic
generated is fed to the FDL High Priority Queueeirery dispatcher cycle. The DPH
option is configurable for each station. The ottraffic has time constrains which are
the DPL Time Limit Tpp.) for DPL Traffic, thelPH Time Limit(Tpy) for IPH Traffic
and theBE Time Limit(Tgg) for the combined DPBE and IPBE Traffic. The tiaffs
constrained in the above-defined order.

Upon setting these time constraint parameters Dikpatching algorithm passes
the appropriate amount of traffic from the fivefdient queues to the FDL High and
Low Priority queues. The IP ACS layer is resporesiolr providing an optimal filling of
the guaranteed QoS IP dispatcher queues, but soewtihe available time may be
reduced by higher priority DP traffic.

The dispatcher uses an estimate of the networkeusiag for each fragment to be
sent. The IP Mapper and DP Mapper sub-layers ateuthis time using several
variables. These variables include: tbpology of the systersince the communication
between peers through a number of hopping statftitess complete system supports
networks with multiple wired and wireless segmentg)ses greater delays to
communications between peers in the same e.g. wiggdent; thdLL Service used
(confirmed requests take longer than non-confirmeplests); theumber of byteshat
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the fragment contains (to account for the transonisdelays of the fragment itself); and
the Delays due to hardware/software constrain (dejays on module-to-module
communication, hardware interface delays, etc.).

With reference to the target message cycle timeresponding to a worst-case
message cycle duration including the request aplg B;nd taking into account idle time,
the dispatcher algorithm may be configured to warkording to three schemdirect,
Direct Tabularand Computing In the Direct schema, the target message cycle is
given as one object in station management for iallsk of fragments. In the Direct
Tabular scheme, there is a table containing theutzibd target message cycle time
values for different options of peer connectionfisTdata is stored in the station
management database. The calculations are dogstatrsplanning, taking into account
the different system aspects. Finally, in the Cotimguschema the target message cycle
time is calculated by the Dispatcher for each d#ffit fragments, taking into account the
system management parameters.

The target message cycle time is a significantrpater for the fieldbus system
since it is used by both the DP/IP Dispatcher dwedIP ACS Layers and is relevant to
the selection of the appropriate fragments to lensmitted, so that all timing
requirements imposed by the applications are met.

The Dispatcher sub-layer interfaces the DP Mappdrthe IP ACS to the Profibus
DLL. For transmission, it provides several queuescerning the priority of service
requests. The Dispatcher transfers requests fresetueues to the DLL, limited by the
master allocation time. The requests are transfaatdeast within the Dispatcher Cycle
Time and according to the queue priority.

According to the fragment model, a pre-defined cfedlispatching rules imposes
that, at each master station, the Dispatcher @ajblitransfers to the FDL layer a number
DPH PDUs depending on the DPH processing optiorsé&tPDUs are followed by DPL
PDUs up to configurabldpp usage estimation limit and then IPH fragments aip t
configurableT,py usage estimation limit. If station time is avaigbDP-BE PDUs and
IP-BE fragments are sent.

Such dispatching strategy generates predictabffiictscenarios, where the token
holding time T+y) is never overran (provided thafz is set according to the rules of the
constrained low priority traffigrofile).

Each queue of the Dispatcher must hold the traffieded for one dispatcher cycle.
The Dispatcher is implemented on a cyclic basig] #re dispatching algorithm is
triggered everyTpcy. At each dispatcher cycle, the Dispatcher sertegueues and
transfers traffic to the FDL queues. When the didper algorithm is triggered, it starts
by processing DPH. After processing DPH traffig thspatcher serves DPL traffic until
the Tpp, IS consumear there is no more available time for the currenpdisher cycle.
After processing DPL traffic, the dispatcher serlid traffic until theTp is consumed
or there is no more available time for the currentpdisher cycle. Finally, after
processing the IPH traffic, the dispatcher servestEffort traffic: one PDU from DP-
BE queue if it fits the remaining time of the diggw®er cycle; one fragment from IP-BE
queue if it fits the remaining time of the dispactcycle; this is repeated until the
gueues are empty or no traffic from the queuethétremaining time of the dispatcher

cycle. This process is illustrated and exemplifire@igure4.10.
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Figure 4.10: Dispatcher traffic classes and timing concept

In each dispatcher cycle, the DPH Traffic that aswlard to the FDL may be
processed in three alternative ways:
1. all DPH PDUs are sent (results in standard Profposessing of this kind of
PDUs);
2. DPH PDUs up to the dispatcher cycle time are sgnar@ntees that this
station does not delay the token):

3. DPH PDU up toTppy Usage estimation limit are sent (guarantees tidd D
traffic does not starve IPH traffic).
The alternative to be used is a configuration patanof the station.

20 ms 20 ms 20 ms

Dispatcher t ! t N t N t N %
N L

. 3 N

~ © A

A Y S Y

1

1
1
\
'

\
N © \\
N \

il e

[V ] ,
t..r _t_ t _t

15 ms 18 ms 12 ms 15ms

FDL Token

Figure 4.11: Dispatcher and token timing

Ideally, the dispatching activities should be syociised with the token arrivals at
the FDL layer, maximising the available throughmihce at each token arrival there
would be, at most, the agreed number of PDUs taraesferred. However, such
synchronisation is not trivial, since it would irgpiodifications to the Profibus FDL.
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Then, in order to guarantee that the assumptiontheotonstrained low priority traffic
profile are always satisfied, it is considered ttiet token arrives at the station at the
same rate that the Dispatcher is executed, i.ey dygy.

Consequently, the traffic throughput cannot be méséd, since there are some
token arrivals when there is no traffic to be tfangd at the FDL layer. For example, if
Tocy=20 ms and Tycieaverage 15 Ms, the traffic at statiork would be processed as
presented in Figurd.11. However, the scheduling guarantees are alwaset if the
token is never late, this can be achieved usingeptl or 2 of the DPH processing at
the dispatcher in all stations or guaranteeing th& condition is fulfilled by the
application.
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This chapter addresses a few details on how tceimg@ht the mechanims proposed
in Chapter 5, namely concerning the Admission Guirdnd Scheduling (ACS)
mechanism, how packet fragmentation works and lwoimplement and configure
a network scenario using commercial technology.

5.1 IP ACS Scheduler

While in Section4.4 a simple scheduling algorithm was proposed, Ritgeldbus
implementation can use any other scheduling palithet might eventually be more
adequate for each specific application scenarioag&xample, we present a Deferred-
Release scheduling algorithm adapted from (Tovar ¥asques, 2001), that aims to
minimize the minimumTpy value, thus allowing the fulfiiment of traffic viitmore
stringent time requirements.

function deferred_release;

inputs:
niph /* IPH data flows */
kL] 7% array with number of fragments per period for each data flow */
7% ordered ascendingly */

7% i goes from 1 to niph */
Ttme [i] /* transaction duration */

(TMC paramenter )*/
Tdcy /“‘ TDCY value, the scheduler cycle */
My 7% number of micro-cycles in a macro-cycle */
output

sched[1 cycle] /* scheduling table */
cycle goes from 1 to n_ucy */
offset[1] / offset relative to first micro-cycle */
* TIPH value */

begin
a8 /* offset calcu]atwon */

2: for i =

3 min_load = MAXINT:

4: for cycle = 1 to (Ttmc[w] div Tdcy) do
5: cyclel =

? max,‘load = 0.

8: 1f 1oad[cyc1e1] > max_load then

9: x_Toad = load[cyclell;

10: end 1F

11: ¥c1 el = cyc]el + (Ttmc[i] div Tdcy)
12: until cyclel > Mcy;

13: if max_load < min_joad then

14: cycle_min = cycle;

38 min_load = max_load;

16: end if;

17:  end for;

18: end_for;

19: cycle = cycle_s
20: offset[1] = cyc]e min - 1;

22: /* update each cycle workload */
33: 72 butld scheduling cale +/

25: 1oad[cyc1e] = 1oad[cyc1e] + Ttmc[i];
26:  sched[i,cycle] =

27 cycle = cycle + (Ttmc[i] div Tdcy);
28: until cycle > Mcy;

;g: 7 get TIPH value */

32: for i =1 to Mcy do

33:  if Woad[w] > T\ph then
34: Tiph ad[i];

35 end i

6: end for

36:
return sched, offset, Tiphs

Figure 5.1: IP ACS Deferred-Release algorithm
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Decreasing the value afpy results in more network bandwidth available fdrest
traffic in other stations, or other traffic in tekame station, but there is less “headroom”
for compensating missed IP fragments (i.e. fragmenat were expected in a given
period from the TCP/IP stack but that for some a@eawere slightly delayed). The
algorithm delays some fragments by one or two migrdes but never more than the
data flow period so the final QoS of the flow isatfiected.

The algorithm presented in Figuil, results in the scheduling scenario as

illustrated in Figures.2.

Tipn=2.0 ms
Original
1.9 ms

New min Tipy

1.3 ms

[]

Available
time

1 2 3 4 5| 6 7 8 9 10 11 12
TDcyzlo ms %—le

= Micro-cycle Macro-cycle = 120 ms

Figure 5.2: IP ACS Deferred-Release scheduling example

Another condition to take into account is whendhbeduler has a slot available in
a micro-cycle for a particular data flow but, fanse reason, no fragment is available.
This can occur due to the way applications genefate flow (that can be slightly bursty
and not a perfect constant rate), due to TCP cdimmecontrol mechanisms, Operating
System and TCP/IP stack delays and even IP MappgmEntation delays.

An on-line compensation mechanism can be implendente overcome this
situation. The concept is that when there is a $f@n the scheduler slot this can be
compensated in the next micro-cycles if there mugh freeT s time. In order to avoid
a burst of compensation cycles in the future, atliom the maximum number of
compensated fragments must be set. In (Feregia, 2001) the value of this limit is
defined according to the maximum acceptable jigigrfor the application with period
(T)) and presented in Eq. (6.1).
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J.
N =|— 5.1
i {T- } (5.1)

The result of this compensation for an example agens presented in Figuge3.
IPH1 generates fragments in a variable way, from mthree fragments in each micro-
cycle. However, the average for the full macro-eyislone fragment per micro-cycle.

Arrivals

before ucycle\ ; ;
5 N =
IPH1 Queue: Ling il
<
Compensation
after pcycle

[ ]

Available Tru=1.3 ms
time

Missed
slots

Compensation

1 2 3 4 B 6 7 8 9 10 11 12

Figure 5.3: IP ACS Deferred-Release Scheduling with Jittecompensation

This compensation mechanism can be implemented awveonff-line scheduling
table, using an enhanced dispatcher, or it canntegiated in an on-line scheduling
algorithm.

5.2 Configuring the RFieldbus Network

As seen in SectioB.4, configuring a Profibus network with wired aniteless segments
involves setting correct timing parameters suchTas Ts, Tip: or Tipp. While this
configuration is usually done in an intuitive wafjs approach is inadequate when
tackling more complex networks such as the onespatgd by the RFieldbus
architecture (multiple wired and wireless segmemspgystematic presentation of this
configuration was performed The main aspects oafiigoach are described next.

The starting point for the approach consists inmaimg up all the required master
allocations and guarantee tAaky is greater than that valu€r is then set accordingly.

Figure5.4 illustrates the reasoning.
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Figure 5.4: Basic temporal parameters for network configuation

In a more formal way:

Tocy = le\i/IA < Tuin (5.2)

i=1

Since Tpey is the maximum time that the token can take betweisits to a
particular master, this value must be smaller tenrequested network response time
(Twin), an application-dependent parameTay,, the allocation time for each master can
be calculated by:

Tl\i/IA =-I-I;PH +TIiDPL +TI:3H +TBiE +Tt:Jken (53)

In Figure5.4, theT+ value is also illustrated. It is fundamental thag is high
enough so that the token is never late. This méazaisTr must allow for a complete
Toey cycle plus the transmission of all PDUs (includingen passing) in the master with
the largestya.

Tir =Tpey + mi Tl\i/IA} = ZTl\i/IA + mi Tl\i/IA} (5.4)
=

All these values are calculated depending on thasaiction duration for each
scenario. In case of an SRD message (confirmedsgihis duration is:

TMCSRD :Creq + TST + Cresp + TIDl (5'5)
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In addition, for the simpler SDN message (uncordidmequest) this duration is:
TMCSDN :Creq +TID2 (5'6)

In these last two equationS,.q andCesp Can be computed using the message size
(in bits) and the bit rate. For simplicity, we utfee largest possible value for these
variables.

RegardingT p;, this parameter must be carefully calculated orel@Bus systems
due to the PDUs being relayed between mediums difterent bit rates and frame
formats. IfTp; is too small this can lead to buffer overflow hetrelaying stations and
thus to unpredictable PDU end-to-end delays. SfTigy has a similar impact, but now
regarding SDN transactions. Finallisy, the “timeout” value for a response of a slave
must take into account delays due to queuing anctss.

Lastly, for the MoM (Mobility Master) station, amditional idle timeT,p, must be
inserted such that the wireless stations have dndinge to perform radio channel
assessment and hand-off, regardless of their totati the RFieldbus network (some
mobile stations can be closer to the MoM than Qthathen the MoM sends the Beacon
Trigger it is forwarded by all relaying stationstime network and detected by wireless
slaves. After forwarding the Beacon Trigger, thedatations start sending a series of
beacons spanning all pre-defined radio channelsingiuthe mobility management
period. In parallel, the mobile stations start fingbeach available radio channel and
select (hand-off) the best available channel. Theber of beacons each base station
must send sufficient must take into account thendéh the beacon trigger relaying
(eventually involving multi-hop) and the worst-cahgration of the channel assessment
by the wireless stations.

The complete reasoning for the computationTgf, Tip, and Ts. and of the
mobility management parameters is available in é8\2003)

5.3 Profibus Fragmentation Needs

As presented in Chapter 2, Profibus supports gfibytes of data per PDU. However,
small stations can be limited to 32-64 bytes oadat

In contrast, a standard TCP/IP packet can have éd tKbytes of data, which can
be fragmented automatically by IP to match teximum Transmission Un{MTU) of
the forwarding networks. The minimuliTU is limited by the need to send one full IP
Header per fragment, and has a theoretical minindalue of 68 (Postel, 1981). Most
applications expect networks that can send fragsefitaround 1500 bytes e.g.
Ethernet- and up to more than 9000 byteg.g. ATM using AAL5 (Atkinson, 1994).

For instance, in a network with MTU of 1500 bytes, a standard (i.e. with a
20 byte header) IP packet with 4000 bytes of datdivided into three fragments: two
fragments with 1500 bytes (1480 bytes of data)@relfragment with 1060 bytes (1040
bytes of data). This means that there will be twiwaelP headers due to fragmentation,
and out of the total 4060 bytes, 40 are used topghgpose alone, meaning an overhead
of 1% of the original data.
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The same example in a network with very snMfU results in an excessive
overhead. In a network withMTU of 128 bytes, an IP Packet with 4000 bytes of data
divided in 38 fragments: 37 fragments of 128 bytH38 bytes of data) and 1 fragment
with 24 bytes (4 bytes of data). In this situatitime additional 37 IP headers due to
fragmentation will now be 740 bytes, i.e. 18.5%twd original data. For MITU of 64
bytes the overhead of the example packet goes 8% (!), and in the best-case
Profibus scenarioMTU of 246) we have an overhead of 4.5%.

As a result, an RFieldbus-specific fragmentatiomesce was devised. Each
RFieldbus PDU has a 2-byte header (Figufs. The first byte identifies the original IP
packet (and is unsurprisingly namdcket ID, and can have values between 0 and 255.
Each RFieldbus station generates its ®acket IDs and soPacket IDsare unique for
each source. This circumstance limits the maximwmber of concurrent (i.e. with
interleaved fragments) IP packets that can be fsemt a station to a maximum of 256.
The second byte is used to identify the order ef flagment Eragment ID and can
range from O up to 127. Value 0 is used to identibn-fragmented packets. Values
higher that 127 are reserved for future use.

On reception, the actual length of the Packet tainbd from the IP Header in the
first fragment. This limits the current protocollie used on IP (version 4) packets, but it
can be extended using the reserved range dfrdgment 1D

8 bit 8 bit 0-244 bytes
Payload
1 L
\ J J
4 4 0: not fragmented
Packet Fragment __|1-127: fragment number
ID ID 128-255: reserved for future use

Figure 5.5: RFieldbus packet format

This solution has a minimum PDU data size of 22&yf IP packets without IP
options are used, or 62 bytes to support all ptessdiB packets. Since we have a
maximum of 127 fragments per packet, the maximumadé&ket size (i.e. th®ITU seen
from the TCP/IP layers) will be around 8000 byteere for Profibus networks with
limited PDU data length of 60 bytes.

The overhead of the previous examples is now retlagmificantly: a 4000-bytes
IP packet has an overhead due to fragmentatiomiyf ,25% in a 64-byte Profibus
network; and in the best-case scenario of a 246-Bybfibus network this goes down to
0,85%.

It should be noted that the current implementaisoRC-based and the PDU length
limit is not actually an issue, but in future impilentations at more resource-limited
stations, the problem may arise.

The maximum IP packet used in a network can alstinhiéeed due to the time
needed to transmit the packet that can be relémairhe-critical applications. However,
a Profibus-DP network at 12 Mbps takes only aboun$ to send 8000 bytes of
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unconfirmed data ((8000 data bytes + 33 * 11 hehgiters) * 11 bits on the network per
usable byte / 12 Mbps), a delay that might be aeddg for most TCP/IP applications.

Other side-effects that may limit the usage of dargeMTUsin IP include Cyclic
Redundancy Check (CRC) resiliency wtTUs greater than 10000 bytes (Jain, 1990),
but Profibus has its own error-control scheme amd fvagmentation mechanism
discards the full packet if there is an error iy fmgment.

The usage of large IP packets is possible dueetdnitih reliability of the Profibus
network itself. Since the network has a low erraterand IP has its own methods to
overcome errors (using automatic resend for TCPaBis, UDP applications are aware
that packets may be lost) no mechanism was implesden resend lost fragments at the
RFieldbus network. A simple timeout is implemensedthat a lost fragment results in a
discarded packet; with very large packets this aye a significant impact on the
network performance. It is viable to implement saaimechanism in the future.

5.4 Windows NT Network Drivers

The IP Mapper and Dispatcher were integrated onviiredows NT Network Drivers
architecture, which is described next.

The Microsoft TCP/IP protocol suite is comprised aufre protocol elements
services and theinterfacesbetween them, as illustrated in Fig&. TheTransport
Driver Interface (TDI) and theNetwork Device InterfacéNDIS) are public and their
specifications are available from Microsoft. In dih, there are a number of higher-
level interfaces available to user-mode applicatiorhe two most commonly used are
Windows Sockets and NetBIOS.

Windows NetBIOS
LI Sockets ___| Support _user
interface kernel
NetBT
TCP UDP
ICMP IP IGMP
ARP
Nos. —/—/— -

interface

| Network Card Driver(s) |
I Network Media

Figure 5.6: Windows NT TCP/IP network model overview
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54.1 The NDIS interface and below

Microsoft networking protocols communicate withwetk card drivers using the NDIS.
NDIS defines a fully abstracted environment fetwork Interface CardNIC) driver
development. For every external function that a Nitver needs to perform, it can rely
on NDIS routines to perform the operation. Thisludes the entire range of tasks
performed by a NIC driver, from communicating wijthotocol drivers, to registering
and intercepting NIC hardware interrupts, and comigating with underlying NICs
through manipulating registers, port I/O, and sghfoTherefore, NIC drivers can be
written entirely in platform-independent high-levahguages such as C. These drivers
can then be recompiled with a system-compatible pilem to run in any NDIS
environment.

NDIS includes features that simplify the driver dimpment and integration
including: single driver instance used to contriblnetwork adapters supported; a fully
abstracted interface (ndis.sys); symmetric mulpssor support; loopback support;
multiprotocol support (protocols can be boundetlRIS NIC drivers independently of
implementations, including native Windows ARCNETdawAN Support); simplified
administration; single or multiple packet per serghuest interfaces; additional
information can be attached to packets (like Qo@upaters) and full duplex operation
on SMP machines.

5.4.2 Intermediate drivers

A NDIS intermediate driver usually expoftiniportXxx functions at its upper edge and
ProtocolXxxfunctions at its lower edge. Less commonly, arrimediate driver can
exportMiniportXxx functions at its upper edge and a private interfiacan underlying
non-NDIS driver at its lower edge (Figuser).

An intermediate driver is typically layered overeoor more NDIS NIC drivers and
under a transport driver (possibly multilayerediatt supports TDI at its upper edge.
Theoretically, an intermediate driver could be tage above or below another
intermediate driver, although such an arrangementumlikely to exhibit good
performance.

An example of intermediate drivers is a LAN-emuftatdermediate driver layered
below a legacy transport driver and above a minipdiC driver for a non-LAN
medium. Such a driver receives packets in a LANngdrat its upper edge, translates
them to another NIC-native medium format and seéhdm on to an NDIS miniport for
that NIC. On receives, this intermediate drivengtates packets indicated up from the
underlying NIC driver to a LAN-compatible format darindicates these converted
packets to the upper level transport driver.

An intermediate driver can also be deployed beld$ when the Intermediate
Driver depends on an underlying driver of a dewtieger than a NIC. For example, an
intermediate driver might handle network 1/0O redader a device connected to a serial
port. Such an intermediate driver would export & & MiniportXxx functions to
communicate with NDIS at its upper edge and usedstal Windows NT I/O Request
Packets (IRPs) to communicate with the underlygrigsdevice driver at its lower edge.
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Figure 5.7: Supported intermediate driver configurations

55 RFieldbus Prototype Implementation

The implementation of the RFieldbus prototypesdsdud on existing software, which
supports Profibus master and slave functionalitiesonsists of three main parts: the
Profibus firmware; the NDIS miniport driver and thidIS intermediate driver (Figure
5.8). In addition, a card driv&ynamic Link Library(DLL) is necessary for the Profibus
control application.

Since Windows NT4.0 was used in the RFieldbus fteklls, an NDIS miniport
driver was needed in order to support the adequsteface to the TCP/IP stack or to
underlying intermediate layers. On the other haad, interface to the Profibus
applications was necessary. These applicationsirrutme user mode, wherefore the
NDIS interface is not usable. That is why\dndows Driver Mode{WDM) interface
was also implemented, to support interfaces to Ila¢hProfibus application and the
TCP/IP stack.

The device driver has to perform two main taskssdb up the hardware access
according to the different board types and to martag exchange of service primitives
between the TCP/IP protocol and the Profibus firmewa

The Device Driver is started with the Windows bpobdcess. However, it rejects
all send packet requests from the network protocwisl the Profibus firmware is
initialized. It is the task of the Profibus apptica to start-up the hardware via the
Hardware Management features of the Miniport Drivigwe initialization is performed
in three steps. First, the Profibus applicationnmts the device driver to make a
hardware reset to the board, maps the DPRAM (haelwmderface) into the user mode

59



Part 1l
Factory Communications Framework

address space and returns the virtual DPRAM addiiédsm, the application initializes
the required firmware protocol (master or slavell dorwards the offset of the IP
command area of the DPRAM interface to the drividre driver initializes its private
interface to the Profibus firmware. Lastly, the filmas application loads the network
parameters into the firmware to activate the cotimedo the Profibus system.

Profibus TCP/IP
Application Applications
DLL
user N
kernel Hardware TCP/IP data
management 7
TCP/IP Stack NDIS
Profibus wrapper
data
NDIS
intermediate driver

\ 4
RFieldbus hardware interface

RFieldbus hardware (and Firmware)

Figure 5.8: RFieldbus NDIS implementation architecture

After a successful firmware initialization, the iy driver forwards send packet
requests from the network protocols to the Profilfiusmiware and receive packet
indications from the firmware to the protocols. &grackets are returned to the network
protocols together with state information, wherereinig the related send confirmations.

Receiving service primitives from the Profibus fimare is done by polling the
report area of the DPRAM interface.

The Intermediate Driver is responsible for inteifigcwith upper level protocols
(i.e. TCP/IP) on its upper edge, and with the loMeniport. Mainly, the Intermediate
Driver implements IP Mapper and IP ACS functionest

Figure5.9 depicts the NDIS Intermediate Driver intermaérface. Both IP Mapper
and IP ACS modules rely on a common driver supfexility, and interact using a
defined function interface. The Intermediate Drigeentry/exit functions are NDIS
standard calls.
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Figure 5.9: RFieldbus NDIS Intermediate Driver Interfaces

To send packets, TCP/IP indicates to the Intermeddiver “send” function the
data (represented by a NDIS defined structurekettrdmsmitted, using a standard NDIS
call. In the opposite case, where a reassemblguatRet is ready to be forwarded to
TCP/IP, another standard NDIS call is used to fodwhe data to the TCP/IP stack. To
send and receive fragments, the IP ACS uses sthiNaIS calls to communicate with
the lower Miniport in a similar manner.

As for the IP Mapper/IP ACS interface, the threevise functions described next
are utilized. Upon reception of fragments from theer layers, the IP ACS uses the
Fragment Delivery Indicatiorservice function to forward them to the IP Mapp@&y
calling this function, the IP ACS passes to theM&pper the pointer to the fragment as
well as its source address. This extra informatsonecessary for the identification of
the fragment.

On the other hand, for fragments destined to theetolayers, theFragment
Delivery Requesservice function is used to send them to the IPSACFor every
fragment sent to the IP ACS, the IP Mapper expact®nfirmation indicated by the
service functionFragment Delivery ConfirmatianThis confirmation, sent by the IP
ACS, depends on the delivery status of the fragrtetite lower layers.

The Dispatching functionality is implemented imfivare.

55.1 NDIS Intermediate Driver details

The Profibus NDIS Driver implements most of thedtionalities of the IP Mapper and
ACS sub-layers, as illustrated in Figir4.0.
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NDIS Intermediate Driver

Mapper

Reassembly

Fragmentation

Switching

{\ ID/Routing ID Generation
Relationship
Management

ACS

| ’/_,_.l Scheduling/Dispatching |

Figure 5.10: RFieldbus NDIS intermediate driver functionalty

5.5.2 Sending packets

When the transport layer has a packet to send dowine network, it indicates this to
NDIS that, in turn, calls the appropriate functigegistered during initialization. This
was set to the “send” function of the Profibus NDD®iver. This function is also
responsible for the packet identification, makireridions about whether to send the
packet or discard it, its fragmentation, and queuimthe proper Relationship.

I IMDriverSend(Packet)

IP Mapper

A

Relationship =
Management =l
o |

[0

= S » Scheduling/Dispatching
3 | timer function

Figure 5.11: Modules acting in the task of sending a packe
A timer function is triggered at predetermined ingds. When the timer function

triggers, the state of the Relationships is checkad the scheduling of the fragments to
send is defined. The fragments are then sent aogprtb this scheduling. The
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scheduling takes into account several parametetheoflifferent IP streams to serve,
according to a proper algorithm as described ini@e&.1.

In Figure5.11 the functionality modules impacting the tafkending a packet are
described.

The diagram in Figur&.12 shows the processes involved when a packsgnis
from the transport layer, until its fragments ared in the appropriate relationship.

Transport

Packet
Layer

Discarded
Packet

Packet
Identification

Discarding

ID Generation Packet (with ID
entity information)
Discarded
Fragmentation Packet
Fragment Fragment (with ID
(with ID information)
information)
- - Relationship
Relationship Management

Figure 5.12: DFD - Store packets to send in appropriate fationship

When the timer function triggers, the relationshgr® checked, and emptied
according to a scheduling algorithm as brieflysthated in Figure 5.13.

Relationship

Relationship information

Check
Relationship

Relationship
information

Make
Schedule

Schedule information
Fragments

Queuing in
IPH and
IPBE

Fragments
Fragments

Send
Fragments

Figure 5.13: DFD - Emptying of the relationships
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5.5.3 Receiving data

The reception of fragments is a simple task, ad\DES Miniport passes up to the NDIS
Intermediate Driver the received fragments. Upors, thhe several fragments are
buffered until the whole packet is received; as tithe, the data is delivered to the upper
layer, as presented in Figusel4.

Fragments

Check/
Identify
fragment

Discarded
fragment

ID information

ID Generation entity E t (with ID
ragment (wr

information)

Reassemble
packet

Deliver
packet to
transport

Packet

Transport Layer

Figure 5.14: DFD - Receive packets and deliver to upperyar
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This chapter addresses the experimental validatiidhe mechanisms proposed in
Chapter 5 and for which some implementation detadee provided in Chapter 6.
The Manufacturing Automation field trial of the R¥dbus European Project was
used as a testbed. This enabled us to test andatalithe feasibility and
correcteness of the proposed mechanisms in andagplication-rich scenario.

6.1 Introduction

The RFieldbus features presented in this thesise wmsted in the RFieldbus
Manufacturing Field Trial, which is described incBens 6.2 and 6.3. Configuration,
tests and discussion of results are describedbisesjuent section of this chapter.

6.2 The Manufacturing Automation Field trial

The manufacturing automation field trial (IPP Hyrr&2002) involved the use of
traditional Distributed Computer Control SysterlI3CCS) and ‘factory-floor-oriented’

multimedia (e.g. voice, video) application servicesupporting both wired and
wireless/mobile communicating stations (mobile etdd, for example). It was also a
major goal that the manufacturing automation figfi would provide a suitable

platform for RFieldbus timing (e.g. guaranteeingdies for time-critical tasks) and
dependability (e.qg. reliability) requirements todmsessed.

RFieldbus mobility requirements impose the use dafeless stations such as
transportation vehicles and handheld terminalssiguervision and maintenance. The
manufacturing automation field trial also involvélte use of wired segments, i.e. a
hybrid wired/wireless fieldbus network.

One very important issue that was addressed im#draufacturing automation field
trial was bringing multimedia applications into tfectory-floor. Applications such as
(mobile) on-line help for maintenance purposes harardous or inaccessible location
monitoring are examples. The manufacturing autamatfield trial was designed to be
an adequate test-bed to assess the suitabilitheoRFieldbus system to support both
real-time control data and multimedia data in tame transmission medium, as deeply
addressed in this Thesis.

To have an application gathering all the previousferred characteristics, an
industrial (sub) system that transports, classified distributes parts according to a
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certain criterion was specified (RFieldbus Proje2002). The mechanical system
imposes stringent timing and fault-tolerance resuients for the communication
network supporting the diverse /O points (sensmtsiators/servos).

6.2.1 Layout and Components

The manufacturing automation field trial implemeatsystem that transports, classifies
and distributes parts according to their type. &obelts and different pneumatic
equipment are used to transport and distributes garbutput buffers, according to their
type. When output buffers are full, they are mow@dhe respective unload station, in
order to be emptied. This operation is done eitheran Automatic Guided Vehicle

(AGV), a robot arm and an operator or just by aerafor. Considering the classification
criteria, we assume, at this moment and for thes saksimplicity, that a part type is

distinguished by its colour. The physical layoupissented in Figure.1.

. Unload C [e
Station 2 3 2 = 4 meters
A
5 1 3 -~ RB1L
R o o -—

RB3 o —

\
0 oed4filoeo0o = 0]
1 wﬂ W \J/OSAZ T SALQ)
Iinggl:/ised 5 82 ! O % B5 T
Unload > o T
Y Station 3 RB2 1]
> 40 meters 6 - L't AGV1

:: full motion
Unload U

/'\ 1
IR Barriers @ Station 1 .'.‘ ==
Color Cameras @

Time-critical sections (precision aprox 100ms)
Time-critical sections (time less than 10 s)

o]l

Figure 6.1: Manufacturing field trial mechanical system lgout

The input buffer (B1) stores black, white and gfdefective) parts, which are
sequentially pushed into the roller belt (RB1). SA® swivelling double arm with
suction cups) pushes grey parts to RB2. Grey gartisito B5. If this buffer is full or in
transit grey parts must circulate around RB1-RB2eWBS5 is full, AGV1 moves to U1,
for unload operation carried out by a robot arm)(&1d an operator, and then returns to
the initial position. White and black parts go i3, and white parts are pushed into
output buffer (B2). When B2 is full, an operatorvi@arned, in order to unload it.
Meanwhile B3 must be used to receive white partsbath B2 and B3 are non-
operational (full or in transit), white parts muwstculate in RB1-RB2. Black parts go
into B4, until it is full or if it is in transit. \WWen B4 is full, AGV2 moves to U2, for
unload operation carried out by R2. Black partstirsulate around RB1-RB2, if B4 is
unavailable.
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6.2.2 RFieldbus Communication Subsystem

The RFieldbus Communication Subsystem includes tla#l RFieldbus equipment
necessary to interconnect all the wired and wiselesmponents of the distributed
system. In order to test, validate and demonsttiage technical capabilities of the
RFieldbus approach, a network infrastructure (Fégéi2 - Left) including a wired
segment and two radio cells was devised, forcingiroanication between wired and
wireless stations and the handoff between radis.cel

In order to have a structured wireless network euppy mobility, the
RFieldbus network infrastructure is composed of twik Base Stations (LBS1, LBS2)
that interconnect the two wireless domains (WL1,2)bnd the wired segment (WR).
All stations are Profibus slaves (PC2-6, 1/01-2CRLand Drivel-2), except PC1 and
MoM, which are Profibus master stations.

o 1] {1 7 SE
| Pcls | | |o|1 | | Drivlel | | Dm,lezl a....L.ESl_J ﬂ

) | | WR
| PLC1 || 102 | | PC1 | | MoM | | PC2

RS232

RC1

Ethernet TCP/IP (Intranet)

Figure 6.2: Manufacturing field trial network topology

6.2.3 Multimedia Streams

Several multimedia applications are used for céntneonitoring and interpersonal
communication. The correspondent data streamseoREeldbus network are presented
in Figure6.3 and described next.

TCP/IP Remote Part Classification (MM1, MM2)Two cameras in PC6 acquire
images of the moving parts at a predefined rates&himages are down sampled and
compressed to greyscale JPEG files. This dataeis skent using TCP/IP connection to
the remote machine (PC1). On the monitoring sid€1{P each received image is
decompressed, processed to identify the presere@iete and classify it.

TCP/IP Remote Video Monitoring (MM3, MM4)This application enables the
operator in the central control PC (PC1) to visuaflonitor the area in the trajectory of
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the AGVs (AGV1 and AGV2). It must also have basintrol facilities like start and
stop the video stream.

Ethernet TCP/IP (Intranet)

images for control (real-time) = == HTTP and FTP traffic

=== other image/video streams  =mmmm Voice traffic

Figure 6.3: Manufacturing field trial multimedia streams

TCP/IP Voice Connection (MM5):This is a simple point-to-point TCP/IP bi-
directional voice application connecting PC1 andtPThe only controls needed to the
operator are "dial", "answer" and "hang-up".

TCP/IP Remote Position Detection (MM6)The autonomous vehicle (AGV1)
may slightly deviate from the ideal loading/unlaagliposition. Therefore, a visual
position detection mechanism was implemented inerorid make the appropriate
position corrections for the robot arm to manipal#te buffer. On the capture side
(PC2), images are captured by request of the nramitanachine (PC1) and sent using
TCP/IP connection to PC1. Each received image tomeressed and processed to
identify the presence and location of the buffethia Robot 3D coordinate system.

Remote Robot Control Services (MM7, MM8n order to be able to remotely
control the two robots of the field trial, supptotFTP and HTTP is provided (in PC2,
PC4). The FTP servers are configured to enabldrémsference of program files to a
specific directory on the computer. The WWW applma enables the transfer of these
files to the robot and interact with the Robot sysitself.

Intranet Interface ServicesSeveral services are available for system moniorin
and control using standard TCP/IP stations in thehet attached to PC1. Two ways to
access this information where deployed. W&/W Server provides several HTML
pages and forms where that the user can browskettkahe current system status and
interact (give the proper credentials) with thetasys Any WWW browser can access
this information. TheUDP Server supports efficient broadcasting of information to
several stations on the network. Specific clientere developed to interact with this
server.
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6.2.4 Supporting Technologies

In order to exploit the multimedia characteristafsthe RFieldbus field trial, several
additional technologies were integrated in the @tdal automation system. Some of
these technologies are not common in the factogr fhow but there is a clear eagerness
to start their widespread use with clear beneffschecet al, 2002).

Wireless Network:Despite the fact that RFieldbus wireless modeneeshthe
same unlicensed spectrum of the IEEE 802.11b wgiseteetwork standard, a Windows
Laptop PC and a Pocket PC where integrated inige tfial with connections speed of
up to 11Mbps and significant mobility with transpatr connection to the field trial
Ethernet segment using a IEEE 802.11b bridge.

CALL

Phone Call
from:

Operator 1 \

URGENT

Figure 6.4: Using a HMD in the manufacturing field trial

Head Mounted Display:the HMD technology opens a new level in the way
information is presented to the user. The dispaiy ifront of the user’s eye giving (due
to the lenses used) the sensation of a big monKosimple monocular gray-scale
monitor was used, presenting basic information alimel system status, alarms or need

of user intervention, as illustrated in Fig@d.
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Figure 6.5: Manufacturing field trial Pocket PC Client Application snapshots

Available since more than a decade, Personal Dasistants (PDAs) have been
used almost exclusively for they main purpose:raslactronic version of the traditional
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pocket agenda. In the last years many new applitatand several operating systems
have appeared. The latest generation of Pocketa€sadvanced features like: fast
processors, full-colour displays, TCP/IP and WWWpmrt, connectivity (irDA,
802.11b, Bluetooth), expandability (using PCMCIl&c8reDigital, etc.), GPS and more.
In the manufacturing automation field trial, a PBvas used to fine-control the system
and to get information about all stages of thd (gae Figures.5).

The system featured also a simple GSM SMS (ShotsMgs Service) gateway,
and selected alarm classes were automatically fdedato a particular phone with full
text descriptions.

6.3 Low-level communication flows characteristics

This sub-section presents a detailed view on al élxpected traffic flows of the
manufacturing automation field trial.

6.3.1 Cyclic DPH Traffic

Figure6.6 depicts the traffic flows for the DP High PitgrTraffic, used for real-
time control functions.

wil 11 | EPET

| PC6 | | 101 | |Drive1 | | Drive2|

WR

RS232

| PLC1L || 102 | | PC1 | |MobM| | PC2

RC1

Master Slave

Figure 6.6: Manufacturing field trial cyclic DPH traffic

PC1 sends cyclic DPH PDUs to 9 slaves in the systempdate its outputs and to
read its inputs. The swivel arms functionality entrolled by PLC1, a PLC with a
Profibus DP module. It is possible to start a iotabperation on either swivel arms and
to get information when the operation is complete apon error events.

The roller belts are controlled by Drive 1 and Bri2, two variable speed motor
drives with Profibus DP modules. It is possiblestart or stop each drive and to select
the speed or get status information (like currpets!).
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Robotic arms R1 and R2 are controlled via PC2 abd,Rwo PCs with Profibus
DP network cards. The Profibus DP application ezmblemote start of a transfer
operation and informs on the status of the opearafitopped, running, error). PC4 is
also used to control AGV2 stop/start at the rentoéel/unload station and to detect its
presence there.

AGV1 operation is controlled via PC3, a mobile P@&hwProfibus DP interface
with wireless capabilities that is carried by thehile. AGV1 has full motion
capabilities but the DP interface simply tellsdtdo to load/unload station 1 or 2 and
gets information on current status (moving to 1yimg to 2, stopped, error).

I01 and 102 are Profibus DP Digital 1/O modules dige control pneumatic
cylinders, indicators and to get information ontpaensors and buffer status. 102 is also
used to control AGV2 stop/start and arrival atld@l load station.

PC6 is used as a Profibus DP sound generator:figpB& commands activate a
different sound like soft bell, telephone ring aarming message. It is a PC with Profibus
DP interface, a sound card and speakers, it isigputonly station from the DP point of
view. Finally, PC5 has Profibus DP capabilities dahdwidth reservation but these
where not used by applications in the field trial.

6.3.2 Non-Cyclic DPL Traffic

The non-cyclic DPL Traffic is not related to theldl trial application control, but only to
“internal” Profibus DP generated traffic: logicahg maintenance, live list, etc. This is
taken into account in the configuration of the raast

6.3.3 TCP/IP Traffic over Profibus DP

There are two main classes of TCP/IP traffic ingistem:

— Guaranteed service (IPH): traffic that is esseffitinthe correct functionality of
the system as a whole. These include images usepaft classification that
must be transferred from PC6 to PC1 in a limitenheti the voice-link
application between PC4 and PC1 that must haveuatie@oS parameters to
be useful; video feeds from cameras at AGV1 and RGMDP traffic from
PC3 and PC5 to PC1); and finally a frame captudieation that is used to
detect the precise position of AGV2 in UL1 and atljthe robotic arm
operation accordingly.

— Best-effort service (IPBE): traffic that can bewat after the critical parts of
the system. This includes HTTP and FTP traffic usechanage the programs
in the robotic arms (PC1 to PC2 and PC4).
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6.4 System configuration

The system is configured usingSgstem Planning ApplicatiofSPA) developed in the
RFieldbus project (Alvegt al, 2003). Given the temporal characteristics of liase
networks and the characterization of the severfarimation flows and endpoints the
SPA calculates de system parameters for correatatipe or informs the user that it
cannot guarantee the system performance for tlenggenario.

The basis for the SPA application are describeddtail in (Alves, 2003) and
where introduced in Sectidh2. The first parameters to be used in the cordiipn are
the DLL characteristics summarized in the followtagle.

Table 6.1: Field trial network configuration parameters

Parameter Value

Bits per DLL character 8 bits
Maximum PDU size 255 chars
Minimum PDU size 6 chars
Token size 3 chars
Interconnection delay 25 pus
Tibmin 100 bits
Minimum Tgpgr 10 pus
Maximum Tgpr 50 us

The Mobility-related parameters were considereilasrated in Table 6.2:

Table 6.2: Field trial mobility management parameters

Parameter Value
Beacon Trigger PDU size 10 chars
Number of radio channels 2
Beacon duration 200 ps
Beacon interval 25 us
Radio channel switching delay 700 ps
Buffering delay 25 us

The parameters for wired/wireless interoperabditpport as described in Table 6.3.

Table 6.3: Field trial wired/wireless parameters

Parameter Wired Wireless
Transmission rate 1.5 Mbps 2 Mbps
Header size 0 bits 180 bits
Trailer size 0 bits 32 bits
UART character size 11 bits 8 bits
Offset 33 bits 148 bits

Provided this data, the SPA can calcul@itg for all information flows in the
system. The value depends also on the data paldagth, the type of requests and the
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path between stations. Although the system hasiptaullink stations, the architecture
can be simplified for timing calculations and reedc¢o a wired bus (with master, slaves
and MoM) and a wireless domain (with slaves). lis simplified scenario, there are
only exchanges between the master and a genesie sla the wired segment and
exchanges between the master and a generic slahe anireless domain.

Table 6.4: Data flows for field trial configuration

SPA Flow Master Slave Creg Cresp

Al Wired Wired 11 chars 11 chars

A2 Wired Wired 6 chars 255 chars
A3 Wired Wired 12 chars 13 chars

A4 Wired Wired 21 chars 21 chars
A5 Wired Wired 25 chars 25 chars

A6 Wired Wireless 6 chars 255 chars
A7 Wired Wireless 11 chars 11 chars

A8 Wired Wireless 39 chars 255 chars
A9 Wired Wireless 255 chars 255 chars

Other system parameters that had to be calculatdade theTycy value, which is
equal to the maximum period between requests sappkcation can work correctly. On
the manufacturing automation field trial case, tihee-critical events occur between the
detection of a part using the infrared sensorsthedime to activate one of the actuators
(pneumatic cylinders or swivel arms). If the debmtween requests is too high, there is
the risk that the actuators do not handle the gmarectly; a value too small overburdens
the network with no direct benefit.

The system was put into operation with sev@gal values and we concluded that
a value smaller or equal to 100 ms resulted in aalegsystem performance. A more
formal approach could take into account the rddelt speed (0.15 m/s), the acceptable
positioning error (about 20 mm), the sensor defaynf(s), the combined valve and
actuator delay before hitting the part (25 ms). 8arh these values, in particular the
actuator delay and the position error, are onlylabke as an estimation. The finBhcy
value is then:

maxTye, =Tp T

Actuator

osition TSensor

(6.1)

maxT,e, = Eeos _ pms—25ms= 002_ 27ms=106ms
RB

The values fofTp; andTp, are calculated by SPA for each master in the syste
and for the token. This resulted Tip, = 293 bits,Tip, = 3442 bits andpitoken = 393
bits. The values for Profibus configuration are fiikpg and max{Tspg, and given the
fact that other values that could affect this sets two small when compared to the
results we can set mifi§pgt = 393 bits (the greater oTp; and Tip1toke) @Nd Max{Tsprt
= 3442 bits.
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Table 6.5: Transaction and token delays for the field trél

Flow Type Stations Tst Transaction Duration
S1 DPH PC1-PC6 710 bits
S2 DPH PCHPC3 2205 bits
S3 DPH PC1-PC5 2205 bits
S4 DPH PCLHPC4 2205 bits
S5 DPH PCi1—PC2 710 bits
S6 DPH PC%&Drivel 930 bits
S7 DPH PC1~Drive2 930 bits
S8 DPH PC&I101 743 bits
S9 DPH PC1-102 643 bits
S10 DPH PC4&PLCL 1018 bits
S11 IPH PC1-PC6 3427 bits
S12 IPH PCHPC3 6023 bits
S13 IPH PC1-PC5 6023 bits
S14 IPH PCHPC2 3713 bits
S15 IPH PCi1—~PC4 8778 bits

Token PCHMoM 393 bits 443 bits

Transaction delays are used to set Tpye parameter of Profibus network, the
maximum transaction duration is 2205 bits and soiththeTy,c value.

For the IP Mapper, the transaction delay is alsedu estimate th&arget
Message Cycle Tim@mvc) of each IP flow. The estimation can be done ned¢hways:
(i) using the same value for all data flows; (i§ing a table with flow IDs and the value;
and (iii) calculated on a PDU-by-PDU basis. On thenufacturing automation field-
trial, the second option was used, providing a fxabetween accuracy and system
complexity.

The SPA also calculated that 10 beacons were regedsr the given
configuration andTgr to be 180 bits. This results in an overhead forbifity
managemenTyavom = 4100 bits. Combined with the aggregate intermedadibcation
AIM = 25000 bits needed for the data flows we conclinde the network can easily
handle the load sinCByavom + AIM (4100 bits + 25000 bits) is still much leg@enTpcy
(150000 bits).

6.5 Scheduling of TCP/IP Traffic

The micro-cycle to be used is the worst token ratatime, i.e. 150000 bits. While the
overall system involves six IPH flows, we reduceddwn to five considering the traffic
from the two identical applications as S11 (buhgshem separately).

To determine the number of fragments per second bgeeach application, a
TCPI/IP capture application was used testing tha flatvs during an adequate period.
For each capture, the number of fragments was leéécli considering that IP packets
larger than 240 bytes are fragmented.
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Table 6.6: Transaction and token delays for the field trél

Flow Frags/s  Tiag TCP/IP Application Stations

S11 (x2) 5 2 Color Detection Application PCl-PC6
S12 10 1 Image Stream PGPC3
S13 10 1 Image Stream PC1-PC5
S14 1.67 6 Image Position Application RGPC2
S15 * 0.5 Bidirectional Voice Call PCl-PC4

Since the voice application (S15) generates a Maridata flow, the correct value
was obtained via experimentation: several schedutibles were used and the system
tested. The conclusion was that 2 fragments peh 8agy resulted in adequate
application behaviour, with lower values leadingtdegradation of the voice quality.

Given this data and using the algorithm describedSection5.1 we got the
scheduling table of IPH fragments at PC1.

Table 6.7: Scheduling table for IPH data flows in PC1

Micro-cycle 1 2 3 4 5 6

S15 2 2 2 2 2 2

S12 1 1 1 1 1 1

S13 1 1 1 1 1 1

S11 2 2 2

S14 1

Tipy (bitS) 33315 36456 29602 36456 29602 36456

The maximumTpy is aprox. 36500 and the network is still viablacgiAIM +
Tvom + TipH (25000 + 4100 + 36500 = 65600 b|tS) is still mlebss thanTDCY (150000
bits).

Finally, the Ttg and Ts, Profibus parameters must be adequately set. Eof+th
calculation there is the need to estimate theitraffocation for PC1. Considering just
the IPH, DPL and IPH traffic we havgapci= 225010+2205+36500+448 61200 bits.
We can round up this value to 70000 bits and theaneing is used for BE traffic. This
results in al+r of 150000+70000 = 220000 bits. Finally, by, we look to the greatest
of T 1 andTg » that takes the greatest valueTgf and Tstkenr€spectively. Sincég, ; is
2775 bits and’g »is 393 bits,Tg is set to 2775 bits for PC1.

6.6 Manufacturing automation field trial results

The manufacturing automation field trial applicagobehaved as planned (Machado,
2006), (Van Nieuwenhuyse and Behaeghel, 2003) with interference between
multimedia (TCP/IP) traffic and control (Profibusjaffic. Both DP and TCP/IP
applications performed as expected and a Profietigark/protocol analyser enabled to
confirm that the traffic in the network was as extpéd, given the pre-defined data stream
scheduling. The only exception was the image ifieation application where
sporadically some pictures were not grabbed bgylseem.
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The system planning was done in a way to leave sxtra bandwidth available
for encompassing new applications or modificatitmghe existing ones. Thus, after the
first tests phase the system was readjusted. Twiheofapplications that could most
benefit from additional network resources were ithage position application (due to
the scheduling policy, an image would take abous&€bnds to be transferred over the
network) and the voice-call application (that hagtaat-up delay of about 1 second).

The first step was to solve the issues with the Sfcam. The solution was simply

to give more bandwidth to the application, as shawhable6.8.

Table 6.8: Revised scheduling table to improve S11

Micro-cycle 1 2 3 4 5 6

S11 2 2 2 2 2 2

S15 2 2 2 2 2 2

S12 1 1 1 1 1 1

S13 1 1 1 1 1 1

S14 1

Tipy (DitS) 40851 37028 37028 37028 37028 37028

Afterwards, the scheduling parameters where charsgetl the image position
application response time was decreased from 30 tgeconds, by using a macro-cycle
of 2 instead of 6, resulting in 1 fragment everyzro-cycles for S14, instead of the
original 1 fragment every 6 micro-cycles. Anothdrange was to use 3 fragments
(instead of 2) per micro-cycle for S15, the voied-application, but this time this
adjustment resulted in a marginal start-up delajucdon and no noticeable voice
quality improvement.

All these changes where cumulative and did notcafi@ any way other
applications in the systenAt this moment we had &y that was about half of the
maximumT,py SO there was still room for further applicatiombeidth upgrading.

Things got more complicated when larger bandwidths vallocated for S11,
resulting in the following scheduling table:

The system responded with a fast degradation ofmnéssion capabilities in all
applications until it completely crashed. This wasexpected since the allocated
bandwidth was still far from the maximum possilide TCP/IP traffic. Testing a similar
change with S15 (Voice) stream got similar resdystem-wide degradation and lack of
TCP/IP functionality after a minute of operation.

Table 6.9: Revised scheduling table to"8improvement on S11

Micro-cycle 1

S11
S15
S12
S13
S14

P PP Wwo
=P woN
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After low-level scrutiny (using Windows NT kernedvel debugging capabilities)
we detected that the problem was related to the Rvafibus hardware (IFAK _isPRO
ISA) used in the PCs handled large bursts of fragmelhe system would not work
correctly when the dispatcher was configured taseore than 9 fragments per micro-
cycle. The problem was overcome by decreasingo§Eible) cycle times.

Another problem detected was that, cannot be too large, or the TCP/IP stack
stops working correctly due to timeouts. At thedjrit was not investigated if Windows
NT parameters (of the stack) could be changed aalatis situation.

Finally, a test was done to check the result ofrita@ing the IP ACS queues:
using an UDP application we sent 1 fragment perraniycle when in reality the
scheduler only handles 1 fragment per 2 micro-cycles expected, the fragments
started suffering long delays and some were lost geen from the application).
Unfortunately, it was not possible to test alteivetonfigurations during the field trial,
like limiting the queue size at the REs and tinsvgiing of UDP data payload, so the
only conclusion is that the system does not crastrva queue overflows.
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Chapter 7
Proposed Architecture

Power-line communication (PLC) provides a naturabllimm for electrical energy
distribution applications like metering and gridntml. However, the medium
itself is a harsh one when considering long distantarge number of stations, and
wildly varied physical configurations used by eactergy provider over the world.
This leads to the availability of a basic mastersl|network, with resilient service
but limited capabilities. Taking advantage of theldevel voltage used in the end
leafs of the distribution grid, the proposed Enekdgnagement System connects
two master-slave networks and provides completdirkitional, end-to-end,
services over this two-level system. This chaptewiples both the system-wide
architecture details, to particular solutions foundease the development of the
embedded software

7.1 System Objectives

As presented in Chapter 3, within the REMPLI systdm Transport Layer (TL) is the
fundamental communication layer dealing with settunp bi-directional, end-to-end,
communication in the energy management system. Tyisr allows a direct link
between the AP and Node devices, on top of theslmaaster-slave network provided by
the power-line communication subsystem.
It does so fulfilling the following main objectives
1. implement high/level services like confirmed unicaackets, response request
service and alarms;
2. support of unlimite8packet size in the above services;
3. fast reaction times for small requests;
4. enable usage of medium voltage and low voltage palgtribution networks
as a single data network with a flat address space;
5. be resource conscious in terms of network usagecessing power and
memory needs;
6. provide a simple priority-based scheduler than bten updated to other
alternatives
Since the underlying REMPLI Network Layer is desidrto be used directly by a
single application there is no direct support foplacation multiplexing at this level: the

* Limited only by available memory and the impodéipiof processing blocks
larger than Z bytes in the target software/hardware system.
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REMPLI Transport Layer is the only client of thetiWerk Layer; and the DeMux is the
only customer of the Transport Layer (see Figtu®). The services provided to the
DeMux by the TL were designed to be used by Megeaind SCADA applications, also
enabling the deployment of new solutions in thesas The Unicast service is focused
on commands, the Request/Response on gatheringnation and the Alarm service on
reverse direction transmission of events.

Application Servers E E

Intranet (TCP/IP)

'1
Drlver 1 W Dr|
DeMux (O) Security |

Transport Layer

PLC
Network :

| Transport Layer (Bridge) |
PLC ]
Network !
Transpg:t Layer

Security |

DeK/I’ux

© Internal Interface

®© AP Driver Interface

© Node Device Interface

Figure 7.1: REMPLI Upper Layer Functionality (“inside” vie w)

SCADA and Metering applications have variable Qualof Service needs.
However, one common mandatory feature is that shackets (e.g. smaller than one
hundred bytes) are typically issued frequently ardding to be processed quickly by
the system. This is particularly valuable not ofdy remote control of devices but also
beneficial to an adequate scalability of the nekwédso important is the possibility of
enabling some traffic, like urgent control commands“overpass” background traffic
like daily meter readings. The Transport Layer jes such services with the priority
based scheduler and diminutive network overheadsveitheless, it is also open
allowing the exploration of distributed schedulimgchanisms for new and improved
services (these are out of the scope of this work).

® This is Figure3.4 repeated here for completeness
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The target applications also imply the deploymehtadarge base of end-user
stations, meaning that the system must be costeawar make this possible, the end-
user stations have to be inexpensive and effi¢@npresented in point €) above) in the
list above. To put the objective in perspective oh¢he open paths of the project is to
implement the Nodes on low-budget 8051-class pemssin the future. Also of
paramount importance is the possibility of updatihg software (firmware, other
program files or data) in these stations in arcedfit and simple form. This is simplified
considering that the Transport Layer services camded unchanged for large packets.
In fact, even on the current version with “limite@-bit lengths (16 MiB) it is unlikely
that a Node station has enough memory to procedattest sized packet.

The usage of the power distribution grid as a comioation medium eases some
typical deployment problems like placing new cakdes providing power to stations.
However, stringent regulatory limitations restiice usable bandwidth and the extreme
geographic distribution of some layouts impliesoerresilient coding at the cost of
bandwidth. The Transport Layer must take all thigthtions in account and be aware
that both physical and logical network topologias change over time. Power grids are
not a static arrangement of links and in normal rafj@en new connections are
dynamically created and others are removed. Théezkis also present in other areas of
the power grid in terms of propagation of the comioation signals: activation and
deactivation of noise sources can occur in an whgiable fashion. The Transport Layer
capability of connecting the Medium Voltage and Ldaltage networks in multiple
points makes it possible to overcome these dravebefficiently.

On the other hand, dynamic network configuratiomsusd not be an issue for the
end-user of the system (the utility companies) smd flat address space is provided that
effectively hides the system hierarchy and topoldgglso enables simple field station
replacement: thdlode Addressised by application is maintained and only théetétat
maps addresses to serial numbers has to be updated.

The remaining of this chapter presents the maitufea of the Transport Layer,
starting with network layer login/logout and addresnversion, needed for providing a
flat address space to drivers. Afterwards the ngutand distributed link quality
mechanisms are explained, followed by the slavexdister communication capabilities.
Traffic priority schemes and the Alarm service fimaality conclude the architecture
overview.

7.2 Login/Logout processing and Address conversion

To gather base routing information about the systemTransport Layer keeps track of
Login and Logout events. When a slave station coisng a master station at the
Network Layer level, the Transport Layer in eadesieceives information on the events
including theUnique Serial Numbeand theNetwork AddresgNLAddD assigned at the

moment to the slave station. This information isdugor address conversion from the
“flat” address space seen by the Applications ® tdmporary login/logout addresses
(NLAddY) used by the Network Layer. A configuration taliheludesUnique Serial

Number and correspondindNode AddressThis information is appended with the
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NLAddr provided by the Network Layer when a station Isgiand in order to build the
route tables, the Transport Layer uses NL Loginfitagnformation and link quality

information forwarded from remote nodes. Figut@ presents the complete Login
processing steps, which are managed byTitamsport Route ManagefTRM) a sub-
module of the Transport Layer.

When a new Bridge is connected by the Network Lagem AP, two Login events
arise: one at the AP and the other at the Bridde Bridge Login event includes
information on the newly active Network Unit (thiformation is stored by the TL in a
table with a fresiBridgelD). This BridgelD is used to inform the Nodes of the original
packet source when needed.

Meanwhile in the AP side the Login event includest only NL addressing
information (NLUnit andNLAdd® but also théJnique Serial Numbeof the Bridge. All
this information is stored in the local routing l&alwith the matchindNode Address
BridgelD of 0 (to signal that this is a direct connectioffis data is needed not only for
routing, but also to access the Node functionalitshe Bridge itself.

(StartUp)

RUSN + RNAddr

¢ ) Bridge k Bridge m oo mm
RUSN + NLAddr + NLUnit RUSN + NLAddr + NLUnit
NLUnit NLUnit
1 — —
4 L 4L L
RNAddr + NLAddr + NLUnit + ID (new) RNAddr + PLCAddr +
NLUnit + Bridge ID (0) NLUnit + Bridge 1D (0)

. TRM PDU . I
AP j ¢ ) Bridge k Bridge m IRMIEDY I
Master NL Access Node Login Information
Tables (RUSNSs) (RUSN +1ID)
1T 1T

| Bridge Master NL

RNAddr + NLAddr +

NLUnit + Bridge ID

Figure 7.2: REMPLI login processing

The AP then sends a list with the authorized Ndtias can be connected to the
Bridge’s Network Layer. The configuration of theables depends on the dimension of
the network: in simpler networks can be an “alldif&st, a list shared by all bridges, or
a per-Bridge list on large systems. When a Bridge a Node are newly connected,
another set of events occurs. At the Login evétd,Node simply stores the activated
NLUnit identifier. This information is used to generatarfn packets.

On the Bridge side, the Transport Layer starts éyegating a nevridgelD and
storing the route information of the new node. Afterds the Bridge forwards the new
route information Unique Serial Numbet BridgelD) to all the available APs. A Bridge
with attached Nodes that connects to a new AP s#nidsinformation to the newly
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connected AP. On the AP side, the received infdonds included in the routing tables
that contain information on all the possible pdthsn this AP to a particular Node.

The process for a Node directly connected to the tA® new connection
information is stored at each side and no TRM PRs exchanged.For the Logout
processing (Figur&.3) the main tasks is to clear the obsolete tadeisto discard any
pending requests that where using the disconngetid

If a Node logs out from a Bridge then the Bridg®ims all the connected Access
Points of the event using a TRM PDU and they raacbrdingly.

When a Bridge disconnects from a particular ARloies not inform the Nodes of
this event. The Bridge ignores any pending respotisa the node tries to send back to
the disconnected AP. If needed, it is the task ofié\ Drivers and Applications to
generate traffic to guarantee that the link i¢ atitive.

Logout

RUSN + NLUnit RUSN + NLUnit
NLAddr + NLUnit NLAddr + NLUnit

i ‘L TRM PDU I
destroy all route free ID e I

information l
regarding this Bridge destroy all route
information regarding free ID Node Logout
this Access Point Information
destroy all route (RUSN +1D)
information regarding 1
this Node 1l

destroy all route
information regarding
the Node

Figure 7.3: REMPLI logout Processing

7.3 Routing and Link Quality information

Apart from the Login/Logout events, the routing lesbon the Transport Layer are
updated periodically with link quality informatioand remote queue information to
enable more accurate scheduling/routing decisibtiseaAP (also a task of the Transport
Route Manager sub-module).

The Link Informationprovided by the Network Layer is the average nunife
slots used to transmit PDUs to a particular stafionthe past. This value varies
depending on the number of retries needed for eesgtul delivery (the NL has a basic
retry mechanism) and the number of repeaters netedeshch a station. Hence, lower
values reflect better quality. On the other hahds teflects the actual “quality” of the
link between the master and the slave.

Link information quality is gathered in Bridges aA#s by periodically pooling
the NL for link quality data. The Bridge forwardkset data to the AP when needed
together with the data queue depths. At the AP Tilamsport Layer estimates the time
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that a non-confirmed fragment takes from the AR farticular Node given not only the
link-quality of the connections but also the pegdiragments on the intervening queues.

TRM — ~AP NL B TNL
dAPiaBjaNk = Qapi . NLU(B)) mAPi-.Bj + (q Bj — NLU (NK) +1) [ai Bj - Nk (7.1)

Whered are estimated delays in time slajsare queue sizes in fragments for the
Network Unit that connects to statiayi,andd’ is based on forwarded information (from
Bridge to AP) andl"™is the estimated delay for a particular path.

The forwarded information is updated regularly lobsa the network conditions,
e.g. if the Bridge sent a queue size of 4 to the #eén this value is decremented
automatically by timed operation in the AP depegdin the link quality information of
the Bridge itself. This reduces the need to upttaéreal” information frequently.

After calculating the delays, the TRM at the AP @iynselects the fastest route
available to a particular Node. Since this caléatatncludes the queued fragments, it is
the natural behaviour of the TRM to distribute ajusnce of big packets over all
available links.

Routing decisions are taken only at the AP andrpquest: all fragments of a
request follow the same path, and if there is pamse, it also follows the same path as
the request. ThBridgelD field is used in the fragments to transmit thi®imation over
the network.

This solution has the following features: good udfethe available network
resources; very small overhead on the network fata dtransmission; simple
implementation; and some additional resource agelé@ on the stations to keep track of
address conversionBridgelDs.

Link Information is also provided to higher levejing an estimate of the delay
that takes a single fragment to be sent from acpeéat AP to a specific Node.

TL
dAPi - Nk

1 AP NL 1B 1NL
T z Uapi - NLU(B) [l 5 5 T (q Bj — NLU (NK) +1) [dl Bj - Nk
|SApiﬂ Nk| i0Sapi_ Nk

(7.2)

In Eq. (7.2)Sapi—nk iS the set of Bridges that connect ARP() and Node Ny). The
square operation reflects the fact that if morethae path is available then, in average,
the packets (but not fragments of packets) areeleld faster since they can be sent in
two parallel channels.

If multiple APs have connection to a Node, it i® ttask of upper layers (e.g.
DeMux or Application Servers) to manage that redumy eventually using this
information (Figure7.4). Since this estimation includes queue inforomatit is highly
dynamic and periodically updated by the Transpastdr.

In similar fashion to the Link Quality Informaticservice, the Transport Layer also
handles Node Status information transfers from NadeAPs via Bridges.
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Figure 7.4: REMPLI Network Layer example layout

7.4 Sending fragments from slaves to masters

As presented before, the base communication cham#ie REMPLI system is a
master/slave network. However, there are two sjgdtifher-level services where slaves
have the initiative: in théAlarm service slaves send data spontaneously; and in the
Request/Responservice the slave can send a single Responserathar large time
window overcoming the usual “reserved response” steradigm of master/slave
systems.

These services are tightly integrated with two NetwlLayer specific features. The
first feature is that the NL guarantees that aipder slave station is visited (i.e. a
request-response is sent) regularly with a maximmumtime configurable delay. A
second specific feature is that after visitingavelthe master tries to fetch all the data in
the slave station’s queue. These features werelafme inside the REMPLI project
itself and enable the “spontaneous” transmissiopaakets from the slave to the master
with timing parameters controlled on the fly by thensport Layer.

Given this scenario, the task of the Transport Ldageto configure the timing
parameters correctly (a task of the TRM) and totphatadequate data on the Network
Layer queues at the slave side (a task of the @bt)the Alarm service, a system-wide
maximum delay is configured that guarantees a mininQoS. For the Response service
the system-wide maximum delay is used by defautt the Node applications can
indicate a smaller delay if needed.
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Figure 7.5: Slave timer concept in REMPLI system

Figure7.5 presents the main timing mechanism of the NekWwayer. In sted the
NL queues on master station 1 (M1) have one pdcketlave station 2 (S2) and one
packet for S3; the NL queues on S2 have three paekal the NL queues on S3 have
one packet. When the NL sends the first packet firto S2, the reply has not only TL
data but also an NL flag that signals that more étvailable on the slave. The NL in
M1 automatically issues further confirmed requestsl no more data is available. The
NL in M1 then moves on to the next slave (sBmnd sends a confirmed request that
has an immediate response, no more data is inudeeg. In M1 separate timers are used
for S1 and S2. When they expire the NL issues emgryests automatically (stefs
and4). If no data is available then the timers areamst. When TL sends a confirmed
request to a station (st&) the NL resets the timer for that station. On fdpe timer
for S2 has expired and the NL has retrieved onkgidom the NL.

To set the slave-specific delay, the Transport Layethe slave side keeps track of
open transactions and respective expected delayesponse. The expected delay for a
response is a service then can be used by a Naekr ¢tiv give a hint on when the
response will be available. To simplify implemeigatthe TL uses half this value as the
ideal periodic visits needed to serve the respoause,selects the minimum value of all
open requests to set the NL parameter. The NL attoatly forwards this value to the
master in the next empty NL response. Only themnttw parameter is effective, since it
is the master’s side task to handle the timers.

88



Chapter 7
Proposed Architecture

7.5 Traffic prioritization and queuing

Traffic differentiation is provided by an 8-bit prity identifier that can be used by
applications to signal different importance. Tharigport Layer uses a simple “serve all
higher-priority” mechanism with round-robin servif@ same-priority traffic. In order
to provide priority on the responses and over lasigpriority information is
encapsulated in some Transport Layer headers.

The Network Layer supports up to three prioritysskzs (only two are usable at the
slave side). All Transport Layer traffic is sentngsthe lowest Network Layer priority,
except if the application chooses one of the tweckp priority identifiers (-1 and -2)
that are mapped directly to the two higher priogieues of the Network Layer.

1O

1
1
1
1
1
1
1
1
Channel |
1
1
1
1
1
1
1
1

Available

Figure 7.6: REMPLI priority queues processing

To make sure that no time slots are lost due tavbidt Layer queues starvation,
the Transport Layer feeds a programmable numbdéragments to the Network Layer
gueues even before the queues are empty. The Netager has a feedback channel
(see Figure7.6) to inform Transport Layer that a fragment wamoved from the
gueues.

The disadvantage of this scheme is that when ankag arrives in the Transport
Layer it may be delivered to the network later thawer-priority fragments already
gueued into the Network Layer. The two “specialfogties overcome this problem
since these are delivered directly to specific @gean the Network Layer and can pass
in front of normal priority fragments.

On slave stations the Network Layer has only tweugs and requests for High
and Very High priorities are treated as a singleugu Nevertheless, this is transparent to
the Transport Layer, which delivers the two spegi@rities to the Network Layer.
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7.6 The Alarm Service

The Alarm Service makes it possible for any Nodeednd a packet to, at least, one AP.
The Node cannot choose the destination stationjtamghossible that more than one AP
receives the generated alarm. The Node can sértbdty and the relative Timeout of
the request.
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Figure 7.7: REMPLI Alarm service
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The implemented algorithm is based in the posgjbitif multiple paths for
delivering the fragments (Figuig7). It is possible for AP 1 to have the completa
receiving some fragments from either bridge. Anpfieature is that when each station
has confirmed the delivery of a fragment to allwak units it can safely discard the
data block preserving memory in the stations. At state presented in the picture, the
AP 1 would start to inform the other stations oa tietwork that the Alarm delivery was
successful. Since this is a distributed mechanisia,possible that other APs gather all
the fragments of the packet while this finishinggess is ongoing.
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This chapter presents further details on how tdemgnt the mechanims proposed
in Chapter 7. It starts by presenting an overviéthe software architecture of the
Transport Layer, providing afterwards the main iempéntation details of each
service.

8.1 Transport Layer Software Architecture

The REMPLI Transport Layer architecture was degigard tested using OMNeT++
(OMNeT++, 2007), a public-source software suite. [ ++ is a discrete event
simulation environment with focus on the simulatadfrcommunication networks. Since
it has a generic and flexible architecture, itlaused in other areas like the simulation
of complex IT systems, queuing networks and hardwachitectures as well.

Programming of components (modules) is done in Q#aedules can be nested
and inter-connected into larger components using NED high-level language.
OMNeT++ runs on Linux and Windows and has full Glupport.

The base OMNeT++ code does not include any modEiere are several
simulation models and frameworks available directyomnetpp.org website, these
include Mobility Framework (focused on OSI layersadd 2) and INET Framework
(focused on higher OSI layers). For example, INE&nkework includes not only
protocols like IP and UDP/TCP but also models &8HB02.11, PPP, IPv6 and others.

To run a simulation in OMNeT++, it is necessaryirtplement the components
and interconnections, and specify the simulatiommpeters. The simulation results can
be recorded using OMNeT++'s tools or the usersnsco

Transport Layer code was built in order to be usechanged in both OMNeT++
and the end-system embedded Linux easing the deplayand testing of the system
(Marques and Pacheco, 2007).

The Transport Layer was designed from the statteaccompatible between the
simulation environment under Windows or Linux ate tdeployment in the field on
embedded Linux using the same source code (Margn@s$acheco, 2007). The main
blocks of the Transport Layer are presented in Hei§ulError! Reference source not
found.. It is divided into four modules, tHeCI Manager(RCIM), the Transport Route
Manager(TRM), theQueue Manage(QM) and theNL Interface(NLI). Interface with
the higher layers of the system is done throughRbBmpli Communication Interface
(RCI), with TCP/IP based streams, whilst the irsteefto the lower layer is done through
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a Linux character driver (for efficiency reasorts tower Network Layer is within the
Linux kernel).

The higher-level connection with the DeMux is colied by the RCI Manager.
This thin module does routing of messages fromRbeepli Communication Interface
(RCI) to the QM or TRM depending on the message.typalso forwards messages
from QM and TRM to the RCI. Some not implemented R@ctionality (like Access
Point Connedt results in an immediate response from the RCINheuit interference
from other TL modules.

The RCI uses alPC Transaction Identifieand aThread Identifier(the later helps
DeMux internal tasks) for each RCI Request. Thelmtifiers are recorded by the
RCIM for all messages received from the RCI. Resperfrom the internal TL modules
only have thelPC Transaction Identifierand the RCIM adds the matchifigread
Identifier to the response. Events generated by the TL daus®tither identifier. The
RCIM distinguishes Events — that do not used idiensi — from Responses — that use
Transaction IdentifierandThread Identifiers-by the message type.

| DEMUX |
___________________ R ——
1 1
P TL ARCIM/ :
processing & |t QM V¢ TRM =T | 0os
transfer |: ap ap i
: | Vo V |
| 1
""""" TT i vevicsorver JL 7777 <>
| Master NL Slave NL | TL Messages

Figure 8.1: REMPLI Transport Layer internal architecture

Similarly to the RCIM, the NLI function is to routeessages from QM and TRM
to the Master NL or to the Slave NL. Again, routiisgdone using the message type.
Some messages from the TL to the NL are of a reqesgonse nature. For example: a
TL_MASTER_SEND_CONFIRMEIMessage is eventually followed by a matching
response from the NL. The NL pairs these messagegy) uheNL Transaction ID
However, for the internal TL modules, tN& Transaction IDis not used and th@ueue
ID is used instead since it maps directly to muligfnent data. The NLI handles
conversions fromTL Queue IDsand NL Transaction IDsand the automatic
generation/disposal L Transaction IDs

To ease the task of the QM, some additional inféionalike Fragment IDand
Queue Typés also stored with thQueue 1D

The QM is the larger TL module, and it handles naisthe data processing and
transfer functions of the system including fragnation, forwarding and most of the
request adaptation tasks (RCI to NL and vice-verga)addition, it provides data
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communication services for the TRM. On the otherdhahe QM relies on the TRM for
routing information (i.e. address conversion) actiegluling of transmission tasks.

The TRM has a global view about the network stakegping track not only of
login and logout events but also on link qualitfomrmation and queue sizes in a
distributed fashion. In the current implementatibbe TRM uses this information to
make route selection based on fragment delay esbim&lowever, it supports the
addition of more advanced scheduling policies. TR also handles some accessory
functions likeLink Statusnformation.

The main tasks of QM and TRM are presented in the paragraphs. Most of the
code of the Transport Layer is used (Fig8r2) in both the OMNeT++ simulation and
the final-system HyNet (Hyperstone, 2007) boaré; ttmin difference is the addition of
a Message processing system that handles theaiceelfetween the Transport Layer
blocks and the “outside world”.

OMNeT++ HyNet Board
(Windows or Linux) (Linux)
TL Module 1 kﬁ) OMNeT++ TL Module 1 F:> HyNet

Message

TL Module 2 K— TL Module 2 K—)| Processor
TL Module 3 K—X TL Module 3 “

REMPLI —
DeMux
DeMux TCcP
Module <:> Connections
(IPC)
NL <:> REMPLI —
Module NL I[.)irjux
river
Interface
TCP
Connection
NL Message
Emulator OMNeT++ Processor
Messages calls

Figure 8.2: OMNeT++ simulation and HyNet implementation

The code sharing is possible because the Trankpger code was written from
the start having this objective in mind. At a fissage of the project, a C Object-Based
implementation was considered but some analysithefcode architecture made us
switch to a more efficient implementation. In peutar, the REMPLI code had the
following specific features: there is no direct Cinter-module communication, i.e. all
inter-module communication is done via messageyiadC++ inter-object calls; there is
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only one instance of each module object in each afydrget machine; OMNeT++
message communication functionality is implemeirtg@ C module specific for HyNet.

The REMPLI code of each module was inserted irdoraulation using OMNeT++
network design tools and some simulation-specifizdates. A main network layout
(Figure 8.3) was used with a dual PLC network that was dgethoth bridged services
simulation with several Nodes and for direct seggicimulation using the integrated
Node functionality the Bridges.

Access Points - - - - _ [Rempiiiai

have IDs 101 and 102 ! =~
for simulation only
1

access_puin\ /ﬁc:w_puma

Bridges have
Node Address
201 and 202

.,

\

Nodes have
Node Addresses
equal or above 301

1
: The network can have
1 virtually any number of

, nodes here (parameter)
1

Figure 8.3: OMNeT++ simulation network layout

The PLC Networkmodule is used to replace the Network Layer fumglity, thus
the messages on the network connections in thed-ane at the TL/NL interface level.
The OMNeT++ module itself only handles serializatie-serialization of these
messages to the TCP connection for the separateoNet.ayer emulator application.
The current Network Layer emulator only supportgE-master networks, therefore, in
order to provide a simulation environment with rivoliaster capability, eaclPLC
Networkmodule connects to multiple TCP server ports (@rdesponding applications)
using the network unit identifiers to map the tiafbetween the connections (Figure
8.4). In practice, for the presented network laytbig means that for each simulation we
have four Network Layer emulator applications rungni

When a message is received by He&C Networkmodule from other OMNeT++
modules, it routes the request depending on thewolg rules:

- for master requests (OMNeT++ ports 0 and 1) thérde®on TCP socket index
is the same of the request and the station identfi the TCP message is zero;

— for slave requests (up to 8 slaves are supportethemrurrent configuration),
the destination TCP socket is selected dependintp@Net Unitidentifier and
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the station identifier of the TCP message is etuéthe OMNeT++ port minus
one.

On the reverse direction, the following rules appleed to messages received on
the TCP interface:

— master related messages are routed to the OMNeDtt viith the same
identifier of the TCP socket, thidet Unitidentifier is also set to the identifier of
the TCP socket — master-related messages fromithEmulatorhave always
Station Identifierequal to zero;

— slave related messages are routed to the OMNeT#+wikh the identifier of
the Station Identifielin the TCP message plus one.

The PLC Network module also handles timed self-messages to tridher
simulation process on thHdL Emulator Since we are using twblL Emulatorsto
simulate two masters each simulation is triggerahetwo slot time intervals.

There is one exception on the above message phogessulticast requests are
handled by th&LC Networkmodule by sending a unicast request to a pre-e:fatave
station. When thé®LC Networkmodule receives a TCP message with the predefined
station identifier, it duplicates the message t@OalINeT++ slave ports. This exception
was needed since multicast is not supported onathalable NL Emulator The
drawback of this approach is that the timing bebawviof the multicast service is not
reflected into the simulation.

i OMNeT++ :
1 PLC Network !
.| AP 4_2 :
! 1
= : :1 .\' 0 NL Emulator
| ] 1
| 2 i
! 3 !
! i NL Emulator
4
i Node < > N 2
1 ’JSEionID | | Netﬁ‘ i
: :
® Master <4=—P OMNeT++ messages
O Slave <—> TCP connection

Figure 8.4: Implementation of multi-master simulation

Finally, Figure8.5 presents the internal modules of the Transpayer in the
OMNeT++ simulation. On the left, there is the Bidgiodule, which simply uses a

95



Part 111
Power-Line Communication System

Bridge Transport Layer that has connections toMaster NL port and the Slave NL.
The Access Point module and the Node module ardasibut a specialDummymodule
shunts the missing ports. Despite the label,Bhidge Transport Layeis exactly the
same module that is used inside the Access PoihttenNode modules.

On the right side of Figur&.5 the same modules and connections that were
conceptually presented Error! Reference source not found.are now portrayed in the
OMNeT++ simulation. There are also three connestiorthe “outside”: Driver De/Mux
port; Master NL port and Slave NL port.

to “Driver”
to Slave NL
R et et ridge2 bl
Remplethridge?
e
Queue Transmit
Marnagar Route ¥
Manager Bridge [
]
#i ndiver
% m
to Slave NL Network Layer Interface to Master NL
N X
to Master NL

Figure 8.5: OMNeT++ Simulation “Bridge” and “TL” modules

8.2 Message Processor

After developing the functional modules of the TBport Layer on OMNeT++, as
presented in the previous section, an importarntqgfahe layer was developed to enable
inter-module and inter-layer communication outfi©MNeT++.

Figure8.6 depicts the main blocks and characteristith@Message Processor.

Single-Thread
Modules

1
i
1
- 1
Driver TL Message 4?‘7 RCIM i
De/Mux Processing |
Engine S

1

1

1

1

1

1

1

One exclusive
call per Module

TL Message
Processing
Engine
(Multi-thread)

TL Module
cx_HandleMessage

(Multi-thread)
NL

Multiple messages
sent by module

Figure 8.6: REMPLI message processor concepts
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This “Message Processor” is in fact the main preacdghe Transport Layer when
running on the target devices. Although the modwese developed to be compatible
with both Windows and Linux systems (and were tkétethe two on OMNet++), the
Message Processor was developed specifically éoHgiNet board.

The Message Processor is a multi-thread modulechwhmanages TCP/IP
connections to the Driver De/Mux and Linux Drivertdrface to the Master NL and
Slave NL, adapting internal TL messages to thesmméls. The module also stores
internal messages that will be later deliverednternal modules or one of the outside
interfaces, including both event- and time-triggemessages. Each instance of the
module is guaranteed to run in single-thread fashhut different modules may be
running at the same time.

8.3 Inter-module messages

In terms of message exchange, one of the moreeairtternal TL connections is the
QM/TRM link. The main tasks of the TRM are (i) taform the QM of the destination
path for a request/response, and (ii) to triggerttnsmission of particular fragments.
This also means that any change on QM queues reufstrivarded to the TRM so the
later has an up-to-date view of the pending reguest

Figure8.7 presents the main messages exchanged by wesedadules. There are
messages for the QM to signal new queues (Wibe Address¢sand respective route
responses from the TRM. Route information includés\ddr, Bridge IDsandNL Units
depending on the situation. Each queue type hiffeactht message type since each type
has its own set of parameters. Requests and respans associated by QMXieue 1D
being this association unique for the “creation”ssages. Other message types do not
require this unique mapping, and the QM may isa@&ral messages with the same
Queue IDto the TRM before receiving the matching responses

When the TRM wants to delete a QM queue, or wh@Maqueue does not have a
viable path, it sends one of tH@ueueRoutenessages with theLUnit set to zero. After
a first valid route message the TRM can send aaletarite message afterwards if the
connection to a station is lost.

There is a simple protocol to TRM signal to QM wheew fragments should be
delivered to the NLServeSIgtand respective resultSérvedSlotUnusedSIgt The QM
can also signal that a queue was updated or destr@ueueUpdateDestroyQueue
The update messages are always with relative valeesncrement or decrement any of
the queues characteristics.

Although some messages are specific for certatiostéypes, (e.gNewAPQueue
can only be issued in an Access Point) the codeeissame in all stations to simplify
development. Different configurations are suppottedugh specific annotations in the
code that can be later pre-processed (for insttamceeate a “Node-only” version of the
Transport Layer in the future).
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Figure 8.7: REMPLI TRM/QM messages

A specific set of messages is also used for comeatioh to and from the Network

Layer Interface (Figurd.8). The first distinguishing point is that abowes interface
(i.e. to QM and TRM) the requests and responsematehed using the QM®Bueue ID
while below the interface (i.e. to the Network Lgy#he NL Indication IDsare used (in
this context, “requests” are defined as the messagamt from the TL to the NL
direction). In fact, it is the main task of the e@rface to handle the creation and
translation of theses IDs when needed. Neverthetessnall sub-set of the messages,
like SlaveStatusUpdatelo not use IDs.

98



Chapter 8
Implementation Issues

Error Results Indications % Slave NL related Messages . Master NL related Messages

~ NLI_ERR* NLI_IND_* NLI->QM/TRM: NLI->QM/TRM: NLI_MASTER_*
NL_ERR_* NL_IND_* NLI_SLAVE_* NL->NLI: NL_MASTER_*
NL>NLI: NL_SLAVE_* QMITRM->NL/NLI: MASTER_*
OM/TRM->NL/NLI: SLAVE *
QM TRM
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Figure 8.8: REMPLI NLI messages

The NLI also routes messages between master avel Nlaand the QM and TRM
modules according to the message type as preséntdwe figure. For example, all
MasterReceiveDatamessages are delivered to the QM after being neokrpto
MasterDatamessages. This is the case even if these messafjgde TRM data: it is
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the QM task to extract the TL header and from théader distinguish the final
destination of the data.

tlAP Driver related Messages tl Node Driver related Messages O Messages with
Driver>TL: AP_* Driver>TL: NODE_* TransID
TL->Driver: TL_AP_* TL->Driver: TL_NODE_*
RCIM—>QM/TRM: RCIM_AP_* RCIM->QM/TRM: RCIM_NODE_*
QM->RCIM/TRM: QM_AP_* QM->RCIM/TRM: QM_NODE_*
TRM->RCIM: TM_AP_* TRM->RCIM: TM_NODE_*
TRM->QM: TRM_AP_SEND_* TRM->QM: TRM_NODE_SEND_*
AP Driver Node Driver
[
TAPSendReqNoRespI | | ?NodeSendResp =
TT
?APSendReqResp T ,Dl ?NodeSendAlarm |
T
APSendRegMCast | ?NodeSetStatus |
?APResponseRecelved O] ?NodeRequestRespRecelved O]
TAPAIarmRecelved | ?NodeRequestNoRespUCastRecelv |
APILllveLlstChanged | <|>NodeRequestNoRespMCa\stRecew |
TAPTransactlonCanceled | ?NodeNodeListChanged |
RCIM
?NodeSendResp ]| NodeSetStatus
TT
?NodeSendAlarm | NodeNodeListChange]
APSendReqNoRespl | APLiveListChanged
?APSendReqResp ]|
T
fAPSendReqMCast |
=

?NodeRequestRespReceived ]|

1
?NodeRequestNoRespUCastReceiv |
|

?NodeRequestNoRespMCastReceiv |

I
?APResponseReceived ]| -

1 1 TRM-Generated !
?Ai;—'/\llarmReceived | L ___DataTraffic __ _,
?APTransactionCanceled |

o Vv UV

QM TRM

Figure 8.9: REMPLI RCI messages
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As expected, the messages in the NLI are a faitkefulesentation of the available
Network Layer services including master/slave sajam, confirmed and non-confirmed
requests, login/logout events and status updateniation. In these services, stations are
identified by (run-time)NLAddr and Unit IDs and the data payload sizes are very
limited.

Figure 8.9 provides the flow of messages at the RCI iatexf between the
QM/TRM and the Access Point and Node Drivers. Tdr@ises are the ones provided by
the RCI: Request with Response, Request With Np&tese, Multicast Data, Alarm
Service, Status Update and Live List informatioti. tAe data-related services support
very large data payloads and destinations areiféghby Node Addresses.

Importantly, the TRM can also use the data-relagsdices of the QM, as a Driver
would. The only limitation is that TRM services arever fragmented and therefore the
data payload is always restricted in size.

8.4 Processing Requests

In order to understand the behaviour of the Trardpayer, it is important to understand

how requests are handled. Fig@d0 depicts the processing of a confirmed request,

where:

1. The TL receives amRRClISendConfirmedequest, with theRCIPacketdata, and
relatedNode Addresand Access PoirlL Transaction ID

2. The TL converts théNode Addresso {NLAddr, NLUnit; Bridge ID}. Since the
depicted example is for a direct connectiBnidge ID is always 0. Then the TL
generates a newDU ID to group the fragments of the request on the PLC
network. PDU IDs are unique for eablh AddrandNLUnit. Finally, the TL saves
the APTL Transaction IDfor this request.

3. The TL sends fragments using the NL for tieAddr, NLUnit destination adding
its own header witiPDU ID andBridge ID.

4. The Node NL receives the fragment

5. The TL of the Node rebuilds the fragments of thejuest (the current
implementation supports selective acknowledge nmashrato complete this task),
generates a new Nod&ans ID and stores correspondif®pU ID / Bridge ID /
NLUnit.

6. The TL delivers the complete request with the &t@cNodeTL Transaction IDio
the DeMux, which eventually delivers it to the Nddever.

7. The Node Driver processes the request and prepla@eadequate response. The
answer is delivered via the DeMux to the TL. ThedB®L Transaction IDis used
to match request and response.

8. The TL now fragments the response and sends it toaitle AP. The fragments of
a response have the saPBU ID andBridge ID of the original request, so the
first task is to retrieve this information, savedstep 5.

9. Fragments are sent to the AP using the siixignit of the request. ThBridge 1D
andPDU ID are included in the TL header information.
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Figure 8.10: REMPLI PDU processing (direct connection)

10. The AP receives the fragments
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After receiving all fragments of the response theriatches the response to the
original AP Driver request

The response is delivered to the AP Driver. TheTAPTransaction IDis used to
match the request and the response.
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Figure 8.11: REMPLI PDU processing (via Bridge)
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For a bridged request most of the processing idairtFigure 8.11), with some
exceptions:

— When a Node connects to a Bridge, the Bridge asdigs Node a Bridge ID.
When the Access Point wants to communicate witi\thée it uses this Bridge
ID to address it at one particular Bridge. On tbegerse direction (Node to
Access Point via Bridge) a similar mechanism isduséne advantage of this
method is that TL header space is reduced significavithout compromising
scalability of the system.

— If the Access Point wants to communicate direatlyhte Bridge (i.e. using the
Node functionality of the Bridge itself) it usestreserved Bridge ID of zero.

— Each network segment has its own PDU IDs, Bridgs Hic.

— All the fragments of a request and matching respgnéien applicable) follow
the same route.

8.5 Fragmentation and Headers

Like in Profibus networks, the REMPLI NL is alsaited to small PDU size in order to
improve system responsiveness. The TL is built elverNL layer to provide very large
data payload services to applications.

The need to combine fast response services wige ldata lengths (up to 16 MiB
on the current configuration) on the same systead ko solution with three different

headers (Figur8.12):

Minimum Header

0 17 (Padding)

| R |Header | "Pouib” | "Frag.io” [ [ ] |]]
Small Header
0 17 25
[ [reader| PouD " | Frag. o | ‘smaitenan |1 1111

1 1 1 I A T | TN TR TR T S T N TR | N | 1 1 1 1 1 IL 1
Large Header
0 17
|F'<|H'eédér| "PDUID | "Frag. ID |

18 41

|||||||||||L|arg|e|Le|ng||th|||||||||||||||||

Figure 8.12: REMPLI Fragmentation Headers for Unicast DataServices
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- aMinimum Heademith Request Typ€ bits),Header Typg4 bits),PDU ID
(6 bits) andOffset(6 bits), with a total of 18 bits or 3 bytes;

— aSmall PDU Headewith the same information fields of tivinimum Header
plus a 8-bitData Lengthfield, with a total of 26 bits or 4 bytes;

— alarge PDU Heademwith the same information fields of thdinimum Header
plus a 24-biData Lengthfield, with a total of 42 bits or 6 bytes.

The first field identifies the type of PDUWRequest/ResponsEnicast Response
and TRM Data The second fieldHeader Types used to distinguish between the 15
available header configurations at the currentiwarsThePDU ID field is unique per
source (i.e. the master or slave of a particukticst) and identifies a group of fragments
as belonging to a packet. In the current headéritaoture it would possible to share
PDU IDs between some groups of header types but to redoicglexity this is not
implemented at the moment. The 6-biag. ID identifies the order (starting at 0) of
each fragment in the set of fragments of a giverkgia

When sending fragments, the first fragments (a dlatipn-time constant,
TLH_NumberBigHeaderswith a typical value of 3) are with length fieJdand the
following fragments use only minimum headers. Sitioe system can only store data
fragments after a successful reception of a headtér a length field, the number of
fragments with packet length information is confegle depending on the expected
error rates of the network and also on the proltgluf out-of-order delivery.

In addition, the bit lengths for “small” and “largé?DUs can be easily pre-
configured and can have up to 32 bits (4 GiB). Bieci on the length sizes of headers is
dependent on the specific system and the prediéfit patterns.

The fragmentation functions handle most of the dataeption and transmission
tasks for typical services. For transmissions, ftagmentation starts after the QM is
aware of the maximum length available for a paléicurequest. It creates
(NodeCreateFragmentsAlarmCreateFragmenis etc) a linked list with fragment
information and ready-to-use PDUs data blocks, detapwith headers. If applicable
(see below), the fragmentation process handlediffezent headers used in one request,
that is, only the first fragments have “complet@ders” thus the remaining fragments
have more space for data payload. Fragment infeomataries with the type of queue
but typically includes TTL counter, PDU final siz&hsolute fragment number (starting
at 0) and delivery status (elgataToBeSenSent Confirmed.

After creating the fragments, the original datacklis discarded. This means that
there is a temporary duplication of the data payloa the station, but the advantage is
that as soon as each fragment is confirmed the clatabe discarded and memory
released gradually. The other reason to chooseyteagse PDUs is to guarantee that
when a queue is scheduled, fragments are delivesddst as possible to the Network
Layer. The disadvantage is a higher worst-case mefaotprint.

This is also dependent on the possibility of siem#tous use of different sized
network layer units. If this was not foreseen, fmegitation could be done immediately
when the data is received at the DeMux interfacgingppart of this functionality from
the QM to the RCIM. The QM would later add the herado the fragments.
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Figure 8.13: Memory Blocks in a Unicast service (Linux HyMt System)

When receiving, the first fragment triggers theoedition of the full packet.
Afterwards, it is simply a task of placing eachgirgent in the correct position. The only
caveat is positioning the fragments: the smallgdqzal of the first fragments has to be
taken into account when calculating the byte offdeeach fragment in the reception
buffer. In order to control delivery of fragmentt, every 16 fragments (or when the
packet is complete) a confirmation packet is seukho the source of the PDU with
fragment status information. This is done creaingewTxQueuethat is scheduled by
the TRM eventually.

Since the system may experience out-of-order dsliged bandwidth is scarse, a
bit-oriented fragmentation confirmation mechanissn used enhancing the standard
sliding window mechanism. The ideia is that inste&dsing one PDU to confirm each
fragment (or a group of consecutive confirmed fragts) we can set the status of a
group of fragments at a time. This data is sera @MStatusstructure that has RDU
ID, an absolute 32-bit offset of the first missinggment (like a standard sliding
window mechanism), and 24 bits with the status #fflfagmentsafter the first one.
There are two reasons for this enhancement: (ijjramsmission fragment blocks can
freed earlier and (ii) on bridge forwarding it i®@gsible to implement a forwarding
service oriented to the fragment (and not to theing window) optimizing memory
usage.

A straightforward algorithm to build this statugdrmation is presented in Figure
8.14. On the other station, the process of dewgdtia fragment is confirmed or not is
adapted accordingly. Please note that this proeesstually generates a PDU from the
station that is receiving the Data PDU to the stathat is transmitting the Data PDU.
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On the TL, the offset is signed, and if lower thzaro then all fragments are
confirmed. On the side that is sending the Data PDU sevasib have to be fulfilled. If
all fragments are confirmed the transmission isete. Depending on the station and
gueue type, this can originate an event for thgedr{e.g.NodeOkAlarm and/or the
destruction of the queue itself. For partial ligth,the fragments with offsets lower than
the first fragment are released (since they arefirooed implicitly), the bit-by-bit
confirmed fragments are also released. For the-Confirmed” bits a simple retry
mechanism was implemented: after the receptionwof ‘hot-confirmed” bits for the
same fragment, the fragment is placed back in thesénd” state (and is scheduled in
due course). For unicast requests, the first @ieieSegmentS)zéragments are
numbered in sequence starting at 0 up to 63, tkeores from 0 to 63 and so on. A
sliding window mechanism is used to keep track biciv section of the fragment list are
being dealt with. The first fragment value of tMStatusstructure sets the first
fragment of the “window” and only up to 32 fragmerdhead of it are sent. Like
“traditional” sliding window implementations, theimdow can only move when a new
QMStatusstructure is received.

// STATION RECEIVING THE DATA PDU

// Assume that:

// a. when a fragment is received a structure is placed in an ordered linked
// Tist_with the absolute fragment offset

// b. block->frags{0} reads or sets the first bit, {1} the second and so on
// c. block->frags{0..4}=true sets the fist 5 b1t5 etc

// function Generatequstatusslock

// Return a pointer to Status Block f
7/ one Reception Queue, or NULL if all fragments
// are received

(statusBlock *) GenerateQMStatusB]o(k(erueue) {
// temporary var to store the blo
statusBlock™ * block;

// 1. find first missing fragment or unconfirmed fragment

(urFrag =0;
aux = rxqQueue-: >ﬁ rstFragment;
while (aux!=null)
if (aux->offset != curFrag)
eak;

aux = aux->next:
curfrag++;

if ((aux == nu11) & (curFrag == rxQueue->numFrags)
return null; // we have all fragments

// 2. build the status block and set the first fragment value

block = new statusBlock();
block->firstFragment = curFrag
block->frags{0..23} =

// 3. build the bit Tist of other fragments
curfrag=0;
aux_= aux->next;
while (aux!=nuli || curfrag > 24) {
deltaFrag = aux->offse block->firstFragment + 1
if (de]taFrag o curFrag) {
f (deltaFrag >= 24
block->frags{curfrag..23} = false;
breal
} else {
block- >frags{curfrag. de]taFrag 1} = false;
curFrag += deltaFrag-

Curfrags++;
aux = aux->next;

// 4. we_are done!
return block;

Figure 8.14: REMPLI Status Information Algorithm

® In terms of programming this is almost the samehasking if the offset is equal
(or greater) to the number of fragments in the PDUt it eases debugging tasks.
Another difference is that the number of bits usggdtem-wide is configurable at
compilation time.
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For non-unicast services, the main difference & tio “minimum headers” are
used (Figure3.15) and the headers have the absolute order mwhltee fragment. The
benefit is that all fragments have the necessdoyrimation to start the data reception.

In order to conserve bandwidth, the “internal” Thffic “piggybacks” several data
blocks inside a Network Layer PDU, aligned at dyveindaries.

For the internal traffic between TRM units in dif@t stations, the system fills the
available data space with a series of TRM dataksloeach with its own function. It is
possible for example to send several link qualjpdate notifications mixed with status
service updates in one single NL packet. QM usesimalar procedure for its own
packets, e.g. the QMStatus described in the Coafiom process above.

Small Length Header
0 11 17 25

[ [Heaser | Po0T" | bsols | ‘smaitensn [TTTTT]

Large Length Header
0 11 17 31

| R |Header| "PDUID” | ** " " "large Absolute Offset |

32 55

Large Length

Figure 8.15: REMPLI Fragmentation Headers for Non-UnicastData Services

8.6 Direct Unicast Service

The TL unicast service aims to provide reliablesraission of packets from the Access
Point to a Node over the two-level network. Theebastwork does not guarantee the
order of delivery of packets and has a very limpegload per PDU so this service is a
major improvement over the existing system. Howgverwas important for the
implementation that small packets could be deliddest (but not necessariépnfirmed
as fast) and the service has this in consideration.

The algorithm of the unicast service is summarirethe next paragraphs for the
non-bridged version; the bridged version is veryilgir to the alarm processing that is
presented in the next sub-chapter.

1. Access Point Driver issues a Unicast Request éated to a Node

When a request is issued by the driver the pacat @ delivered first to the
DeMux and then to the RCIM and finally to the Queuklanager
(CreateApTxQueueUnit

The Queue Manager saves the PDU data pointertfargaocessing. It also assigns
aQueue ID(unique for this station) to the request and sélvesjueue information in the
list of Transmission QueueméertTxQueueUn)t It then waits for the Transport Route
Manager for an available route to the giwode Addresdestination.
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The Transport Route Manager then calls the Frag@emeduler and sends either a
route to the QM or an message signalling than nteris available. In the latter, the QM
destroys the queue information and issues an eresssage that is later delivered to the
driver.

If a route is available UpdateApTxQueueUnitinfaghe QM assigns a neRRDU 1D
(unique for each Network Layer Unit). The route oimhation also includes the
maximum data length for the path and it can nowatergAPCreateFragmenjsthe
fragment information. The PDUs created have thaiesgtype ofRegqNoResplf for
some reason fragments cannot be created, the Q@vhiafTRM to remove the Queue
Unit information.

It then sends an update message back to the TRiMimf@rmation on how many
fragments are to be sent. The QM uses a slidinglavinin order to support very large
packets. Only fragments up to the sliding windoresare marked as “available to be
sent” to the TRM. The queue is identified in thesessages by tHeueue ID

This message starts the cycle of fragments trassmis when the network is
available the TRM informs the QM to senBlefveTxQueyeone or more fragments to
the Network Layer. When the Network Layer proceddesfragment (e.g. when the
fragment is about to be sent to the physical ndiwtire QM informs the TRM that a
slot is available and the process is repeated tinatie are no more fragments to send.

When a fragment is processed by the Network Laydoes not guarantee that it is
correctly delivered. The fragment is kept as “pagtlion the fragment list. When a
confirmation is received from the NL then the fragrhis considered to be “delivered”.
If an error is received from the NL then the fragines set as “available to be sent”
again.

The Fragmentation process controls the delivery all fragments
(ReceiveQmMasterDatand delivers the OK message to the DeMux wherptheess
is complete.

2. Node Transport Layer Receives Data

When the Node receives a fragment wRlkegNoRespequest type it starts by
building the new queue informatio€ieateRxQueueUn)it This process first checks if
the queue already exists, e.g. if there is BxQueueUniwith the samé”DU ID and
NLUnit.

If it does not exist then it creates it. It saviee base queue unit parameters (like
priority, length,PDU ID andNLUnit), and the event type that is used to transfed#ta
do the DeMux (in this caddodeUcastReceivgdSince this is a reception queue it does
not have &ueue ID

After creating the queue, or if the queue alreaxigted, the fragment reception
process ReceiveRxFragmenis run. If all the fragments are received theadainter is
transferred to the DeMux using the previously stozgent type. Finally, the last step is
deleting the queue unit informatioD€leteRxQueueUnitThis function simply removes
the structure from the linked list and frees thedusiemory.

3. Timeout and error processing

For simplicity timeout, processing was not includedhis description. The main
concept is that the Queue Manager calculates thdlide for the packet and forwards
this value to both the Bridge and the Node. Thitutsmn was chosen since the
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synchronization of the clocks in all stations isganteed by other REMPLI components
(Gadereret al, 2006).

The processing of typical errors, including retpyemtions are handled by the
ReceivedRxFragmefinction.

Except for timeout checks in the Queue Managerthadive List Costupdates in
the Transport Route Manager, all the processinglenthe Transport Layer is driven
from external events: TL progression is only adédawhen there is an external input
(from the DeMux or from the NL).

8.7 Bridged Alarm Service

The Alarm Service makes it possible for any Nodese¢ad a confirmed packet to, at
least, one Access Point. The Node cannot choosedé¢lkénation station, and it is
possible that more than one Access Point recehegénerated alarm. Therefore it can
be classified as an “anycast” service originateth@Nodes.

The Node can set theriority and the relativdimeoutof the request.

Access
Point 1

Point 2

o
& Released

NL (MV)

Received
Missing

NL (LV) M s.ng 0K

@ NL Master
O NL Slave

Figure 8.16: The Alarm Service Fragment Status — Simplifié Concept

The concept is based in the possibility of multilaths for delivering the
fragments (FigureB.16). It is possible for Access Point 1 to have domplete data
receiving some fragments from either bridge. Anptieature is that when each station
has confirmed the delivery of a fragment to allwak units it can safely discard the
data block preserving memory in the stations. At state presented in the picture, the
Access Point 1 would start to inform the otheristet on the network that the Alarm
delivery was successful. Since this is a distridutechanism, it is possible that other
Access Points gather all the fragments of the paekgle this finishing process is
ongoing.
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In the REMPLI Transport Layer the process is mamaglex due to the support of
multiple sized Network Layers: the received fragteeran have a different size of the
transmit fragments. This is possible since the odtwlayers can be configured
differently depending on the physical medium chemastics.

Consequently, a dual-queue architecture was desigoneenable support of
different data lengths in master and slave sidetlsf Bridge: a collection of
QueueSegmentgathers blocks of received information from thedBpand fragments
ready-to-send to the Access Point are attached pbssible to a transnfueueUnit

To AP: To AP:
From Node: o] From Node: NN B [ B
e Ll g
To AP: ToAP |§\:\‘\\% |
From Node: *\ \‘Q\ I! ﬂ ACHDI §§§§§§ E|

Figure 8.17: The Alarm Service Bridge Dual-Queue Architeatre

Received data is released in a segment block wheheadata of that block is
completely received and has been transferred tarémsmission queue. Transmission
data is released on a fragment-by-fragment bassalny other transmission queue.

This process is summarized in FigBd7. Nevertheless, a clarification must be
made in terms of memory usage. At the receptioch &gmentQueuds allocated at
once to store user data of several fragments dedsed when possible. In transmission
memory is only allocated when needed by a fragnaem,released when the fragment is
confirmed. In terms of the figure, this means thatgray boxes at the “To AP:” side are
not allocated yet, but the gray boxes on the “Fidode” side are already allocated but
not filled up. HoweverSegmentQueuese only allocated when needed: in the example
above the second segment was only allocated wiefir$h of fragments 5 or 8 arrived.

The choice forSegmentQueuesas done to mimic as far as possible the normal
non-bridged reception without wasting too many ueses.

1. Node Driver sends Alarm request

At the Node side the process begins withaeSendAlarmequest from the Node
Driver. As usual this request is passed to thedrand to the RCI and, finally, to the
Queue Manager.

The Queue Manager starts byréateAlarmQueueUnitsaving in a list the basic
information about the request, priority, size, dagload, etc. It also appends to the data
payload an absolute timeout value. It then passesdsiling information to the TRM.
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The TRM stores the information and issueAlarmAddNetUnitmessage for the
QM regarding each available network unit on thdiata This enables the “reverse”
broadcast nature of the Alarm service.

Back on the QM side, the first message triggers frlagmentation process
(AlarmCreateFragmenjs In the Alarm Queueseach fragment has status information
regarding each network unit so it can track theivde} independently. Only after
confirmation in all units is the fragment is reledsThe QM issues an update message to
the TRM with the number of fragments pending fa ¢fiven net unit.

At this point, the TRM Fragment Scheduler can sed@e of the alarm units to be
served depending on the current pool of pendingesig. In this, Alarm priorities are
treated like any other queue priority, but advan8etedulers could differentiate queue
types.

When the Fragment Scheduler selects a particulamAlueue and unit the QM
scans $erveAlarmQueyethe fragment list for fragments to be sent. ififd they are
marked as “not confirmed” and a copy of the fraghfeDU delivered to the slave NL
(via NLI). Multiple fragments can be scheduled watkingle TRM request.

2. Bridge receives fragments from Node

The first fragment originates a new Queue Ufite@teBridgeAlarmQueueUit
other fragments are “added” to the queue unit (RézeiveAlarmBridgeFragmeént

When creating thQueueUnitthe QM sends 8ridgeGetBridgelDmessage to the
TRM, with network unit and address of the Node. TtM eventually sends back a
BridgeGetBridgelDResponsmessage with the matchinBridgelD that is used to
identify the original node in the fragments to thecess Points, transmission fragments
are only created after receiving this informatiancs it is needed for the fragment
headers. The QM also issuedleawAlarmQueuéor TRM scheduling purposes. The last
step in creating the queue is calli@geateAlarmBridgeQueu€This allocates memory
for oneAlarmBridgeQueustructure and the firgtlarmBridgeQueueSegmesttucture.

The received fragment data is saved in the datakblof one of the
AlarmBridgeQueueSegmerstructures (if needed a new structure is allogatdd
referred above, when possible, e.g. when contigunamory is available, received
fragments are rebuilt into fragment&lgrmBridgeReconstructFragmehtseady to be
sent in the slave side of the Bridge stored in AlrmQueueUnitstructure like other
transmit queues. When all the data in a particdéarmBridgeQueueSegmeris
transferred to thé&larmQueueUnithe AlarmBridgeQueueSegmeistreleased. The new
fragments originatéJpdateQueuenessages to the TRM.

If an AlarmOKPDU is received a confirmation is sent back. Taednfor this “re-
confirmation” is that the Node is not able to comfivia the Network Layer if the PDU
was actually delivered or not. This PDU is sentkbaeen if there is no matching queue
unit in the Bridge. All the remainingAlarmBridgeQueueSegmerdata, and the
AlarmBridgeQueueSegmesttucture, is released at this point.

3. Node receives fragments confirmation

Eventually the slave station receives special QMJBvith Alarm information.
Each PDU includes information about tA&armiD, if the Alarm was delivered to one
destination AlarmOK), and fragment confirmation data.

If the AlarmOK bit is set, the QM releasefRdceiveQmAlarmHeadenll the
fragments and set the status as “finished”. If thés the firstAlarmOK PDU for this
gueue then the Node Driver receives the confirmatiat the alarm was sent.
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8.8 Request with Response Service

The processing of Request with Response servisienitar to the Unicast service on the
AP-to-Node direction followed by a “single-route”lakm service on the Node-to-AP
direction.

One of the differences it that at the Node sideecisl queue is kept in “open”
state while the Node driver processes the Reqiiést.Node driver can opt to send a
Response with any data length (including 0) or eci&p NoRespcommand. The
Response is matched to the Request byth&ransaction ID

If the queue timeout expires before a responsssised, &NoRespPDU is sent to
the AP Driver by the Transport Layer and e Transaction IDis invalidated. There is
no way for the AP Driver to know if tlidoRespwvas due to a timeout or really issued by
the Node Driver. The AP Driver only receive timeeutors for theransmissionphase
of the request.

An a additional feature is that the Node Driver sand éRespTimesommand for
a particularTL Transaction IDwith information on the expected delay till thesRense
command. Periodically the Transport Layer scansop#n requests in the Node and
selects the smallest of these delays to setuprttemtt sub-system of the Network Layer
(as presented in Sectid). The timeout is set to half the minimum vaigicated by
the Node drivers.
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This chapter addresses the experimental validatidghe mechanisms proposed in
Chapter 7 and for which some implementation deta$ provided in Chapter 8.
This validation was based in extensive test casea simulation environment,

which allowed to build an application-rich scenarémd comparison with

performance in actual field tests.

9.1 Introduction

With the test scenarios devised to validate the REMTransport Layer, particular
attention was given to the advanced features whiehe the focus of the previous
chapters. These consisted in the new end-to-erétesy routing in a two-level network,
scheduler performance and resource usage. Extetesiveases were implemented in a
simulation environment, whilst field test resultwaed to confirm the adequateness of
the approach.

9.2 Simulation Environment

By design, the Transport Layer was prepared toebted in the OMNeT++ simulation
environment. However, this environment did not supghe REMPLI physical and
network layers, thus a new emulator was designed bsoup within one of the project
partners (iAd). This application emulates the ptgiiayer behaviour of the PLC system
in a single time slot using a simplified (and fastithematical model of the network,
which deals with successful or successful datavelibetween several network points
at the same time. For example, if two stationsififeignt network positions send a PDU
to the physical medium, the emulator calculateshalpositions that received each PDU
and delivers the respective data considering plessiutual interferences. These
network models where obtained from a much more d¢exnfand time-consuming)
simulation system of the physical layer, includai@nnel encoding and synchronisation,
and estimated response of the physical layer cerisigl the signal responses of actual
power lines.

The emulator included data files for topologie® liking Open RingandRandom
Area (a central point with several “trees” radiatind)epending on the models, the
number of positions varied from 10 to 200 stations.
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On top of this emulator, a version of the Netwodyer was developed by another
partner (Loria), therefore building a complete eowment for testing. This was
integrated with the OMNeT++ simulation tool via & channel. The simulation sends
new data packets to the emulator where they areieglieln each “time slot”. an
emulation cycle is requested to the emulator tkats back the resulting data packets
and the respective stations. Since the emulatgoastgd only single-master networks,
multi-master networks were supported using twonfore) emulators in parallel, and the
number of used slots adjusted accordingly. Neverise multiple master networks
sharing the same TDMA slots (e.g. in “distant” gsiof the network) are not supported
in the current version of the simulation systemisTwould require changes to support
multiple network layers in parallel and move eachstar to a programmed position in
the grid (currently they are always in position 1).

/g ( pmmm e
AP AP _ 57 Positions 2 to 10, 60
N 3 4 =B ' used in simulations

" Position 64 used for

28 i multicast emulation

N 1 2

84

96 4q5&444~ﬂ¥ 9
69 87

16 92 &4
36 ’
I ua) 82
— a4
244
%) a5 68

Figure 9.1: Nodes connected in REMPLI Network Emulators

Figure9.1 presents the physical layout of the nodes @fthysical layer emulator;
the curves surround the slaves that connectedetontister in the centre of the network.
The difference between the simulations is only ba seed of the random number
generator used for the physical layer emulator.these physical layer simulation
scenarios, all 100 stations were connected aft@rsirhulation seconds. Also presented
are the selected node positions for simulatioro 2@ and 60. Looking at the map it is
possible to conclude that positions 4, 7 and 8 neaeive data, and positions 3, 6, 9, 10
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and 60 always connect successfully. Other positiomsnect only in some of the
emulators. Position 60 has the best reception Iplessn the network in terms of delays
with a high probability of not using repeaters Bt @ther positions may be subject to
repeater delays, especially the ones nearer tiiebine.

Emulators 1 and 2 are used in the low voltage segared Emulator 3 and 4 in the
high voltage segment. Table 9.1 presents the majiigres with corresponding Node
Address and connection capability. On Emulatora@4only Node Addresses 201 and
202 are presented since only two bridges were uns#te simulations; Node Addresses
301 to 310 are for Nodes. These values are onlyh@rTransport Layer and Drivers.
The Network Layer and Physical Layer still behageoading to the scenario of 100
stations in each network, including internal mamaget activity to keep track of all
logged stations.

Table 9.1: Channel conditions in each REMPLI emulator pogion

Position=> 2 3 4 5 6 7 8 9 10 60
Node Address 301 302 303 304 305 306 307 308 309 310
Emulator 1 OK OK OK OK OK
Emulator 2 OK OK OK OK OK OK OK
Node Address 201 202 @ --- - -
Emulator 3 OK OK ok OK oK OK OK
Emulator 4 OK OK OK oK OK OK

Apart the Network Layer Module, simulation-specificcess Point and Node
Driver Modules were designed for OMNeT++. Other mled like TRM, QM, NLI and
RCIM use the same source code as the target imptatien.

The Access Point Driver module is specific for Hiaulation scenarios. In a real
station, the drivers would receive requests fromereal applications and translate them
into protocol requests to the DeMux. In the simuolathere are no applications making
requests, as the Access Point Driver module ensuthtese requests in each simulation
station depending on the features to be tested.Adoess Point Driver can generate
confirmed requests, unconfirmed unicast requestsonfirmed multicast requests and
status requests. Since we have two different PDadléws in the system depending on
data lengths, the simulation also takes this fatct @account.

On the other end of the network are the Node Dsivetich are also simulation
specific. In this case the only requests are tl@mliService and Status Service Updates.
Depending on the station, the Node Driver can alsue automatic responses
(eventually with a delay) to confirmed requestshef Access Point.

In the end system there is a DeMux layer betweenTiansport Layer and the
(multiple) Drivers per station, but for simulatidiis was not critical since the service
interface and functionality is comparable for maagglpurposes. Although the name, the
“Drivers” in these simulations emulate the DeMuxdtionality including additional
fields in the transfers with the TL when approm@iat
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Figure 9.2: Transport Layer Simulator Architecture
9.3 Base Network Layer Characteristics

The base network emulator was configured matchihg taboratory test bed
configuration that was also successfully in thédfigial: 64-byte packets (51 available
after Network Layer) and a slot time of 9.5 ms.

Since we are using a dual master network sharinglgzarts of the time slots with
a normal interleave of four, the parameters foretrailators were adjusted accordingly.
Each emulator was configured with an interleaverwailf two and each pair is called in
alternating slots. In reality, each emulator isivated every 19 ms. Apart this
configuration parameters the network emulatoréatd in a black box fashion in this
section.

In order to be able to obtain higher sensitivitgarling the Transport Layer
performance, it is interesting to use informatidrowat the underlying Network Layer.
With this data, it is possible to compare not otiig end-to-end additional delays
included by the additional Transport Layer mechasis but also to have some
information on the issues create by lower layetaydeand errors (also having the base
average bandwidth). In order to be a faithful reprgation of the future tests base
network, this test only sends PDUs to slaves thggeéd in and it is used in the other
tests (i.e. Node Addresses 301-310 and 201-202).

The first test was to produce the maximum alloweddl in the network with
unconfirmed requests from all masters, registeting delays until the PDU was
delivered to the slaves and/or possible error atéhos. For this test, the NLI was
adapted to provide the desired scenario, includiageful synchronization with the
emulator slot timer, while remaining TL functiongli was disabled. This
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synchronization was possible since the NL generategvent every time it reads a
packet from an output queue. This process guamritest an emulator slot occurs
immediately after the Master Network Layer geneyatenew request with an effective
null time difference and with minimal queuing. lretnormal operation of the Transport
Layer, there is no such synchronization sinceithing is controlled by external entities
(the Drivers) that do not have the need for a geesiynchronization with the Network
Layer. In practice this means that “real-life” résishould have in average an additional
delay of half a slot in a mono-master network {ie tvorse case the PDU has to wait
almost an entire time slot), or in a dual-mastamwonek with interleaved slots (e.g. M1-
M2-M1-M2 and so on...) the average delay increasesftdl time slot.
The tests results are summarized in tables 9.24to 9

Table 9.2: Network Layer Performance Tests

Global paramenters Slots
Slot time (“real”) 9.5 ms
Interleave factor (“real”) 4
Number of networks (“real”) 2
Number of masters per network 2
Number of slots per interleave cycle for one Master 2
Physical layer raw data rate (both networks) 107186
Physical layer raw data rate per master 26947 bps

Table 9.3: Network Layer Unconfirmed Requests performanceest
Unconfirmed Requests Results Slots
Total possible slots 31578
Slots used / Packets issued 20597
Network availability 65%
Average Tx data rate (TL Payload) per master 14086
Minimum network access delay 0 ms 0.0
Average network access delay 11 ms 1.1
Maximum network access delay (99.5% best) 57 ms 6.0
Maximum network access delay 3382 ms 356.0
Packets delivered 18945
Packet Error Rate 8%
Average correct Tx data rate (TL Payload) per naste 12883 bps
Minimum transmission delay 38 ms 4.0
Average transmission delay 64 ms 6.7

Maximum transmission delay (99.5% best):
Maximum transmission delay

152 ms 016.
3420 ms 360.0
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Table 9.4: Network Layer Confirmed Request performance tet

Confirmed Requests Results Slots
Total possible slots 42104
Slots used / Packets issued 13024
Network availability 31%

Average Tx data rate (TL Payload) per master 662 b

Minimum network access delay 0 ms 0.0
Average network access delay 89 ms 4.5
Maximum network access delay (99.5% best) 285 ms 30.0
Maximum network access delay 5890 ms 342.0
Packets delivered 13020
Packet error rate 0.03%

Average correct Tx data rate (TL Payload) per naste 6640 bps

Minimum transmission delay 38 ms 4.0
Average transmission delay 102 ms 10.8
Maximum transmission delay (99.5% best) 437 ms 46.0
Maximum transmission delay 3287 ms 346.0
Confirmations received 13017
Deliveries non confirmed 0.02%

Minimum confirmation delay 76 ms 8.0
Average confirmation delay 154 ms 16.3
Maximum confirmation delay (99.5% best) 513 ms 54.0
Maximum confirmation delay 3325 ms 350.0

Analysing these results, the first conclusion &t th large part of the network raw

capability is “lost” in the current setup. A paftibis lost in headers (64 bytes turn into
51 bytes usable by the Transport Layer: a 20% dropl) most of the “lost” slots are
used by the network layer repeater mechanism tease the coverage area (some are
lost in network layer's management). Although thetfthat we are connecting only a
few stations to the OMNeT++ simulation, the emulatehich includes the network
layer functionality, uses the complete network 00 ktations. Since the selected nodes
are distributed in the “connection” area, some hideeminimum delay (4 slots) but in
average they need at least two repeaters (8 shwid) some need three (12 slots).
However, less than 0.5% of the requests show erlselarge delays, much larger than
the repeating slots and more in the order of 3 rs#%0A quick review of the test logs
shows that the network did not generate any tralffiéng these delays, but data stays on
the Network Layer queues, therefore it is possilmleassume they reflect internal
network maintenance cycles (also possible thamn#ieiork detects a fault and stopps
sending packets temporarily). These outages hawgreat impact in the network.
Considering the unconfirmed request case, the @6%e cases (101 requests) occupy
5662 slots. If we deduct from this value the tingedi in average for the other 99.5%
requests, in order to process 101 requests we 5@ slots “wasted”. This is around
20% of the usable slots.
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Concerning error rates, for unconfirmed PDUs, 8%hef requests did not reach
their destination. Nevertheless, this results waitglly depending on the link studied, for
example the connection between 101 and 201 is stensly worse (minimum 8.0,
average 12.1 slots) than the connection betweera@@202 (minimum 4.0, average 5.6
slots). This result is expected from the mere olzgem of the connection map where
position 2 (station 201) is in the borderline of tonnection area and position 3 (station
202) much nearer the centre of the map.

For confirmed PDUs, there is a residual packetrerate (4 errors in 13024
requests); in the test we also reporter very fewsmg confirmations for correctly
delivered packet (just 3 missing confirmations BD20 delivered packets). Therefore,
the simulated network is extremely reliable whernngisconfirmed requests when
compared to the unconfirmed request performanteisrparameter.

In terms of delays, it takes at least 4 time sfotsa PDU to go from A to B. For
confirmed requests, the average is 6.7 slots fta ttabe delivered from the master to
the slave, and this value increases to 10.8 stwtsdnfirmed requests (see Fig@es).
The additional delay in confirmed requests is dughe automatic retry mechanism
supported by the Network Layer: if an error is degd, additional time slots are used to
retry the request and, as seen in the final eatasy the Network Layer behaves well in
this aspect. These delays also influence the qgeinme before PDUs are sent.
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Figure 9.3: Network Layer performance histograms

It was also possible to repeat the confirmed requessts with echo functionality
from the slave station. The results were similarte table above and most of the
confirmations at the master were followed by tlzvsldata in the same slot. 11859 slave
responses arrived to the masters, which meanssaofasbout 9%. Slave to master data
payloads are typically sent by the Network Layeth@a confirmation of master request,
but they are not re-confirmed. For a particular tera® slave confirmed request a PDU
can be generated by the slave with a data payloddnat make it all the way to the
master. The network layer at the master side ressthe original request if needed but
the slave data is lost anyway.

Another effect was that approximately 20 PDUs wgreued for delivery after the
last confirmation at master 201 and 202, while iastar 101 and 102 only 3 PDUs
where delivered late. Most of these “queued” PDUsendelivery to the master in a
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burst with only 2 to 6 slots intervals between PDBgice the slave-to-master channel
was being used at this time, the network datafrateorrectly delivery data went up to
12679 bps - that is almost the same as the rdsult®n-confirmed data.

Another test was setup with duplicated echo PDWghis scenario, the Network
Layer tries to empty the slave’s queues as soqossible and uses more bandwidth for
the slave-to-master channel. This resulted in @#$6 confirmed requests generated,
one of them being lost during transmission and 98B&Js being received back in the
master (again 9% less than the generated).

In global 14812 slots where used for this last ¢dthe around 42104 possible. In
the tests with responses a lot of additional sletere used since the slave replies
continued after the last transmission for more &asds in bridge 202 and around 2.5
seconds for the other masters. On non-echo tdstadditional slots where much more
limited (maximum 288 slots) and were not taken gatoount.

9.4 Unicast Test and the TL Queued Requests Parameter

Apart the basic address conversion tables thagrmthiique Serial Numbers Node
Addressesthe Transport Layer has multiple configurableapagters concerning not
only fragmentation-related information but alsodwouts, thresholds, and queue sizes.

The optimal set of parameters is highly applicatidependent, but for all
applications one parameter in particular has alikdirect impact on the timing
performance of the system. This parameter is thabeu of pending Network Layer
requests that the TL leaves open before stoppingijisg new requests.

In theory, a higher queue parameter guaranteesttieaNL queues are never
unnecessarily starved (e.g. a transmission skavaslable but the Transport Layer failed
to fill it up in time); on the other hand smalleueyies guarantee faster response to
priority packets.
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Figure 9.4: Queue size average delay and last transmission
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For this test, small sized packets (that fit inrgke fragment) were used. The tests
sent 500 packets from each master to all statioggeld in the network, including the
Bridges. A total of 2000 packets were injectedhia hetwork (one for each master, and
one for each reply). Up to 10 packets were senth Witms interval. After this, new
packets where generated when the TL replied t@aqus request.

The node echoes the packet back in the same sionlaistant. Since the AP
Driver is not synchronized with the NL, there may &n additional delay up one time
slot, which is almost irrelevant in this scenario.

For a queue size of one, the test ended befotheaplackets where processed since
the delay was extremely larger than in other tés#s Figured.4). For the other queue
sizes, the average is almost the same (around dxb)he last transmission happens
later (6400 for queue size 2) for smaller queuessibut is practically the same for
gueue sizes of 8 to 12 (around 4500).

The histogram in Figur@.5 allows a slightly different analysis: the queize of 1
behaved well and delivered more than 300 packetis avidelay smaller than 40 time
slots between transmission and delivery; howeueis éffect was destroyed by the
amount of time the confirmation response took tdgok to the AP Driver.

Analysing the other queue sizes, size 2 deliverstmackets in the 40-60 slots
interval and other intervals follow an almost lineasponse but with a long tail. Size 8
and 12 show two irregular bell curves with queud®aging the norm at 100 and queue 12
at 120.
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Figure 9.5: Delivery delays histogram

The main conclusion from this analysis is that ffere are no stringent
requirements to deliver higher priority packetsfriont of other traffic, a queue value
between 8 and 12 is a reasonable balance betwelwverdetimes and faster
confirmations. Therefore, a value of 8 was seletdethe next tests.

123



Part 111
Power-Line Communication System

The following histogram in Figur@.6 shows the side-result of this first test dut: t
temporal behaviour of the Unicast service for vergall data payloads (i.e. single-
fragment).
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Figure 9.6: Unicast Requests - 1 fragment — Mixed destinans

This test was performed sending packets to aliostsit Since the majority of
stations are nodes behind the bridges, it is niatiuaa the final performance is not ideal.
The next test set shows the requests only for Ho@anection destinations 201 and 202.
Here the variability is much limited and, even witb00 packets generated in each AP,
the system experiences very small variations.
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Figure 9.7: Unicast Requests — Bridges Only — Round RobRPolicy
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However, the fragmentation performance could besiclemed unexpected (see
Figure9.7). The average delay for the Node Reception with fragment was 48 time
slots, but with two fragments, this average went4d@ time slots. The issue here is the
round-robin scheme of the Fragment Scheduler: sipce 10 packets are scheduled in
parallel, the second fragment has to wait for thend robin cycle to be complete.
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Figure 9.8: Unicast Requests — Bridges Only — Pick Firstdficy

In theory, this method shares the available slotenavenly between the queues.
On the other hand, the pick first policy guarantieess delivery for most packets, but if
there is a network problem then a small group ekpts suffers long delays (see Figure
9.8). The principle of round robin applies well raultiple sized packets, but the pick
first policy induces additional delays for smalcgats, that have to wait for big packets
to be completely delivered.

9.5 Request/Response Service

In the Request/Response service, an Access PoinerDcan send a packet to a
particular node and the Node Driver responds witbtlzer packet (that can be empty).
In the first test, each AP Driver sends a uniforistribution of packets with 1 to 4
fragments to all connected Nodes. The Node Drikegpond immediately with the same
data block. The histogram in Figuge9, shows the delays until the Node receives the
request packet, and the AP receives the respomketpdoased on the original message
transmission time).
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Figure 9.9: Request/Response, 1 to 4 fragments, Nodes only

9.6 Alarm Service

The Alarm service enables a Node station (or théeNfanctionality in a Bridge) to send
a confirmed packet to at lest one of the availafteess Points. The Transport Layer
manages the reliability and data management fegtbrd it benefits from the Network
Layer capability of “picking” fragments from slaveBhe Network Layer task is eased
by the fact that not only confirmation traffic fromasters to slaves but also internal
TRM-to-TRM traffic “opens” slots for data transpamtthe reverse channel.

The first test of this service uses both Bridgeish W50 requests sent sequentially
one at a time with a small delay between the OKthrdhew request at each bridge. In
the current implementation, the TRM does not trgétect better paths for slaves and it
simply serves the queues based on priorities.

In the one fragment test, 66% of the packets weceived first by AP 101 and
34% by AP 102. The minimum delay of an AP event juas4 slots and the average 79
slots. On the other hand, the average delay fofirooetions on the Node was 95 slots
since the start of the node request. On this hestéquests were generated at the Node
two seconds after the confirmation, and of the B@6kets generated, 20 overrun this
delay and might had their performance affectechieynew request on the network.

For the two fragments test, the minimum delay felivéry was 10 slots with an
average 105 slots, an increase of 26 slots compardide one-fragment test. For the
confirmations the average was 121 slots, agaimarease of 26 slots compared to the
one-fragment test. The distribution of the firsirah between AP 101 and AP 102 was
very similar to the one-fragment test (see FigwH)). The requests were generated 4
seconds after the confirmation and none was ovelmuthe one-fragment test, all alarms
were received by both APs, while on the two-fragtiest only 2 out of the possible 600
were not received.
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Figure 9.10: Alarm Service, 1 vs 2 Fragments, Bridges 2@hd 202

For the Nodes, 50 requests were generated in atlovde 310, the “best”
connected station in the network. The average dielayhe first AP delivery was 188
slots, and the confirmations were received at 2418 siverage. 60% of the requests were
received first at AP 101 and 40% at AP 102.
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Figure 9.11: Alarm Service, 1 Fragment, Node 310
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The test was repeated with eight fragments queuethea Node side. The
performance improvement was significant. The averdglay for the first AP delivery
was 80 slots, and the confirmation received at #98rage slots. Looking at the
histogram in Figur®.11 it is clear that a significant part of theidefies are in the 26 to
35 slot range when they were much more scatterethénone-fragment scenario.
However, the largest delay increased to 2086 sidisn it was around 400 slots for the
tests with only one-fragment queues.

The main point on these two tests is that whemgleirequest with no traffic on
the network is present, it is up for the networnyelapolling cycle to fetch the data, and
this operation can take several slots. When severplests are queued together, the
network polling cycle fetches all the pending rexjsein a fast sequence reducing the
average delay.

This conclusion led to another test: to issue Aland Unicast services in the
same network. A small alarm test was performed ®&@ttJnicast requests and 50 Alarm
requests. The average delay for the Unicast dglwais 153 slots, but the average delay
for the Alarm packets was only 24 slots, showingignificant improvement on the
Alarm performance. The results can be comparediguré 9.12, where the results
without AP-to-Node traffic are the same as presbmreviously but scaled down to
match the 50-packet scenario.
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Figure 9.12: Alarm Service with AP-to-Node traffic

These results show that a good performance maybbaned from the Alarm
service but there is a trade-off between “wastingtwork bandwidth at the Network
Layer level, for more frequent pooling requests Amiting the expected delay for the
Alarm service. However, if the network is used pditally by the application then this
already used bandwidth is beneficial for decreadimgAlarm delays, differently from
the “traditional” way network bandwidth is charatzed.

Given the connectivity losses experienced by thgsichl layer emulator, the
maximum delay of the Alarm is dependent on the netvinterruptions and not on the
Transport Layer capabilities.
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9.7 Unlimited packet size and fragmentation

One of the design features of the REMPLI Transpaster is to use multiple headers
depending not only on the size of the packet bst an the number of fragments. In
particular for the Unicast service there is a “Sntédader” that takes 4 bytes and
handles PDU lengths up to 255 byte& 12 a “Large Header” that takes 6 bytes and
handles PDU lengths up to 16 MiB (to be precié1®, and finally a “Minimum
Header” that takes only 3 bytes. All this lengthits are compile time options and can
be easily changed depending on a particular deaym

The objective is to have very large packets onsystem without compromising
the real-time performance of the very small packets

On the current test set, the TL can issue fragmetits up to 51 bytes to the
Network Layer. This means that, in practice, thables data payload per fragment is 48
bytes for minimum headers, 47 bytes for small hesaded 45 bytes for large headers.

With these parameters the number of fragments qekeat is:

[L/S] Jif L < 47N,

9.1
(L-N,[S)/48]+N, ,if L= 47N, ®-D

n(L,S):{(

Effective usable bit ratB,,, available for applications in bits per time skt i

(

Jwimanm if Ly
app‘[(L/n(|_,45))[$ L ©2)

whereL is the packet size in byteN; is the number of starting headers, before switghin
to minimum headers (3l is the length limit for using small length head@s5).

The graphics in Figur®.13 present the usable bit payload per packetgarel
some insight on the consequences on choosingrigéhlparameters.
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Figure 9.13: Headers choices and effective usable payload
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For the small length headers it is clear that usinits results in better bandwidth
usage than using 14-bits. However, this 8-bit ahofeans that we can only use small
headers for packets up to 255 bytes; after thatlaitye length headers start to be better.

In addition, when it comes to large headers ithgious that a header with 32-bit
length takes more space than one with a 24-bittefigid, even if we consider that they
are only used in the first three fragments. Thifetince starts to fade with bigger
packets, but it is very significant for smaller pets and a large portion of the bandwidth
can be wasted in a system that issues many snukibfza

For systems that really need 32-bit length packetsay be necessary to use small
length headers larger than 8-bits, in order toctloé performance hit on packets larger
than 256 bytes. However, for systems where the-tinitical packets are very small and
there are not that many packets in the 256+ bangerthe 8-bits could be the best
solution. The current setup of 8-bit small lengthd &24-bit large length provides a
smooth transition and does not waste too much biaiidwn the smaller packets.

For system configurations with larger Network Layeayloads, the predominant
factor for very small packets is not the headezssitaut the fact a single fragment is sent
in each slot resulting in poorer real-time perfonca

Finally, another issue to take into account isnhenber of start fragments: in the
current setup, with an interleave factor of 4siwvery unlikely that after sending 3 start
headers and a minimum header the minimum headgméat arrives before all the other
fragments. If this happens, the minimum fragmemtisearded, but the other fragments
are received correctly. In systems with low rejustitrates at the network layer level, it
is possible to send even less start headers wilbosing packets, thus this can be an
interesting option (depending on the traffic ch&egstics of the network).

9.8 Small size packets delivered quickly over bi-lewetwork

Most of the previous tests have “occupied” the meknby issuing new requests when
the previous ones were completed. The following Esies packets separated by one-
second interval, basically “isolating” each requédte idea is to measure the time it
takes to complete a unicast request in the netwben there is no other traffic.

A total of 50 requests were issued from AccesstPiii to Node 310. The TRM
Scheduler used only Bridge 202 in this test. Threxagye delays for reception at the Node
were 18 slots and 26 slots for 1 and 2 fragmersigatively. The best case took only 10
and 18 slots, which are near the best theoretalaleg possible. For one fragment case,
it takes 4 slots for the Access Point to Bridg@sraission, plus 4 slots for the Bridge to
Node transmission. The two other slots are lost tlueprobabilities: 1 since the
probability of having 4 transmission slots in batstworks is very low, and the other
since the probability of having O slots of netwartcess in both networks is also very
low. With a larger data set some occasional vatie or 8 slots might occur. For the
average case, the network delays are larger (ddé&'®internal traffic and also possible
repetitions), and the access delays are more raragain due to NL's internal traffic.

The histogram in Figur@.14 also presents the delays for one fragmentraast
directly to Bridge 202, where it is possible to clude that the one fragment unicast for
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node 310 is almost a copy more “spreaded” (duedttitianal jitter) and shifted four
slots.
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Figure 9.14: Unicast Service, Individual Requests (162 310)

9.9 Priority processing

To test the traffic priority mechanism, the netwavks flooded with up to 10 queued
unicast 1-fragment packets of priority 10 from AB11to Bridge 202. In parallel, at
every 500 ms a different priority unicast packesest from AP 101 to Bridge 202. 200
packets where generated in total, including 15 ifferént priority. For the bridged
request from AP 101 to Node 310, 50 packets wenergg¢ed in total, including 10 to 12
of different priority generated every 200ms.

The results are displayed in Table 9.5.

The effect of the priority values is clear in thessts. The (large) difference
between the “normal” TL Priority of 5 and the “spt priority of -1 is due to the
gueuing in the NL Layer. In this test set (likenost of the other tests in this section),
the maximum number of queued requests by the Toanhkpyer to the Network Layer
was set to 8. This means that when a request withity 5 appears it is likely that it
already has 7 requests “in front” at the Networkyéraqueue with priority 10 and it
cannot overpass them. If the special priority isdighen the Network Layer handles the
priority and the request with priority -1 is prosed in front of the 7 pending “priority
10" requests.
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Table 9.5: Transport Layer unicast priority test

Average Maximum

Slots Slots

Same Priority Test — 162 202

Flood Priority = 10 58 84

Timed with Priority = 10 58 85
Higher Priority Test — 10® 202

Flood with Priority = 10 60 90

Timed with Priority = 5 37 42
NL Higher Priority Test — 10® 202

Flood with Priority = 10 62 90

Timed with Priority = -1 10 19
Same Priority Test — 162 310

Flood Priority = 10 84 190

Timed with Priority = 10 84 135
Higher Priority Test — 10® 310

Flood with Priority = 10 89 185

Timed with Priority = 5 66 89
NL Higher Priority Test — 10%® 310

Flood with Priority = 10 145 361

Timed with Priority = -1 37 63

The duration of the test is limited by the numbipackets. In the last test set from
AP 101 to Node 310 with priority -1, there was @eseffect of this policy: the flooding
requests were significantly delayed by the presafdbe higher-priority traffic and so
12 high-priority packets were generated insteatth®fLO in the other tests.

Since the higher priority requests were generatedye200 ms, i.e. every 21 time
slots, this may be the result of a rush-in effédiwo higher priority requests overlap the
lower priority traffic requests, they delall the pending lower priority request. This
effect is minor in the test with priority 5 duettee damping effect of the Network Layer
gueues, whichlimits the number of affected pendavger priority requests. To test the
theory, a test re-run was done with the Driver gaerequests increased to 15 (instead of
the original 10) and keeping the 8 requests alNheaueues. The tests were done with
same-priority and with priority 5 requests. Therasva 31% increase in the delay of the
normal traffic when the priority 5 requests wereliided in this scenario.

9.10 Best route selection

The objective of this test was to analysed the Wieba of Transport Layer routing in
dynamic traffic situations. The test is based i fédct that only Bridge 202 connects AP
102 to Node 301 due to the emulator network seelisted. On the other hand, both
Bridges are available by AP 101 to reach Node 310.
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Figure 9.15: Bridge routing test concept

To test this application the TRM internal link git)ilvalues were updated every
200 ms. In the first test, the queue updates froitdg®s to AP where used as normal; in
the second test the code was changed to removiatiy@ent count update at the AP
side. 40 packets were generated by AP 101 andtseNbde 310, AP 102 sent 40
packets to Node 301. Both bridges could route packem AP 101, and Bridge 202
was the only route for packets from AP 102 (seeuld.15). The results are
summarized in Table 9.6.

Table 9.6: Transport Layer bridge routing test

Average Maximum

Slots Slots
With Fragment Information Active — Global: 90 167
101-> 310 77 167
102> 301 104 162
Bridge 201 used 7 times, 202 used 73 times
With Fragment Information Inactive — Global: 110 202
101> 310 111 191
102> 301 108 202

Bridge 201 used 2 times, 202 used 78 times

The average delay improved significantly for paskiedm AP 101 to Node 310,
and the overall system performance was superitiidrsystem with fragment feedback
enabled. This makes sense, since without thisnmdtion the system tries to send more
fragments to Bridge 202 only for them to be waitingjueues.

However, looking at the log files it was possible determine that other
improvements could be performed. The fragmentageaback system uses a sampling
method, thus when a timer expires or a link quallignges too much, a sample is taken
at the Bridge and sent to the AP. During this pafér test, despite the fact that the
network was being slightly flooded with requests (anly used a Driver queue of 5
pending requests), many of the values transmitiech Bridge 202 were equal to zero.
Therefore, averaging the number of fragments betwbe samples could improve the
results.
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Conclusions

This chapter concludes this Thesis, by providing auerview of the main
achivements.

10.1  Overview of research objectives

Industrial communication networks following the rneasslave paradigm usually provide
limited-length data transfers between stations gitaranteed timings. These limitations
are a natural consequence of their target marketra systems focused on low-latency
and high reliability transmission of many small kats. However, there are several
situations where these constraints make the iniegraf broader services very difficult
or even impossible.

This Thesis addressed the design, implementatshand validation of additional
services over master/slave networks without loosthgir native control timing
characteristics. This was instantiated in factorytomation and power-line
communication networks.

10.2  TCP/IP integration with Profibus

In the first context, multimedia applications ovECP/IP and Profibus-DP control
applications were merged into a single Profibusvost.

Traditionally TCP/IP over fieldbus has been seeth wuspicious eyes from both
the control-oriented experts, that do not expecthmérom TCP/IP, and from the
multimedia-oriented field, where the modest bandwidapabilities of the fieldbus
networks look unpromising.

Nevertheless, by implementing a trouble-free didiag method and a dual-stack
architecture it was possible to run TCP/IP applicet over a Profibus network
preserving full backward compatibility with existinfieldbus stations and with
advantages for both multimedia and control appbest With this architecture,
multimedia applications can be placed directly hie factory floor without additional
wiring, on the other hand, control applications aase TCP/IP as a flexible data
communication method. The presented architectubles end-user network-wide
traffic isolation between the protocols.

The dispatcher system can be used like a traditiBnafibus system where all
high-priority packets are transmitted if so reqdil®y a particular deployment, but it can
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also be configured to guarantee that additiondficran one station does not have
detrimental effects on the other stations deadlinesfact improving the original
Profibus protocol characteristics.

On the other hand, the implemented QoS mechanisrantyp guarantees network-
wide traffic parameters but also enables to tramsyly in Profibus slave stations,
overcoming the “lack of initiative” problem, as med in this Thesis.

The proposed fragmentation mechanism overcomesp#uket size limits of
Profibus so that TCP/IP applications can use typeaket sizes available on Ethernet
networks. Services like World Wide Web, File TramsProtocol and even Voice
connections are now easily deployed using tradifigmnmodified) TCP/IP applications.

The system was validated via a factory automaiield frial involving not only the
merging of TCP/IP traffic and native control-oriedt Profibus traffic, but also
successfully including TCP/IP traffic in the realh control-loop.

10.3 QoS aware end-to-end system over dual-level power-dommunication
network

While the network context previously addressed $ecuon factory-floor networks, this
second target domain, a power-line communicaticatesy, widens the geographic span
of the network stations.

End-to-end geographically dispersed low-delay niegeoriented services are of
paramount importance to Utility companies, howetés deployment has been delayed
due to lack of adequate technology combining peréorce and low cost. We believe
that the REMPLI solution, based on a two-level mdstave PLC network, is a further
step into the dissemination of such large-scalerirgg systems.

The REMPLI system overcomes the base master/slatwork limitations and
allows the transmission of very large informatiolodks between utility servers and
metering devices at customers’ premises, with QeSantees.

The support of large data blocks usually impliegda PDU headers that have a
detrimental impact on small-length packet delayswelver, the use of different headers
for large and small packets guarantees a minimphanon the fast response capabilities
of the network for small packets. On the other etheé, sliding-window mechanism
enables forwarding of large packets via bridgiragishs with limited memory.

Bi-directional services are also available and Hystem can overcome the
transmission path changes due to electromagneteféenences and physical network
reconfiguration. This was achieved through an #&ffic distributed-scheduling
mechanism.

Due to the transmission medium, the system wagdegiwith electrical energy as
the main starting point, but can be used directlyneasure any other utility product like
water, heating, gas, etc. User-oriented servigesdecurity and remote control can also
be integrated in the system.
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These objectives are viable using nodes (the mamerous stations in the
network) with modest capabilities that are effamtly deployed and remotely
configurable.

The tests (simulation-based) demonstrated thapthposed services are efficient
and use limited resources, as initially envisaged.
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This section gives an overview on future developméreyond this Thesis..

Both REMPLI and RFieldbus projects represent aifagmt integration work of very
diverse technologies and solutions, aiming at aiten existing communication
infrastructures with additional functionalities agdaranteeing end-to-end quality-of-
service (QoS) requirements.

While clearly developed in synergy with these twoardpean-level efforts, this
Thesis explored and instantiated several scientifid technological contributions on
what we dubbed “Intermediate-Level Protocols”, thatome way were common to both
projects. In this context, relevant inputs to tleéestific and industrial communities
resulting from this Thesis were clearly recognized.

Nevertheless, even more important than the directefits resulting from the
research findings and engineering solutions praligéhin this Thesis for the projects
stakeholders (e.g. companies involved in the tvagegts) is to identify how these can be
leveraged for a wider spread use in the contex@noérging paradigms in Information
and Communication Technologies.

As we witness computers being increasingly embeddedthe physical
environments, scaling down in size and up in numbew research challenges emerge.
The dawn of large-scale networked embedded systélinbring an undefined number
of new cyber-physical applications that will impeoweur quality of life, some of them
yet to be unveiled. What we can forecast is thattténd is for most of these applications
to be largely geographically distributed and corimgutevices to be tightly embedded in
their physical environments. Ambient intelligenessisted living, home and building
automation, monitoring/controlling large physiaafrastructures such as roads, electrical
and gas grids are just examples.

It is also accepted that the underlying large-snatevork infrastructures will likely
support many applications and services, most pigbahch of them with different
quality-of-service requirements, e.g. dependingetiotemporal issues. In this context,
the research findings in this Thesis may be ofesmér importance. Issues such as the
provision of admission control and scheduling meitras can be used for achieving
traffic differentiation, assigning packet priorgieaccording to each application/task
requirements. Packet fragmentation/defragmentasivategies will be of paramount
importance when we think, for instance, on achig\armore pervasive Internet running
into “smart objects” with limited processing, memorenergy and communication
capabilities. The 6loWPAN protocol is just an exdngighlighting the need for
subdividing (longer) IP packets to fit (smallerBE 802.15.4 packets.
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Conceiving QoS-aware Transport and Network levetqmols for these large-scale
networked embedded systems is also an enormouterfl Could we apply the
REMPLI Powerline Communications methodologies thate proposed in this Thesis to
large-scale networked embedded systems? In fagtentine communication systems
and wireless sensor networks seem to have sevemamonalities, such as the
unreliability of the links, low bandwidth, and neti« dynamics.
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Abbreviations & Clarification of Terms

Abbreviation Clarification
802.11 IEEE 802.11 Wireless Network Standards
AAL ATM Adaptation Layer (Networks)
ACS IP Admission Control and Scheduling (RFieldbus)
AGV Automated Guided Vehicle
AL Application Layer (Profibus)
AP  Access Point (REMPLI)
ARCNET Attached Resource Computer Network (Netwprks
ARP Address Resolution Protocol (TCP/IP)
ASCIl  American Standard Code for Information Inteange
ATM  Asynchronous Transfer Mode (Networks)
BE Best Effort
Bridge A kind of REMPLI station than interconnedt¥ and MV
networks
COM RS-232 Serial Communication Port (PC)
CRC Cyclic Redundancy Check
CSRD Cyclic Send and Request Data with Reply (Busii
DA Destination Address (Profibus)
DCCS Distributed Computer Control System
DeMux De/Multiplexer (REMPLI)
DDLM Direct Data Link Mapper (Profibus)
DFD Data Flow Diagram
DLL (i) Data Link Layer (Networks)
DLL (ii) Dynamic Link Library (Microsoft Windows)
DMA Direct Memory Access
DMS Distribution Management System (Power distiidmjt
DP Decentralized Peripherals (Profibus DP)
DPH DP High Priority (RFieldbus)
DPL DP Low Priority (RFieldbus)
DPRAM Dual-Ported Random Access Memory
DSP Digital Signal Processor
EDN Electricity Distribution Network (Power distrtion)
FC Frame Control (Profibus)
FCS Frame Checking Sequence (Profibus)
FDL Fieldbus Data Link (Profibus)
FIFO First In, First Out
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Abbreviations & Clarification of Terms

Abbreviation
FPGA
FTP
FTT
GB
GiB
GSM

GUI
HMD
HP
HSE
HTML
HTTP
ICMP
IDA
IEEE
IGMP
110
IOCTL
IP
IPC
IPH
IPL
irDA
IRP
JPEG
KB
Kbps
KiB
LAN
LBS
LE
LLI
LP
LSB
LV
MAC
MANET
MB
Mbps
MEER
MiB
MIB
MoM
MOST
MSB

Clarification

Field-Programmable Gate Array
File Transfer Protocol (TCP/IP)
Fragment Tracking Table (RFieldbus)
Gigabyte: 1®bytes
Gibibyte: 2° bytes
Global System
Telephony)
Graphical User Interface

Head Mounted Display

High Priority

High Speed Ethernet (Fieldbus Network)

Hypertext Mark-up Language (Internet)

Hypertext Transfer Protocol (Internet)

Internet Control Message Protocol (TCP/IP)

Interface for Distributed Automation (Fieldbd&etwork)
Institute of Electrical and Electronics Engine

Internet Group Management Protocol (TCP/IP)
Input/Output

Input/Output Control

Internet Protocol (TCP/IP)

Inter-process Communication (Operating Systems)

IP High Priority (RFieldbus)

IP Low Priority (RFieldbus)

Infrared Data Association

I/O Request Packet (Microsoft Windows)

Joint Photographic Experts Group image corsjore$ormat
Kilobyte: 10° bytes, i.e. 1000 bytes

Kilobit per second: £its per second

Kilibyte: 2 bytes, i.e. 1024 bytes

Local Area Network

Link Base Station (RFiedlbus)
Length of PDU (Profibus)
Lower Layer Interface (Profibus)

Low Priority

Less Significant Bit

Low Voltage (Power Distribution Grid)

Medium Access Control

Mobile Ad-hoc Network

Megabyte: 16 bytes

Megabit per second: %bits per second

Ministry of Energy and Energy Resources ofgauia
Mibibyte: 2%° bytes

Management Information Base (RFieldbus)

Mobility Master (RFieldbus)

Media Oriented Systems Transport (Multimedeiwork)
Most Significant Bit

for Mobile communications
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Abbreviation Clarification
MTU Maximum Transfer Unit length
MV  Medium Voltage (Power Distribution Grid)
NDIS Network Device Interface (Microsoft Windows)
NetBIOS Network Basic Input/Output System (Micrastindows)
NetBT NetBIOS Over TCP/IP (Microsoft Windows)
NIC Network Interface Card
NFS Network File System (RFC 1094, RFC 1813, an@ B530)
NL REMPLI Network Layer
NLI REMPLI Network Layer Interface
NLIM  NLI Manager (REMPLI Transport Layer)
NLAddr REMPLI Network Layer Address
NLUnit REMPLI Network Layer Unit Identifier
NMS Network Management System (REMPLI Network Layer
Node A kind of REMPLI station
Node Address Used to identify nodes at RCI Interface at APs (RHN)
Packet A block of data (used in higher-level proteg
PC Personal Computer
PCI Peripheral Component Interconnect
PCMCIA Personal Computer Memory Card Internatighgdociation
PDA Personal Data Assistant
PDU Protocol Data Unit (used at lower-level protsfo
PHY Physical Layer
PLC Power Line Communication
PPP Point to Point Protocol
PSTN Plain Standard Telephone Network
QM  Queue Manager (REMPLI Transport Layer)
QoS Quality of Service
RCI REMPLI Communication Interface
RCIM REMPLI TL RCI Manager
RE RFieldbus Relationship Entity
RFC Request for Comments
Rx Receiving
RUSN REMPLI Unique Serial Number
SCADA Supervision Control and Data Acquisition. Che local or
distributed
SA Source Address (Profibus)
SAP Service Access Point (Profibus)
SD Start Delimiter (Profibus)
SDA Send Data With Acknowledge (Profibus)
SDN Send Data with No Acknowledge (Profibus)
SFN Single Frequency Network (REMPLI Network Layer)
SMP  Symmetrical Multiprocessing
SMS Short Message Service (Mobile Telephony)
SRD Send and Request Data with Reply (Profibus)
Station A device with networking capabilities
TCP Transmission Control Protocol (TCP/IP)
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Abbreviations & Clarification of Terms

Abbreviation
TCP/IP

Tocy
TDI

TDPL

Tipn
TL
TRM
Tty
TTR
Tx
UDP
USB
VPN
WAN
WDM
WWW

Clarification

The TCP/IP Protocol Stack, including UDPMB and other
protocols

Dispatcher Cycle Time (RFieldbus)

Transport Driver Interface (Microsoft Windows)

Usage Estimation Limit for RFieldbus DP Low Prigrit
Traffic

Usage Estimation Limit for RFieldbus IP High PrigrTraffic
Transport Layer (REMPLI)

Transport Route Manager (REMPLI Transport Layer
Token Holding Time (Profibus)

Token Target Rotation Time (Profibus)

Transmission

User Datagram Protocol (TCP/IP)

Universal Serial Bus

Virtual Private Network

Wide Area Network

Windows Driver Model (Microsoft Windows)

World Wide Web
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