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Abstract

Graphics Processing Units (GPUs) are widely used to unload the CPUs, liberate other resources of a given
computer system, and provide an alternative to multiprocessor computers as a means of processing
computationally expensive parallel tasks. The recent trend of utilizing GPUs in embedded systems necessitates
the development of timing analysis techniques for finding the joint worst-case execution time for a group of GPU
threads of the same parallel application, on a streaming multiprocessor. The state-of-the-art approaches for
computing the exact maximum makespan of GPU threads running on a single streaming multiprocessor are
intractable and even pessimistic approximations usually take a long time to complete. We therefore develop a
technique for finding an estimate of the maximum makespan using metaheuristics. Its simplicity, flexibility and
ability for massive parallelization, determine a potential of usage for soft real-time systems.
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Abstract—Graphics Processing Units (GPUs) are widely used
to unload the CPUs, liberate other resources of a given
computer system, and provide an alternative to multiprocessor
computers as a means of processing computationally expensive
parallel tasks. The recent trend of utilizing GPUs in embedded
systems necessitates the development of timing analysis tech-
niques for finding the joint worst-case execution time for a
group of GPU threads of the same parallel application, on
a streaming multiprocessor. The state-of-the-art approaches
for computing the exact maximum makespan of GPU threads
running on a single streaming multiprocessor are intractable
and even pessimistic approximations usually take a long time
to complete. We therefore develop a technique for finding an
estimate of the maximum makespan using metaheuristics. Its
simplicity, flexibility and ability for massive parallelization,
determine a potential of usage for soft real-time systems.

I. INTRODUCTION

The growing use of Graphics Processing Units (GPUs) as
general-purpose processors in real-time embedded systems
provides the scientific community with the serious challenge
of developing methods for finding the finishing time of GPU-
threads in the worst-case scenario. Traditional worst-case
execution time analysis [47] is not applicable as it assumes
single-threaded applications with access to all computational
resources. In contrast, GPU applications are structured as
multiple concurrent threads competing for the same compu-
tational resources. Consequently, we are not interested in one
particular thread but in a group of many threads whose joint
execution provides the result. Hence, the focus on the worst-
case makespan — the longest possible time interval from the
moment when the “earliest” thread starts executing, until the
“latest” thread terminates.

The paper [6] dwells on the problem of finding the
maximum makespan as an optimization problem, specif-
ically an Integer Linear Problem (ILP). Given that ILP
problems in the general case are well-known examples of
NP-hard computational problems, finding an exact worst-
case makespan may take too long. More tractable methods
for makespan estimation are hence an interesting research
direction. An upper bound on the makespan can still be
found using a pessimistic method also presented in [6],
however, it still requires a long analysis time to achieve good
accuracy.

Yet, although not underestimating the worst-case
makespan is crucial for safety critical systems, for many

applications in the area of soft real-time systems (which
tolerate a rare missed deadline), a tight lower bound on the
worst-case makespan would be acceptable, as an estimate.
Let us consider eye tracking — the process of measuring the
motion of an eye and the gaze-point determination (what is
in the focus). Recent developments both in the academia
and the industry show great potential of utilizing eye
tracking methodologies in medicine [12], augmentative and
alternative communication devices [18], usability studies
of commercial products [15], [23], driver assistance [44],
consumer computing [45], entertainment systems [43],
and as an instrument for scientific researches [11],[33].
Exploiting the GPUs to accelerate such techniques can help
realize that potential [9], [34], and estimating the makespan
of GPU threads has paramount importance for such usage.

This work focuses on estimating the maximum makespan
using metaheuristics — computational methods that try to
find a better solution for an optimization problem iteratively,
and statistically tend to converge to the global optimum
over time. In the remainder of the paper the next section
presents some considerations to motivate the idea behind
the new technique. Section III discusses the system model.
Sections IV and V introduce the proposed metaheuristic.
Section VII discusses the generation of suitable initial solu-
tions and aspects of efficient implementation. Section VIII
provides a case study and some evaluation. Section IX
concludes.

II. RELATED WORK

The GPGPU developer community has exerted much
effort towards optimizing general-purpose GPU-code to
achieve higher throughput [17], but usually not from a the-
oretical viewpoint, but rather from an empirical/engineering
perspective. On the other hand, academic work on GPU per-
formance modelling involves rich analytical models. Ryoo
et al. [40] developed two metrics (assuming non-memory
intensive applications) to be used to find better configuration
of a GPU source code based on the assembly-like PTX
commands and resource usage information extracted by
the nvcce compiler without complete recompilation (by the
CUDA runtime) of the source code. Hong et al. [20] esti-
mated the cost of memory requests by finding the maximum
number of warps, waiting for the data from memory, that
can execute together in parallel. A stochastic model of



the GPU memory system was proposed by Baghsorkhi et
al. [4] to monitor the performance of the device, relying on
Monte Carlo methodology for non-predictable aspects of the
problem. Schaa et al. [41] estimated the execution time for a
computer system with multiple identical GPUs assuming that
corresponding timings for a single GPU could be obtained
empirically.

Works [19] and [3] build models of GPU architectures
to predict execution time and then run the benchmarks to
support their adequacy. In [49] the authors target finding
the bottlenecks in the performance by running benchmarks
first, and only then deriving models to account latencies of
instruction pipeline, on-chip and off-chip memories. For in-
specting the number of instructions and their type the authors
do not rely on PTX, but on GPU simulator Barra [13] which
was configured for NVIDIA GeForce 200-series GPUs. The
technique highlights the sections of the low-performance
code, so that the designer can tweak them afterwards. The
analysis is done with the help of synchronization barriers.
The code under consideration is divided into synchronization
stages, i.e. no warp can pass the barrier until all the warps
perform the code above the barrier. Then, the performance
of each stage is analysed.

Auto-tuning approaches [39], [29], [32], [10], [5] were
introduced to optimize GPU-code with the help of source-
code directives specified by the developer.

The following works incorporate both the average-case
execution time and the power analysis of GPU hardware.
In [22] GPU kernel‘s performance and power consump-
tions are inspected for several kernels subject to dynamic
clock and memory frequency scaling. In [21] the analytical
model [20] for predicting execution time of GPU kernels was
integrated with empirical power model. In [48] the recent
AMD ATI GPU was addressed. Based on the experimental
results the authors present the principles for achieving per-
formance and power effectiveness with the focus on high
performance computing systems.

However, all of the works mentioned above either tend
to find the best-case timings, or consider the execution time
in the average case, while for real-time systems we need to
focus on the worst-case behaviour.

In [6] the approaches for computing an exact value (or
upper bounds) for the worst-case makespan were presented.
However, due to practical limitations in that approach (po-
tentially long running times, for big CUDA kernels), in this
work we propose an alternative, more practical technique for
estimating the worst-case makespan. Its output is an estimate
of the worst-case makespan, which could be useful for soft
(not hard) real-time systems, depending on the strictness
of the timeliness guarantees required by the corresponding
application. For example, although for some soft-real time
applications, accounting for the average case achieves a good
quality of service (e.g. for a gaming interface, as in [43]),
for other soft-real applications (such as driving decision

support [44]) reasonably accurate estimates of the worst case
(even if borderline optimistic) are appropriate. It is for the
latter kind of applications that our technique is targeted.

In the real-time systems community as well, there is
growing interest in massively parallel processors. We believe
(as does Lisper [27]) that high-performance data-parallel
tasks in future real-time embedded systems will be delegated
to specialized co-processors, to be run in parallel on many
of their cores. In such heterogeneous systems, certain work
is still done on the main processor(s) while other work is
delegated to the specialized co-processor that is dedicated
to that particular type of computations. However, there
is no need to idle the CPU waiting for the computation
results from a co-processor; while the co-processor is busy
with the specific work, the CPU may be used to schedule
other entities of computation in the system. This kind
of computational arrangement is covered by the [limited
parallel model [26]. Under that model, computational tasks
have a mixed software/hardware nature: they are scheduled
by default (according to a fixed-priority scheme) on the
general-purpose processor except for those code portions
that are mapped to a co-processor (which, in our case, could
be a GPU). During such execution in hardware, another
task may be scheduled on the general-purpose processor.
Hence, one task may be executing on the general-purpose
processor in parallel with multiple tasks executing on the co-
processors. In order to apply standard uniprocessor response
time analysis techniques to limited parallel systems, one
would need to disregard parallelism, leading to unnecessary
pessimism. Therefore, in [2] the traditional worst-case re-
sponse time analysis [28] is extended such that execution in
hardware is no longer pessimistically treated as interfering
with software execution. This involves the identification of
a different worst-case scenario than that under traditional
analysis. In [8], by considering the actual temporal pattern
of execution in software/hardware for each task, tighter
response times are derived. These techniques [2] [8], assume
that the execution times for hardware-mapped portions of the
application are given as input; our approach may be used to
provide such input.

Kato et al. [24] present runtime GPU management in the
operating system space with emphasis on a non-preemptive
GPU-kernel execution and a virtualization. Elliott et al. [14]
consider GPUs as shared resources. Their GPU management
framework contains, among other elements, an execution
cost predictor responsible for estimating the execution time
of the real-time jobs. However, the estimation is based on
the past behaviour of the jobs, hence, our technique can
complement such systems by providing the makespan based
on an analytical approach instead. Mangharam et al. [31]
discussed the runtime scheduling of anytime algorithms
for real-time systems. The estimation of the GPU-kernel
execution time is still derived from empirical results but
their schedulers are designed to adapt to the variations in
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Figure 1. An NVIDIA Kepler GPU, comprising 8 streaming multiproces-
sors. Each streaming multiprocessor has a multitude of CUDA cores and
load/store, special function and double precision units.

actual execution time. Our approach can provide a precise
worst-case estimate of such systems and thereby decrease
the overhead induced by the scheduler while it changes the
execution parameters to fit the actual amount of time left.

III. SYSTEM MODEL

Our analysis considers a streaming multiprocessor in-
spired by NVIDIA Kepler [37] and NVIDIA Fermi [35]
— hardware architectures of GPUs, capable not only of
rendering graphics but also of performing general-purpose
computations with the help of a specialized programming
environment called Compute Unified Device Architecture
(CUDA) [38]. These architectures include multiple so-called
streaming multiprocessors (Figure 1(a)) and a shared on-chip
memory.

A. Streaming multiprocessor

Each streaming multiprocessor has a relatively complex
structure, which makes its timing analysis a non-trivial open
problem. Therefore, in this paper, we restrict our focus to the
timing analysis of a single such streaming multiprocessor.
This is a necessary first step, before we can address (as
future work) the timing analysis of the entire GPU which
contains multiple streaming multiprocessors, contending for
the memory subsystem.

The streaming multiprocessor (Figure 1(b)) includes
(i) multiple CUDA cores capable of boolean, integer and
floating-point arithmetic, (ii) multiple “load/store” units that
load data from/store data to cache or DRAM, (iii) multiple
special function units implementing sine, cosine, square root
and boolean inversion computation directly in hardware and
(iv) multiple double-precision units for 64-bit arithmetic.
GPUs evolve fast (even by chip makers’ industry standards)
hence the configuration of the streaming multiprocessors of
different GPU models often varies (although these GPUs
could belong to the same generic GPU architecture). The
configuration of a GPU-chip (mainly determined by the
number of computational units of each kind in a streaming
multiprocessor) is specified by its compute capability [38]

— given in the x.y numeric format. For example, for
the GPU device of compute capability 2.0 the streaming
multiprocessor includes 32 CUDA cores and 16 load/store
units. Therefore it is possible that 32 threads perform arith-
metic operations concurrently but only 16 threads can issue
load/stores in parallel.

For the sake of simplifying the analysis, in our model
of a streaming multiprocessor we assume no pipelining in
computational units. That is the computational unit of any
kind is a mono-element that is fully utilized to perform a
respective instruction. As opposed to the computational units
under our model, pipelined unit would comprise a sequence
of processing elements such, that an output of one element
is the input for the next element in the sequence. Our non-
pipelining assumption comes at the cost of the pessimism of
dropping the instruction throughput by not having instruction
level parallelism in case when there are enough consecutive
instructions to be performed by the same computational unit.

B. Entities of computation

GPUs were traditionally designed for graphics, conse-
quently they are optimized for running a large number of
threads. It is the threads’ joint execution (not that of any
individual thread) which gives the result. This is also why
the hardware architectures under consideration define a more
coarse-grained entity of computation, the warp ! — a group
of GPU-threads that execute the same kernel and in most
cases perform the same instruction concurrently. A warp is
processed most efficiently when all of its threads, together
in parallel, follow the same execution path. However, every
individual thread has its own execution context (instruction
address counter, states of registers, etc.), therefore it is able
to execute and branch independently of other threads within
the same warp. Since warps execute independently of each
other, regardless of whether they are taking the same path
or not, talking about control flow divergence only makes
sense for threads within a single warp. If the threads of
the same warp branch in different directions, the hardware
sequencer keeps track of the diverged threads. It broadcasts
the instruction fetch to the computational units that serve
the threads of the same branch. Upon reaching the point of
convergence, the threads stall waiting for the threads of the
other branch, so that they can resume the execution of a
common instruction together in parallel once again.

A streaming multiprocessor manages, schedules, and ex-
ecutes warps. The scheduling engine of a streaming multi-
processor comprises several warp-schedulers each of which
includes a few instruction dispatch units. Given warps to
execute, a streaming multiprocessor allocates them among
its warp-schedulers. Then, at instruction issue time, each
warp-scheduler selects an active warp (one that has threads

IThe term “warp” is NVIDIA terminology. AMD ATI GPUs have a
similar concept to that of a warp called a “wavefront” [1].



ready to execute its next instruction) and issues a few
independent instructions from corresponding threads®. The
number of the instructions that a warp scheduler can issue
for the corresponding active warp within a given cycle is
bounded by the number of instruction dispatch units in the
warp-scheduler but is also subject of the availability of free
computational units to process those instructions. Therefore,
if the warp-scheduler includes ¢ instruction dispatch units,
up to J instructions (with no dependencies between each
other) could be performed concurrently, if computational
units are available.

C. Simplifying assumptions

The execution context of any thread is stored in the
on-chip memory [38] as long as the corresponding warp
exists, therefore switching from one context to another
is lightweight. The term instruction latency specifies the
number of clock cycles it takes for a warp to execute a given
instruction. Full utilization of the streaming multiprocessor
is achieved when there is enough workload to keep all its
computational units continuously busy. For example, when a
warp is stalled on I/O, the streaming multiprocessor quickly
switches to another warp (in a single cycle). This technique
is known as “latency hiding”. However, to simplify the
analysis, we assume that all I/O is served by the local caches
(“always hit”) and that there is no off-chip data traffic (to
main memory). Hence, any load/store instruction always
takes a single clock cycle. This optimistic assumption (to be
relaxed in future work) is partially justified by the fact that,
in the GPU architectures under consideration, the amount
of the on-chip memory is relatively big [35], [37]. Another
simplifying assumption is that all (other) instructions take a
fixed respective number of clock cycles (which depends on
the type of instruction).

As stated earlier, warps compete for the computational
resources of a streaming multiprocessor according to some
undocumented scheduling policy. The chip-maker has re-
ported [36] about the move away from complex scheduling
logic implemented in hardware (as done in NVIDIA Fermi)
towards software scheduling that is performed at run time
(in NVIDIA Kepler). However, we still do not have concrete
publicly available information about the actual scheduling
policy. As in [6], we therefore simply assume that the
scheduling is work-conserving: whenever there are warps
available and free computational units in a streaming multi-
processor, these units are used to execute some warps. This is
a conservative approach, because although the actual internal
scheduling policy (whichever that is) probably promotes
processing efficiency, our search for the worst case will
assume it to be more inefficient than it is.

There exist c=4 warp-schedulers inside each streaming
multiprocessor in NVIDIA Kepler [37] and, in turn, each

2To the best of our understanding, since it is not clear in the documen-
tation, these are consecutive instructions.

warp-scheduler contains a pair of instruction dispatch units.
This pair may issue up to two instructions of the same
warp (with no dependencies between each other) to execute
in parallel. However, because of the lack of detailed doc-
umentation about the semantics of intra-warp parallelism,
in this work, we pessimistically assume that each warp
scheduler only ever uses one of its two instruction dispatch
units. Relaxing this assumption, subject to extracting some
information about the semantics of intra-warp parallelism,
is left for future work.

D. Kernel instruction string

CUDA not only provides users with the APIs for high-
level programming languages (C, C++, Fortran, wrappers
for Java and Python), support for computational interfaces
(OpenCL, DirectCompute) and for directive-based Ope-
nACC, but it also provides a virtual Instruction Set Ar-
chitecture (ISA) which is kept relatively stable over the
generations of the GPUs developed by NVIDIA. This ISA,
the corresponding pseudo-assembly language and the low-
level virtual machine are all called PTX because they were
designed for parallel thread execution. The high-level GPU-
code is processed by a specialized compiler (which supports
the extensions that CUDA adds to programming languages);
the one from NVIDIA is called nvcce [38]. Running this
compiler with the —ptx flag will output the human-readable
representation of the pseudo-assembly code that is put into
an object file. This file serves as input to the CUDA-driver
which includes another compiler that translates the PTX-
code into the target ISA — a binary code that can be run on a
particular hardware. Although PTX-code is not the machine
code that is actually executed by the hardware, we (like Ryoo
et al. [40]) rely on it for the purposes of counting the number
of the instructions and their mix. Given that we are interested
in the usage of the computational units of a streaming mul-
tiprocessor, we abstract away from the assembly code using
the kernel instruction string [6] — a sequence of “L”, “C”,
“S”, and “D” symbols, each of which represents a hardware
instruction that should be performed on load/store unit (“L”-
instruction), CUDA-core (“C”-instruction), special function
unit (“S”-instruction) and double-precision 64-bit unit (“D”-
instruction). For example, the kernel instruction string “LC”
specifies that an instruction should be carried out by the
load/store unit, followed by an instruction for a CUDA core.

E. Modelling the streaming multiprocessor configuration
and multi-cycle instructions

In order to address GPUs of different compute capabil-
ities and to make possible adjusting the model to future
architectures, we will introduce some parameters specifying
the configuration of a streaming multiprocessor. For each
distinct type U of computational unit inside a streaming
multiprocessor (where U can be C, L, S or D), let
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where uUnitsNumber is the number of U-units in a
streaming multiprocessor and warpSize is the number of
threads per warp. Then, oy specifies the maximum number
of warps that may be executing a “U”-instruction within the
same clock cycle on a single streaming multiprocessor.

Note that it may be the case that o7 < 1. For example, in
compute capability 2.0 devices the warp size is 32 but the
load/store units are half as many. In such cases, 16 threads
of the warp (a half-warp [38]) execute an “L”-instruction
in one clock cycle, and the other half-warp executes this
instruction in a later cycle. Schedule-wise, this is akin to
having o7, = 1 and a two-cycle latency for the load/store
instruction. Such behaviour, however, cannot be directly
modelled by our technique (described from Section IV on-
wards), which works with single-cycle latencies. Therefore,
to accommodate the case of fractional o, and also multi-
cycle instruction latencies (typical of D- and S-instructions)
in a unified manner we introduce the following modelling
transformation:

Let us assume that the number of computational units of a
given type is a power of 2 (as is the warp size), as is typical
in NVIDIA general-purpose GPU-architectures — the only
exception being devices of compute capability 2.1. Then:

o If oy < 1, we assume that oy = 1 and replace each
“U” in the kernel instruction string with i “Us.

« If an instruction of type U takes ©>2 cycles, we replace
each “U” in the kernel instruction string with x “U”s.

These transformations can be applied in a combined
manner to the same instruction. For example, if a device has
16 type-U units and the respective latency of a U-instruction
is 4 cycles (with a warp size of 32), then after application of
the transformation, each “U” in the kernel instruction string
is replaced by (32/16) -4 = 8 “U”s (of a notional single-
cycle latency) and oy = 1 is assumed.

This transformation, given our earlier pessimistic assump-
tion of no intra-warp parallelism, is safe since it enlarges the
solution space from which the worst-case schedule is to be
identified. To highlight this, consider an instruction with 2-
cycle latency: in practice it uses a computational unit for two
consecutive cycles, whereas, with the transformation, these
cycles can be spaced apart.

F. Summary

The assumptions and the most important considerations
of the section are summarized as follows:

o A streaming multiprocessor includes four types of com-
putational units: load/store, special function, double-
precision, CUDA cores.

o We pessimistically assume that computational units of
each kind are not pipelined.

o For the purpose of scheduling in parallel the threads
are organized into groups of warpSize threads called
warps.

o All threads of all warps of a given streaming multipro-
cessor execute the same kernel instruction string.

o All the data needed are in cache, therefore, we do not
have to account the latency of memory operations.

« Any instruction takes a single clock cycle, as typ-
ical of most 32-bit CUDA instructions in NVIDIA
Kepler [38], executing in “atomic”-fashion — it holds
the computational resource exclusively and cannot be
interrupted. If necessary, the kernel instruction string is
normalized according to the transformation described
in Section III-E in order to obtain these semantics, at
the cost of some pessimism.

o The warps are scheduled in a work-conserving way by
o warp-schedulers, and we pessimistically assume that
only a single instruction can be scheduled from the
given warp by the available warp-scheduler. Therefore,
the number of warps that could be processed in parallel
by a single streaming multiprocessor is bounded by:

min{o,or, + o¢c + o5 +0op}

A warp could be scheduled by at most one warp-
scheduler at a time.

IV. WARP PSEUDO-PRECEDENCE STRING

For the exact ILP-based approach [6], the objective is to
maximize the makespan and the solution of an optimization
problem is presented in the form of decision variables. For
an approach using metaheuristics the objective remains to
find the maximum makespan as well, but a question to
consider is how to most conveniently represent the solution.
One option is to express the solution in the form of the
corresponding schedule as depicted in Figure 2.

A schedule representation not only contains all necessary
information, such as the kernel instruction string, warp
number, configuration of the streaming multiprocessor, the
makespan, but it is also intuitive and readily understand-
able by humans. Still, we should check how suitable this
representation is in the context of a metaheuristic that
searches through a large solution space moving iteratively
from the current solution to the neighbour solution, both
being relatively “close” to each other. Let us apply the
concept of the neighbour solution, which is the core of the
metaheuristics, to a schedule. If we move some instruction
of some warp to a different clock cycle in the schedule in
Figure 2, we can consider the resulting schedule in Figure 3
as a neighbour solution to the original one.

However, we can notice that in our example in Figure 3,
just by moving that single instruction we are breaking the
work-conserving property of the scheduling policy (at clock
cycle 5 there is spare capacity of load/store units and a
pending “L”-instruction for warps with the identifiers 1, 2



and 3, but the streaming multiprocessor is staying idle). This
in turn makes the new solution invalid. The verification (re-
garding the precedence constraints or the work-conserving
properties) of the altered schedule would be computationally
expensive and there is no straightforward way of generating
a priori valid schedules by moving instructions, other than
validating a posteriori.

ClockCycle || 1 |2 |3 ]4]|5]6]7]38|
Warp 1 L|C

Warp 2 L|C L

Warp 3 L|C L
Warp 4 L|C L

Figure 2. Possible schedule (67, = o = 1) as a valid solution

ClockCycle || 1 |2 ]34 |5]6]7]|8]9]
Warp 1 L|C L
Warp 2 L|C L
Warp 3 L|C L
Warp 4 L|C L
Figure 3. An invalid solution (the work-conserving property is violated)

Therefore the schedule itself is probably not the best way
of representing a solution, when using metaheuristics. For
these purposes we therefore invented another data structure:
the warp pseudo-precedence string. One possible way to
derive the warp pseudo-precedence string from a schedule
is the following: traversing the cells of the schedule, column
by column, from top to bottom, we append to an (initially
null) integer string the identifier of the warp that performs
some instruction in the corresponding clock cycle. For our
example in Figure 2 the warp pseudo-precedence string is
the following:

1122334142 3 4 2)

Let us consider the warp pseudo-precedence string as a
solution for the metaheuristics. To build a schedule from
a warp pseudo-precedence string we simply traverse warp
identifiers in the string one by one from left to right, and
insert the corresponding instruction by the respective warp
in the earliest clock cycle (i.e. in the left-most position in
the schedule) possible, subject to capacity and precedence
constraints. To determine whether this instruction is for a
load/store unit or for a CUDA core, we need to keep track
of how many instructions by each warp we have already
scheduled at any instant. In other words, if we have already
scheduled k instructions by the warp in consideration, then
we need to examine the (k + 1) instruction of kernel
instruction string, to see which computation unit should
process it (e.g. if that is “L”, or “C” etc.) The simple
algorithm is presented in Figure 4.

We can try to get a neighbour solution by swapping the
positions of warp identifiers in the string (2). There are many

//Warp pseudo-precedence string.
INPUT: warpPrecStr;
OUTPUT: schedule;

while (warpPrecStr is not fully traversed)
//From warpPrecStr:

w = read_current_warp_id();

//According to the kernel instruction string:
i = read_current_instruction_type_by_warp(w);

//Subject to capacity and precedence constraints:
t = find_earliest_cycle_wherein_possible_execute(w, i);

add_to_schedule(w, i, t);

Figure 4. The algorithm for constructing the schedule.

ClockCycle | 1 |2 ]34 |5]6]7]8]9]
Warp 1 L|C L
Warp 2 L|C L
Warp 3 L|C L
Warp 4 L|C|L
Figure 5. A valid neighbour solution (with increased makespan)

possible ways to do that, but let us consider moving all the
identifiers of the warp 4 to the end of the string. After doing
that, the warp pseudo-precedence string becomes “1 1 2 2
3312344 4” The schedule that corresponds to this new
string as a neighbour solution is presented in Figure 5, and
the makespan increases to 9 clock cycles.

Hence, we can address the problem of estimating the
maximum makespan from the following standpoint: find a
warp pseudo-precedence string such that the corresponding
makespan is maximized, subject to the configurations of the
streaming multiprocessor under consideration.

One may notice that the warp pseudo-precedence string
is a much more low-level representation (compared with the
corresponding schedule), but because of the fact that it does
not bind the warps to particular clock cycles, we are free
to make permutations of the warps in the string subject to
all the logic of the kernel, capacity, precedence and work-
conserving constraints, even though these are not explicitly
specified in terms of the data structure itself.

Because the warp pseudo-precedence string contains [
instances (the number of instructions in the kernel instruction
string) of each warp identifier (an integer in the range
[1,W]), its length is W - I warp identifiers. In accordance
with the multinomial theorem, the number of permutations
of warp identifiers in the warp pseudo-precedence string is
equal to (VIV,)IW)' However, because of the fact that all the
warps are identical, the equation above includes permuta-
tions that differ from each other only in terms of indexing
of warps. For example if we swap the indexes of the warp 2
and the warp 3 in the permutation (2), we will get the
following new permutation: 1 1 3322414 3 2 4, but the
corresponding solution (as we consider it) is still the same.




Every “unique permutation” corresponds to W! permutations
that could be obtained by re-indexing the warps. Hence
the (still enormous) number of unique permutations is:
(W - 1)

(mw.w
do not necessarily specify unique solutions. For example,
the warp pseudo-precedence string “12 1323123444~
still corresponds to the schedule in Figure 5 (built according
to the different string “1 12233 123444”).

Note that even different unique permutations

V. THE METAHEURISTIC

As shown in Section IV, we present finding the maximum
makespan as a combinatorial optimization problem where
a solution is sought over a discrete search-space of warp
pseudo-precedence strings. Considering even a relatively
moderate length for the kernel instruction string (), the

brute-force search over % permutations would not

be computationally tractable. Cvgnsequently, we apply com-
putational methods that iteratively search for a “better”
solution according to a given strategy. Among many different
metaheuristics that are widely used in various scientific
and application domains we decided in favour of simu-
lated annealing by Kirkpatrick et al. [25], which is very
popular for tackling combinatorial problems. Inspired by
the annealing technique in metallurgy, simulated annealing
attempts to replace the current solution of the problem
with another candidate solution (often randomly obtained)
at each its iteration. A candidate solution that improves on
the current one is always accepted. However, occasionally,
the algorithm will also accept a “worse” candidate solution
with a probability which depends on the value of probability
function. This function takes as parameters a variable 71" (also
called as “the temperature”) and the difference of the utilities
of the current solution and the candidate solution. Higher
temperatures and lower reduction in utility makes it likelier
that such a candidate solution will be chosen. Occasionally
accepting “worse” solutions helps avoid the pitfall of getting
stuck at a local optimum of the optimization problem. With
the number of iterations, T is decreased according to a given
“annealing schedule”.

Let iter,,., denote the (user-defined) maximum number
of iterations for the annealing and let the variable iter hold
the index of the current iteration. Before the first iteration
the temperature 7" is set to T and is decreased after every
iteration according to the following annealing schedule:

T:TU-(l— iter )

iterman

The lower the temperature is set, the more “greedy” (in its
preference for better solutions) the metaheuristic becomes.
This principle is specified in the definition of the probability
function which, besides 7', also depends on the makespans

ClockCycle || 1 | 2 ]3] 4]5]6]7]8]|
Warp 1 L{C|C]|L
Warp 2 L C|C|L
Warp 3 L C|C]|L
Figure 6. Fixed-priority (o, = o¢ = 1))

of the current () and the candidate solution (mce"d-):

1 if meand- >
T
7W)

P(m, m*" . T) = |
otherwise.

3)
Note how the probability of accepting a solution with a
smaller makespan decreases as (m — m®"?") increases.

min(1

VI. PROVIDING A SUITABLE INITIAL SOLUTION

Although any “randomly” shuffled string consisting of
I instances of each warp identifier could serve as an
initial solution, providing a “good” initial solution to the
metaheuristic may considerably speed up the convergence
towards a good estimate of the makespan. Hence, although
our technique is parallelizable over an arbitrary degree of
processors (which would help with convergence speed), we
present some “templates” (according to our empirical obser-
vation) for generating initial solutions with long makespan.
When running the metaheuristic on a multi-processor ma-
chine (with one thread per processor), we recommend using
the initial solutions presented below on some processors and
random warp pseudo-precedence strings on the rest.

A. “Round-robin”

The corresponding warp pseudo-precedence string can be
constructed based on the following pattern:

L2, . W, 1,2, W,..., 1,2, .. W

1 times

An example of a schedule generated using a “round-robin”
pseudo-precedence string is the one in Figure 2.

B. “Fixed-priority”

The respective warp pseudo-precedence string could be
easily constructed according to the pattern presented below:

1L,1,...1,2,2,...2,. .. W, W,...W
—— ——

I times I times I times

Using a “fixed-priority” pseudo-precedence string outputs
the schedule that we would get if warps were assigned static
priorities and dispatched under those (as in Figure 6).
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Figure 7. Most Pending Warp Executes First (o, = o¢ = 1)

INPUT: kernlInstrStr; //Kernel instruction string.
OUTPUT: warpPrecStr; //Warp pseudo-precedence string.

//List of identifiers of pending warps.
pendWarpList = < 1,2,..W >;
clockCycle = 1; //The first clock cycle.
while (pendW arpList is not empty)
index = 1; //The first index in pendW arpList.
while (exists spare capacity and unread warps)
w = read_warp_id_at(index); //From pendW arpList
/lAccording to kernInstrStr
4 = read_next_instruction_type_by_warp(w);
//Subject to capacity constraints
if (exists spare capacity of ¢ at clockCycle)
warpPrecStr += w;
remove_warp_id(w); //From pendW arpList
if (warp w does not finish execution)
insert_warp_id(w); //To pendW arpList
clockCycle +=1;

Figure 8.
solution.

Constructing a “Most Pending Warp Executes First” initial

C. Most Pending Warp Executes First

To construct such a schedule (and, eventually, a cor-
responding warp pseudo-precedence string), we need to
maintain a list of “pending” warp identifiers (initialized as
(1,2,3,...W)). The schedule for clock cycle ¢ is constructed
before moving on to cycle t+ 1. To schedule a warp within a
given clock cycle, the algorithm traverses the list from head
to tail (i.e. left to right) until it finds a warp which could be
scheduled in that given cycle, subject to the availability of
free processing units. As soon as that instruction is inserted
into the schedule, the index of the corresponding warp is
appended to the (initially empty) warp pseudo-precedence
string and the same warp index is removed from its position
in the list and inserted at the tail of the list. If all processing
units are made busy for the current clock cycle or when all
element of the list have been traversed, the algorithm moves
on to the next clock cycle. This algorithm is presented in
pseudocode in Figure 8.

As an illustration, consider the example in Figure 7: the
list is initially (1,2,3). By scheduling warp 1 in clock cycle
1, it becomes (2,3,1). But warp 2 cannot be scheduled within
the same cycle due to capacity constraints; not can warp 3.
Therefore, we move to clock cycle 2 (the list is still (2,3,1)).
We can schedule warp 2 in this cycle and the list becomes
(3,1,2). Then, warp 3 is not schedulable in cycle 2, but warp
1 is (hence, the list becomes (3,2,1). And so on.

VII. IMPLEMENTATION OPTIMIZATION

For each new candidate solution considered, the meta-
heuristic needs to create a corresponding schedule from
the new warp pseudo-precedence string under consideration
using the algorithm of Figure 4, so that the corresponding
makespan can be calculated. Doing so from scratch could be
an option, but would be inefficient, in the sense that, if each
neighbour solution was obtained just by a single permutation
(or a few) of the warp pseudo-precedence string, then surely
the two schedules would be similar and, in principle, there
should exist a faster way, of deriving the one from the
other by doing just the part of the computation reflecting
the differences of the two pseudo-precedence strings. Over
a large number of iterations the time saved would be
significant (and the convergence to a good estimate of the
makespan would be sped up).

Therefore, we introduce the warp cycle string
warpCycleStr — an integer string of the same length as
the warp pseudo-precedence string warpPrecStr. Element
warpCycleStr{w] holds the index of the clock cycle
in which the warp with the identifier warpPrecStr{w]
is scheduled. As an example, for the warp pseudo-
precedence string (2) the warp cycle string is the following
“l 2 2 3 3 4 4 5 5 6 7 8 and it can be
easily verified using the schedule in Figure 2.

The warpCycleStr itself is a “compact” way of storing a
schedule (instead, e.g. of sparse two-dimensional arrays). If
the first index where the new warpPrecStr differs from the
previous one is z, then, from elements warpCycleStr[1] to
warpCycleStr(z — 1] we can obtain the “common” part of
the schedule. It then suffices to assign new values for ele-
ments warpCycleStr|z] onwards, considering the rest of the
new pseudo-precedence string (i.e. from warpPrecStr(z]
onwards).

VIII. CASE STUDIES
A. Overview

The technique in [6] for finding the exact worst-case
makespan can also be used to find in tractable time an
upper bound on the worst-case makespan (although, even
that sometimes takes long to compute). The technique in
this paper, by comparison, may be used to derive a tight
lower bound on what the output using [6] would have
been. Since the output of [6] is potentially pessimistic,
this means that the technique in this paper provides an
estimate that, at best, is conservative — and at worst, it is
a slight underestimation of the true worst-case makespan.
We implemented our technique as a multithreaded module.

Parameters for the problem instance under consideration
can be categorized as (i) program-related (the number of
warps; the kernel instruction string), (ii) hardware-related
(the number of computational units of each type; the warp
size) and (iii) metaheuristic-related (the initial temperature



Figure 9.

Voronoi diagram for a set S of limit points.

T, the maximum number of iterations iter,,,, and an
integer flag specifying the kind of the initial solution — i.e.
whether it is random or obtained according to one of the
patterns presented in Section 5 of [7]. These parameters
serve as input to each thread (on the respective processor),
which then starts to iterate among candidate solutions, in
parallel with (and independently of) other threads on other
processors. The estimate, at any instant, is obtained as the
greatest reported makespan so far, over all threads.

B. The benchmark

For our experiments, we chose a kernel instruction string
derived from a real application that could be run as many
parallel GPU threads: Voronoi diagrams [46] which are
used e.g. for solving proximity problems in computational
geometry or localization in wireless sensor networks.

A Voronoi diagram on a two-dimensional plane, like
the one depicted in Figure 9, consists of polygonal tiles,
each “centred” around a corresponding limit point. Each tile
consists of the points in the plane closer to the particular
limit point than to any other. Segments in a Voronoi diagram
are formed by the points of the plane which are equidistant
to two different limit points.

For practical implementations (such as visualization
on a screen), the concept can be extended from
a plane to rasters with a finite number of points
(pixels). For those cases, the algorithm in [30] is
much easier to implement than the one presented by
Shamos and Hoey [42] (and based on a divide-and-
conquer paradigm) or Fortune’s sweepline algorithm [16].

For every pixel{Calculate distance to every limit point;
Select the closest limit point;
Put pixel into conformity with it; }

The iterations for each pixel are entirely independent, per-
mitting a high degree of parallelism. In C-like pseudocode,
one iteration may be presented as in Figure 10, with each
thread given the coordinates (z,y) of a pixel and computing
the distance to every limit point (z;,¥;) in a set S.

Our “port” of that program to assembly for NVIDIA’s Par-
allel Thread Execution (PTX) virtual machine [38] is shown

//minimal distance square
float md = (z —21)% + (y — y1)?;
//minimal distance point
int mdp = 1;
// N number of points in S,
for (int i=2; 1i<=N; i++)
if ((@—a)?+(y—wi)?<md) {
md = (z—2)%+ (y—vi)?;
mdp = i;}

Figure 10. Simple Voronoi diagram representing code.

mov.u32 $r0,  N_addr: N L
mov.f32 $f1. x_addr; X L
mov.f32 $£2,  y_addr; Yy L
mov.f32 $f3,  x1_addr X L
mov.f32 $f4.  yl_addr: Vi L
sub.f32 $£5. $f1,  $f3. (y—x) c
mul £32 $£6,  $f5.  $f5. (x—x) c
sub.f32 $£7. $f2. S y=a c
fima.f32 $£8,  $f7, $f7, $fG; x—x P+ly=—n ) C
mov.f32 $£0.  $f8: md= (y—x +iy—n) C
mov.u32 $r1, 1. // intmdp =1 C
mov.u32 $r2, for (int i 1<=Nj i++) (e}
Loop: setp.gt.u32 p- $12,  $10; for (int =N i++) C
@p  braDone; for (int i=2: i<=N: i++) C
mov.f32 $f3,  xi_addr: RS L
mov.f32 $f4.  yi_addr; Vi L
sub.f32 $£5.  $f1.  $f3. (x—x,) C
mul.£32 $f6.  $f5.  $f5. (x—x,} C
sub.f32 $£7. $f2. $f4 (y=wl C
fina.f32 $f8.  $f7.  $f7.  $fG x=x, P+ y=y,F (e}
setp.ge.£32 q. $f8.  $f0; if( (x—x)+(y—y/ <md c
@q  bralf C
mov.f32 $0,  $f8: md= (y—x)+(y—y : c
mov.u32 $r1. $r2; mdp =1i; C
If: if( (x—x)+(y—y/ <md
add.u32 $12, %12, L for (int i=2: i<=N. i++) c
bra Loop: C
Done:
Figure 11. PTX program for visualizing Voronoi diagrams.

in Figure 11. Every line consists of an assembly statement,
comments that “map” that statement to the corresponding
code from the original higher-level program illustrated in
Figure 10 and a character for the type of hardware unit
assumed to perform the corresponding assembly instruction.
We tag instructions executed on CUDA core with a “C” and
instructions for a load/store unit with an “L”. The resulting
kernel instruction string corresponding to the branchless
code, from the start of the program until the end of the
first iteration of the inner loop in Figure 11, was used in our
experiments.

C. Experimental results

The metaheuristic approach described outputs a lower
bound on the worst-case makespan for the problem in-
stance in consideration under the simplifying assumptions
discussed earlier. These assumptions were all pessimistic
except for the assumption that all load/stores are single-
cycle. Conversely, the ILP-based approach in [6] outputs
an upper bound for the worst-case makespan under the
same assumptions. Therefore, we sought to investigate the
“quality” of the solutions output by the metaheuristic by
comparing its output with that of the ILP-based approach.

As benchmark, we used the Voronoi kernel instruction



string introduced earlier:

LLLLLCCccccCcCcCC LL ccccocccccc
S— ~~

5 Ls 9 Cs 2 Ls 9 Cs

We used parameters {oc = 4, o 1} (intended to
model NVIDIA Kepler, under the pessimistic assumption
that only one instruction dispatch unit per warp scheduler
is used) and for W = 16 warps. We ran 8 instances (Java
threads) of the metaheuristic (2 with the “round-robin” initial
solution; 2 with “fixed-priority”; 2 with “most pending warp
executes first”; 2 random) with initial temperature 7 = 0.3
for 2 - 105 iterations each on a Pentium Dual-core E5400
(2.7 GHz). These runs were performed sequentially, not in
parallel. However, by logging every reported improvement to
the current estimate along with timestamps, in seconds since
the beginning, we were able to retroactively “simulate” the
behaviour one would get by running the instances of the
metaheuristic in parallel, since their executions would be
independent anyway. The reported estimates of the individ-
ual Java threads are plotted in Figure 12, with the horizontal
axis denoting the time since launch. The composite reported
estimate, obtained as the maximum over all graphs, at any
time instant (i.e. as the “envelope” of all graphs), converged
to 160 at the end of the experiment.

By comparison, the upper bound on the worst-case
makespan obtained via the ILP-based approach for 16 warps
was 176 clock cycles and took 58 hours to compute, on
the same machine. It was derived by pessimistically extrap-
olating from the respective exact worst-case estimate for 4
warps, which was the most that could tractably be computed.
This means that the estimate by the metaheuristic was just
9.1% lower than the one by the ILP-based approach. We
interpret this as evidence that both approaches provide rel-
atively tight lower/upper bounds respectively for the worst-
case makespan, subject to our assumptions. However, the
metaheuristic provides its estimates orders of magnitude
faster.

Additional observations from this small-scale experiment
are that, even the “round-robin” initial solution can serve
as a quick/rough estimate for the worst-case makespan
(even before running the meta-heuristic). This is also in
accordance with our experience by experimenting with other
kernel instructions strings and problem instances in general.
However, even when the metaheuristic is launched with
random initial solutions, it converges fast towards better
estimates, comparable to those obtained when using the
“round-robin” initial solution. The graphs also serve, to an
extent, to highlight the relative speedup that can be achieved
in the convergence to a good estimate, by running (and
tracking) multiple independent instances of the metaheuristic
in parallel.
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Figure 12. Convergence of the estimates of the worst-case makespan over
time, for 8 instances of the metaheuristic, with different initial solutions.

IX. CONCLUSION

This paper presented a technique for tractably obtaining
an estimate of the worst-case makespan of a set of identical
GPU threads running on a single streaming multiprocessor,
subject to some simplifying assumptions. This technique
is based on the metaheuristic of simulated annealing and
and is readily parallelizable, for even faster convergence.
The result is very close to the pessimistic estimate ob-
tainable using much more computationally complex ILP-
based techniques. Therefore, the estimate output by this new
technique is, in the most unfavourable circumstance, a slight
underestimation of the actual worst case. As such, the target
of the approach is soft-real time systems, wherein a very
rare missed deadline does not matter. As a next step, for
additional confidence, and even though the degree of latency
hiding makes this less of an issue, we will aim to relax
its only optimistic aspect - the modelling of the memory
subsystem.

In a related direction, and since the GPU comprises
multiple streaming multiprocessors, we intend to extend our
technique to derive a makespan for GPU threads executing
over the entire array of available streaming multiprocessors.
Such an extension is not straightforward because the dis-
patching of the warps among streaming multiprocessors is
undocumented. Moreover, since multiprocessors within the
GPU chip share the interconnection network, L2 cache and
GPU main memory, there will be contention upon access
to those resources. This contention needs to be modelled
and accounted for by the analysis, even if the corresponding
arbitration protocols are, likewise, undocumented.
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