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Abstract 
Graphics Processing Units (GPUs) are widely used to unload the CPUs, liberate other resources of a given 
computer system, and provide an alternative to multiprocessor computers as a means of processing 
computationally expensive parallel tasks. The recent trend of utilizing GPUs in embedded systems necessitates 
the development of timing analysis techniques for finding the joint worst-case execution time for a group of GPU 
threads of the same parallel application, on a streaming multiprocessor. The state-of-the-art approaches for 
computing the exact maximum makespan of GPU threads running on a single streaming multiprocessor are 
intractable and even pessimistic approximations usually take a long time to complete. We therefore develop a 
technique for finding an estimate of the maximum makespan using metaheuristics. Its simplicity, flexibility and 
ability for massive parallelization, determine a potential of usage for soft real-time systems. 
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Abstract—Graphics Processing Units (GPUs) are widely used

to reduce the load on CPUs and liberate other resources of a

given computer system. The recent trend of utilizing GPUs in

embedded systems necessitates the development of timing analysis

techniques for finding the joint worst-case execution time for

a group of GPU threads of the same parallel application, on

a streaming multiprocessor. The state-of-the-art approaches for

computing the exact maximum makespan of GPU threads run-

ning on a single streaming multiprocessor are computationally

expensive and even pessimistic approximations usually take a long

time to complete. We therefore develop a technique for finding

an estimate of the maximum makespan using metaheuristics.

Its simplicity, flexibility and ability for massive parallelization,

determine a potential of usage for soft real-time systems.

I. INTRODUCTION

The growing use of Graphics Processing Units (GPUs) as
general-purpose processors in embedded systems provides the
scientific community with the serious challenge of developing
methods for finding the finishing time of GPU threads in
the worst-case scenario. Traditional worst-case execution time
analysis [25] is not applicable as it assumes single-threaded
applications with access to all computational resources. In
contrast, GPU applications are structured as multiple concur-
rent threads competing for the same computational resources.
Consequently, we are not interested in one particular thread but
in a group of many threads whose joint execution provides
the result. Hence, the focus on the worst-case makespan –
the longest possible time interval from the moment when
the “earliest” thread starts executing, until the “latest” thread
terminates.

Previous work [4] dwells on the problem of finding the
maximum makespan as an optimization problem, specifically
an Integer Linear Problem (ILP). Given that ILP problems in
the general case are well-known examples of NP-hard compu-
tational problems, finding an exact worst-case makespan may
take too long. More tractable methods for makespan estimation
are hence an interesting research direction. An upper bound
on the makespan can still be found using a pessimistic method
also presented in previous work [4], however, it still requires
a long analysis time to achieve good accuracy.

Yet, although not underestimating the worst-case makespan
is crucial for safety critical systems, for many applications in

This work was supported: by the REGAIN project, ref. FCOMP-01-0124-
FEDER-020447, co-funded by National Funds through the FCT-MCTES
(Portuguese Foundation for Science and Technology) and by ERDF (European
Regional Development Fund) through COMPETE (Operational Programme
‘Thematic Factors of Competitiveness’); by FCT-MCTES and by ESF (Euro-
pean Social Fund) through POPH (Portuguese Human Potential Operational
Program), under PhD grant SFRH/BD/82069/2011.

the area of soft real-time systems (which tolerate a rare missed
deadline), a tight lower bound on the worst-case makespan
would be acceptable, as an estimate. One of the applications
could be eye tracking – the process of measuring the motion of
an eye and the gaze-point determination (what is in the focus).
Recent developments both in the academia and the industry
show great potential of utilizing eye tracking methodologies
in medicine [8], driver assistance [24], entertainment sys-
tems [23], and as an instrument for scientific researches [16].
Exploiting the GPUs to accelerate such techniques can help
realize that potential [7], [17], and estimating the makespan
of GPU threads has paramount importance for such usage.

Previous work [4] presented the approaches for comput-
ing an exact value (or upper bounds) for the worst-case
makespan. However, due to practical limitations (potentially
long running times, for long GPU-code), in this work we
propose an alternative, more practical technique for estimating
the worst-case makespan. Its output is a tight lower bound
on the worst-case makespan, which could be useful for soft
(not hard) real-time systems, depending on the strictness
of the timeliness guarantees required by the corresponding
application. For example, although for some soft real-time
applications, accounting for the average case achieves a good
quality of service (e.g. for a gaming interface, as in [23]),
for other soft real-time applications (such as driving decision
support [24]) reasonably accurate estimates of the worst case
(even if borderline optimistic) are appropriate. Our technique
targets the latter kind of applications.

This work focuses on estimating the maximum makespan
using metaheuristics – computational methods that try to find
a better solution for an optimization problem iteratively, and
statistically tend to converge to the global optimum over time.
The detailed explanation of our approach as well as extensive
literature review and implementation details are presented in
an associated technical report [5] that is referenced through
the paper.

In the remainder of the paper the next section presents some
considerations to motivate the idea behind the new technique.
Section III discusses the system model. Sections IV and V
introduce the proposed metaheuristic. Section VI discusses the
generation of suitable initial solutions and aspects of efficient
implementation. Section VII provides a case study and some
evaluation. Section VIII concludes.

II. RELATED WORK

There is growing interest in massively parallel processors
in the real-time systems community. We believe (as does
Lisper [14]) that high-performance data-parallel tasks in future
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real-time embedded systems will be delegated to specialized
co-processors, to be run in parallel on many of their cores.
In such heterogeneous systems, certain work is still done on
the main processor(s) while other work is delegated to the
specialized co-processor that is dedicated to that particular
type of computations. However, there is no need to idle the
CPU waiting for the computation results from a co-processor;
while the co-processor is busy with the specific work, the CPU
may be used to schedule other entities of computation in the
system. This kind of computational arrangement is covered
by the limited parallel model [13]. In order to apply standard
uniprocessor response time analysis techniques to limited
parallel systems, one would need to disregard parallelism,
leading to unnecessary pessimism. Audsley et al. [3] extended
traditional worst-case response time analysis [2], [10], such
that execution in hardware is no longer pessimistically treated
as interfering with software execution. This involves the iden-
tification of a different worst-case scenario than that under
traditional analysis. Tighter response times may be derived
by considering the actual temporal pattern of execution in
software/hardware for each task [6]. These techniques [3] [6],
assume that the execution times for hardware-mapped portions
of the application are given as input; our approach may be used
to provide such input.

Kato et al. [11] present runtime GPU management in the
operating system space with emphasis on a non-preemptive
GPU-kernel execution and a virtualization. Elliott et al. [9]
consider GPUs as shared resources. Their GPU management
framework contains, among other elements, an execution cost
predictor responsible for estimating the execution time of the
real-time jobs. However, the estimation is based on the past
behaviour of the jobs, hence, our technique can complement
such systems by providing the makespan based on an an-
alytical approach instead. Mangharam et al. [15] discussed
the runtime scheduling of anytime algorithms for real-time
systems. The estimation of the GPU-kernel execution time is
still derived from empirical results but their schedulers are
designed to adapt to the variations in actual execution time.
Our approach can provide a precise worst-case estimate of
such systems and thereby decrease the overhead induced by
the scheduler while it changes the execution parameters to fit
the actual amount of time left.

III. SYSTEM MODEL

Our analysis considers a streaming multiprocessor inspired
by NVIDIA Kepler [20] and NVIDIA Fermi [18] – hardware
architectures of GPUs, capable not only of rendering graphics
but also of performing general-purpose computations with
the help of a specialized programming environment called
Compute Unified Device Architecture (CUDA) [21]. These
architectures include multiple so-called streaming multiproces-
sors (Figure 1(a)) and a shared on-chip memory.

A. Streaming multiprocessor
Each streaming multiprocessor has a relatively complex

structure, which makes its timing analysis a non-trivial open
problem. Therefore, in this paper, we restrict our focus to
the timing analysis of a single such streaming multiprocessor.
This is a necessary first step, before we can address (as
future work) the timing analysis of the entire GPU which

Fig. 1. An NVIDIA Kepler GPU, comprising 8 streaming multiprocessors.
Each streaming multiprocessor has a multitude of CUDA cores and load/store,
special function and double precision units.

contains multiple streaming multiprocessors, contending for
the memory subsystem.

The streaming multiprocessor (Figure 1(b)) includes (i) mul-
tiple CUDA cores capable of boolean, integer and floating-
point arithmetic, (ii) multiple “load/store” units that load data
from/store data to cache or DRAM, (iii) multiple special func-
tion units implementing sine, cosine, square root and boolean
inversion computation directly in hardware and (iv) multiple
double-precision units for 64-bit arithmetic. GPUs evolve
fast (even by chip makers’ industry standards) hence the
configuration of the streaming multiprocessors of different
GPU models often varies (although these GPUs could belong
to the same generic GPU architecture). The configuration of a
GPU-chip is mainly determined by the number of streaming
multiprocessors and the number of computational units of
each type in each of those. It varies in GPUs of different
version (“compute capability”, in NVIDIA parlance [21]).
For example, for the GPU device of compute capability 2.0
the streaming multiprocessor includes 32 CUDA cores and
16 load/store units. Therefore it is possible that 32 threads
perform arithmetic operations concurrently but only 16 threads
can issue load/stores in parallel.

For the sake of simplifying the analysis, in our model
of a streaming multiprocessor we assume no pipelining in
computational units. That is the computational unit of any
kind is a mono-element that is fully utilized to perform a
respective instruction. As opposed to the computational units
under our model, pipelined unit would comprise a sequence
of processing elements such, that an output of one element
is the input for the next element in the sequence. Our non-
pipelining assumption comes at the cost of the pessimism of
dropping the instruction throughput by not having instruction
level parallelism in case when there are enough consecutive
instructions to be performed by the same computational unit.

B. Entities of computation

GPUs were traditionally designed for graphics, conse-
quently they are optimized for running a large number of
threads. It is the threads’ joint execution (not that of any
individual thread) which gives the result. This is also why
the hardware architectures under consideration define a more
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coarse-grained entity of scheduling, the warp – a group
of GPU threads that execute the same kernel and in most
cases perform the same instruction concurrently. A warp is
processed most efficiently when all of its threads, together
in parallel, follow the same execution path. However, every
individual thread has its own execution context (instruction
address counter, states of registers, etc.), therefore it is able to
execute and branch independently of other threads within the
same warp. Since warps execute independently of each other,
regardless of whether they are taking the same path or not,
talking about control flow divergence only makes sense for
threads within a single warp. If the threads of the same warp
branch in different directions, the hardware sequencer keeps
track of the diverged threads. It broadcasts the instruction fetch
to the computational units that serve the threads of the same
branch. Upon reaching the point of convergence, the threads
stall waiting for the threads of the other branch, so that they
can resume the execution of a common instruction together in
parallel once again.

A streaming multiprocessor manages, schedules, and exe-
cutes warps. The scheduling engine of a streaming multi-
processor comprises several warp-schedulers each of which
includes a few instruction dispatch units. Given warps to
execute, a streaming multiprocessor allocates them among its
warp-schedulers. Then, at instruction issue time, each warp-
scheduler selects an active warp (one that has threads ready
to execute its next instruction) and issues a few independent
instructions from corresponding threads. The number of the
instructions that a warp scheduler can issue for the corre-
sponding active warp within a given cycle is bounded by the
number of instruction dispatch units in the warp-scheduler but
is also subject of the availability of free computational units
to process those instructions. Therefore, if the warp-scheduler
includes � instruction dispatch units, up to � instructions (with
no dependencies between each other) could be performed
concurrently, if computational units are available.

C. Simplifying assumptions
The execution context of any thread is stored in the on-

chip memory [21] as long as the corresponding warp exists,
therefore switching from one context to another is lightweight.
The term instruction latency specifies the number of clock
cycles it takes for a warp to execute a given instruction. Full
utilization of the streaming multiprocessor is achieved when
there is enough workload to keep all its computational units
continuously busy. For example, when a warp is stalled on
I/O, the streaming multiprocessor quickly switches to another
warp (in a single cycle). This technique is known as “latency
hiding”. However, to simplify the analysis, we assume that
all I/O is served by the local caches (“always hit”) and that
there is no off-chip data traffic (to main memory). Hence,
any load/store instruction always takes a single clock cycle.
This optimistic assumption (to be relaxed in future work) is
partially justified by the fact that, there is a decent amount
(by co-processors‘ standards) of the on-chip memory in the
GPU architectures under consideration [18], [20]. Another

The term “warp” is NVIDIA terminology. AMD ATI GPUs have a similar
concept to that of a warp called a “wavefront” [1].

To the best of our understanding, since it is not clear in the documentation,
these are consecutive instructions.

simplifying assumption is that all (other) instructions take a
fixed respective number of clock cycles (which depends on
the type of instruction).

As stated earlier, warps compete for the computational
resources of a streaming multiprocessor according to some
undocumented scheduling policy. The chip-maker has reported
[19] about the move away from complex scheduling logic
implemented in hardware (as done in NVIDIA Fermi) to-
wards software scheduling that is performed at run time (in
NVIDIA Kepler). However, we still do not have concrete
publicly available information about the actual scheduling
policy. As in previous work [4], we therefore simply assume
that the scheduling is work-conserving: whenever there are
warps available and free computational units in a streaming
multiprocessor, these units are used to execute some warps.
This is a conservative approach, because although the actual
internal scheduling policy (whichever that is) probably pro-
motes processing efficiency by doing lookahead scheduling,
our search for the worst case will assume it to be more
inefficient than it is.

There exist �=4 warp-schedulers inside each streaming
multiprocessor in NVIDIA Kepler [20] and, in turn, each warp-
scheduler contains a pair of instruction dispatch units. This
pair may issue up to two instructions of the same warp (with
no dependencies between each other) to execute in parallel.
However, because of the lack of detailed documentation about
the semantics of intra-warp parallelism, in this work, we
pessimistically assume that each warp scheduler only ever
uses one of its two instruction dispatch units. Relaxing this
assumption, subject to extracting some information about the
semantics of intra-warp parallelism, is also left for future work.

D. Kernel instruction string
CUDA not only provides users with the APIs for high-level

programming languages (C, C++, Fortran, wrappers for Java
and Python), support for computational interfaces (OpenCL,
DirectCompute) and for directive-based OpenACC, but it also
provides a virtual Instruction Set Architecture (ISA) which
is kept relatively stable over the generations of the GPUs
developed by NVIDIA. This ISA, the corresponding pseudo-
assembly language and the low-level virtual machine are
all called PTX as they were designed for parallel thread
execution. The high-level GPU-code is processed by a spe-
cialized compiler (which supports the extensions that CUDA
adds to programming languages); the one from NVIDIA is
called nvcc [21]. Running this compiler with the -ptx flag
will output the human-readable representation of the pseudo-
assembly code that is put into an object file. This file serves
as input to the CUDA-driver which includes another compiler
that translates the PTX-code into the target ISA – a binary
code that can be run on a particular hardware. Although
PTX-code is not the machine code that is actually executed
by the hardware, we (like Ryoo et al. [22]) rely on it for
the purposes of counting the number of the instructions and
their mix. Given that we are interested in the usage of the
computational units of a streaming multiprocessor, we abstract
away from the assembly code using the kernel instruction
string [4] – a sequence of “L”, “C”, “S”, and “D” symbols,
each of which represents a hardware instruction that should
be performed on load/store unit (“L”-instruction), CUDA-core
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(“C”-instruction), special function unit (“S”-instruction) and
double-precision 64-bit unit (“D”-instruction). For example,
the kernel instruction string “LC” specifies that an instruction
should be carried out by the load/store unit, followed by an
instruction for a CUDA core.

Although modelling assembly code with such a short alpha-
bet is a simplifying abstraction when compared to the PTX
representation, the focus of this model is to represent how
the GPU threads share the computational units of a streaming
multiprocessor subject to constraints (capacity, precedence,
etc.). We assume that instructions are dispatched according to
the order presented in the kernel instruction string and there
are no dependencies between consecutive instructions.

E. Modelling the streaming multiprocessor configuration and
multi-cycle instructions

In order to address GPUs of different compute capabilities
and to make possible adjusting the model to future archi-
tectures, we will introduce some parameters specifying the
configuration of a streaming multiprocessor. For each distinct
type U of computational unit inside a streaming multiprocessor
(where U can be C, L, S or D), let

�

U

=
uUnitsNumber

warpSize

(1)

where uUnitsNumber is the number of U -units in a stream-
ing multiprocessor and warpSize is the number of threads
per warp. Then, �

U

specifies the maximum number of warps
that may be executing a “U”-instruction within the same clock
cycle on a single streaming multiprocessor.

Note that it may be the case that �

U

< 1. For example,
in compute capability 2.0 devices the warp size is 32 but the
load/store units are half as many. In such cases, 16 threads of
the warp (a half-warp [21]) execute an “L”-instruction in one
clock cycle, and the other half-warp executes this instruction
in a later cycle. Schedule-wise, this is akin to having �

L

= 1
and a two-cycle latency for the load/store instruction. Such
behaviour, however, cannot be directly modelled by our tech-
nique (described from Section IV onwards), which works with
single-cycle latencies. Therefore, to accommodate the case of
fractional �

u

and also multi-cycle instruction latencies (typical
of D- and S-instructions) in a unified manner we introduce the
following modelling transformation:

Let us assume that the number of computational units of
a given type is a power of 2 (as is the warp size), as is
typical in NVIDIA general-purpose GPU-architectures – the
only exception being devices of compute capability 2.1. Then:

• If �
U

< 1, we assume that �
U

= 1 and replace each “U”
in the kernel instruction string with 1

�U
“U”s.

• If an instruction of type U takes x�2 cycles, we replace
each “U” in the kernel instruction string with x “U”s.

These transformations can be applied in a combined manner
to the same instruction. For example, if a device has 16 type-
U units and the respective latency of a U-instruction is 4
cycles (with a warp size of 32), then after application of the
transformation, each “U” in the kernel instruction string is
replaced by (32/16) · 4 = 8 “U”s (of a notional single-cycle
latency) and �

U

= 1 is assumed.

This transformation, given our earlier pessimistic assump-
tion of no intra-warp parallelism, is safe since it enlarges the
solution space from which the worst-case schedule is to be
identified. To highlight this, consider an instruction with 2-
cycle latency: in practice it uses a computational unit for two
consecutive cycles, whereas, with the transformation, these
cycles can be spaced apart.

F. Summary

The assumptions and the most important considerations of
the section are summarized as follows:

• A streaming multiprocessor includes four types of com-
putational units: load/store, special function, double-
precision, CUDA cores.

• We pessimistically assume that computational units of
each kind are not pipelined.

• For the purpose of scheduling in parallel the threads are
organized into groups of warpSize threads called warps.

• All threads of all warps of a given streaming multipro-
cessor execute the same kernel instruction string.

• All the data needed are in cache, therefore, we do not
have to account the latency of memory operations.

• Any instruction takes a single clock cycle, as typical of
most 32-bit CUDA instructions in NVIDIA Kepler [21],
executing in “atomic”-fashion – it holds the computa-
tional resource exclusively and cannot be interrupted.
If necessary, the kernel instruction string is normalized
according to the transformation described in Section III-E
in order to obtain these semantics, at the cost of some
pessimism.

• We assume that there is no out of order instruction
dispatch and consecutive instructions are independent.

• The warps are scheduled in a work-conserving way by �

warp-schedulers, and we pessimistically assume that only
a single instruction can be scheduled from the given warp
by the available warp-scheduler. Therefore, the number
of warps that could be processed in parallel by a single
streaming multiprocessor is bounded by:

min{�,�
L

+ �

C

+ �

S

+ �

D

}

A warp could be scheduled by at most one warp-
scheduler at a time.

IV. WARP PSEUDO-PRECEDENCE STRING

To apply metaheuristics to the problem of finding lower
bound on the maximum makespan we need to address the fol-
lowing questions: How to represent a solution for metaheuris-
tic? (i) What is the method to evaluate particular solution? (ii)
How our problem is formulated in these terms? (iii)

A. Solution representation

For the exact ILP-based approach [4], the objective is to
maximize the makespan and the solution of an optimization
problem is presented in the form of decision variables. For an
approach using metaheuristics the objective remains to find
the maximum makespan as well, but a question to consider is
how to most conveniently represent the solution. One option
is to express the solution in the form of the corresponding
schedule as depicted in Figure 2.
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A schedule representation not only contains all necessary in-
formation, such as the kernel instruction string, warp number,
configuration of the streaming multiprocessor, the makespan,
but it is also intuitive and readily understandable by humans.
Still, we should check how suitable this representation is in
the context of a metaheuristic that searches through a large
solution space moving iteratively from the current solution to
the neighbour solution, both being relatively “close” to each
other. Let us apply the concept of the neighbour solution,
which is the core of the metaheuristics, to a schedule. If we
move some instruction of some warp to a different clock cycle
in the schedule in Figure 2, we can consider the resulting
schedule in Figure 3 as a neighbour solution to the original
one.

However, we can notice that in our example in Figure 3, just
by moving that single instruction we are breaking the work-
conserving property of the scheduling policy (at clock cycle
5 there is spare capacity of load/store units and a pending
“L”-instruction for warps with the identifiers 1, 2 and 3, but
the streaming multiprocessor is staying idle). This in turn
makes the new solution invalid. The verification (regarding
the precedence constraints or the work-conserving properties)
of the altered schedule would be computationally expensive
and there is no straightforward way of generating a priori
valid schedules by moving instructions, other than validating
a posteriori.

Clock Cycle 1 2 3 4 5 6 7 8
Warp 1 L C L
Warp 2 L C L
Warp 3 L C L
Warp 4 L C L

Fig. 2. Possible schedule (�L = �C = 1) as a valid solution

Clock Cycle 1 2 3 4 5 6 7 8 9
Warp 1 L C L
Warp 2 L C L
Warp 3 L C L
Warp 4 L C L

Fig. 3. An invalid solution (the work-conserving property is violated)

Therefore the schedule itself is probably not the best way of
representing a solution, when using metaheuristics. For these
purposes we therefore invented another data structure: the
warp pseudo-precedence string. One possible way to derive
the warp pseudo-precedence string from a schedule is the
following: traversing the cells of the schedule, column by
column, from top to bottom, we append to an (initially null)
integer string the identifier of the warp that performs some
instruction in the corresponding clock cycle. For our example
in Figure 2 the warp pseudo-precedence string is the following:

1 1 2 2 3 3 4 1 4 2 3 4 (2)

Let us consider the warp pseudo-precedence string as a solu-
tion for the metaheuristics.

B. Solution evaluation
Since we are searching for the longest makespan, we need

to compute it for every solution by constructing corresponding

//Warp pseudo-precedence string.
INPUT: warpPrecStr;
OUTPUT: schedule;

while (warpPrecStr is not fully traversed)
//From warpPrecStr:
w = read current warp id();

//According to the kernel instruction string:
i = read current instruction type by warp(w);

//Subject to capacity and precedence constraints:
t = find earliest cycle wherein possible execute(w, i);

add to schedule(w, i, t);

Fig. 4. The algorithm for constructing the schedule.

Clock Cycle 1 2 3 4 5 6 7 8 9
Warp 1 L C L
Warp 2 L C L
Warp 3 L C L
Warp 4 L C L

Fig. 5. A valid neighbour solution (with increased makespan)

schedule. To build a schedule from a warp pseudo-precedence
string we simply traverse warp identifiers in the string one by
one from left to right, and insert the corresponding instruction
by the respective warp in the earliest clock cycle (i.e. in
the left-most position in the schedule) possible, subject to
capacity and precedence constraints. To determine whether
this instruction is for a load/store unit or for a CUDA core
etc., we need to keep track of how many instructions by
each warp we have already scheduled at any instant. In
other words, if we have already scheduled k instructions
by the warp in consideration, then we need to examine the
(k+1)th instruction of kernel instruction string, to see which
computation unit should process it (e.g. if that is “L”, or “C”
etc.) The simple algorithm is presented in Figure 4.

C. Problem formulation

Hence, we can address the problem of estimating the
maximum makespan from the following standpoint: find a
warp pseudo-precedence string such that the corresponding
makespan is maximized, subject to the configurations of the
streaming multiprocessor under consideration.

We can try to get a neighbour solution by swapping the
positions of warp identifiers in the string (2). There are many
possible ways to do that, but let us consider moving all the
identifiers of the warp 4 to the end of the string. After doing
that, the warp pseudo-precedence string becomes “1 1 2 2 3
3 1 2 3 4 4 4”. The schedule that corresponds to this new
string as a neighbour solution is presented in Figure 5, and
the makespan increases to 9 clock cycles.

One may notice that the warp pseudo-precedence string
is a much more low-level representation (compared with the
corresponding schedule), but because of the fact that it does
not bind the warps to particular clock cycles, we are free to
make permutations of the warps in the string subject to all the
logic of the kernel, capacity, precedence and work-conserving
constraints, even though these are not explicitly specified in
terms of the data structure itself.
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Note that even different unique permutations do not neces-
sarily specify unique solutions. For example, the warp pseudo-
precedence string “1 2 1 3 2 3 1 2 3 4 4 4” still corresponds
to the schedule in Figure 5 (built according to the different
string “1 1 2 2 3 3 1 2 3 4 4 4”).

V. THE METAHEURISTIC

As shown in Section IV, we present finding the maximum
makespan as a combinatorial optimization problem where a
solution is sought over a discrete search-space of warp pseudo-
precedence strings. Considering even a relatively moderate
length for the kernel instruction string (I) and the number of
warps (W ), the brute-force search over (W ·I)!

(I!)W ·W ! permutations
(Section 4 in the report [5]) would not be computationally
tractable. Consequently, we apply computational methods that
iteratively search for a “better” solution according to a given
strategy.

Among many different metaheuristics that are widely used
in various scientific and application domains we decided in
favour of simulated annealing by Kirkpatrick et al. [12].
This metaheuristic is very popular for tackling combinato-
rial problems and in our particular case the warp pseudo-
precedence string as a solution is amenable for applying
simulated annealing to it. Inspired by the annealing tech-
nique in metallurgy, simulated annealing attempts to replace
the current solution of the problem with another candidate
solution (often randomly obtained) at each its iteration. A
candidate solution that improves on the current one is always
accepted. However, occasionally, the algorithm will also accept
a “worse” candidate solution with a probability which depends
on the value of probability function. This function takes as
parameters a variable T (also called as “the temperature”) and
the difference of the utilities of the current solution and the
candidate solution. Higher temperatures and lower reduction
in utility makes it more likely that such a candidate solution
will be chosen. Occasionally accepting “worse” solutions helps
avoid the pitfall of getting stuck at a local optimum of the
optimization problem. With the number of iterations, T is
decreased according to a given “annealing schedule”.

Let iter
max

denote the (user-defined) maximum number of
iterations for the annealing and let the variable iter hold the
index of the current iteration. Before the first iteration the
temperature T is set to T0 and is decreased after every iteration
according to the following annealing schedule:

T = T0 ·
⇣
1� iter

iter

max

⌘

The lower the temperature is set, the more “greedy” (in its
preference for better solutions) the metaheuristic becomes.
This principle is specified in the definition of the probability
function which, besides T , also depends on the makespans of
the current (m) and the candidate solution (mcand.):

P (m,m

cand.

, T ) =

(
1 if mcand. � m;
min(1, T

m�m

cand. ) otherwise.
(3)

Note how the probability of accepting a solution with a
smaller makespan decreases as (m�m

cand.) increases.

VI. IMPLEMENTATION OPTIMIZATION

Although any “randomly” shuffled string consisting
of I instances of each warp identifier could serve as
an initial solution, providing a “good” initial solution
to the metaheuristic may considerably speed up the
convergence towards a good estimate of the makespan.
Hence, although our technique is parallelizable over an
arbitrary degree of processors (which would help with
convergence speed), in the report [5] we present some
“templates” (according to our empirical observation)
for generating initial solutions with long makespan.
In brief, the “round-robin” template corresponds to
the string 1, 2, . . . ,W,| {z } 1, 2, . . . ,W,| {z } . . . , 1, 2, . . . ,W| {z }

| {z }
I times

,

whereas the “fixed priority” template corresponds to
1, 1, . . . 1,| {z }

I times

2, 2, . . . 2,| {z }
I times

. . .W,W, . . .W| {z }
I times

The template “most

pending warp executes first” is constructed according to a
more complex heuristic described in the report [5]. When
running the metaheuristic on a multi-processor machine (with
one thread per processor), we recommend using the initial
solutions based on these templates on some processors and
random warp pseudo-precedence strings on the rest.

For each new candidate solution considered, the metaheuris-
tic needs to create a corresponding schedule from the new
warp pseudo-precedence string under consideration using the
algorithm of Figure 4, so that the corresponding makespan
can be calculated. Doing so from scratch could be an option,
but would be inefficient, in the sense that, if each neighbour
solution was obtained just by a single permutation (or a few)
of the warp pseudo-precedence string, then surely the two
schedules would be similar and, in principle, there should exist
a faster way, of deriving the one from the other by doing just
the part of the computation reflecting the differences of the two
pseudo-precedence strings. Over a large number of iterations
the time saved would be significant as the convergence to a
good estimate of the makespan would be sped up.

Therefore, we introduce the warp cycle string
warpCycleStr – an integer string of the same length
as the warp pseudo-precedence string warpPrecStr.
Element warpCycleStr[w] holds the index of the clock cycle
in which the warp with the identifier warpPrecStr[w]
is scheduled. As an example, for the warp pseudo-
precedence string (2) the warp cycle string is the following
“1 2 2 3 3 4 4 5 5 6 7 8” and it can be
easily verified using the schedule in Figure 2.

The warpCycleStr itself is a “compact” way of storing
a schedule (instead, e.g. of sparse two-dimensional arrays).
If the first index where the new warpPrecStr differs from
the previous one is z, then, from elements warpCycleStr[1]
to warpCycleStr[z � 1] we can obtain the “common” part
of the schedule. It then suffices to assign new values for
elements warpCycleStr[z] onwards, considering the rest of
the new pseudo-precedence string (i.e. from warpPrecStr[z]
onwards).
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VII. CASE STUDIES

A. Overview

The technique presented in previous work [4] for finding
the exact worst-case makespan can also be used to find in
tractable time an upper bound on the worst-case makespan
by conservatively combining results of subwarp makespans.
However, even that sometimes takes long to compute. The
technique in this paper, by comparison, may be used to
derive a tight lower bound on what the output of ILP-based
approach [4] would have been. Since the previous work [4] is
potentially pessimistic, this means that the technique in this
paper provides an estimate that, at best, is conservative – and
at worst, it is a slight underestimation of the true worst-case
makespan. We implemented our technique as a multithreaded
module.

Parameters for the problem instance under consideration
can be categorized as (i) program-related (the number of
warps; the kernel instruction string), (ii) hardware-related (the
number of computational units of each type; the warp size)
and (iii) metaheuristic-related (the initial temperature T0, the
maximum number of iterations iter

max

and an integer flag
specifying the kind of the initial solution – i.e. whether it is
random or obtained according to one of the patterns presented
in Section 6 of the report [5]. These parameters serve as
input to each thread on the respective processor, which then
starts to iterate among candidate solutions, in parallel with
and independently of other threads on other processors. The
estimate, at any instant, is obtained as the greatest reported
makespan so far, over all threads.

B. The benchmark

For our experiments, we chose a kernel instruction string de-
rived from a real application that could be run as many parallel
GPU threads: Voronoi diagrams which are used e.g. for solving
proximity problems in computational geometry or localization
in wireless sensor networks. We consider a massively parallel
Voronoi diagram rendering application presented in Section 8B
of the report [5].

Our “port” of that program to assembly for NVIDIA’s Par-
allel Thread Execution (PTX) virtual machine [21] is shown
in Figure 6. Every line consists of an assembly statement,
comments that ”map” that statement to the corresponding
code from the original higher-level program illustrated in
Figure 10 of [5] and a character for the type of hardware unit
assumed to perform the corresponding assembly instruction.
We tag instructions executed on CUDA core with a “C” and
instructions for a load/store unit with an “L”. The resulting
kernel instruction string corresponding to the branchless code,
from the start of the program until the end of the first iteration
of the inner loop in Figure 6, was used in our experiments.

C. Experimental results

The metaheuristic approach described outputs a lower bound
on the worst-case makespan for the problem instance in
consideration under the simplifying assumptions discussed
earlier. These assumptions were all pessimistic except for the
assumption that all load/stores are single-cycle. Conversely,
the ILP-based approach [4] outputs an upper bound for the
worst-case makespan under the same assumptions. Therefore,

Fig. 6. PTX program for visualizing Voronoi diagrams.

we sought to investigate the “quality” of the solutions output
by the metaheuristic by comparing its output with that of the
ILP-based approach.

As benchmark, we used the Voronoi kernel instruction string
introduced earlier:

LLLLL| {z }
5 Ls

CCCCCCCCC| {z }
9 Cs

LL|{z}
2 Ls

CCCCCCCCCC| {z }
9 Cs

We used parameters {�
C

= 4, �

L

= 1} (intended to model
NVIDIA Kepler, under the pessimistic assumption that only
one instruction dispatch unit per warp scheduler is used) and
for W = 16 warps. We ran 8 instances (Java threads) of the
metaheuristic (2 with the “round-robin” initial solution; 2 with
“fixed-priority”; 2 with “most pending warp executes first”; 2
random) with initial temperature T0 = 0.3 for 2 ·106 iterations
each on a Pentium Dual-core E5400 (2.7 GHz). These runs
were performed sequentially, not in parallel. However, by
logging every reported improvement to the current estimate
along with timestamps, in seconds since the beginning, we
were able to retroactively “simulate” the behaviour one would
get by running the instances of the metaheuristic in parallel,
since their executions would be independent anyway. The
reported estimates of the individual Java threads are plotted
in Figure 7, with the horizontal axis denoting the time since
launch. The composite reported estimate, obtained as the
maximum over all graphs, at any time instant (i.e. as the
“envelope” of all graphs), converged to 160 at the end of the
experiment.

By comparison, the upper bound on the worst-case
makespan obtained via the ILP-based approach for 16 warps
was 176 clock cycles and took 58 hours to compute, on the
same machine. It was derived by pessimistically extrapolating
from the respective exact worst-case estimate for 4 warps,
which was the most that could tractably be computed. This
means that the estimate by the metaheuristic was just 9.1%
lower than the one by the ILP-based approach. We interpret
this as evidence that both approaches provide relatively tight
lower/upper bounds respectively for the worst-case makespan,

7



Fig. 7. Convergence of the estimates of the worst-case makespan over time,
for 8 instances of the metaheuristic, with different initial solutions.

subject to our assumptions. However, the metaheuristic pro-
vides its estimates orders of magnitude faster.

Additional observations from this small-scale experiment
are that, even the “round-robin” initial solution can serve as a
quick/rough estimate for the worst-case makespan (even before
running the meta-heuristic). This is also in accordance with
our experience by experimenting with other kernel instructions
strings and problem instances in general. However, even when
the metaheuristic is launched with random initial solutions, it
converges fast towards better estimates, comparable to those
obtained when using the “round-robin” initial solution. The
graphs also serve, to an extent, to highlight the relative speedup
that can be achieved in the convergence to a good estimate,
by running (and tracking) multiple independent instances of
the metaheuristic in parallel.

VIII. CONCLUSION

This paper presented a tractable technique to obtain an
estimate of the worst-case makespan of a set of identical
GPU threads running on a single streaming multiprocessor,
subject to some simplifying assumptions. This technique is
based on the metaheuristic of simulated annealing and is
readily parallelizable, for even faster convergence. The result
is very close to the pessimistic estimate obtainable using a
much more computationally complex ILP-based technique.
Therefore, the estimate output by this new technique is, in
the most unfavourable circumstance, a slight underestimation
of the actual worst case. As such, the target of the approach
is soft real-time systems, wherein a very rare missed deadline
does not matter. As a next step, for additional confidence, and
even though the degree of latency hiding makes this less of an
issue, we will aim to relax the current optimistic modelling of
the memory subsystem.
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