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Abstract 
Wireless sensor network nodes supporting multi-tasking and multiple concurrent applications are becomingincreasingly 
common. These nodes are typically equipped withmultiple sensors of various types. This trend has been fosteringthe 
design of wireless sensor networks allowing several concur-rent users to deploy applications with dissimilar 
requirements.At the same time, the practical burden of programmingindividual sensor nodes has led researchers to 
design macro-programming schemes able to program the network as a whole.In this paper, we extend the advantages of 
a holistic program-ming scheme by designing a novel compiler-assisted schedulingapproach (dubbed REIS) able to 
identify and eliminate redun-dancies across applications. To achieve this useful high-leveloptimization, we propose to 
model each user application as alinear sequence of executable instructions; we show how it isthen possible to exploit 
well-known string-matching algorithmssuch as the Longest Common Subsequence (LCS) and theShortest Common 
Super-sequence (SCS) to produce an optimalmerged sequence of the multiple applications that takes intoaccount 
embedded scheduling information. We demonstratehow this novel approach leads to significant network-wideresource 
savings, including energy. 
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Abstract—Wireless sensor network nodes supporting multi-

tasking and multiple concurrent applications are becoming

increasingly common. These nodes are typically equipped with

multiple sensors of various types. This trend has been fostering

the design of wireless sensor networks allowing several concur-

rent users to deploy applications with dissimilar requirements.

At the same time, the practical burden of programming

individual sensor nodes has led researchers to design macro-

programming schemes able to program the network as a whole.

In this paper, we extend the advantages of a holistic program-

ming scheme by designing a novel compiler-assisted scheduling

approach (dubbed REIS) able to identify and eliminate redun-

dancies across applications. To achieve this useful high-level

optimization, we propose to model each user application as a

linear sequence of executable instructions; we show how it is

then possible to exploit well-known string-matching algorithms

such as the Longest Common Subsequence (LCS) and the

Shortest Common Super-sequence (SCS) to produce an optimal

merged sequence of the multiple applications that takes into

account embedded scheduling information. We demonstrate

how this novel approach leads to significant network-wide

resource savings, including energy.

Keywords-Wireless Sensor Networks; Scheduling; Optimiza-

tion; Programming

I. INTRODUCTION

Recent advances in hardware and operating systems ([1],
[2], [3]) for Wireless Sensor Networks (WSNs) have enabled
the support for multi-tasking and multiple concurrent appli-
cations on a sensor node. Most commercially available nodes
are also equipped with several different types of sensors
including, but not limited to, light, temperature, acceleration,
humidity and audio. Such a diversity in sensors allows sev-
eral users with different requirements to use a given sensor
networking infrastructure concurrently. A large percentage
of applications for wireless sensor networks is designed
around sensing the physical environment and transmitting
a processed data value to the user. We call the paradigm for
such applications as Sense-Compute-Transmit (SCT). There
is a high possibility of overlap in this paradigm, as different
applications may contain several requests for sampling the
same sensors.

Consider a simple case of a sensor network deployed

across an office building with each node having a tem-
perature and a humidity sensor. A building manager might
be interested in collecting temperature from the sensors for
fine-grained temperature control, and a civil engineer wants
to find correlation between temperature and humidity for
optimizing the building’s HVAC system. Such applications
can be executed concurrently on the sensor network infras-
tructure. Both the building manager and the civil engineering
researcher sample the temperature sensor for their indepen-
dent applications, which provides an opportunity for sharing
the sensed value among both the applications. Reading a
sensor value typically involves accessing the Analog-to-
Digital Converter (ADC) module on the microprocessor,
for converting the sensor value into a digital format, and
storing into a register. This process of sampling a sensor can
consume about 2 − 3 orders of magnitude more processor
cycles than a simple memory-based instruction. With the
increase in the number of applications deployed on a sensor
network, the overhead because of sampling the sensors
can also increase dramatically. Hence, by sharing sensing
requests among applications, a significant percentage of
resource-usage and energy can be saved on a sensor node.

In-network programming is a key technology for pro-
moting a widespread adoption of wireless sensor networks.
In turn, network-level programming requires elaborate opti-
mization for application deployment as the nodes are highly
resource-constrained. Several macro-programming and in-
network programming approaches have been proposed in
the past (e.g. [4], [5], [6], [7]). In spite of the convenience
of such programming support, network-level resource-usage
can go up significantly with the increase in number of
applications deployed on a WSN infrastructure. In this
paper, we propose a compiler-assisted scheduling approach
to identify and eliminate redundancies across applications
that enables reducing the processor and radio usage in
the network. Our proposed solution creates a monolithic
task-block resulting from the optimized merging of user
applications with embedded scheduling information.

Computer science researchers have long focused on de-
signing compiler optimizations to remove redundancies and



dead-code in a program. Several simple optimizations are
standard features in most modern compilers; complex fea-
tures can also be enabled for specific optimizations based
on overall program logic [8]. Eliminating redundancy across
applications, however, is challenging in many respects. As
most sensing applications are periodic in nature with low
duty-cycles, eliminating redundant sections in case of mis-
matching periods can be difficult, and may not provide sig-
nificant gains if elimination is carried using simple temporal
overlap detection. Secondly, the applications can sample the
sensors multiple times at different intervals and in different
order. Compiler support is a practical and effective technique
for identifying such requests and optimizing them for finding
better overlap. Finally, redundancy elimination at each node
at run-time can add significant complexity to the scheduler
on the sensor node. The scheduler in this case will have
to pre-profile the execution of the program to identify the
overlapping sections.

In this paper, we propose a novel solution to the afore-
mentioned problem of finding overlapping sensing requests
issued by large network-wide applications created by in-
dependent users. We model each application as a linear
sequence of executable instructions, and find a merged
sequence of multiple applications through the use of well-
known string-matching algorithms. In particular, we shall
use the Longest Common Subsequence (LCS)[9] and the
Shortest Common Super-sequence (SCS)[10] techniques.

The organization of the paper is as follows: First, we
describe an overview of our approach in Section 2. We
then present the background research and related work in
Section 3. Section 4 and Section 5 respectively provide
details of the modeling of applications and the proposed
redundancy elimination approach. We provide evaluation of
our approach in Section 6. We then conclude the paper
with discussion sections describing the future work and the
conclusions and limitations of our approach.

II. OVERVIEW OF THE APPROACH

We assume that the users develop network-level sensing
applications using a programming framework such as Nano-
CF [11]. The application code written by the users can
either be abstract network-level using a macro-programming
language or node-specific virtual-machines (for example
Matè [7]). In both the cases, the underlying framework cre-
ates node-level intermediate code based on the application
logic specified by the user. In this paper, we describe our
approach based on a machine-language like intermediate
code, generally referred to as bytecode. The architecture of
such a complete system is shown in Figure 1, where the user
applications are converted into bytecode by a parser, such
that each output instruction is either an indivisible subex-
pression or a special function for accessing the hardware
(including sensing, GPIO access or packet transmission).
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Figure 1. Overview of the approach for redundancy elimination among
independent applications along with compiler-assisted scheduling

Bytecode corresponding to each application is converted
to a monolithic code by the Redundancy Eliminator with
Implicit Scheduler (REIS) module. This monolithic code,
which we call REIS-bytecode and ρ-code in short, is a
merged sequence of all the applications but the redundancies
are eliminated according to temporal overlap of sensing
requests. REIS-bytecode is then sent over the wireless net-
work to each sensor node where the applications are to be
executed. A bytecode interpreter at the sensor node executes
the received REIS-bytecode.

The approach assumes that a data link-layer and a suitable
routing layer is already implemented on the sensor node
and our solution is transparent to it as long as end-to-end
packet delivery is supported. A network manager module
handles the responsibility of dynamically updating the rout-
ing tables, and maintaining network topology information.
As users issue applications to the system independently, our
approach requires an application storage database to store
application bytecode and merge them using the REIS module
whenever a new application is submitted. The logic of the
user applications is interleaved inside the REIS-bytecode to
provide maximum sharing of sensing requests and radio
transmissions. Bytecode from different applications share
non-overlapping variable and address space, which removes
any need for context switching between applications, and
the interleaving of bytecode provides an implicit schedule
of execution.

The key motivation behind sharing sensing requests can
be gleaned from the comparison of time taken for reading
a sensor sample into memory with a simple memory-based
instruction. Figure 2 shows the oscilloscope capture of this
comparison on the Firefly [12] platform with the Nano-
RK [1] operating system. This comparison is obtained by
toggling a GPIO pin just before and after the execution
of a sensor sampling instruction (shown by the Trace 1)
and memory based loading of a 16 bit value into a register
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Figure 2. Oscilloscope screenshot showing two traces. Trace 1 (yellow
trace) shows the time taken to acquire one sample reading of the light
sensor on the Firefly sensor platform running Nano-RK, and Trace 2 (blue)
shows the time taken for executing a simple variable assignment instruction

(Trace 2). The former takes about 500 microseconds but
the latter instruction takes only 10 microseconds. Please
note that this time comparison also includes the time taken
for toggling the I/O pins. As the Atmel ATMEGA1281
(8MHz) processor on the sensor node has on-chip mem-
ory, a load instruction takes a maximum of 3 cycles that
corresponds to 375 nanoseconds. A majority of the time
consumed in the case of Trace 2 is because of the pin
toggling. Hence, a sensor sampling instruction consumes up
to (500−10)×10−6

375×10−9 = 1306 times more power. This factor,
which we refer to as φ (time-factor), is specific to the
platform and the operating system. However, the order of
magnitude of φ can be assumed to be similar over most of
the common sensing systems.

III. RELATED WORK

Redundancy elimination is a common optimization strat-
egy in compilers, but it is mostly limited to the case of
a single program. Interprocedural redundancy elimination
was proposed in [13] with focus towards communication
optimization in distributed memory systems. Several com-
piler optimizations have also been designed for multi-
processor architectures for enhancing parallelism in sequen-
tial code [14], [15]. Direct application of such compiler
techniques, however, is not possible in the case of sensor
networks, because of the distributed nature of the network
and the correlation of data to the physical environment and,
hence the physical location. A compiler for network-level
programming of sensor networks should take into account
the node characteristics including the hardware limitations
and sensor peripherals, and the network interactions.

The significance of supporting multiple applications on
a sensor infrastructure has been stressed in the past; a
detailed survey of sensor network programming approaches
is provided in [16]. A layered architecture for a middle-
ware to enable multiple independent applications on sensor
networks has been proposed in [17]. Melete [18] builds on
the Matè [7] virtual-machine concept for sensor networks to
allow multiple concurrent applications. Other works such
as [19], [20] focus on optimizing the operation and de-
ployment of applications, respectively, on a geographically
distributed wireless sensor network. Deployment of appli-
cations on a sensor network requires strategic mapping of
applications to nodes. This problem is addressed in [21],
where the authors develop a strategy for assigning nodes to
applications based on a proposed ‘Quality of Monitoring’
metric. The approach is further improved in [22]. A scheme
for sharing sensed data among multiple applications has
been proposed in [19] by aligning sensing requests according
to the periods, and sensing at time-instants providing the
maximum overlap. The solution proposed by the authors is
a runtime algorithm that can significantly increase the sched-
uler and timing complexity on a sensor node. Moreover, this
work is limited to finding overlap in case of one sensor per
node, and efficiently extending it for multiple sensors is not
trivial.

Techniques for optimizing applications in sensor networks
can find inspiration from the field of database research, as
several optimizations have been developed over previous
decades. Common expression detection proposed in [23]
creates intermediate requests that assist reuse of intermediate
data to save redundant accesses to overlapping sections of a
relational database. Query optimization for detecting com-
mon data, as described in [24], also provides an improved
solution based on interleaving smaller chunks of query exe-
cution. These schemes are limited to parallel or temporally
close queries, and optimized for large data-sets. A window-
based solution is proposed in [25] to share data among
independent dynamically-issued queries. Similar schemes
may be applied to reduce redundancies across multiple
queries in database-based approaches for sensor networks
(like [26], [27], [28]) allowing temporal reuse of data-
subsets. However, a node-level mechanism is still required to
eliminate redundant sensing requests from different network-
level applications or queries.

IV. APPLICATION MODELING

The optimizations proposed in this paper are aimed at
the applications whose main goal is to sample sensors,
process the sensor data for more meaningful results, and
then transmit the results towards the gateway node through
the network tree.

Definition 1. An application once parsed and converted into



bytecode β consists of a list of subexpressions, which can
be represented as a sequence of nodes. This string of nodes
is called Application Bytecode Sequence and is referred to
as βη.

Each bytecode instruction contains a list of hex opcodes,
and is of the form: <TYPE OP1 OP2 OP3 ...>, where
TYPE defines the kind of operation, and OP<K> can have
specific usage based on the bytecode. For the sake of clarity,
example formats of some relevant bytecodes is provided
in Table I. Specific implementation can vary based on the
design of the Parser and the Bytecode Interpreter.

Table I
EXAMPLE BYTECODE STRUCTURE FOR SOME RELEVANT

SUBEXPRESSION INSTRUCTIONS

Operation Opcode Details
Sense S t VAR Sample sensor t and

copy the value in VAR
Assign AEQ VAR1 VAR2 Assign

VAR1= VAR2

Transmit T DEST VAL1, VAL2 Transmit VAL1 & VAL2

to DEST node
Compute C VAR1 VAR2 VAR3 VAR1 :=

VAR2 ’C’ VAR3

A. Conversion to a sequence of nodes

Most data-collection sensor networking applications are
of the form Sense-Compute-Transmit (SCT), as the users
are typically interested in sampling one or more sensors,
processing the data from sensors and collecting the pro-
cessed results at a gateway node. Such applications can be
modeled as a string of nodes where each node represents
a sub-expression in the bytecode, β, as shown in Figure 3.
St represents a sensing request for sensor type t, where t
can be either be temperature (T ), light (L), accelerometer
(X,Y, Z) or any other sensor available on board. C denotes
nodes with algebraic computation. As most sensor nodes
typically have one kind of radio for communication, we
use T to denote nodes corresponding to packet transfer via
the radio. As algebraic computations are generally data-
dependent, finding overlap for C nodes is considerably less
plausible. Moreover, there are no significant energy savings
by eliminating such overlap, as these instructions typically
consume a small (about 1 to 2) number of machine cycles,
particularly on a sensor network platform having a RISC
processor and on-chip memory. Hence St and T type nodes
participate in finding the overlap across applications, and are
called Anchor Nodes.

Definition 2. A node η in an application string is called
an Anchor Node if it participates in detecting the overlap
between applications. In this paper, a node η is an Anchor
Node, if η = St or η = T .
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Figure 3. A simple example showing linearized execution sequence for one
instance of two applications. Application 1 samples three different sensors
at different points in time, and Application 2 just samples the temperature
sensor and transmits its scaled-down value.

Conditional statements in an application logic may not
allow application logic to be converted into a linear string.
We present the techniques for modeling applications having
at least one anchor node inside the conditional statements in
the next subsection. The conditional statements without an
anchor node can be trivially mapped to a C type node.

B. Modeling Conditional Statements

Conditional statements have a general form as shown in
the pseudo-code in Figure 4. As it cannot be known at the
compile-time which execution path can be taken in case of
a conditional statement, it is not possible to create a ρ-code
(REIS-bytecode) from the input bytecodes based on a linear
application model as described in Section IV.A. We propose
an algorithm to create a functionally equivalent code with a
maximum possible number of sequential nodes, such that the
conditional statements in the output bytecode sequence βηa

re purely computational. Algorithm 2 provides a solution
where the anchor nodes (sensing requests) are moved to
before the beginning of the outermost conditional statement
in case of nested if-loops. Please note that the sensing
requests are data-independent instructions; moving them to
a previous point in the code cannot impact the application
logic. An assign instruction is inserted in the place of the
original instruction, which loads the value returned by the
sensing request into the variable originally designed to read
the output of sensed instruction, as shown in lines 19-
21 in the algorithm. Algorithm 2 uses a subroutine called
create_node() to create an instruction from the input
parameters (shown in Algorithm 1). An example scenario
for application of Algorithm 2 is shown in Figure 5, where
the original S type node inside an if-condition is replaced
by a S� node, representing a variable loading instruction.

if (Condition1)

Execute Section1

else if (Condition2 )

Execute Section2

else if(ConditionM)
Execute SectionM

else
Execute Section(M+1)

end
Figure 4. General form of an if conditional statement
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Figure 5. An example showing the modeling of an if-condition using
Algorithm 2

Algorithm 1: create_node(type, argv[]): for creating a
bytecode subexpression node

Input : type, argv[]: type of node, arguments for
subexpression

Output: η: A subxpression node with a valid bytecode
instruction

A node in the bytecode is of the form:1

<TYPE OP1 OP2 OP3 . . . >2

INITIALIZATIONS: η := ∅;3

η · append(opcode(type));4

foreach arg ∈ argv do5

η · append(arg);6

end7

C. Merging Packet Transmission

Based on Algorithm 2, it can be claimed that for better
power savings the transmit nodes T should also be moved
towards the end of the bytecode sequence to obtain bet-
ter overlap of radio usage across applications. We, how-
ever, do not take such an approach because in a previous
work [11], we have already proposed a solution to harmonize
packet transmissions from different applications. Instead of
transmitting whenever applications request, the packets are
queued in a local buffer and are transmitted at instants that
provide maximum overlap of radio-transmissions. As radio
is a shared resource among applications, such a queue based
mechanism can help in achieving what is aimed by our novel
compiler-assisted scheduling approach. Many other solutions
(such as [29]) have been proposed that optimize the network-
wide scheduling of packets. For brevity purposes, we skip
further details of packet transmission optimization in this
paper.

D. Period Alignment

One important aspect of applications designed to operate
on sensor networks is periodicity. Applications are typically
designed as tasks that repeat periodically with low duty-
cycles. Different applications deployed on a sensor network
may have unequal periods. This adds further complexity

Algorithm 2: convert_app(Ai): for converting an appli-
cation to bytecode sequence βη

Input : Ai: A user created application
Output: (βη, Nan): Bytecode node sequence, Number

of moved anchor nodes
Parse Ai to bytecode β using the parser1

INITIALIZATIONS:2

βη: = ∅; if_index := ∅; node := ∅3

if_depth := 0; num_T := 0;4

Nan = 0;5

foreach sub-expression η ∈ β do6

i = IndexOf(η)7

if η is an if-clause then8

if_depth + +;9

if_index · append(i);10

βη · append(η);11

else if η = S then12

if if_index·isEmpty() then13

index = i;14

else15

index = if_index(i);16

Nan + +;17

end18

node := create_node(type(η), var);19

βη · insert(index, node);20

// move S node before the beginning

of outermost if-condition

node := create_node(assign, var, op2(node));21

βη · append(node);
else if η is an endif-clause then22

if_depth−−;23

if_index · pop_back();24

βη · append(η);25

else26

βη · append(η);27

// Non anchor nodes should remain at the

same relative location

end28

end29

to the redundancy detection and elimination across appli-
cations. Let us assume that an application Ai has a Period
Pi; the harmonizing period PH is given as:

PH = LCM(P1, P2, . . . Pn) (1)

where LCM stands for Least Common Multiple.

Proposition 1. The minimum repeating pattern of a task
set, Γ =< A1, A2, . . . An > is of duration equal to the
harmonizing period PH .

Proof: The proof is trivial because it follows directly
from the definition of LCM. As applications are assumed to
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Figure 6. Application 2 modified to be aligned with application 1 for
sharing sensing requests and packet transmission (based on example in
Figure 3)

be strictly periodic and repeat at the start of every period,
any time-duration less than the LCM of the periods cannot
include integral multiples of all Pi, where i = 1, 2, . . . n.

V. REDUNDANCY ELIMINATION WITH
IMPLICIT SCHEDULING

A. String-Matching Algorithms

Once an application is modeled as a sequence of nodes
as shown in the previous sections, the problem of finding
overlapping sections among two or more applications can
be reduced to finding a common subsequence between a
pair of applications. Longest Common Subsequence (LCS)
is a technique commonly used to find overlap between a
pair of strings of symbols such that the relative order of
common symbols is the same as in both input strings. LCS
provides one such common sequence having the longest
possible length. Consider the two following string sequences
SENSOR and NETWORK. The longest common ordered sub-
sequences are {N,O,R}, {E,O,R} but the Longest Com-
mon Sub-String (LCSS) would just be {O,R}. A longest
common substring is always a subset of the longest common
subsequence, but vice-versa may not be true. There are
some commonly available solutions [9] that are guaranteed
to return a longest ordered subsequence between a set of
input strings.

LCSS can help find redundant anchor nodes that appear
consecutively in the input sequences. As an improvement
over LCSS, LCS finds a subsequence with maximum overlap
such that the relative order of nodes is not sacrificed. One
or more of the input applications may be ‘stretched’ at
various points, as it is exemplified in Figure 6 concerning
applying LCS to the applications shown in Figure 3. An
optimal merger of input sequences can be obtained by using
an approach related to LCS called Shortest Common Super-
sequence (SCS)[10].

Definition 3. Given input sequences X and Y , the shortest
common super-sequence, Z = SCS(X,Y ), is the shortest
possible sequence such that both X and Y are subsequences
of Z.

In case of two input sequences, it is trivial to find SCS, if
LCS is known. In case of more than two sequences, finding a

Algorithm 3: REIS(Γ): Generate a monolithic ρ-code
with implicit scheduling from an input set of applications

Input : Γ: a set of n applications < A1, A2, . . . An >
each with period Pi for ith application

Output: ρ-code: a monolithic bytecode sequence
// From Equation 1

PH := LCM(P1, P2 . . . Pn)1

INITIALIZE:2

for i = 1 : n do3

βnew,i := ∅;4

end5

foreach application Ai ∈ Γ do6

(βη,i, Nan,i) = convert_app(Ai);7

for j = 1 : PH

Pi

do8

βnew,i := concatenate(βnew,i, βη,i);9

// create new strings with

concatenated β
η

end10

end11

// compute a shortest common supersequence

(SCS)

ρ-code = SCS(βnew,1, βnew,2, . . . βnew,n);12

Shortest Common Supersequence is not a direct application
of LCS.

Proposition 2. For a given pair of bytecode sequences
< βη,j , βη,k > as an input, LCS finds the maximum possible
overlap of anchor nodes.

Proof: LCS has an optimal substructure, as justified by
its recursive implementation. If the relative order of nodes in
an application has to be maintained, the sequence generated
by LCS is the longest subsequence in terms of the number
of nodes.

B. Algorithm for generating a ρ-code (REIS-bytecode)

Let us consider that there is a set Γ of n independent
applications, where each application is denoted by Ai and
i = 1, 2, . . . n. The period of an application Ai is Pi.
First of all, each application is converted into a sequence
of bytecodes as described in Algorithm 2. The output of
Algorithm 2 contains nodes within each periodic execution.
As the periods can mismatch, the minimum length of time
for which the overlap among 2 or more applicatins should
be calculated is equal to the harmonizing period, PH . A
new sequence is created from each input bytecode sequence
βη by self-concatenating it PH

Pi

times. After this operation
all the sequences are of equal length of PH . Thereafter,
Shortest Common Supersequence (SCS) solution is applied
to find a merged sequence ρ-code from the concatenated
input bytecode. This approach is expressed by Algorithm 3.
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(c) One possible output of the Algorithm 3, along with the degree of overlap
of each shared sensing request

Figure 7. Identifying overlap in sensing instructions in three different
applications and creating a merged ρ-code using Algorithm 3

An example for demonstrating the merging of bytecode
is shown in Figure 7. There are three input application
bytecodes as shown in Figure 7(a). Please note that all
applications only sample one type of sensor for the sake
of simplicity. The periods of applications are different, and
in this example, PH = P3. Application A1 consists of S
and T nodes occurring consecutively with a period of 6
units. A2 is a sequence < C,S, S, T > with period of 9
units, and A3 is < S, C, S, T >. It should be noted that
non-anchor nodes across different application sequences are
considered as dissimilar nodes. For example, C in A2 is
not the same as C in A3, hence they are represented as C2
and C3 respectively. The SCS algorithm considers only S
type nodes as common across applications and merges, such
that the output length of the merged sequence is the shortest
possible. Figure 7(b) shows a possible alignment of S nodes,
and Figure 7(c) shows a merged sequence with overlapping
S nodes omitted. The degree of overlap δ for each merged
node is also shown.

Proposition 3. For n applications to be executed on a
sensor node, each with Worst Case Execution Times (WCET)
C1, C2, ... Cn respectively, the total execution time of the
input applications per hyper-period is :

CT =
n�

i=1

�
PH

Pi

× Ci

�
(2)

where PH is the harmonizing period, and is also the period

of ρ-code.
In case of t overlapping instructions (anchor nodes), each

with execution time of Ei, the total execution time of ρ-code
is given by:

CT,ρ =
n�

i=1

�
PH

Pi

× Ci

�
−

t�

i=1

((δi − 1)× Ei) (3)

where δi is the degree of overlap and is defined as the
number of applications sharing a given anchor node.

C. Implicit Scheduling

The monolithic ρ-code obtained from the input applica-
tions is forwarded to the sensor nodes, where an interpreter
executes it with a period equal to PH . The design of ρ-
code is such that the constituent applications have explicitly
non-overlapping variable space. The interpreter module has
its own run-time stack to maintain its overall state, but it
does not need to handle the responsibility of deciphering
the individual applications inside ρ-code. The schedule of
each application is embedded in the sequence of instructions
at the level of the hyper-period. If the total execution time
without overlap CT is less than the harmonizing period, the
merged sequence ρ-code is guaranteed to finish the execution
before the end of each period.

VI. EVALUATION

A. Comparison of Online vs. Proposed Solution

We compare the average power consumed by the radio
of a sensor node with respect to the rate of reprogramming
of the network. The comparison is shown in Figure 8. It
is intuitive that more frequent reprogramming will consume
more power. We compare the power consumed for following
three scenarios.

1) The network is programmed using an online approach
where a single application can be dynamically added
to the system.

2) Our proposed compile-time approach where a new
monolithic ρ-code has to be sent to each node even if
one application has been changed or added. The size
of monolithic ρ-code is equal to 2 applications.

3) The size of monolithic ρ-code is equal to 5 applica-
tions.

We compare the average power consumption based on the
assumption that the size of each application is equal to one
data-packet of size 128 bytes and the power consumption
of the radio is 56.4 mW (based on CC2420 IEEE 802.15.4-
compliant radio). We notice that the difference of power
consumed between the online approach and the compile-
time approach diminishes fairly quickly. If the network is
reprogrammed every 100 secs, the online approach will
consume about 2µW on an average, whereas our approach
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Figure 8. Comparison of average power consumed by the radio of a sensor
node with respect to the rate of reprogramming of the network for online
and compile-time approaches

consumes about 11µW for a monolithic block of 5 applica-
tions. This can be compared to the average power consumed
by a basic LPL-CSMA (Low Power Listen - Carrier Sense
Multiple Access) medium access protocol (MAC), which is
about 138µW for a background operation of maintaining
time synchronization within 5ms accuracy [30]. We can
therefore infer that even for fairly frequent reprogramming
at every 100 secs, the power consumed is at least an order
of magnitude lower than just the overhead of a light-weight
MAC protocol. Even if the size of each application is bigger
than one packet, the power consumed by both online and
compile-time approach will be insignificant compared to
normal operation of the network.

B. Power savings
Energy savings in the processor usage (excluding the

radio) available because of the redundancy elimination in
sensing requests can be estimated based on the degree of
overlap δ as follows:

∆E = Eorig − Emerged =
t�

i=1

((δi − 1)× Ei)× Pw (4)

where t is the number of overlapping sensing requests in
a set of input applications, Ei is the execution duration
of each instruction, and Pw is the power consumption
of the processor. For the example scenario shown in
Figure 7, the energy savings when the merged ρ-code is
executed on the Firefly sensor platform can be calculated
as: ∆E = (2 + 1 + 1 + 1) ∗ (490 ∗ 10−3) ∗ (8.4 ∗ 10−3).
Hence, ∆E = 20.6µJ

On the other hand, energy consumed by all appli-
cations running independently is approximately equal to
Eorig = 37.0µJ if we ignore the negligible power consumed
by other computation instructions. This corresponds to a
significant 55% energy savings in processor usage for the
particular example presented in Figure 7.

C2 S C3 S T1 C3 T3 T2 X C2 S T1 S T1 T2 X X X 
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Cs1 
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Cs1  = f1 

f3 

Figure 9. Various parameters for assessment of the proposed redundancy
elimination approach shown with the merged ρ-code sequence generated
in Figure 7

Table II
VALUES OF ASSESSMENT PARAMETERS FOR THE RESULTING ρ-CODE IN

FIGURE 7

Application WCET Spread Cs Freshness F

A1 4 4
A2 8 5
A3 6 3

C. Criteria for Assessment of REIS Compiler
WCET spread, Cs: Cs is defined as the total spread

in execution time of an application instance in a merged
application ρ-code.

Freshness, f : Freshness is the measure of maximum
delay caused by early execution of an anchor node, because
the sensed value may not be obtained close enough to the
point in time where it is used. Freshness is the distance
between an anchor node and next occurrence of a non-anchor
node belonging to the same application.

The above parameters are shown in Figure 9 for the
application scenario given in Figure 7. Please note that all
the parameters are in time units, and measured in nano-
seconds, but in the Table II we provide their values in
number of units based on the divisions shown in Figure 9.

VII. HIERARCHICAL SCHEDULING AND
FUTURE WORK

Let us consider a sensor network Operating System (OS)
with multitasking support with real-time characteristics,
where the tasks are scheduled by a scheduling policy Π.
The problem for assigning user-applications in such an OS
can be represented as a hierarchical scheduling problem as
shown in Figure 10. The monolithic REIS-Bytecode (or ρ-
code) can be assigned to one of the tasks running on the OS.
Each of these tasks implement the bytecode interpreters.

The problem of assigning a given set of n applications
to a set of k intermediate ρ-code blocks can be thought
of as a classical application of the bin-packing problem
in a similar fashion as in multiprocessor scheduling. The
applications can be merged to intermediate ρ-code based on
various criteria such as priority or memory requirements. We
plan to explore this further as future work.
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Figure 10. Hierarchical scheduling and merging of application on a
multitasking sensor node operating system

VIII. DISCUSSION AND CONCLUSIONS

In this paper we have proposed and discussed a novel
compiler-assisted scheduling approach that is able to identify
and eliminate redundancies across applications in wire-
less sensor network infrastructures in which sensor node
platforms allow multi-tasking and concurrent applications
and the network is programmed as a whole following a
macro-programming paradigm. Our approach proposes to
cleverly model applications as linear sequences of executable
instructions (we propose suitable algorithms for achieving
that). We then show how it is then possible to exploit
and adapt well-known string-matching algorithms such as
the Longest Common Subsequence (LCS) and the Short-
est Common Super-sequence (SCS) to produce an optimal
merged sequence of the multiple applications taking into
account implicit scheduling information.

With the increase in number of applications deployed
on a sensor network, the overhead because of sampling
the sensors can also increase dramatically. However, by
sharing sensing requests among applications, a significant
percentage of resource-usage and energy can be saved on
a sensor node. We demonstrate how our novel approach,
which materializes this high-level optimization, leads to sig-
nificant network-wide resource savings, importantly energy.
No other related approach could achieve this in the case
of sensor node platforms supporting multiple sensors of
multiple types. Our approach is highly predictable and its
runtime is fairly simple: execution of bytecode with implicit
scheduling.

It can be argued that our application model is simplistic.
It is, however, practically well-applicable and it increas-
ingly covers more and more scenarios of applications of
large-scale sensor network deployments. Indeed it does not
support variable for-loops, and memory requirements can
get higher if loop unroll is implemented, something that

we will assess in future work. Our approach is a compile-
time approach, and therefore all applications are affected if
one application changes or is added. On the other hand, a
dynamic run-time approach can add significant overhead to
the bytecode interpreter on the sensor node. In order for
a run-time approach to efficiently eliminate redundancies
across applications, a pre-profiling of application may be
required add both memory and processor overhead. More-
over, a compile-time approach is still be beneficial if the rate
of reprogramming of network is low.
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