

IPP-HURRAY! Research Group

Polytechnic Institute of Porto
School of Engineering (ISEP-IPP)

INDEPTH: Timeliness Assessment of
Ethernet/IP-based Systems

Nuno PEREIRA
Eduardo TOVAR

Luis Miguel PINHO

HURRAY-TR-0433
October-2004

elatór o
técnic

e
r

chnic
eport
al
i
o

INDEPTH: Timeliness Assessment of Ethernet/IP-
based Systems

Nuno PEREIRA, Eduardo TOVAR, Luis Miguel PINHO
IPP-HURRAY! Research Group
Polytechnic Institute of Porto (ISEP-IPP)
Rua Dr. António Bernardino de Almeida, 431
4200-072 Porto
Portugal
Tel.: +351.22.8340502, Fax: +351.22.8340509
E-mail: {npereira, emt, lpinho}@dei.isep.ipp.pt
http://www.hurray.isep.ipp.pt

Abstract:
The continuous improvement of Ethernet technologies is boosting the eagerness of extending
their use to also cover factory-floor distributed real time applications. Indeed, it is remarkable
the considerable amount of research work that has been devoted to the timing analysis of
Ethernet-based technologies in the past few years. It happens, however, that the majority of
those works are restricted to the analysis of sub-sets of the overall computing and
communication system, thus without addressing timeliness in a holistic fashion. To this end, in
this paper we address an approach, based on simulation, aiming at extracting temporal
properties of Commercial-Off-The-Shelf (COTS) Ethernet-based factory-floor distributed
systems. This framework is being applied to a specific COTS technology, Ethernet/IP. In this
paper, we reason about the modeling and simulation of Ethernet/IP-based systems, and on
the use of statistical analysis techniques to provide useful results on timeliness.

INDEPTH: Timeliness Assessment of Ethernet/IP-based Systems

Nuno Pereira, Eduardo Tovar, Luís Miguel Pinho
IPP-HURRAY Research Group, Polytechnic Institute of Porto

P-4200-072 Porto, Portugal
{npereira, emt, lpinho}@dei.isep.ipp.pt

Abstract

The continuous improvement of Ethernet
technologies is boosting the eagerness of extending
their use to also cover factory-floor distributed real
time applications. Indeed, it is remarkable the
considerable amount of research work that has been
devoted to the timing analysis of Ethernet-based
technologies in the past few years. It happens,
however, that the majority of those works are
restricted to the analysis of sub-sets of the overall
computing and communication system, thus without
addressing timeliness in a holistic fashion. To this end,
in this paper we address an approach, based on
simulation, aiming at extracting temporal properties of
Commercial-Off-The-Shelf (COTS) Ethernet-based
factory-floor distributed systems. This framework is
being applied to a specific COTS technology,
Ethernet/IP. In this paper, we reason about the
modeling and simulation of Ethernet/IP-based systems,
and on the use of statistical analysis techniques to
provide useful results on timeliness.

1. Introduction1

The factory-floor has been, since a few decades
now, one of the major application environments for
real-time distributed computing systems [1, 2].
Interesting, however, is that the use of communication
networks at the factory-floor is more recent than at the
office environment. One of the reasons for this delay
was that manufacturing systems usually depend on
being able to sample input data at equally spaced
points in time [3], and this feature was not easily
fulfilled using early office-room networks.

Nowadays, arguments against the use of Ethernet in
industrial environments have almost disappeared.

1This work was partially funded by Rockwell Automation under
research contract INDEPTH and by FCT under CIDER and
MethoDES Projects (POSI/1999/CHS/33139, POSI/2001/37334).

“Familiarity”, “high availability” (subsequently, low
cost) and improved timeliness and dependability are
driving this phenomenon [4]. Additionally, and in the
era of the Internet, factory-floor communication
systems must also better explore commercial
information technologies [5]. This should include
TCP/IP-based applications (XML, Java, etc.) and
general-purpose communication networks such as
Ethernet, just to mention a few example technologies.

Regarding Ethernet technologies and, more
importantly, distributed systems based upon them,
guaranteeing timeliness is still, most times, an open
issue. In fact, the majority of research efforts [6, 7] on
Ethernet technologies have been focusing on
timeliness, trying to find solutions to issues such as
bounded response time evaluation, optimal scheduling
policies, switching topologies or clock
synchronization. However, they essentially consider
the timing characteristics at the Data Link Layer. It is
still to come, to our best knowledge, an overall
approach embracing a fully defined protocol stack.

While until a couple of years ago a valid
justification for this gap could eventually be the lack of
technologies offering an overall ensemble of protocols
and mechanisms [8], this justification can not serve
that purpose anymore. In fact, there are already
Commercial-Off-The-Shelf (COTS) solutions for
Ethernet-based systems providing a fully defined
communication protocol stack. One of such solutions
is Ethernet/IP [9], where IP stands for “Industrial
Protocol”.

Ethernet/IP uses an Application protocol, the
Control and Information Protocol (CIP), layered on top
of a standard TCP/IP protocol stack, where the
physical and data link layers can be commodity
Ethernet technologies.

In this paper we propose an approach for assessing
the timeliness characteristics of Ethernet/IP-based
distributed systems. This approach builds upon
modelling, simulation and statistical analysis of
simulation results, and is part of a wider framework

MASCOTS04 (Final)

related to the research project INDEPTH − INDustrial-
Ethernet ProTocols under Holistic analysis
(www.hurray.isep.ipp.pt/indepth).

The timeliness analysis of a system is usually
exploited in a framework dominated by the notion of
absolute temporal guarantees. In those systems,
computational and communication loads are presumed
to be bounded and known, and the worst-case (at least
believed to be) conditions are assumed. In this way,
the problem of engineering distributed real time
systems, of which factory-floor distributed computing
systems are a representative example, becomes a
problem of devising the appropriate tools and methods
to assure that all deadlines are met in all circumstances.

To this end, researchers usually follow two,
generally alternative, approaches. These two
approaches are based on:

1. simulation models of system components that
mirror the actual behaviour of the system;

2. analytical models that give a measure of worst-
case system latencies.

Each of those has advantages and disadvantages,
when compared to each other. Simulation-based
models can be applied to virtually all problems, and
system details can be embodied into the models up to
the desired level. However, a major drawback may
turn out to be the time required in executing the
simulation for large and realistic systems, particularly
when results with high accuracy (narrow confidence
intervals) are desired. Also, typically, simulations
require the use of simulation development and
deployment tools that entail difficulties or are not
appropriate to be applied to the target system.

These drawbacks do not exist to the same extent in
analytical-based approaches. However, and for
complex distributed systems, analytical-based models
tend to be overwhelmed with simplifications that often
lead to very pessimistic assumptions, and therefore to
very pessimistic worst-case results. Even knowing that
a number of existing techniques may potentially be
used and adapted to reduce this pessimism level, the
benefit may appear at the cost of adding rather
complex abstractions, such as precedence relationships
[10], event phasing [11] and inheritance of time
characteristics [12]. These, unfortunately, may lead to
intractable mathematical models, thus making it further
difficult to handle and reason the analytical
abstractions.

There is another concern that is important to bring
into this context. In fact, although the deterministic
framework has been proved valid for the deployment
of real time systems in a wide range of applications, it
is now accepted that it may pose serious research
challenges when trying to apply it to some other

application areas. This is eventually the case of some
distributed systems that are more flexible and adaptive
in their nature.

Therefore, in this paper we exploit the approach
based on simulation models of system components that
mirror the actual behaviour of the system.

The rest of this paper is structured as follows. The
next section presents a brief description of the main
components of Ethernet/IP-based distributed systems.
Afterwards, we describe how we have been tackling
the problem of modelling and simulating distributed
systems based on that COTS technology. Finally, we
discuss the use of simulation results to perform
statistical timeliness analysis, by means of a concrete
simulation example.

2. Ethernet/IP-based Distributed Systems

In CIP-based networks, such as Ethernet/IP, the
majority of the messaging performed is done through
connections. CIP connections define the packets that
will be produced on the network, and can be of two
types: Explicit Messaging or Implicit Messaging.

Implicit messaging is the messaging used for time
critical I/O data, and therefore will receive the focus of
our attention, specially the Cyclic Implicit CIP type of
connections. A device produces cyclic messages on a
predetermined rate basis, defined by the Requested
Packet Interval (RPI) parameter. Underlying these
transactions is a producer/distributor/consumer model,
also usually found in other factory communication
networks such as WorldFIP [13]. In Ethernet/IP
networks the distribution is supported upon multicast
UDP/IP that, in turn, is mapped onto Ethernet
multicast.

...

Ethernet Switch 1

 EA

CIP
TCP/UDP

IP
Ethernet

I

C

device-specific Backplane
(CIP messages)

Controller node 1

 EA

CIP
TCP/UDP

IP
Ethernet

device-specific Backplane
(CIP messages)

I

O

I

Remote IO node 1

Figure 1: Ethernet/IP-like networks basic
nodes and an end-to-end transaction example.

Ethernet/IP networks are constituted by three
structuring types of nodes: Remote I/Os, Controllers
and interconnecting Switches. These nodes
communicate with each other via Ethernet. Diverse
modules can compose the Remote I/O and Controller
nodes. These modules communicate among them via a

Figure 2: OMNET++ hierarchical models.

device-specific backplane (Figure 1). Typically, a
Controller is composed of a number of I/O modules
(labelled in the figure as I or O), several controller
modules (C) and one or more Ethernet Adapters (EA).
A Remote I/O node has no Controller modules.

Assuming the simple network scenario given in
Figure 1, let us take a closer look to the type of end-to-
end transactions we are addressing. A typical
transaction starts at the input module of the Remote
I/O (), where a message with the actual input data
will be generated (produced), at a rate defined by the
RPI parameter for that particular connection. This
message will suffer contention delay at the node device
backplane (), and then arrive at the EA, where it is
processed and sent via the communication interface
() to the Ethernet switch, that forwards the message
to the corresponding output port(s) (). The message
will arrive to the Controller EA (), where it is
dispatched to the Controller module via the node
backplane (). At the controller (consumer of the data
associated to the transaction), the input data will be
processed by a task, that generates the related output
data (). The generated output data corresponds to
another transaction, in this case produced by the
controller and consumed at the Remote I/O node. With
another RPI associated, this message will then follow
the inverse path (, ,), until it reaching the EA of
the Remote I/O (). It is then processed and delivered
to the output module that will, in result, energise the
corresponding output(s) ().

3. Ethernet/IP Simulation Model

The Ethernet/IP distributed system simulation
environment was developed using the OMNeT++ [14]
discrete event simulation platform. OMNeT++ is an
object oriented modular discrete event simulator,
which provides a reusable component framework,
where the system components can be independently
built and then characterized and assembled into larger
components and models. The basic system components
are built using the C++ language and then assembled
into larger components and models using a high level

language, named NED (an OMNeT++ specific
scripting language). An OMNeT++ model consists of
hierarchically nested Modules (see Ethernet/IP
example as depicted in Figure 2). These modules can
have parameters which are used to customize the
module behaviour; to create flexible model topologies;
and for module communication, as shared variables.
Modules can also communicate through message
passing, where messages can contain arbitrary data
structures.

Our simulation model for Ethernet/IP is composed
of three basic components (nodes), mapping on the
main Ethernet/IP devices: a Remote IO, a Controller
and an Ethernet Switch. Each of these basic nodes can
be instantiated into several different device models,
with different particular characteristics, since
modularity and parameterization are considered into
the design to a sufficient extent. In the next
subsections, further details are provided concerning
model implementation aspects.

3.1 The remote IO node

The Remote IO is composed of several IO modules
and an Ethernet/IP Adapter, which communicate
through a backplane, using CIP packets. The IO
modules contain the several input/output connections
of the device. Typically, each IO module will act has
an Input or Output module, but not as both at the same
time. The Ethernet Adapter is responsible for relaying
messages between the Backplane and the Ethernet
network. CIP packets are eventually (for the case of a
consumer outside the node) encapsulated into UDP
packets inside the Ethernet/IP Adapter (ethIPAdapter
in Figure 2).

The Backplane is a simulation module that exists
both at Controller and Remote IO nodes. For
simulation performance, at initialisation time the
Backplane uses the information about the data
connections produced/consumed at each module to
build a table with information on the gates where to
deliver each of the configured connections. Figure 3
provides a sample of NED code defining the

Backplane OMNeT++ simple module. A simple
OMNeT++ module is declared with the keyword
simple, followed by the module’s name. Included in
the declaration are the OMNeT++ simple module’s
parameters and gates. The gates of an OMNeT++
module define the entry points of the module. For the
example of the Backplane module, an array of input
and output gates are defined, where each pair of input
and output represents a Backplane interface connecting
to a node’s module.

simple Backplane

 parameters:

 tTableTime : numeric,

 frameTime : numeric,

 timeDivison: bool;

 gates:

 in: in[];

 out: out[];

endsimple

Figure 3: Backplane NED definition.

The Backplane simple module has the parameter
tTableTime, which defines the transmit table time, used
for the time division multiple access (TDMA) protocol
used as backplane’s medium access control (MAC)
protocol. The parameter frameTime concerns the time
a message takes to be transmitted in the backplane, and
the parameter timeDivision specifies whether the time
division protocol behaviour should be precisely
simulated or simplified. The Backplane module
simulates the behaviour of a TDMA contention schema
where access to the communication medium is equally
distributed to the several producing connections
delivering data to the backplane. Nevertheless, and
because this simulation approach of the backplane can
introduce a great amount of events, it is possible to
disable this behaviour. The alternative will then be to
insert a variable delay, as a function of the number of
connections that send messages to the backplane.

The Ethernet/IP Adapter is responsible for relaying
messages to/from the Ethernet network. It receives the
CIP messages from the Backplane and, in the CIP
Bridge Layer (cipBridgeLayer in Figure 2)
encapsulates them into UDP packets which are passed
down to the Network Layer of the UDP/IP stack. On
the opposite direction the packets are retrieved from
the UDP/IP packet and delivered to the Backplane.

The Ethernet/IP Adapter models the delays
introduced to perform the encapsulation of the
messages, to access the network and the delays
resulting from the concurrent access to the adapter
resources. Figure 4 illustrates the NED definition of
the Ethernet Adapter OMNeT++ module (a compound

module). Like an OMNeT++ simple module, a
compound module is composed of the module’s
parameters and gates. Additionally, it has to include its
sub-modules and the connections between the sub-
modules and gates.

module EthIPAdapter

 parameters:

 connectionIDProducedList : string,

 connectionIDConsumedList : string;

 gates:

 in: from_backplane;

 out: to_backplane;

 in: from_eth;

 out: to_eth;

 submodules:

 cipBridgeLayer: CIPBridgeLayer;

 networkLayers: NetworkLayers;

 connections:

 from_backplane --> cipBridgeLayer.from_bp[0];

 to_backplane <-- cipBridgeLayer.to_bp[0];

 networkLayers.to_application --> cipBridgeLayer.from_ntw;

 networkLayers.from_application <-- cipBridgeLayer.to_ntw;

 from_eth --> networkLayers.from_phy;

 to_eth <-- networkLayers.to_phy;

endmodule
Figure 4: EthIPAdapter NED definition.

The connectionIDProducedList and the
connectionIDConsumedList parameters are used for
listing the CIP connection identifiers of the
connections produced and consumed in the node’s
modules connected to the backplane. The sub-modules
of an EthIPAdapter module are the CIP Bridge Layer
(cipBridgeLayer sub-module) and Network Layer
(networkLayers sub-module). The connections
implemented (refer to the NED code sample in Figure
4) are between these two layers and the input/output
gates from the backplane and the Ethernet network.

Figure 5: ONNET++ EthIPIOModule
composition.

Each of the IO modules (labelled IOModule1,
IOModule2, IOModule3, etc., in Figure 2) inside a
node and connected to the Backplane contains a CIP
Layer, responsible for managing data transfers to/from
the IO Connections. The IO Connection can behave
either as an output or input connection, and each IO
Module may have several input or output connections
connected to its CIP Layer (Figure 5).

When an IO Connection is doing the task of an
input connection, it receives data from a data input,
which generates input data at a defined periodicity
(this data input models the input signals of an input
connection). At a defined Requested Packet Interval
(RPI), the IO Connection constructs a CIP data item
from the last received data, and sends it to the CIP
Layer. When an IO Connection is acting like an output
connection, it receives data from the CIP Layer, which
is delivered to a data output, after a parameterized
hardware delay. This is illustrated in Figure 6, which
provides the C++ code of the message handler from
the IOConnection class.

void IOConnection::handleMessage(cMessage *msg) {

 if (msg->isSelfMessage() == true && inputModule == true) {

 // at rpi, send input data and schedule next rpi

sendInputData();

if (((simtime_t)*rpi) > 0)

 scheduleAt(simTime()+((simtime_t)*rpi), msg);

} else {

 if (inputModule == true) { // acting as an input

 // discard previous dataItem and store new one

 if (dataItem != NULL) delete dataItem;

 dataItem = (CIPDataItem*) msg->dup();

 } else // acting as an output

 sendDelayed(msg->decapsulate(),((simtime_t)*asicDelay), "out");

 delete msg; // After finishing with a message, it is released

}

}

Figure 6: IOConnection class message
handler C++ code.

The data input generators (dataInput1, dataInput2,
..., in Figure 5) model the signals applied at the input
pins of the IO. They are parameterized by the length of
the data generated and the periodicity of the data
generation, and by two delays introduced after the
generation of the input (a hardware delay and a filter
delay). OMNet++ supports defining any of these
parameters as a user-defined randomly distributed
function. These parameters can be either defined in the
NED code of a compound module, in which case it
will be the same for all instances of this compound
module, or defined in a special initialization file that
may assign the parameters individually for each
module in the simulation.

Figure 7 exemplifies the definition of the dataInput
(NED code) parameters in an IO module: a random
variable with a uniform distribution in the interval
[100, 150] milliseconds.

Figure 8 illustrates the alternative setting of the
same parameters through an initialisation file, for a
particular IO module instantiation (ioModule1), inside

of a Remote IO node (ethIPIO1), within a network
(ethIPNetwork1).

module EthIPIOModule

…

 submodules:

 dataInput: Input[numInputs];

 parameters:

 hwDelay = 200 us,

 dataLength = 22,

 filterDelay = 0,

 period = uniform (0.1, 0.15);

…

endmodule

Figure 7: OMNET++ EthIPIOModule NED
code for parameter configuration.

ethIPNetwork1.ethIPIO1.ioModule1.dataInput[0].hwDelay = 200 us

ethIPNetwork1.ethIPIO1.ioModule1.dataInput[0].dataLength = 22

ethIPNetwork1.ethIPIO1.ioModule1.dataInput[0].filterDelay = 0 ms

ethIPIO1.ioModule1.dataInput[0].period = uniform(0.1,0.15)

Figure 8: EthIPIOModule parameter
configuration through initialization file.

3.2 The Controller Node

The Controller node is, in its structure, similar to
the Remote IO node. The Backplane, the Ethernet/IP
Adapter and IO modules are exactly the same modules
as described previously for the Remote IP node. Of
course, it is possible to parameterize each of the
modules differently, and therefore manipulate their
actual behaviour.

Figure 9: ONNET++ Controller module
composition.

There is however a module that must be specified
for the particular case of Controller nodes: the
Controller module (Figure 9). In an actual Ethernet/IP
system, the controller module is responsible for
executing the tasks performing the control functions.

The Controller was modelled reusing some
OMNeT++ modules described earlier: the IO

Connection modules and the CIP Layer. The
controllerInputConnection module receives the data to
be delivered to the ControllerTask module,
corresponding to an output connection at the remote
source node. The output data generated by the
controller task is delivered to the
controllerOutputConnection module. The
ControllerTask (worst-case) response time is a
parameter which is a time span introduced between the
reception and the generation of the data. This
parameter can be defined has a random function that
best models the response time for each controller task.

3.3 The Switch Node

The Switch node models the delays introduced by
an Ethernet Switching component. For the purpose of
this simulation, it is only necessary that the Switch
recognizes multicast groups and deliver the frames
received in an appropriate manner. The Switch model
is composed of several ports that connect to the nodes
in the network. Because there is a port in each
direction, the Ethernet medium is assumed to be full-
duplex.

The Switch node is a simple OMNeT++ module.
The NED definition of the Switch OMNeT++ module
is rather simple, and is given in Figure 10. It is similar
to the Backplane OMNeT++ module, since it has an
array of input and output gates, in which each pair
represents the interface with each connecting modules
(the switch port).

simple Switch

 parameters:

 nodename : string,

 switchDelay : numeric;

 gates:

 in: in[];

 out: out[];

endsimple

Figure 10: Ethernet Switch NED definition.

OMNeT++ offers a rather convenient manner of
defining channel transmission characteristics. It is
possible to define the characteristics of the connection
between any two modules by using a predefined
channel. A channel is defined with its name, preceded
by the keyword channel. A channel may be assigned
with the attributes delay, error and datarate. The
example code depicted in Figure 11 corresponds to the
definition of a 100 Mbit/sec Ethernet channel with a
normally distributed delay, with mean value of 150 µs
and a standard deviation of 50 µs. The connecting
channels model the transmission delays and queue the

messages whenever concurrent access to the medium
occurs.

channel ethernet

 delay normal(0.00015,0.00005);

 datarate 100*10^6;

endchannel

Figure 11: Ethernet Channel definition in
OMNET++.

To simplify the multicast deliver process, the
connection identifier of a producing connection is
directly mapped into the last octet of an IP Multicast
Address. For example, for a connection with the
identifier 128, the IP Multicast Address would be
constructed with a user defined prefix and the last octet
being 128; that is, for a prefix of 239.0.0., the
connection with identifier 128 would be mapped to the
multicast group with address 239.0.0.128.

Because mapping rules defined by multicast
Ethernet MAC address mapping are also used [15], the
Ethernet frames actually contain the connection
identifier mapped into the multicast groups. In this
way, it is possible for the Switch to simply construct,
at initialization time, a list of all producing/consuming
connection IDs for each connected node. At run time,
the Switch module will merely compare the connection
identifiers of the received frames with the ones in the
list for each node, swiftly delivering copies of the
received frame to all nodes that belong to the multicast
group. The Switch is parameterized by a delay that
represents the time taken to process the frames, which
can also be defined as a random function.

4. Discussion of Results over a Practical
Example

In order to provide some insight into the obtainable
results with this modelling and simulation approach for
Ethernet/IP-based distributed systems, an example
system is presented. The results of its simulation and
how they could be analyzed are then discussed in this
section. Note that we are aiming at obtaining an
estimation of the worst-case end-to-end response time
for a number of transactions. A primary goal is to
consider some fundamental aspects about the analysis
of the simulation results.

4.1 Example scenario

The example system is constituted of three Remote
IOs, one Controller and an interconnecting switch
(Figure 12).

The Controller node is composed of one IO module
and two Controller modules. The first Remote IO
includes four IO modules, two for output and two for
input. The second Remote IO also includes four IO
modules, three for input and one output. Finally, the
last Remote IO contains three IO modules, two for
input and one output.

The system has nine end-to-end transactions
between the Remote IOs and the Controller. This
results in a total of eighteen connections, half from the
Remote IOs to the Controller (Input direction) and the
other half, from the Controller to the Remote IOs
(Output direction).

Remote IO 3 Remote IO 2 Remote IO 1

Controller 1

Ethernet Switch

EC

E I

C O

I O O E I I OE I I O I

Figure 12: Example of simulated system.

Table 1 presents the identifiers of the system’s
connections whereas Tables 2-4 provide the details
about the mapping of connections to the system
modules.

Table 1. End-to-End transactions

Transaction
Connection:

Input Direction

Connection:
Output

Direction
1 131 141
2 132 142
3 133 143
4 134 144
5 151 161
6 152 162
7 153 163
8 171 181
9 172 182

As an example, Transaction 8 is initiated at the
IOModule3 of RemoteIO1 (connection 171) with an
RPI of 200 ms (Table 2). It is delivered to module 2 of
the Controller (Table 3), where the data is processed,
and the corresponding output is generated (connection
181). This connection is then sent to the IOModule2 of
RemoteIO3 (Table 4). The RPI of the output
connections is equal to the corresponding input
connection.

Table 2. Input Connections

Input
Connection

Node Module
ID

RPI
(ms)

171 200
Remote IO 1 IO module 3

172 350
IO module 1 131 10
IO module 2 132 7

133 25
Remote IO 2

IO module 3
134 20
151 55
152 80 Remote IO 3 IO module 1

153 75

Table 3. Connections at the controller

Module
Input

Connection
Output

Connection
131 141
132 142
133 143

Controller 1
module 1

153 163
134 144
151 161
152 162
171 181

Controller 1
module 2

172 182

Table 4. Output connections

Node Module
Output

Connections
IO module 1 141; 142; 14; Remote IO 1
IO module 2 163

Remote IO 2 IO module 4 144; 163
Remote IO 3 IO module 2 161; 181; 182

4.2 Analysis of simulation output data

It is known that not much can be concluded with a
single simulation run. In fact, the results of a given
simulation run are just particular instantiations of
random variables that may have large variances. It is
also known that classical statistical techniques based
on Independent and Identically Distributed (IID)
observations are not directly applicable to the
investigation of simulation results. In fact, simulation
output data results are usually highly correlated and
have non-stationary distributions.

Several different methods have been developed to
correctly compute estimates of a model’s
characteristics [16]. There is however no simple or
complete solution. Besides, the precision of the
estimation is at the cost of long and computing

intensive simulation runs. Although previous works
have interesting approaches for the application of
discrete–event simulation to the analysis of distributed
real time systems, such as in [17], to our best
knowledge, little has been advanced in respect to the
actual statistic analysis of the simulation output results,
including some measure of confidence in the results.

Most of the methods for the analysis of simulation
output data, referred in the literature [16], rely on the
fact that although the simulation results of a single
simulation run are not independent, it is possible to
obtain independent observations across the results of
several simulation runs (replications). A set of
replications is independent if the random numbers used
to drive the simulation through time are different for
each replication.

The replication/deletion method is a fairly simple
approach, with a reasonably good statistical
performance [16], which we will briefly describe and
apply in the analysis of the simulation network
example presented formerly. The goal is to obtain an
estimate and confidence interval for a steady-state
mean v of worst-case observations.

Suppose that we make n replications of the
simulation each of length m, where m is much larger
than l (the warm-up period used to eliminate the initial
transient problem). Let Xi be independent and
identically distributed (IID) random variables given
from the maximum end-to-end response time observed
in each simulation replication i, in the set of response
times between l and m. Xi holds an expected average
approximate of the steady-state mean v, across i
replications of the simulation. Thus, is an
approximately unbiased point estimation for v, and an
approximate 100(1−α) percent confidence interval for
v may be obtained by [16]:

n
nStnX n

)()(
2

2/1,1 α−−± (1)

where)(nX is:

n

X
nX

n

i
i∑

== 1)((2)

and)(2 nS is computed using the following
equation:

[]
1

)(
)(1

2

2

−

−
=
∑
=

n

nXX
nS

n

i
i

 (3)

The half-length of the replication/deletion
confidence interval given by equation (1) depends on

the variance of Xj, which will be unknown for the first
n replications. Therefore, it is necessary to make a
sufficient number of replications of the simulation to
achieve a confidence interval small enough for a
particular purpose.

4.3 Statistical results of the simulation

Table 5 provides the results of the application of
such approach to the analysis of the simulation output
data. In this, we will attempt to construct a confidence
interval for the worst-case that can be expected in the
long run. This estimation is based on the observation
of successive maximum end-to-end values verified
across simulation replications and the variance of these
observations. The number of replications performed
was 61, which was a number of replications that
allowed obtaining an error below 25-26% of the
estimate for all transactions.

The X in the table represents the estimation for the
worst-case response time of the transactions. The
margin of error (ε) gives a measure on how accurate
the estimation is, based on the variability of the
estimation. The confidence level (99.9%) reflects the
amount of confidence that, in the long run, this
approach will be able to approximate the true worst-
case. With these values, it is possible to construct the
confidence intervals displayed.

Table 5. Results of simulation output using
replication/deletion

Transaction
Estimation for 99.9%
confidence interval

(X ± ε ms)

99.9%
Confidence interval

(ms)
Tr. 1 21.22 ± 4.42 [16.80 , 25.64]
Tr. 2 15.28 ± 3.97 [11.31 , 19.26]
Tr. 3 51.15 ± 5.08 [46.07 , 56.24]
Tr. 4 41.11 ± 4.68 [36.43 , 45.78]
Tr. 5 700.45 ± 9.22 [691.23 ,
Tr. 6 220.90 ± 6.27 [214.62 ,
Tr. 7 110.20 ±12.79 [97.41 ,
Tr. 8 400.74 ± 7.44 [393.30 ,
Tr. 9 700.59 ± 8.72 [691.87 ,

This evaluation of the behaviour of a concrete
system may be of relevance to the systems designer,
when a probabilistic analysis of the system is being
carried out.

Note that this evaluation is more suitable for means
and variance behaviour. Its applicability for values on
the tail of distributions (such as worst-case) is still
object of current work, thus the reader is referred to
[18] for further discussion on these issues .

 Some additional remarks that might be raised
towards this analysis include the fact that the
simulation data needed to produce such results may be
at a prohibitive computation cost. This time actually
depends on a number of variables. The complexity of
the system influences the number of events generated
during the simulation, the variance of the variables
under study affect the size needed for each individual
simulation replication, and the margin of error desired,
which is also influenced by the variation of the
variables of interest, may be controlled by the number
of simulation replications. A close investigation of
these matters is beyond the scope of this paper, but this
is an important issue that must be evaluated in order
for this approach to succeed. Nevertheless, it can be
advanced that, for the example presented, each
replication took less than 2 minutes to run on a fairly
old machine (PIII 1GHz).

Also, as noted, the precision obtained depends on
the variance of the variables. There are methods to
reduce the variance of a simulation output, which
generally require controlling random-number streams
to introduce correlation in successive observations.
Such methods are usually dependent on a particular
model and, if not carefully used may impair the
validity of the results. Nonetheless, regardless of such
techniques, by observing the evolution of the data
obtained it is clear that there is a level of precision
which can not be much improved by increasing the
number of simulation replications. Therefore,
particular care must be taken with the use of traditional
statistical methods when timeliness guarantees must be
provided.

5. Summary and Conclusions

Ethernet-based technologies have already gained a
strong position in the factory-floor. For many years,
deemed non determinist, Ethernet has gone through
some evolution which enables its use in real time
applications. Nevertheless, Ethernet technology, by
itself, does not include features above the lower layers
of the OSI communication model. Although lots of
attention has been devoted to the timing analysis of
Ethernet-like technologies and solutions, most of the
work on Ethernet has been restricted to the Data Link
Layer level. It is still to come an overall approach that
allows the evaluation of a whole Ethernet based
distributed computing system.

In this paper, we have presented the modelling and
simulation of Ethernet/IP-based systems, which is
being addressed with the purpose of setting up a
framework for the development of tools suitable to
extract temporal properties of Commercial-Off-The-
Shelf (COTS) Ethernet-based factory-floor distributed

systems as a whole. The use of discrete event
simulation models can be a powerful tool for the
timeliness evaluation of the overall system, but
particular care must be taken with the results provided
by traditional statistical analysis techniques. Therefore,
some discussion was also introduced on the use of
simulation results to perform statistical timeliness
analysis. This discussion provides insights for ongoing
work in this area. In order to obtain more appropriate
estimates to real time system parameters, analysis
techniques that consider the particular statistical
properties of these parameters must be applied.

6. References

[1] E. Tovar, F. Vasques, and A. Burns, "Communication
Response Time in P-NET Networks: Worst-Case Analysis
Considering the Actual Token Utilisation," Real Time
Systems Journal, Kluwer Academic Publishers, vol. 22, pp.
229-249, 2002.
[2] L. M. Pinho and F. Vasques, "Reliable real-time
communication in CAN networks," IEEE Transactions on
Computers, vol. 52, pp. 1594-1607, 2003.
[3] T. Skeie, S. Johanssen, and O. Holmeide, "The Road to
and End-to-End Deterministic Ethernet", in proceedings of
the 4th IEEE International Workshop on Factory
Communication Systems (WFCS'02), Vasteras, Sweden, pp.
3-9, 2002.
[4] M. Alves, E. Tovar, G. Fohler, and G. Buttazzo,
"CIDER: Envisaging a COTS Communication Infrastructure
for Evolutionary Dependable Real-Time Systems", in
proceedings of the WIP Session of the 12th Euromicro
Conference on Real-Time Systems, Stockholm, Sweden, pp.
19-22, 2000.
[5] Rockwell Automation, "Making Sense of e
Manufacturing: a Roadmap for Manufacturers", Rockwell
Automation Inc., Cleveland, Ohio, White Paper 2000.
Available online at www.rockwellautomation.com.
[6] Y. Song, A. Koubaa, and F. Simonot, "Switched Ethernet
for Real-Time Industrial Communication: Modelling and
Message Buffering Delay Evaluation", in proceedings of the
4th IEEE International Workshop on Factory
Communication Systems (WFCS'04), Vasteras, Sweden, pp.
27-35, 2002.
[7] J. Georges, E. Rondeau, and T. Divoux, "Evaluation of
switched Ethernet in an industrial context by using the
Network Calculus", in proceedings of the 4th IEEE
International Workshop on Factory Communication Systems
(WFCS'02), Vasteras, Sweden, pp. 19-26, 2002.
[8] M. Volz, "Quo Vadis Layer 7", The Industrial Ethernet
Book, vol. 5, 2001, 8-10. Available online at
http://ethernet.industrial-networking.com/.
[9] Paul Brooks, "Ethernet/IP - Industrial Protocol", in
proceedings of the 8th IEEE International conference on
Emerging Technologies and Factory Automation, Antibes -
Juan les Pins, France, pp. 505-514, Volume 2, 2001.
[10] J. C. Palencia Gutierrez and Michael Gonzalez
Harbour, "Exploiting Precedence Relations in the

Schedulability Analysis of Distributed Real-Time Systems",
in proceedings of the The 20th IEEE Real-Time Systems
Symposium (RTSS'99), Phoenix, Arizona, pp. 328-339,
1999.
[11] J. C. Palencia Gutierrez and Michael Gonzalez
Harbour, "Schedulability Analysis for Tasks with Static and
Dynamic Offsets", in proceedings of the The 19th IEEE
Real-Time Systems Symposium (RTSS'98), Madrid, Spain,
pp. 26-37, 1998.
[12] Ken Tindell, "Holistic schedulability analysis for
distributed hard real-time systems," Microprocessors and
Microprogramming, Elsevier Science Publishers, vol. 50, pp.
117-134, 1994.
[13] L. Almeida, E. Tovar, J. Fonseca, and F. Vasques,
"Schedulability Analysis of Real-Time Traffic in WorldFIP
Networks: an Integrated Approach," IEEE Transactions on
Industrial Electronics, vol. 49, pp. 1165-1174, 2002.
[14] A. Varga, "OMNeT++ Discrete Event Simulation
System", v2.3, 2004. Web Site: http://www.omnetpp.org/.

[15] S. Deering, "Host Extensions for IP Multicasting", RFC
1112: Stanford University, 1989.
[16] Averill M. Law and W. David Kelton, Simulation
modeling and analysis, 3rd ed. New York: McGraw-Hill,
2000.
[17] A. Wall, J. Anderson, and C. Norström, "Probabilistic
Simulation-based Analysis of Complex Real-Times
Systems", in proceedings of the 6th IEEE International
Symposium on Object-Oriented Real-time distributed
Computing (ISOORC'03), Hokkaido, Japan, pp. 257-268,
2003.
[18] N. Pereira, E. Tovar, B. Baptista, L. M. Pinho, and I.
Broster, "A Few What-Ifs on Using Statistical Analysis of
Stochastic Simulation Runs to Extract Timeliness
Properties", Polytechnic Institute of Porto, Porto, Portugal,
Technical Report, July 2004. Available online at
http://www.hurray.isep.ipp.pt/indepth.

