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Abstract: 
The continuous improvement of Ethernet technologies is boosting the eagerness of extending 
their use to also cover factory-floor distributed real time applications. Indeed, it is remarkable 
the considerable amount of research work that has been devoted to the timing analysis of 
Ethernet-based technologies in the past few years. It happens, however, that the majority of 
those works are restricted to the analysis of sub-sets of the overall computing and 
communication system, thus without addressing timeliness in a holistic fashion. To this end, in 
this paper we address an approach, based on simulation, aiming at extracting temporal 
properties of Commercial-Off-The-Shelf (COTS) Ethernet-based factory-floor distributed 
systems. This framework is being applied to a specific COTS technology, Ethernet/IP. In this 
paper, we reason about the modeling and simulation of Ethernet/IP-based systems, and on 
the use of statistical analysis techniques to provide useful results on timeliness. 
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Abstract 
 

The continuous improvement of Ethernet 
technologies is boosting the eagerness of extending 
their use to also cover factory-floor distributed real 
time applications. Indeed, it is remarkable the 
considerable amount of research work that has been 
devoted to the timing analysis of Ethernet-based 
technologies in the past few years. It happens, 
however, that the majority of those works are 
restricted to the analysis of sub-sets of the overall 
computing and communication system, thus without 
addressing timeliness in a holistic fashion. To this end, 
in this paper we address an approach, based on 
simulation, aiming at extracting temporal properties of 
Commercial-Off-The-Shelf (COTS) Ethernet-based 
factory-floor distributed systems. This framework is 
being applied to a specific COTS technology, 
Ethernet/IP. In this paper, we reason about the 
modeling and simulation of Ethernet/IP-based systems, 
and on the use of statistical analysis techniques to 
provide useful results on timeliness.  

1. Introduction1 

The factory-floor has been, since a few decades 
now, one of the major application environments for 
real-time distributed computing systems [1, 2]. 
Interesting, however, is that the use of communication 
networks at the factory-floor is more recent than at the 
office environment. One of the reasons for this delay 
was that manufacturing systems usually depend on 
being able to sample input data at equally spaced 
points in time [3], and this feature was not easily 
fulfilled using early office-room networks. 

Nowadays, arguments against the use of Ethernet in 
industrial environments have almost disappeared. 

                                                                 
1This work was partially funded by Rockwell Automation under 
research contract INDEPTH and by FCT under CIDER and 
MethoDES Projects (POSI/1999/CHS/33139, POSI/2001/37334). 

“Familiarity”, “high availability” (subsequently, low 
cost) and improved timeliness and dependability are 
driving this phenomenon [4]. Additionally, and in the 
era of the Internet, factory-floor communication  
systems must also better explore commercial 
information technologies [5]. This should include 
TCP/IP-based applications (XML, Java, etc.) and 
general-purpose communication networks such as 
Ethernet, just to mention a few example technologies. 

Regarding Ethernet technologies and, more 
importantly, distributed systems based upon them, 
guaranteeing timeliness is still, most times, an open 
issue. In fact, the majority of research efforts [6, 7] on 
Ethernet technologies have been focusing on 
timeliness, trying to find solutions to issues such as 
bounded response time evaluation, optimal scheduling 
policies, switching topologies or clock 
synchronization. However, they essentially consider 
the timing characteristics at the Data Link Layer. It is 
still to come, to our best knowledge, an overall 
approach embracing a fully defined protocol stack. 

While until a couple of years ago a valid 
justification for this gap could eventually be the lack of 
technologies offering an overall ensemble of protocols 
and mechanisms [8], this justification can not serve 
that purpose anymore. In fact, there are already 
Commercial-Off-The-Shelf (COTS) solutions for 
Ethernet-based systems providing a fully defined 
communication protocol stack. One of such solutions 
is Ethernet/IP [9], where IP stands for “Industrial 
Protocol”.  

Ethernet/IP uses an Application protocol, the 
Control and Information Protocol (CIP), layered on top 
of a standard TCP/IP protocol stack, where the 
physical and data link layers can be commodity 
Ethernet technologies. 

In this paper we propose an approach for assessing 
the timeliness characteristics of Ethernet/IP-based 
distributed systems. This approach builds upon 
modelling, simulation and statistical analysis of 
simulation results, and is part of a wider framework 
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related to the research project INDEPTH − INDustrial-
Ethernet ProTocols under Holistic analysis 
(www.hurray.isep.ipp.pt/indepth). 

The timeliness analysis of a system is usually 
exploited in a framework dominated by the notion of 
absolute temporal guarantees. In those systems, 
computational and communication loads are presumed 
to be bounded and known, and the worst-case (at least 
believed to be) conditions are assumed. In this way, 
the problem of engineering distributed real time 
systems, of which factory-floor distributed computing 
systems are a representative example, becomes a 
problem of devising the appropriate tools and methods 
to assure that all deadlines are met in all circumstances. 

To this end, researchers usually follow two, 
generally alternative, approaches. These two 
approaches are based on: 

1. simulation models of system components that 
mirror the actual behaviour of the system; 

2. analytical models that give a measure of worst-
case system latencies. 

Each of those has advantages and disadvantages, 
when compared to each other. Simulation-based 
models can be applied to virtually all problems, and 
system details can be embodied into the models up to 
the desired level. However, a major drawback may 
turn out to be the time required in executing the 
simulation for large and realistic systems, particularly 
when results with high accuracy (narrow confidence 
intervals) are desired. Also, typically, simulations 
require the use of simulation development and 
deployment tools that entail difficulties or are not 
appropriate to be applied to the target system.  

These drawbacks do not exist to the same extent in 
analytical-based approaches. However, and for 
complex distributed systems, analytical-based models 
tend to be overwhelmed with simplifications that often 
lead to very pessimistic assumptions, and therefore to 
very pessimistic worst-case results. Even knowing that 
a number of existing techniques may potentially be 
used and adapted to reduce this pessimism level, the 
benefit may appear at the cost of adding rather 
complex abstractions, such as precedence relationships 
[10], event phasing [11] and inheritance of time 
characteristics [12]. These, unfortunately, may lead to 
intractable mathematical models, thus making it further 
difficult to handle and reason the analytical 
abstractions. 

There is another concern that is important to bring 
into this context. In fact, although the deterministic 
framework has been proved valid for the deployment 
of real time systems in a wide range of applications, it 
is now accepted that it may pose serious research 
challenges when trying to apply it to some other 

application areas. This is eventually the case of some 
distributed systems that are more flexible and adaptive 
in their nature.  

Therefore, in this paper we exploit the approach 
based on simulation models of system components that 
mirror the actual behaviour of the system.  

The rest of this paper is structured as follows. The 
next section presents a brief description of the main 
components of Ethernet/IP-based distributed systems. 
Afterwards, we describe how we have been tackling 
the problem of modelling and simulating distributed 
systems based on that COTS technology. Finally, we 
discuss the use of simulation results to perform 
statistical timeliness analysis, by means of a concrete 
simulation example. 

2. Ethernet/IP-based Distributed Systems 

In CIP-based networks, such as Ethernet/IP, the 
majority of the messaging performed is done through 
connections. CIP connections define the packets that 
will be produced on the network, and can be of two 
types: Explicit Messaging or Implicit Messaging.  

Implicit messaging is the messaging used for time 
critical I/O data, and therefore will receive the focus of 
our attention, specially the Cyclic Implicit CIP type of 
connections. A device produces cyclic messages on a 
predetermined rate basis, defined by the Requested 
Packet Interval (RPI) parameter. Underlying these 
transactions is a producer/distributor/consumer model, 
also usually found in other factory communication 
networks such as WorldFIP [13]. In Ethernet/IP 
networks the distribution is supported upon multicast 
UDP/IP that, in turn, is mapped onto Ethernet 
multicast.  

...
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Figure 1:  Ethernet/IP-like networks basic 
nodes and an end-to-end transaction example. 

Ethernet/IP networks are constituted by three 
structuring types of nodes: Remote I/Os, Controllers 
and interconnecting Switches. These nodes 
communicate with each other via Ethernet. Diverse 
modules can compose the Remote I/O and Controller 
nodes. These modules communicate among them via a 



 

Figure 2:  OMNET++ hierarchical models. 

device-specific backplane (Figure 1). Typically, a 
Controller is composed of a number of I/O modules 
(labelled in the figure as I or O), several controller 
modules (C) and one or more Ethernet Adapters (EA). 
A Remote I/O node has no Controller modules.  

Assuming the simple network scenario given in 
Figure 1, let us take a closer look to the type of end-to-
end transactions we are addressing. A typical 
transaction starts at the input module of the Remote 
I/O ( ), where a message with the actual input data 
will be generated (produced), at a rate defined by the 
RPI parameter for that particular connection. This 
message will suffer contention delay at the node device 
backplane ( ), and then arrive at the EA, where it is 
processed and sent via the communication interface 
( ) to the Ethernet switch, that forwards the message 
to the corresponding output port(s) ( ). The message 
will arrive to the Controller EA ( ), where it is 
dispatched to the Controller module via the node 
backplane ( ). At the controller (consumer of the data 
associated to the transaction), the input data will be 
processed by a task, that generates the related output 
data ( ). The generated output data corresponds to 
another transaction, in this case produced by the 
controller and consumed at the Remote I/O node. With 
another RPI associated, this message will then follow 
the inverse path ( , , ), until it reaching the EA of 
the Remote I/O ( ). It is then processed and delivered 
to the output module that will, in result, energise the 
corresponding output(s) ( ). 

3.  Ethernet/IP Simulation Model 

The Ethernet/IP distributed system simulation 
environment was developed using the OMNeT++ [14] 
discrete event simulation platform. OMNeT++ is an 
object oriented modular discrete event simulator, 
which provides a reusable component framework, 
where the system components can be independently 
built and then characterized and assembled into larger 
components and models. The basic system components 
are built using the C++ language and then assembled 
into larger components and models using a high level 

language, named NED (an OMNeT++ specific 
scripting language). An OMNeT++ model consists of 
hierarchically nested Modules (see Ethernet/IP 
example as depicted in Figure 2). These modules can 
have parameters which are used to customize the 
module behaviour; to create flexible model topologies; 
and for module communication, as shared variables. 
Modules can also communicate through message 
passing, where messages can contain arbitrary data 
structures. 

Our simulation model for Ethernet/IP is composed 
of three basic components (nodes), mapping on the 
main Ethernet/IP devices: a Remote IO, a Controller 
and an Ethernet Switch. Each of these basic nodes can 
be instantiated into several different device models, 
with different particular characteristics, since 
modularity and parameterization are considered into 
the design to a sufficient extent. In the next 
subsections, further details are provided concerning 
model implementation aspects. 

3.1 The remote IO node 

The Remote IO is composed of several IO modules 
and an Ethernet/IP Adapter, which communicate 
through a backplane, using CIP packets. The IO 
modules contain the several input/output connections 
of the device. Typically, each IO module will act has 
an Input or Output module, but not as both at the same 
time. The Ethernet Adapter is responsible for relaying 
messages between the Backplane and the Ethernet 
network. CIP packets are eventually (for the case of a 
consumer outside the node) encapsulated into UDP 
packets inside the Ethernet/IP Adapter (ethIPAdapter 
in Figure 2). 

The Backplane is a simulation module that exists 
both at Controller and Remote IO nodes. For 
simulation performance, at initialisation time the 
Backplane uses the information about the data 
connections produced/consumed at each module to 
build a table with information on the gates where to 
deliver each of the configured connections. Figure 3 
provides a sample of NED code defining the 



Backplane OMNeT++ simple module. A simple 
OMNeT++ module is declared with the keyword 
simple, followed by the module’s name. Included in 
the declaration are the OMNeT++ simple module’s 
parameters and gates. The gates of an OMNeT++ 
module define the entry points of the module. For the 
example of the Backplane module, an array of input 
and output gates are defined, where each pair of input 
and output represents a Backplane interface connecting 
to a node’s module.  

simple Backplane 

    parameters: 

  tTableTime : numeric,  

  frameTime  : numeric,  

  timeDivison: bool;   

    gates: 

        in: in[];        

        out: out[];      

endsimple 

 

Figure 3:  Backplane NED definition. 

The Backplane simple module has the parameter 
tTableTime, which defines the transmit table time, used 
for the time division multiple access (TDMA) protocol 
used as backplane’s medium access control (MAC) 
protocol. The parameter frameTime concerns the time 
a message takes to be transmitted in the backplane, and 
the parameter timeDivision specifies whether the time 
division protocol behaviour should be precisely 
simulated or simplified. The Backplane module 
simulates the behaviour of a TDMA contention schema 
where access to the communication medium is equally 
distributed to the several producing connections 
delivering data to the backplane. Nevertheless, and 
because this simulation approach of the backplane can 
introduce a great amount of events, it is possible to 
disable this behaviour. The alternative will then be to 
insert a variable delay, as a function of the number of 
connections that send messages to the backplane.  

The Ethernet/IP Adapter is responsible for relaying 
messages to/from the Ethernet network. It receives the 
CIP messages from the Backplane and, in the CIP 
Bridge Layer (cipBridgeLayer in Figure 2) 
encapsulates them into UDP packets which are passed 
down to the Network Layer of the UDP/IP stack. On 
the opposite direction the packets are retrieved from 
the UDP/IP packet and delivered to the Backplane. 

The Ethernet/IP Adapter models the delays 
introduced to perform the encapsulation of the 
messages, to access the network and the delays 
resulting from the concurrent access to the adapter 
resources. Figure 4 illustrates the NED definition of 
the Ethernet Adapter OMNeT++ module (a compound 

module). Like an OMNeT++ simple module, a 
compound module is composed of the module’s 
parameters and gates. Additionally, it has to include its 
sub-modules and the connections between the sub-
modules and gates. 
 
module EthIPAdapter 

    parameters: 

        connectionIDProducedList : string,  

        connectionIDConsumedList : string;  

    gates: 

        in: from_backplane; 

        out: to_backplane; 

        in: from_eth; 

        out: to_eth; 

    submodules: 

        cipBridgeLayer: CIPBridgeLayer; 

        networkLayers: NetworkLayers; 

    connections: 

        from_backplane --> cipBridgeLayer.from_bp[0]; 

        to_backplane <-- cipBridgeLayer.to_bp[0]; 

        networkLayers.to_application --> cipBridgeLayer.from_ntw; 

        networkLayers.from_application <-- cipBridgeLayer.to_ntw; 

        from_eth --> networkLayers.from_phy; 

        to_eth <-- networkLayers.to_phy; 

endmodule  
Figure 4:  EthIPAdapter NED definition. 

The connectionIDProducedList and the 
connectionIDConsumedList parameters are used for 
listing the CIP connection identifiers of the 
connections produced and consumed in the node’s 
modules connected to the backplane. The sub-modules 
of an EthIPAdapter module are the CIP Bridge Layer 
(cipBridgeLayer sub-module) and Network Layer 
(networkLayers sub-module). The connections 
implemented (refer to the NED code sample in Figure 
4) are between these two layers and the input/output 
gates from the backplane and the Ethernet network. 

 

Figure 5:  ONNET++ EthIPIOModule 
composition. 

Each of the IO modules (labelled IOModule1, 
IOModule2, IOModule3, etc., in Figure 2) inside a 
node and connected to the Backplane contains a CIP 
Layer, responsible for managing data transfers to/from 
the IO Connections. The IO Connection can behave 
either as an output or input connection, and each IO 
Module may have several input or output connections 
connected to its CIP Layer (Figure 5). 



When an IO Connection is doing the task of an 
input connection, it receives data from a data input, 
which generates input data at a defined periodicity 
(this data input models the input signals of an input 
connection). At a defined Requested Packet Interval 
(RPI), the IO Connection constructs a CIP data item 
from the last received data, and sends it to the CIP 
Layer. When an IO Connection is acting like an output 
connection, it receives data from the CIP Layer, which 
is delivered to a data output, after a parameterized 
hardware delay. This is illustrated in Figure 6, which 
provides the C++ code of the message handler from 
the IOConnection class. 

 
void IOConnection::handleMessage(cMessage *msg) { 

 if (msg->isSelfMessage() == true && inputModule == true) { 

  // at rpi, send input data and schedule next rpi 

sendInputData(); 

if (((simtime_t)*rpi) > 0) 

 scheduleAt(simTime()+((simtime_t)*rpi), msg); 

} else { 

 if (inputModule == true) { // acting as an input 

  // discard previous dataItem and store new one 

  if (dataItem != NULL) delete dataItem; 

   dataItem = (CIPDataItem*) msg->dup(); 

  } else // acting as an output 

  sendDelayed(msg->decapsulate(),((simtime_t)*asicDelay), "out"); 

  delete msg; // After finishing with a message, it is released 

} 

}  

Figure 6:  IOConnection class message 
handler C++ code. 

The data input generators (dataInput1, dataInput2, 
..., in Figure 5) model the signals applied at the input 
pins of the IO. They are parameterized by the length of 
the data generated and the periodicity of the data 
generation, and by two delays introduced after the 
generation of the input (a hardware delay and a filter 
delay). OMNet++ supports defining any of these 
parameters as a user-defined randomly distributed 
function. These parameters can be either defined in the 
NED code of a compound module, in which case it 
will be the same for all instances of this compound 
module, or defined in a special initialization file that 
may assign the parameters individually for each 
module in the simulation. 

Figure 7 exemplifies the definition of the dataInput 
(NED code) parameters in an IO module: a random 
variable with a uniform distribution in the interval 
[100, 150] milliseconds.  

Figure 8 illustrates the alternative setting of the 
same parameters through an initialisation file, for a 
particular IO module instantiation (ioModule1), inside 

of a Remote IO node (ethIPIO1), within a network 
(ethIPNetwork1). 

 
module EthIPIOModule  

… 

    submodules:  

        dataInput: Input[numInputs];  

            parameters:  

                hwDelay = 200 us,  

                dataLength = 22, 

      filterDelay = 0,  

                period = uniform (0.1, 0.15); 

… 

endmodule 

 

Figure 7:  OMNET++ EthIPIOModule NED 
code for parameter configuration. 

ethIPNetwork1.ethIPIO1.ioModule1.dataInput[0].hwDelay = 200 us 

ethIPNetwork1.ethIPIO1.ioModule1.dataInput[0].dataLength = 22 

ethIPNetwork1.ethIPIO1.ioModule1.dataInput[0].filterDelay = 0 ms 

ethIPIO1.ioModule1.dataInput[0].period = uniform(0.1,0.15)  

Figure 8:  EthIPIOModule parameter 
configuration through initialization file. 

3.2 The Controller Node 

The Controller node is, in its structure, similar to 
the Remote IO node. The Backplane, the Ethernet/IP 
Adapter and IO modules are exactly the same modules 
as described previously for the Remote IP node. Of 
course, it is possible to parameterize each of the 
modules differently, and therefore manipulate their 
actual behaviour. 

 

Figure 9:  ONNET++ Controller module 
composition. 

There is however a module that must be specified 
for the particular case of Controller nodes: the 
Controller module (Figure 9). In an actual Ethernet/IP 
system, the controller module is responsible for 
executing the tasks performing the control functions.  

The Controller was modelled reusing some 
OMNeT++ modules described earlier: the IO 



Connection modules and the CIP Layer. The 
controllerInputConnection module receives the data to 
be delivered to the ControllerTask module, 
corresponding to an output connection at the remote 
source node. The output data generated by the 
controller task is delivered to the 
controllerOutputConnection module. The 
ControllerTask (worst-case) response time is a 
parameter which is a time span introduced between the 
reception and the generation of the data. This 
parameter can be defined has a random function that 
best models the response time for each controller task. 

3.3 The Switch Node 

The Switch node models the delays introduced by 
an Ethernet Switching component. For the purpose of 
this simulation, it is only necessary that the Switch 
recognizes multicast groups and deliver the frames 
received in an appropriate manner. The Switch model 
is composed of several ports that connect to the nodes 
in the network. Because there is a port in each 
direction, the Ethernet medium is assumed to be full-
duplex. 

The Switch node is a simple OMNeT++ module. 
The NED definition of the Switch OMNeT++ module 
is rather simple, and is given in Figure 10. It is similar 
to the Backplane OMNeT++ module, since it has an 
array of input and output gates, in which each pair 
represents the interface with each connecting modules 
(the switch port). 

 
simple Switch 

    parameters: 

        nodename : string, 

        switchDelay : numeric; 

    gates: 

        in: in[]; 

        out: out[]; 

endsimple 
 

Figure 10:  Ethernet Switch NED definition. 

OMNeT++ offers a rather convenient manner of 
defining channel transmission characteristics. It is 
possible to define the characteristics of the connection 
between any two modules by using a predefined 
channel. A channel is defined with its name, preceded 
by the keyword channel. A channel may be assigned 
with the attributes delay, error and datarate. The 
example code depicted in Figure 11 corresponds to the 
definition of a 100 Mbit/sec Ethernet channel with a 
normally distributed delay, with mean value of 150 µs 
and a standard deviation of 50 µs. The connecting 
channels model the transmission delays and queue the 

messages whenever concurrent access to the medium 
occurs. 

channel ethernet  

    delay normal(0.00015,0.00005);  

    datarate 100*10^6;  

endchannel  

Figure 11:  Ethernet Channel definition in 
OMNET++. 

To simplify the multicast deliver process, the 
connection identifier of a producing connection is 
directly mapped into the last octet of an IP Multicast 
Address. For example, for a connection with the 
identifier 128, the IP Multicast Address would be 
constructed with a user defined prefix and the last octet 
being 128; that is, for a prefix of 239.0.0., the 
connection with identifier 128 would be mapped to the 
multicast group with address 239.0.0.128.  

Because mapping rules defined by multicast 
Ethernet MAC address mapping are also used [15], the 
Ethernet frames actually contain the connection 
identifier mapped into the multicast groups. In this 
way, it is possible for the Switch to simply construct, 
at initialization time, a list of all producing/consuming 
connection IDs for each connected node. At run time, 
the Switch module will merely compare the connection 
identifiers of the received frames with the ones in the 
list for each node, swiftly delivering copies of the 
received frame to all nodes that belong to the multicast 
group. The Switch is parameterized by a delay that 
represents the time taken to process the frames, which 
can also be defined as a random function. 

4. Discussion of Results over a Practical 
Example 

In order to provide some insight into the obtainable 
results with this modelling and simulation approach for 
Ethernet/IP-based distributed systems, an example 
system is presented. The results of its simulation and 
how they could be analyzed are then discussed in this 
section. Note that we are aiming at obtaining an 
estimation of the worst-case end-to-end response time 
for a number of transactions. A primary goal is to 
consider some fundamental aspects about the analysis 
of the simulation results. 

4.1 Example scenario 

The example system is constituted of three Remote 
IOs, one Controller and an interconnecting switch 
(Figure 12). 



The Controller node is composed of one IO module 
and two Controller modules. The first Remote IO 
includes four IO modules, two for output and two for 
input. The second Remote IO also includes four IO 
modules, three for input and one output. Finally, the 
last Remote IO contains three IO modules, two for 
input and one output. 

The system has nine end-to-end transactions 
between the Remote IOs and the Controller. This 
results in a total of eighteen connections, half from the 
Remote IOs to the Controller (Input direction) and the 
other half, from the Controller to the Remote IOs 
(Output direction). 

 

Remote IO 3 Remote IO 2 Remote IO 1 

Controller 1 

Ethernet Switch 

EC 

E I 

C O 

I O O E I I OE I I O I 
 

Figure 12:  Example of simulated system. 

Table 1 presents the identifiers of the system’s 
connections whereas Tables 2-4 provide the details 
about the mapping of connections to the system 
modules.  

Table 1. End-to-End transactions 

Transaction 
Connection:  

Input Direction 

Connection: 
Output 

Direction 
1 131 141 
2 132 142 
3 133 143 
4 134 144 
5 151 161 
6 152 162 
7 153 163 
8 171 181 
9 172 182 

As an example, Transaction 8 is initiated at the 
IOModule3 of RemoteIO1 (connection 171) with an 
RPI of 200 ms (Table 2).  It is delivered to module 2 of 
the Controller (Table 3), where the data is processed, 
and the corresponding output is generated (connection 
181). This connection is then sent to the IOModule2 of 
RemoteIO3 (Table 4). The RPI of the output 
connections is equal to the corresponding input 
connection.  

Table 2.  Input Connections 

Input 
Connection 

Node Module 
ID 

RPI 
(ms) 

171 200 
Remote IO 1 IO module 3 

172 350 
IO module 1 131 10 
IO module 2 132 7 

133 25 
Remote IO 2 

IO module 3 
134 20 
151 55 
152 80 Remote IO 3 IO module 1 

153 75 

Table 3. Connections at the controller 

Module 
Input 

Connection 
Output 

Connection 
131 141 
132 142 
133 143 

Controller 1 
module 1 

153 163 
134 144 
151 161 
152 162 
171 181 

Controller 1 
module 2 

172 182 

Table 4. Output connections 

Node Module 
Output 

Connections  
IO module 1 141; 142; 14; Remote IO 1 
IO module 2 163 

Remote IO 2 IO module 4 144; 163 
Remote IO 3 IO module 2 161; 181; 182 

4.2 Analysis of simulation output data 

It is known that not much can be concluded with a 
single simulation run. In fact, the results of a given 
simulation run are just particular instantiations of 
random variables that may have large variances. It is 
also known that classical statistical techniques based 
on Independent and Identically Distributed (IID) 
observations are not directly applicable to the 
investigation of simulation results. In fact, simulation 
output data results are usually highly correlated and 
have non-stationary distributions. 

Several different methods have been developed to 
correctly compute estimates of a model’s 
characteristics [16]. There is however no simple or 
complete solution. Besides, the precision of the 
estimation is at the cost of long and computing 



intensive simulation runs. Although previous works 
have interesting approaches for the application of 
discrete–event simulation to the analysis of distributed 
real time systems, such as in [17], to our best 
knowledge, little has been advanced in respect to the 
actual statistic analysis of the simulation output results, 
including some measure of confidence in the results. 

Most of the methods for the analysis of simulation 
output data, referred in the literature [16], rely on the 
fact that although the simulation results of a single 
simulation run are not independent, it is possible to 
obtain independent observations across the results of 
several simulation runs (replications). A set of 
replications is independent if the random numbers used 
to drive the simulation through time are different for 
each replication.  

The replication/deletion method is a fairly simple 
approach, with a reasonably good statistical 
performance [16], which we will briefly describe and 
apply in the analysis of the simulation network 
example presented formerly. The goal is to obtain an 
estimate and confidence interval for a steady-state 
mean v of worst-case observations. 

Suppose that we make n replications of the 
simulation each of length m, where m is much larger 
than l (the warm-up period used to eliminate the initial 
transient problem). Let Xi be independent and 
identically distributed (IID) random variables given 
from the maximum end-to-end response time observed 
in each simulation replication i, in the set of response 
times between l and m. Xi holds an expected average 
approximate of the steady-state mean v, across i 
replications of the simulation. Thus,   is an 
approximately unbiased point estimation for v, and an 
approximate 100(1−α) percent confidence interval for 
v may be obtained by [16]: 
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The half-length of the replication/deletion 
confidence interval given by equation (1) depends on 

the variance of Xj, which will be unknown for the first 
n replications. Therefore, it is necessary to make a 
sufficient number of replications of the simulation to 
achieve a confidence interval small enough for a 
particular purpose. 

4.3 Statistical results of the simulation 

Table 5 provides the results of the application of 
such approach to the analysis of the simulation output 
data. In this, we will attempt to construct a confidence 
interval for the worst-case that can be expected in the 
long run. This estimation is based on the observation 
of successive maximum end-to-end values verified 
across simulation replications and the variance of these 
observations. The number of replications performed 
was 61, which was a number of replications that 
allowed obtaining an error below 25-26% of the 
estimate for all transactions. 

The X in the table represents the estimation for the 
worst-case response time of the transactions. The 
margin of error (ε) gives a measure on how accurate 
the estimation is, based on the variability of the 
estimation. The confidence level (99.9%) reflects the 
amount of confidence that, in the long run, this 
approach will be able to approximate the true worst-
case. With these values, it is possible to construct the 
confidence intervals displayed. 

Table 5. Results of simulation output using 
replication/deletion 

Transaction 
Estimation for 99.9% 
confidence interval 

(X ± ε  ms) 

99.9% 
Confidence interval 

(ms) 
Tr. 1 21.22 ± 4.42 [16.80 , 25.64] 
Tr. 2 15.28 ± 3.97 [11.31 , 19.26] 
Tr. 3 51.15 ± 5.08 [46.07 , 56.24] 
Tr. 4 41.11 ± 4.68 [36.43 , 45.78] 
Tr. 5 700.45 ± 9.22  [691.23 , 
Tr. 6 220.90 ± 6.27  [214.62 , 
Tr. 7 110.20 ±12.79 [  97.41 , 
Tr. 8 400.74 ± 7.44  [393.30 , 
Tr. 9 700.59 ± 8.72  [691.87 , 

This evaluation of the behaviour of a concrete 
system may be of relevance to the systems designer, 
when a probabilistic analysis of the system is being 
carried out.  

Note that this evaluation is more suitable for means 
and variance behaviour. Its applicability for values on 
the tail of distributions (such as worst-case) is still 
object of current work, thus the reader is referred to 
[18] for further discussion on these issues . 



 Some additional remarks that might be raised 
towards this analysis include the fact that the 
simulation data needed to produce such results may be 
at a prohibitive computation cost. This time actually 
depends on a number of variables. The complexity of 
the system influences the number of events generated 
during the simulation, the variance of the variables 
under study affect the size needed for each individual 
simulation replication, and the margin of error desired, 
which is also influenced by the variation of the 
variables of interest, may be controlled by the number 
of simulation replications. A close investigation of 
these matters is beyond the scope of this paper, but this 
is an important issue that must be evaluated in order 
for this approach to succeed. Nevertheless, it can be 
advanced that, for the example presented, each 
replication took less than 2 minutes to run on a fairly 
old machine (PIII 1GHz).  

Also, as noted, the precision obtained depends on 
the variance of the variables. There are methods to 
reduce the variance of a simulation output, which 
generally require controlling random-number streams 
to introduce correlation in successive observations. 
Such methods are usually dependent on a particular 
model and, if not carefully used may impair the 
validity of the results. Nonetheless, regardless of such 
techniques, by observing the evolution of the data 
obtained it is clear that there is a level of precision 
which can not be much improved by increasing the 
number of simulation replications. Therefore, 
particular care must be taken with the use of traditional 
statistical methods when timeliness guarantees must be 
provided. 

5. Summary and Conclusions 

Ethernet-based technologies have already gained a 
strong position in the factory-floor. For many years, 
deemed non determinist, Ethernet has gone through 
some evolution which enables its use in real time 
applications. Nevertheless, Ethernet technology, by 
itself, does not include features above the lower layers 
of the OSI communication model. Although lots of 
attention has been devoted to the timing analysis of 
Ethernet-like technologies and solutions, most of the 
work on Ethernet has been restricted to the Data Link 
Layer level. It is still to come an overall approach that 
allows the evaluation of a whole Ethernet based 
distributed computing system. 

In this paper, we have presented the modelling and 
simulation of Ethernet/IP-based systems, which is 
being addressed with the purpose of setting up a 
framework for the development of tools suitable to 
extract temporal properties of Commercial-Off-The-
Shelf (COTS) Ethernet-based factory-floor distributed 

systems as a whole. The use of discrete event 
simulation models can be a powerful tool for the 
timeliness evaluation of the overall system, but 
particular care must be taken with the results provided 
by traditional statistical analysis techniques. Therefore, 
some discussion was also introduced on the use of 
simulation results to perform statistical timeliness 
analysis. This discussion provides insights for ongoing 
work in this area. In order to obtain more appropriate 
estimates to real time system parameters, analysis 
techniques that consider the particular statistical 
properties of these parameters must be applied. 
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