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Abstract 

XDense is a novel wired 2D mesh grid sensor network system for application scenarios that benefit from densely 
deployed sensing (e.g., thousands of sensors per square meter). It was conceived for cyber-physical systems that 
require real-time sensing and actuation, like active flow control on aircraft wing surfaces. XDense communication 
and distributed processing capabilities are designed to enable complex feature extraction within bounded time 
and in a responsive manner. In this article, we tackle the issue of deterministic behavior of XDense. We present a 
methodology that uses traffic-shaping heuristics to guarantee bounded communication delays and the fulfillment 
of memory requirements. We evaluate the model for varied network configurations and workload, and present a 
comparative performance analysis in terms of link utilization, queue size, and execution time. With the proposed 
traffic-shaping heuristics, we endow XDense with the capabilities required for real-time applications. 
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XDense is a novel wired 2D mesh grid sensor network system for application scenarios that benefit from

densely deployed sensing (e.g., thousands of sensors per square meter). It was conceived for cyber-physical

systems that require real-time sensing and actuation, like active flow control on aircraft wing surfaces.

XDense communication and distributed processing capabilities are designed to enable complex feature ex-

traction within bounded time and in a responsive manner. In this article, we tackle the issue of deterministic

behavior of XDense. We present a methodology that uses traffic-shaping heuristics to guarantee bounded

communication delays and the fulfillment of memory requirements. We evaluate the model for varied net-

work configurations and workload, and present a comparative performance analysis in terms of link utiliza-
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1 INTRODUCTION

As Moore’s law remains valid, single embedded computers equipped with sensing, processing,
and communication capabilities tend to be minimally priced. This makes it economically feasible
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Fig. 1. Conceptual deployment of XDense for AFC.

to densely deploy sensor networks with very large quantities of computing nodes. Accordingly,
it is possible to take a very large number of sensor readings from the physical world, perform
computation on sensed quantities, and make decisions from the results. Very dense networks offer
information about the physical world with greater resolution and therefore offer better opportu-
nities in detecting the occurrence of an event; this is of paramount importance for a number of
applications with high-spatial sensing (and actuation) resolution requirements.
Such densely instrumented systems, however, pose huge challenges in terms of interconnectiv-

ity and timely data processing. It is important to note that the need for high spatial and temporal
resolutions are often contradictory requirements, which are often not easily simultaneously
fulfilled.
To further motivate our approach, let us consider an aerospace application scenario that may

benefit from such dense cyber-physical systems (CPS). The drastic increase in demand for air trans-
portation naturally motivates measures to reduce its environmental impact. The reduction of fuel
consumption is importantwith regard to both environmental effects and cost efficiency. It is known
from the Breguet range equation [2] that improvements in aerodynamics, engines, and structure
have major importance, and efforts in that direction aim at reducing aircraft drag and weight of the
aircraft. In fact, aerodynamic drag due to skin friction is known to be one of the relevant factors
contributing to increased aircraft fuel consumption that constitutes approximately one half of the
total drag for a typical long-range aircraft at cruise conditions [38].
A significant part of this skin friction is due to turbulent1 airflow over the wing [28]. Turbulence

can be highly undesirable, as it increases drag and noise. Additionally, it causes loss of energy [4],
and an important goal is to minimize this loss. Figure 1 exhibits an example in which homogeneous
laminar airflow transits to turbulent along the wing.
Several solutions have been proposed already to reduce turbulence. Cattafesta and Sheplak [5]

have surveyed the state-of-the-art actuation mechanisms used to reduce turbulent skin friction.
A promising approach is based on a concept known as Synthetic Jet Actuators (SJAs). SJAs are
actuators that run at key positions on the wing and continuously energize the airflow to avoid the
formation of turbulence [39]. The recent advances in miniaturization and materials technology
enable the development of a (thin) smart skin feasible, and hence SJAs are becoming an achievable
technology [33]. The weakness of SJAs is to not use sensors to detect and trace the turbulent flows
and hence offer only open loop actuation. This compromises the efficiency of active flow control
(AFC), leading towaste of energy resourceswhen there is no turbulent flow orwhen the turbulence
lies outside the actuators’ control field.
Therefore, implementing closed-loop AFC implies that physical quantities are tracked through

sensors (e.g., pressure, temperature, and vibration sensors), which are deployed with some high

1Turbulent airflow is composed of coherent structures of chaotic temporal evolution, such as vortices. Turbulent airflow

causes an increase in interaction between the air and the wing (and the fuselage, in general), and consequently an increase

in the total skin friction [29].

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 3, Article 27. Publication date: August 2019.
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Fig. 2. (a) The XDense 2D mesh network. (b) Nodes use four bidirectional links to connect with neighbors
located in the four cardinal directions (north, south, east, west). (c) Node internals: processor (P), router (R),
networking device (ND), and sensor (S). (d) ND architecture. The output port includes a queue (Q) and a
traffic shaper (TS).

density (eventually a few centimeters apart). Figure 1 shows an envisioned deployment of such
sensing/detecting infrastructure on a wing surface to detect the occurrence of turbulent airflows.
XDense was developed to deal with the key challenges related to eXtremely Dense deployments

of sensors [20]. XDense has a network architecture composed of regular structures (nodes) inter-
connected in a 2D mesh network (Figure 2(a)). This resembles common Network-on-Chip (NoC)
architectures [14], and there are also similarities in routing schemes and distributed computing ca-
pabilities [16]. XDense exploits low-cost local communication and distributed processing strategies
to enable distributed feature detection/extraction.
Even though we focus on AFC as the application scenario in this work, we believe that XDense

can be useful for other applications that require fast response times and dense networks of
sensorssuch as (i) aerodynamic tests [26], (ii) structural monitoring [30], (iii) biomedical devices
for the electroencephalogram [37], (iv) robotic e-skins [31], and (v) health-monitoring wearable
sensor networks [25].

To investigate benefits of performing distributed processing, we take into account the nature of
the input data. This because the efficacy of data processing algorithm is tightly related to the nature
of the input data, in the sense that data clustering strategies and feature detection algorithms must
be developed to fit specific scenarios. As well, the spatial and temporal granularity of the input
data provides the necessary information to make decisions on the density of the deployment and
minimum sampling rate requirements, and consequently network load. For example, in Loureiro
et al. [20], targeting AFC, we proposed algorithms to enable distributed turbulent airflow detection
using computational fluid dynamics (CFD) data as our input.
However, the practicality of XDense for efficient feature detection and extraction is a necessary

but not sufficient condition. We also need to provide execution time guarantees and bounds on
the resource utilization for real-time applications like AFC, for which timeliness guarantees are
essential to achieve closed loop actuation. Providing bounds on resource utilization is also crucial
to correctly dimension the nodes, to avoid overload and consequent data loss. These are factors
that have great influence on hardware requirements, cost, and, consequently, on the applicability
of XDense. These two properties are therefore the focus of this article.

Contribution

In this work, we extend XDense with real-time capabilities by implementing traffic shapers in
every node such that the network traffic is predictable and analyzable. Further, we propose an
analysis framework to accurately model the network in terms of communication delay character-
istics and memory requirements. Specifically, this work makes the following two contributions:

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 3, Article 27. Publication date: August 2019.
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(i) proposes three heuristics to shape the traffic in the network and (ii) develops a mathemati-
cal framework to model and analyze the application and network and provides upper bounds on
communication delays, application execution time, and maximum buffer requirements.
As an extension to the work presented in Loureiro et al. [18], in this work we evaluate the

heuristics proposed using homogeneous and heterogeneous traffic sources and compare it with
the best-effort approach.
The remainder of this article is organized as follows. Section 2 introduces the basics of the

XDense architecture, Section 3 formalizes our XDense model for real-time applications, Section 4
evaluates the model, Section 5 discusses the related works, and Section 6 concludes the article and
offers comments on potential future research directions.

2 XDENSE ARCHITECTURE AND PRINCIPLES OF OPERATION

2.1 Architecture and Topology of XDense

XDense is a 2D mesh network whose topology and node architecture are inspired from traditional
NoC designs. Despite its similarities with NoCs, XDense differs in its size and node count. XDense
is meant to be deployed on large surfaces (e.g., aircraft wings) and deliver high-precision and high-
granularity measurements, thereby requiring a high number of sensors/nodes (in contrast to the
few tens of interconnected nodes in modern NoCs).
Figure 2 illustrates the components of an XDense network at different levels of abstraction.

Each node is composed of a sensor (S), a processor (P), and a router (R), and is connected to its
neighboring nodes located in the four cardinal directions using bidirectional communication ports,
termed networking devices (ND). Because they are bidirectional ports, we refer to their input and
output independently as the input ports and the output ports.
The sensor is specified according to the nature of the phenomena to be monitored. For example,

to enable high-precision AFC, pressure and temperature sensors can jointly provide better sensing
of the airflow [13].

The processor runs the application layer. It interfaces with the sensor and implements high-level
application-specific protocols for data sharing and processing. The router arbitrates the exchange
of data. It can receive and transmit packets in parallel, from/to the processor and NDs. NDs are full-
duplex serial communication ports. We use serial links because they are widely available in COTS
microcontrollers and provide low complexity and low footprint at low cost (compared to parallel
links found in NoC[14]). For example, Dobkin et al. [8] show that the utilization of parallel links
beyond 2mm represent up to 150% larger on-chip area utilization and up to 30% increase in power
consumption when compared to high-performance serial links. Their results clearly show that se-
rial links present overall better performance compared to parallel links larger than a fewmilliliters.
Thus, we believe that serial links are more appropriate to the deployment scales we envision.
Each one has a queue (Q) and a traffic shaper (TS) (see Figure 2(d)). Input packets are directly

delivered to the router, whereas output packets are first queued (in FIFO order) at the target output
port before they are dequeued by the traffic shaper to then be transmitted serially over the network.
All network transfers are nonpreemptive and packet switched, and all packets have a fixed and
equal size.
The purpose of the traffic shaper is to provide determinism to the output traffic and consequently

make it amenable to real-time analysis. Its function is twofold: it implements a release offset to the
output packets andmakes the transmission periodic. Shaping the traffic enables us to formulate the
output traffic as a linear cumulative function of the input traffic.Wewill discuss our traffic-shaping
techniques in detail in Section 3.

It is important to remark that for this work, we ignore the internal delays of the nodes and
focus exclusively on the communication delays. In addition, all temporal units are normalized and

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 3, Article 27. Publication date: August 2019.
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Fig. 3. (a) Node schematic showing each major component of the system. (b) Node prototype. (c) A 3 × 3
network.

quantified in terms of Transmission Time Slots (TTS), which is the time required to transmit a
single packet.

2.2 Hardware Implementation

For realizing the preceding design of XDense, a custom-designed Integrated Circuit (IC) provides
the best-fit solution. However, this reduces design flexibility andmight become a single application
solution. For this reason, we use a microcontroller (μC) and other COTS to prototype the XDense
node and network. The rest of this section provides context to this discussion with an overview of
the prototype that we have developed, shown in Figure 3.
To implement XDense, we chose the Atmel ATSAM4N8A μC. It is based on the 32-bit ARM

Cortex-M4 RISC processor, which is a mid-range general-purpose μC that runs at up to 100MHz
and provides a good balance between power consumption and processing power. It has a small
48-pin footprint, with five high-speed UART ports, each with dedicated DMA channels that allow
efficient communication. We use the FreeRTOS [3] real-time operational system (RTOS) in our
nodes. It provides device drivers and additional high-level abstractions for context switching and
multitasking.
The schematics, prototype node, and a 3 × 3 network deployment is shown in Figure 3. We

placed four sensors on the top of the board for motion sensing with 9 degrees of freedom, pressure,
temperature, and visual-range light sensing. We have presented more details on the hardware
prototype using COTS in Loureiro et al. [19].

2.3 AFC Application Scenario

We now revisit the AFC application discussed in Section 1. Although not used as input in the anal-
ysis ahead, with the focus being to prove the real-time nature of XDense, it is useful to understand
how XDense fits into the AFC application workflow.
As shown in Figure 1, XDense is positioned on thewing of the aircraft to collect the environment

data. Experimentally, a wind tunnel would be desired to pose the aerodynamic conditions over a
wing surface embedded with an XDense network. CFD simulation allows us to simulate airflow
over a wing and collect this information by a virtual deployment of XDense. This is a well-studied
area in aerodynamic research, and one important test case is for the ONERA M6 wing in viscous
flow [32].2

2The ONERA M6 wing was designed for studying 3D, high Reynolds number flows with complex flow phenomena (tran-

sonic shocks, shock-boundary layer interaction, separated flow). It has become a classic validation case for CFD codes due

to its simple geometry, complicated flow physics, and availability of experimental data.

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 3, Article 27. Publication date: August 2019.
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Fig. 4. (a) Pressure distribution over a wing’s surface. (b) Data of a single time frame, from CFD simulation,
as input for XDense. (c) Sensors displacement. (d) Normalized data, as seen by each sensor.

Wehave integrated this CFD simulator into our workflow for simulation of XDense inputs. Now,
the AFC input simulation workflow consists of the following steps:

(i) Generate wing model: A 3D mesh of a wing is generated and imported into the CFD
simulator (Figure 4(a)).

(ii) Simulate wing performance: The CFD simulator is run to simulate a pitching wing
flowing through high-speed airflow, and temporal pressure and temperature data of the
surface of the wing are produced (see Figure 4(b)).

(iii) Extract sensor data: These temporal pressure and temperature data are extracted, but
only from the points in space that correspond to the XDense node deployment. Figure 4(c)
and (d) illustrate sensor deployment and sensor data, respectively.

More specifically, the sensor data are generated and imported using the SU2 simulator for mul-
tiphysics [24]. SU2 is a reliable open source CFD simulator that is widely used in aerodynamics
research.
Even though we integrate our simulation model and the SU2 CFD simulator, note that the input

data is indifferent to the network operation, as the analysis pertains to the communication aspects
only and therefore not influencing in any way the results presented in this article.

2.4 Principles of XDense Operation

Consider the AFC use case depicted in Figure 1 as a working example. The objective is to col-
lect information on the nature of the airflow and identify whether it is laminar or turbulent by
quantifying its characteristics along the wingspan.
A naive solution to this problem is to request each node to continuously sense information

about the airflow and send it back to a sink. The information collected from the sink can then be
used to compute the airflow’s properties. Clearly, this approach generates a tremendous load on
the network, requires large buffers in each node, and leads to significant delays between the time
at which the information is requested and the time at which it is eventually processed (sensed
information may have a maximum lifetime).
Instead, we use XDense to efficiently build a global picture of the airflow by organizing the

nodes in clusters and perform local data processing. In each cluster, one node serves as the clus-
ter head node. It performs data aggregation within its cluster and is responsible for processing
(and/or compressing) the data locally to send only meaningful information to the sink. Another

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 3, Article 27. Publication date: August 2019.
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Fig. 5. Example 45 × 45 network, with a single central sink, in this case with nradius = 2. Application phases:
ϕ1, sink requests data from cluster heads (a); ϕ2, cluster heads in turn send a multicast request to nodes
in their cluster; ϕ3, nodes send sensor data back to their respective cluster-head; and (d) ϕ4, cluster heads
process received data and send result to the sink.

example of utilization is to program the cluster heads to inform the sink only upon the occurrence
of meaningful events (e.g., airflow changes from laminar to turbulent and conversely).
The routing protocols elected should ideally exploit the network topology to avoid congestion.

It is also required to define application protocols to allow coordination of clusters by the sink.
To tackle the challenge of analyzing and computing upper bounds on the application execution

time and the buffer requirements of the nodes through distributed processing, XDense uses three
operative principles: (i) the nodes are clustered and one node in each cluster (cluster head) is in
charge of aggregating and prprocessing the data; (ii) the execution of the application is divided
logically in subsequent phases; and (iii) the network implements routing schemes that guarantee
spatial isolation between the clusters.

2.4.1 Clustering Nodes. The reason for grouping the nodes into clusters is to reduce the load
on the network by performing in-cluster data preprocessing at the selected cluster heads. Our
tested solution implements nonoverlapping “square” clusters—the network topology being a 2D
grid of X times Y nodes, and all clusters are nonoverlapping and of size nsize × nsize, with nsize ≤ X

and nsize ≤ Y . nsize must be a positive odd number, and the cluster head is the node located at the
“center” of the square. The cluster size nsize is defined through the system parameter nradius that
denotes themaximumdistance from the cluster head to the farthest node in the cluster (considering
rectilinear distance, a.k.a.Manhattan distance). Figure 5 shows a scenariowithnradius = 2. Thus, the
resulting total number of nodes in each cluster is a function of thenradius given by (2 × nradius + 1)

2.
Nodes arbitrate their role on the network at runtime (to act either as a cluster head or a normal

node). They do this on reception of a packet from the sink containing the packet origin and the
nradius parameter. Each node then calculates, based on its position in the network relative to the
sink, if it is supposed to act as a cluster head or as a normal node.
As discussed earlier, the purpose of local in-cluster processing is to extract high-level aero-

dynamic information of the airflow, which is transmitted in a smaller number of packets (when
compared to the number of packets required to transmit the raw data). The preprocessing and
compression algorithms to be used are application specific and are outside the scope of this ar-
ticle. We have, however, discussed application-specific data processing issues in previous works
(see Loureiro et al. [20] for a discussion on this topic).

2.4.2 Executing Application in Phases. The execution of the application is logically divided into
a set of four consecutive phases: ϕ1,ϕ2,ϕ3, and ϕ4. The first phase is started by the sink, when it
requests data from the cluster heads. Specifically, the four phases are as follows:

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 3, Article 27. Publication date: August 2019.
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• Phase ϕ1. The sink requests the cluster heads of all clusters to send the processed data.
• Phaseϕ2. On receiving the request from the sink, the cluster heads in turn request the nodes

of their respective clusters to send their data.
• Phase ϕ3. Every node of each cluster transmits its sensed data to its cluster head.
• Phase ϕ4. The cluster heads process the received data and transmit the result back to the

sink.

Note that clusters in the network may not be in sync with one another with respect to the
phase of their execution. The second phase (ϕ2) for instance, start in each cluster with a different
time offset; Offset that is proportional to the distance between the cluster head of each cluster and
the sink. We assume that all nodes of a cluster co-participating on a phase (in the same cluster)
have a common time basis, which is an important assumption for the proposed heuristics to work.
We believe this is a reasonable assumption, as nodes have could rely on a time synchronization
protocol for that (what we do not consider in this work).
Despite their special role, the sink and cluster heads sense as any other node. The sink is the

only node to act as the gateway with the outside world and has a backhaul link (e.g., a wireless
link). Figure 5 shows the four phases in chronological order.

2.4.3 Spatial Isolation through Routing Schemes. The four phases described earlier require spa-
tial isolation so that packets do not compete with each other for network resources when travers-
ing it. We use the well-known dimension-order routing algorithms known as X-Y and Y-X routing
protocols [14]. In X-Y routing (respectively, Y-X), packets are first routed along the X (respectively,
Y) dimension and then along the Y (respectively, X) dimension. These protocols always find the
shortest path between the source and destination nodes (again, in terms of theManhattan distance)
and are proven to be deadlock free [11].

Phases ϕ1 through ϕ3 use one of the following two routing algorithms, sometimes called coun-

terclockwise dimension routing (see Figure 5(a)–(c)). The starting dimension (X or Y) depends on
the quadrant in which the destination node is, relative to the origin of the packet. For phase ϕ4, we
propose another routing protocol, hereafter referred to as shifted clockwise dimension routing. This
protocol adds an initial change in dimension on the first hop and then uses a regular clockwise
routing (see Figure 5(d)).
The nodes aligned with the sink are not part of any cluster. They provide an exclusive route for

packets of ϕ4, sent by the cluster head to the sink. This routing scheme results in flows from phase
ϕ4 to travel orthogonal to the flows from phases ϕ1,ϕ2, and ϕ3, and therefore they do not compete
for the same output port at any node on the way. This enables spatial isolation between the flows
from the different phases.

3 EXTENDING XDENSE WITH REAL-TIME APPLICATION CAPABILITIES

We endow XDense with real-time capabilities by shaping the traffic at every output port of every
node in the network. In simple terms, by controlling how and when packets are sent by each node,
we are able to compute the maximum buffer requirement and determine precise upper bounds on
the application execution time.

3.1 Networking Model

The real-time application deployed on the network is characterized by a set Φ = {ϕ1,ϕ2, . . . ,ϕn } of
n consecutive event-triggered phases (communication and processing primitives) that constitute
the logical part of the application execution. In this work, we assume n = 4 (as explained in the
previous section), but the approach can be extended to any arbitrary number n of phases. Every
phase ϕi ∈ Φ, with i ∈ [1,n], is characterized by a set Fi of mi ≥ 1 communication traffic flows

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 3, Article 27. Publication date: August 2019.
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Fig. 6. Traffic shaper example scenario: two input flows shaped by an intermediate node as an output flow.
Parameters for the input flows are f1 = {O = 2.5, β = 1,σ = 10} and f2 = {O = 1, β = 1

5 ,σ = 3}. The resulting

flow is f3 = {O = 2, β = 1
2 ,σ = 13}.

exchanged between the nodes involved in phase ϕi . Each flow fi, j ∈ Fi , with j ∈ [1,mi ], consisting
of one or more packets, has an unique source node from which the communication is initiated and
may have multiple destination nodes. Formally, a flow fi, j is modeled as follows:

fi, j = {Oi, j , σi, j , βi, j }. (1)

The offset Oi, j is a constant delay before the sending of the first packet of flow fi, j . The message
size σi, j is the number of packets that are sent in each flow fi, j , and the burstiness βi, j ∈ [0, 1]
represents the rate at which those packets are released. A burstiness of 0 means that no packets
are transmitted, and a burstiness of x ∈]0, 1] means that a packet is transmitted every 1

x
TTS.

These three parameters together describe a finite constant-rate flow with an initial offset. The
flow parameters σ and β were conceived to couple the application sampling requirements with the
communication model, in the sense that they allow modeling application scenarios with different
data sampling requirements. A few example flows are illustrated next.

Example 3.1 (9 Degrees of FreedomMotion Sensor). Consider a 9 degrees of freedommotion sensor
whose data has to be transmitted as nine separate packets in a single flow (one packet for each
degree of freedom). In this case, we want the data to be transmitted together. Therefore, we set
β = 1 with σ = 9 for that flow.

Example 3.2 (Pressure Sampling). Consider a use case in which 10 samples of pressure data need
to be transmitted, using one packet per sample. We are interested in having periodic sampling,
equally distributed in time. By setting the burstiness to 1

5 , for instance, one packet will be sent

every 5 TTS. Therefore, for that flow, we set β = 1
5 and σ = 10.

3.2 Shaping Flows and Traffic throughout the Network

As discussed earlier, the sending of all packets by the source node of the corresponding flow f is
done according to its parameters (O,σ , β); these three parameters allow for a precise timing and
sending rate at the source node of f . Note that for simplicity, hereafter we shall use the symbol
f to denote a flow. We will mention the indexes i and j that indicate the phase and flow indexes,
respectively, only if necessary.
Although the flows are shaped at their source, when multiple flows (say, f in1 , f

in
2 , . . . , f

in
k
) tra-

verse the network at the same time, pass through the same router, and compete for the same output
port, the resulting output flow f out at that port is a superposition of all of these competing flows.
As such, f out may present an irregular packet transmission pattern and a rate that can no longer
be modeled using the three parameters (O,σ , β).

For example, let us look at Figure 6, which illustrates two input flows ( f in1 and f in2 ) competing

for a same output port of a node. Each of these flows f in
k

starts at time Ok and has a duration

defined as ℓk =
σk
βk
. In other words, flow fk sends all of its packets after ℓk TTS, at t = Ok + ℓk . In

this example, thanks to the traffic shaper TS, the interference of these two input flows lead to an
output flow f out3 that is not a superposition of the two input flows but rather is preset deterministic
patterns that can be modeled using the three parameters (O,σ , β).
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Fig. 7. Traffic-shaping heuristicsInput and output flows using the proposed heuristics (a). A time line show-
ing offset and duration of arriving flows (b) and departure flows (c).

In other words, to make the network amenable to timing analysis, we shape the traffic at every
output port of every node and make it fit the linear model (O,σ , β). For that, we first identify
the set of input flows f in

k
(with k = 1, 2, . . .) at every output port of every node in the network,

and based on the respective parameters (Ok ,σk , βk ) of these flows, we compute the parameters
(Oout,σ out, βout) that are used to shape the resulting output flow at that output port.
In Figure 7, we present a more detailed example to illustrate how the traffic shaping is done.

Figure 7(a) shows packet arrivals curve S (t ) due to four incoming flows: f in1 , f
in
2 , f

in
3 , and f in4 (see

Figure 7(b)). The arrival curve corresponds to the incoming flows that define the number of packets
to be sent over time from the output port, which depends on the starting time and duration of all
competing input flows. Three possible resulting flows f out are computed and shown in Figure 7(c),
each with its corresponding departure curve in Figure 7(a).

The computation of (Oout,σ out, βout) is therefore performed at every output port of every node
in the network interactively, starting at the source node of every flow and iterating, one port at
the time, throughout the network until a shaper is defined for all of the output ports.3 We make
two important assumptions regarding the flows and their routing.
Assumption 1. During phases ϕ3 and ϕ4, in every node, all of the packets entering by a given

input port are assumed to exit through a single output port.
Assumption 2. There is no circular dependency between the flows. For any output port, say p1,

the computation of the parameters of its traffic shaper requires each of its competing input flows
to be modeled already by the three parameters (O,σ , β). If any of these input flows, say f in

k
, comes

from the output port (say p2) of an upstream router, it is required that the parameters (O in
k
,σ in

k
, β in

k
)

of the shaper of that upstream output port p2 have been computed already. This requirement must
be satisfied for all input flows competing for p2, and interactively it must be satisfied as well for
all output ports of the upstream routers, until the traffic shaper at the source nodes of all inter-
fering flows. Therefore, computing traffic-shaping parameters is an iterative process that must be
executed until (Oout,σ out, βout) is calculated for all nodes. In simple terms, there cannot be a flow

3Note that it has been proven in Sivaraman et al. [35] that to calculate optimal shaping parameters in a multihop scenario

can be computationally intractable, and thus finding optimal solution at runtime is not feasible.
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f1 competing for an output port with a flow f2 that competes for an output port with a flow f3,
and so on, until reaching a flow fk that competes for an output port with f1.
Assuming no cyclic dependencies between the flows, the parameters (Oout,σ out, βout) of every

traffic shaper may be computed in many different ways for a same set of interfering input flows.
In the next section, we propose three different methods of computation.

3.3 Shaping Output Traffic at a Single Output Port

We propose three heuristics to compute the parameters (Oout,σ out, βout) of the shaper used at
a given output port. Let F in denote the set of input flows that compete for the output port under
analysis. Every f in

k
∈ F in is characterized by the three parameters (O in

k
,σ in

k
, β in

k
). For each f in

k
∈ F in,

we define the function S in
k
(t ) as

S ink (t ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 t ≤ O in
k

β in
k
× (t −O in

k
) O in

k
< t < O in

k
+ ℓk .

σ in
k

t ≥ O in
k
+ ℓk

(2)

Broadly speaking, every function S in
k
(t ) represents the number of packets sent by the flow f in

k
at a

given time t (TTS). When t is earlier than the starting instantO in
k
of the flow, the function returns

0 since the flow has not sent a packet yet. For t larger than the finishing time of the flow (O in
k
+ ℓk ),

the function returns the total number σ in
k
of packets sent by f in

k
, with ℓk being the duration of the

flow. Between the two boundsO in
k
andO in

k
+ ℓk , the function increases steadily from 0 to σ in

k
with

a constant slope of β in
k
.

Let S (t ) =
∑

f in
k
∈F in S ink (t ) be the sum of the functions S in

k
(t ) of all input flows f in

k
. This function

S (t ) is depicted in Figure 7(a). Informally, S (t ) gives the number of packets that arrive at the consid-
ered input port in a time window of length t (TTS). We further denote by T = {t1, t2, . . . , tm } the
finite set of time instants (sorted in chronological order) corresponding to the discontinuity points
of the function S (t ). These discontinuity points are denoted as p1,p2, . . . ,pm in Figure 7. With
these new notations, we can introduce our three heuristics for the computation of the parameters
(Oout,σ out, βout) of the shaper used at the analyzed output port.
For a given shaper (Oout,σ out, βout) represented by a straight line Lout of slope βout and passing

through the point (Oout, 0), the vertical distance dvoutj between a point (tj , S (tj )) ∈ S (t ), ∀tj ∈ T ,

and the line Lout represents the number of packets being buffered at time t at that output port. The
horizontal distance dhoutj between a point (tj , S (tj )) ∈ S (t ), ∀tj ∈ T and Lout represents the delay

(induced by the shaper) that all packets that have arrived at that output port at time tj will incur
because of the shaper.
We start by computing the output flow size σ out that is the same for all heuristics proposed.

Considering that the shaper is not allowed to drop any packet, it is naturally the sum of the size
of all input flows f in

k
—that is,

σ out
=

∑

f in
k
∈F in

σ in
k .

In the remainder of this section, we discuss the intuition behind each heuristic and explain how
they derive the two other flow parameters: Oout and βout.

3.3.1 Minimum Offset (Min-O). This first heuristic aims at avoiding bursty traffic while coping
as much as possible with the bandwidth demand of the input flows. This traffic shaper forwards
the first packet as soon as it can (i.e., one TTS after the packet has arrived), at time Oout

= t1 + 1
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TTS, and forwards all subsequent packets at the highest admissible rate—that is, with the high-
est burstiness βout such that the number of packets sent at any time t ≥ Oout never exceeds S (t ).
This burstiness corresponds to the highest slope among the slopes of all lines passing through
the point (t1 + 1, 0) such that for every tj ∈ T , the point of x-coordinate tj in the line has a
y-coordinate ≤ S (t ). In simple terms, the line is “below” the function S (t ), ∀t ≥ 0. This slope is
simply given by

βout =

[
min
tj ∈T

(

S (tj )

tj − (t1 + 1)

)]1

0

,

where [x]zy = max(min(x , z),y). Note that by definition of t1, we have t1 = minf in
k
∈F in (O in

k
). Fig-

ure 7(a) shows the Min-O departure curve with βout as βMin-O.

3.3.2 Maximum Slope (Max-S). The second heuristic aims at not consuming any bandwidth for
as much time as possible and then sends all packets in a burst. Similarly to the Min-O heuristic,
the Max-S approach selects one “anchor” point of S (t ) and computes the maximum slope βout

such that the line with slope βout passing through the selected point is “below” the function S (t ).
In Min-O, we selected the anchor point (t1 + 1, 0), whereas Max-S selects the point (tm , S (tm )).
The maximum admissible slope such that the line remains below S (t ) is given by

βout = max
tj ∈T

(

S (tm ) − S (tj )

tm − tj

)

. (3)

Figure 7(a) shows the Max-S departure curve with βout as βMax-S. The offsetO
out in Max-S is simply

set to the X-intercept of the line of slope βout and passing through the anchor point (tm , S (tm )) to
which we add 1 TTS, to make sure that packets are not forwarded before the first packet arrives
(like we did in Min-O)—that is,

Oout
= tm −

S (tm )

βout
+ 1.

After computing the offset Oout, it is now safe to readjust the slope as βout =
[

βout
]1
0 to model

the fact that the shaper cannot forward a negative number of packets and neither it can forward
more than one packet at a time. Note that this readjustment must be performed after computing
Oout, because doing it before would in some cases allow a packet to be forwarded before it even
arrives—that is, the line would not be completely below the function S (t ).

Figure 7(a) shows the departure line of Max-S, initially calculated with a slope > 1 as a result
of Equation (3). That slope is then adjusted to βout = 1 as depicted on that figure. As seen, after
adjusting its slope, the line corresponding to the parameters of the Max-S traffic shaper does not
intersect with the function S (t ). It seems to be “too much shifted to the right.” An easy patch to
reduce this gap between S (t ) and the shaper is to set its offset to theminimum offset such that the
line remains below all points of S (t )—that is,

Oout
= min

t ≥0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
t such that βout ≤ min

tj ∈T

tj>t

(

S (t ) − S (tj )

t − tj

)⎫⎪⎪⎪⎬⎪⎪⎪⎭
. (4)

Note that this value of Oout can be computed easily by positioning the line of slope βout on every
point (tj , S (tj )), ∀tj ∈ T , and retaining the maximum X-intercept of all of these lines.

3.3.3 Least-Square Regression (LQ). The intuition behind this third heuristic is tominimize both
the queue size and the delay by finding the line Lout that minimizes the distance between every
point (tj , S (tj )) ∈ S (t ), ∀tj ∈ T and Lout. This line is commonly known as the regression line of the
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points (tj , S (tj )) ∈ S (t ). Using the least-squares method, which is the most common method for
fitting a regression line, the slope of that line is given by

βout = r ×

√

1

m

∑

tj ∈T
(S (tj ) − S̄ )2

√

1

m

∑

tj ∈T
(tj − t̄ )2

, (5)

where

t̄ =
1

m

∑

tj ∈T

tj

S̄ =
1

m

∑

tj ∈T

S (tj ).

and r is the correlation coefficient computed as

r =

∑

tj ∈T
(tj − t̄ ) (S (tj ) − S̄ )

√

∑

tj ∈T
(tj − t̄ )2

∑

tj ∈T
(S (tj ) − S̄ )2

.

Once we have computed the slope, we choose the smallest offset Oout such that the line of slope
βout and passing through (Oout, 0) is never above any point (t , S (t )), ∀t ≥ 0. This is done using
Equation (4).

3.4 Worst-Case Per-Hop Delays and Maximum Queue Sizes

Having stated the heuristics, we can now apply them to all phases of the application. We perform
this in a hop-by-hop strategy, starting from the output ports of the nodes for which the parameters
(O in

k
,σ in

k
, β in

k
) of all interfering flows f in

k
are known. For each such output port, the resulting output

flow f out is shaped using the samemodel (Oout,σ out, βout) that is then propagated as the input flow
in the next hop. The process continues until the parameters of the shaper of every output port of all
nodes of the network are defined (the output ports that no flows ever traverse and that are thus un-
used are naturally ignored). As mentioned earlier, we assume that there are no cyclic dependencies
between the flows at any output port, which implies that the process eventually terminates.
After that step, we can now compute at each output port the maximum transmission delay

caused by its traffic shaper (Oout,σ out, βout), as well as its maximum queue size. To ease the ex-
planation, we shall use the same visual representation as that used in the previous section for the
shaper and the function S (t ). The shaper is represented by a straight line of slope βout that inter-
sects with the x-axis at the point (Oout, 0). We denote this line as Lout and write its equation as

Lout (t ) = βoutt − βoutOout
. (6)

We define S (t ) as in the previous section and keep the notations T = {t1, t2, . . . , tm } to express the
finite set of time instants (sorted in chronological order) corresponding to the discontinuity points
of the function S (t ).

As explained previously, the number of packets buffered at the output port at any time instant
t is given by the vertical distance dvoutj between the point (t , S (t )) and the point (t ,Lout (t )) on the

line Lout. This vertical distance is simply equal to

dvoutj = S (t ) − Lout (t ),
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and thus the maximum number MaxQueue of packets buffered at that output port is given by

MaxQueue = max
t ≥0

(

S (t ) − Lout (t )
)

.

Since S (t ) is a continuous piecewise function for which every subfunction is linear, it can easily
be shown that the maximum of the previous equation can be found by looking only at the time
instants tj ∈ T rather than at all t ≥ 0—that is,

MaxQueue = max
tj ∈T

(

S (tj ) − L
out (tj )

)

. (7)

This holds true because every subfunction of S (t ) is a segment that is either of the following:

• Parallel to Lout. In this case, all points on that segment are at the same distance from Lout,
including its two extremities that are discontinuity points with an x-coordinate included in
T .

• Converging toward Lout. In this case, the leftmost point on the segment (whose x-coordinate
is an instant tj ∈ T ) is the farthest from Lout.

• Diverging from Lout. In this case, the rightmost point on the segment (whose x-coordinate
is an instant tj ∈ T ) is the farthest from Lout.

Similarly, the transmission delay at any time instant t is given by the horizontal distance
dhoutj between the point (t , S (t )) and the point of y-coordinate S (t ) on the line Lout. According

to Equation (6), that point of y-coordinate S (t ) ∈ Lout has an x-coordinate x such that S (t ) =

βoutx − βoutOout and thus x = S (t )
β out +O

out. The horizontal distance is then simply given by

dhoutj =
S (t )

βout
+Oout − t ,

and thus the maximum delay MaxDelay at that output port is

MaxDelay = max
t ≥0

(

S (t )

βout
+Oout − t

)

.

For the same reasons as those mentioned for MaxQueue, the maximum delay MaxDelay can be
computed by looking only at the points tj ∈ T—that is,

MaxDelay = max
tj ∈T

(

S (tj )

βout
+Oout − tj

)

. (8)

Note that the transmission delay is an interesting parameter to analyze the end-to-end delay or
per-hop delays of individual packets. However, in this article, we rather focus on estimating upper
bounds on the execution time of the phases and thus of the overall real-time application.
To compute the execution time of a given phase, we must know exactly when the phase starts

and when it ends. However, phases may overlap in time and happen simultaneously. For instance,
for the application scenario considered in this article, a cluster head located close to the sink may
enter phaseϕ2 long before a cluster head that is far from the sink (since it receives the request from
phase ϕ1 sooner). For simplicity, we assume in this work that a phase ends when a given node has
received all packets sent to it. For example, the time at which all cluster heads have received their
requested data marks the end of phaseϕ3, and the time at which the sink has received all processed
data marks the end of phase ϕ4. As such, we compute the execution time of a phase as the relative
time instant at which all four input flows of that given node—a cluster head for phase ϕ3 and the
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Fig. 8. Cumulative arrival/departure curves for a single node using Min-O (a), Max-S (b), and LQ

(c) heuristics.

sink for phaseϕ4—terminate (i.e., the four flows coming from the north, south, east, and west input
ports of that node). The execution time of a phase is thus given by

ExecTime = max
card∈[↑,↓,→,←]

(

O in
+

σ in

β in

)

, (9)

where for each cardinal direction ↑, ↓,→, and← (north, south, east, and west), the flow f in char-
acterized by (O in,σ in, β in) is the input flow coming from that cardinal direction.

3.5 Validation Example

To validate our theoretical model, we compare it with simulation. For that, we define the following
scenario: a single node receives an arbitrary number of known input flows, which are shaped into
an output flow (using any of the proposed heuristics). We compare the arrival/departure curves
calculated using our model against the curves obtained in simulation.
Figure 8 shows the cumulative arrival/departure curves due to three input flows and the result-

ing output flow obtained using each of the three heuristics proposed. The input flow characteristics
were chosen to emphasize the effect of each shaping heuristic on the output flow.
We use the same input flows in all three scenarios, which are Fx = [f in1 , f

in
2 , f

in
3 ], where f in1 =

{O = 0,σ = 3, β = 0.5}, f in2 = {O = 10,σ = 3, β = 0.5}, and f in3 = {O = 12,σ = 3, β = 0.5}. The re-
sulting output flows are different for each heuristic, which are f out

Min−O
= {O = 1,σ = 9, β = 0.3},

f out
Max−S

= {O = 8.2,σ = 9, β = 0.83}, and f out
LQ
= {O = 4.8,σ = 9, β = 0.49}.

The arrival curves obtained through simulation (common to the three cases) are a stair function
that presents the superposition of all arriving flows. Because the output flow is shaped, the cor-
responding departure curve is a homogeneous stair function. As expected, the arrival/departure
curves calculated using our model precede the simulated ones in every point. Figures 8(a-c) also
show the queue size and delay calculated at every point in which the arrival and/or departure
curves start, finish or change its slope.
For the given Fx , from Figure 8(a), Min-O performs badly compared to the other heuristics, as

it adds large delays between the arrivals and departures, which leads to equally large queues and
long execution time. We notice from Figure 8(b) that the departure curve obtained with Max-S
approaches maximally the arrival curve at its tip (1 TTS far), leading to the optimal execution time
with the cost of larger queues from 0 to 10 TTS. However, the LQ heuristic leads to smaller queues,
with a slightly longer execution time.
Although these results provide an intuition on the tradeoffs between the heuristics proposed,

they do not depict the results of multihop communication, in which case the effects may differ.
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Therefore, a more complete evaluation is provided in the next section to understand how each
heuristic performs through multiple hops.

4 EVALUATION OF TRAFFIC SHAPING HEURISTICS

Application use-case: To evaluate the proposed heuristics, we consider the application sce-
nario introduced in Section 2. Remember that the execution of this application is divided logically
in four consecutive phases: ϕ1,ϕ2,ϕ3, and ϕ4. In the first phase, ϕ1, the unique sink node requests
all cluster heads to send their data; in phase ϕ2, the cluster heads perform another request to all
nodes of their respective cluster; in phase ϕ3, the nodes reply to the cluster heads by sending them
the sensed data; and in phaseϕ4, the cluster heads process the data received and transmit the result
back to the sink. Considering that there is no network congestion in phases ϕ1 and ϕ2—because all
packets sent from the sink to the cluster heads and then from the cluster heads to the sensing nodes
have their own private route to their destination—these two phases are neither affected by a mod-
ification of the cluster size, nor by changing the number of clusters, nor by altering the burstiness
of the flows generated during phases ϕ3 and ϕ4. We shall therefore focus only on phases ϕ3 and
ϕ4, in which network congestion does occur and for which a modification of the aforementioned
parameters has an impact on the performance.
Network setup: The network is organized as a square grid of 45 × 45 = 2,025 nodes with a

unique sink located at the center of the grid. Figure 5 depicts a close-up on the sink. In that figure,
we can also see the overall cluster organization, the routes taken by the flows in the different
phases, and the central row and central column of nodes in the middle that are dedicated only to
the communication between the cluster heads and the sink. Based on an integer parameter nradius
that we vary in our experiments, we define every cluster as a square grid of (2nradius + 1)

2 nodes
with the cluster head at the center of the grid. As such, nradius defines both the cluster size and
the number of clusters (the smaller the clusters, the more clusters in the network, and reversely).
Because of our routing algorithms and network symmetry assumptions (position of sink in the
center of the network and cluster head in the center of their cluster), the workload observed in
each quadrant around the sink or cluster heads will be identical. This makes it sufficient to analyze
a single quadrant of the network or cluster.
Shaping heuristics: We evaluate the performance of the three proposed heuristics Min-O,

Max-S, and LQ against the performance of a cycle-accurate network simulator that we refer to
as BE. The simulator does not implement any traffic shaper, and thus it delivers the best effort
(BE) performance overall.
Simulator: The simulator consists of a module for XDense on top of Network-Simulator-3 (NS-

3). It is scalable to simulate very large network deployment scenarios with low computational cost.
This is because we use packets, routing algorithms, and addressing schemes with low overhead,
tailored to this kind of network.
The general nature of the design and implementation of configurable links, packets, communi-

cation ports, router, and applications also makes our module suitable to other 2D mesh network
architectures as well (e.g., NoCs). This is because the different abstraction levels can be imple-
mented independently, as a set of intermediate models, each one with its specific objectives. For
example, the traffic shapers theorized in this work were actually implemented in our simulator
as an independent application layer, so we could study its practical viability, and for debugging
purposes.4

4The simulator source code used in the simulation of this article for the simulator, pre- and postprocessing tools, example

scenarios, and implementation of the traffic-shaping heuristics are available at https://bitbucket.org/joaofl/noc.
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Evaluation criteria and methodology: For each of the three heuristics Min-O, Max-S, and
LQ, we evaluate the maximum queue sizes and the end-to-end execution time of the phases ϕ3 and
ϕ4. For BE, maximum queue sizes and phases execution time are measured in the simulator. We do
so for different cluster sizes, flow burstiness, and network load distribution. Because there is no
source of nondeterminism in our simulation model, each run gives the exact same results for the
same input parameters. Thus, we are only required to run our experiments once for each scenario,
for as long as all four phases last.
To understand the impact of varying the network load, we analyze both homogeneous and het-

erogeneous flow scenarios in phases ϕ3 and ϕ4 (i.e., the phases when the actual data transmission
happens). We define a homogeneous flow scenario as one in which all nodes generate flows with
equal burstiness and message size. A scenario with randommessage sizes and burstiness is defined
as a heterogeneous flow scenario.
We analyze the homogeneous scenario by varying the burstiness β of flows from phases ϕ3 and

ϕ4 from 0.02 to 1 by step of 0.02, for different cluster sizes.
The message size σ differs for each phase. For phases ϕ1 and ϕ2, a single packet is generated at

the sink and cluster head (σ = 1). In phase ϕ3, each node outputs a flow with message size σ = 4.
At the end of ϕ3, the cluster head receives a total of four packets per each node on its cluster.
Subsequently, each cluster head outputs a flow with message size σ , as the sum of all of these
packets plus four packets of its own sensed data times ⌈1 − CR⌉. The term CR aims at reproducing
the effect of data compression by the cluster head. For this work, we define this as a fixed value
equal to CR = 80%, whichwas shown in previous work [20] to be a reasonable ratio in some airflow
scenarios. The number of packets originated by each cluster vary with cluster size, whereas the
number of clusters is inversely proportional to the cluster size. This tradeoff has a compensatory
effect on the overall number of packets transmitted to the sink.
In the heterogeneous flow scenario, flows generated at phases ϕ3 and ϕ4 have random mes-

sage sizes. We use a uniform distribution function with σ = rand (0, 10) and burstiness β =

rand (0.02, 1). A message size of zero signifies that a node does not have an output flow.
In our results, we compare the performance of both heterogeneous and homogeneous scenarios.

To do this fairly, we guarantee that for both homogeneous (HO) and heterogeneous (HE) network
load distribution, the sumof burstiness of all flows, aswell as the sumof all message sizes, are equal.
In other words,

∑

βHO
=

∑

βHE and
∑

σHO
=

∑

σHE . This guarantees that the total network load
remains the same for both scenarios, even if individual load distribution varies.
For both scenarios, the offset remains the same and equal to their distance from the sink/cluster

head (since it is meant to model the minimum time required for a node to reply to a request).

4.1 Maximum Queue Size with Homogeneous Load Distribution

For each of the three heuristics Min-O, Max-S, and LQ, we first derive the parameters (O,σ , β )

of all traffic shapers in the network. Then we use Equation (7) on every shaper to compute the
maximum queue size of the corresponding node, and, finally, we retain the maximum queue size
of all nodes in the network.
As we can see in Figure 9(a) and (b), in phase ϕ3 the queues are smaller for smaller clusters

(nradius). This is expected because smaller clusters contain less nodes and therefore there are less
packets exchanged within each cluster, and thus less congestion. The opposite scenario would be
expected for phaseϕ4, because using smaller clusters means more clusters in the network, and thus
more cluster heads transmitting packets to the sink. Yet this is not observed in Figure 9(d) and (e).
In other words, smaller clusters do not imply longer queues. The reason for this counterintuitive
result can be unveiled by looking at the utilization of the four input links of the sink.
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Fig. 9. Homogeneous flow scenario: Maximum queue size for traffic shaping heuristics against simulation.
Results are for phases ϕ3 (a-c) and ϕ4 (d-f) with nradius set to 1, 3 and 5.

We define the link utilization as the average utilization of a given link of a node during a given
phase. It is calculated as the number of packets sent on that link in a given phase (here, phase ϕ4)
divided by the time (number of TTS) it takes for all of those packets to traverse it. An utilization
of 1 means that the link is never idle during the considered phase, whereas an utilization of 0
means that the link is not used. As seen in Figure 10(d), smaller clusters yield a better utilization
of the input links of the sink. This is because the sum of packets sent to the sink does not depend
only on the cluster size. With more (and smaller) clusters, there will be more clusters and more
cluster heads transmitting to the sink from shorter distances. Thus, its input links will spent less
time idle waiting for the packets to arrive from longer distances. In other words, with fewer (but
bigger) clusters, cluster heads are farther from the sink, and thus its input links spend more time
idle waiting for the packets to traverse the intermediate hops. Greater utilization, for the same
number of packets received by the sink, shows that there is less congestion in the network and
thus smaller queue at individual hops.
It is worth noting that in some scenarios, the maximum queue size obtained when using traffic

shaping is smaller than the maximum queue size without traffic shaping. This is experienced, for
example, in ϕ4 for nradius = 3 and 5, shown in Figure 9(e) and (f), for β ∈ [0.4, 0.6]. In this window,
themaximumqueue size ofMax-S and LQ are smaller than that of BE. This result is due to the offset
O imposed by the traffic shapers in the initial hops. In these cases, the offsets act on distributing
in time the load on the network and thus decreasing the maximum congestion.
However, in cases with lower link utilization and burstiness, BE yields shorter queue sizes. In

these cases, the network is underutilized such that BE still does not lead to excessive load on the
network. However, performing traffic shaping imputes on unnecessary buffering by nodes and
consequently greater queues.

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 3, Article 27. Publication date: August 2019.



Extensive Analysis of a Real-Time Dense Wired Sensor Network Based on Traffic Shaping 27:19

Fig. 10. Homogeneous flow scenario: Link utilization for traffic shaping heuristics against simulation. Results
are for phases ϕ3 (a-c) and ϕ4 (d-f) with nradius set to 1, 3 and 5.

Fig. 11. Queue size density map of the top-right quadrant of the network (17 × 7 nodes), for heuristics LQ
(a) and BE (b). The X and Y axis are node coordinates relative to the sink.

The aforementioned effect is shown in Figure 11. It shows the queue size density map of the
top-right quadrant of the network, with nradius = 5. The sink is located at the bottom-left corner.
Flows are routed using shifted clockwise routing as previously shown in Figure 5—hence, right
to left in this map. The leftmost nodes in the network are usually where the bottleneck happens.
Using BE, for example, in Figure 11(a), the node located at coordinates (x ,y) = (0, 5) gets up to
18 packets queued, as it is located at a conjunction of flows coming from cluster heads on its right
and top. Because of the offsetO calculated using LQ, we can see from Figure 11(b) that by shaping
and queuing the flows originating at the right side of the network (by the node located at (6, 5))
has the effect of delaying the reception of those packets by the leftmost node located at (0, 5), thus
reducing the maximum queue size at the nodes aligned with the sink and comparatively, from
18 packets using BE to 13 using LQ.
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Fig. 12. Homogeneous flow scenario: Execution time of phasesϕ3 (a-c) andϕ4 (d-f) for traffic shaping heuris-
tics against simulation.

Another interesting observation occurs during ϕ4 for the method Min-O. The maximum queue
size gets smaller with increased burstiness. This is very counterintuitive because we would expect
that by injecting more traffic in the network, the congestion would increase. However, this phe-
nomena can be easily explained mathematically: it is due to the way the method Min-O is defined.
Looking at Figure 7, the flows duration defined as σ

β
are longer for lower burstiness β , and thus for

low values of β , the first points ∈ T (depicted by p1, p2, etc.) are farther from the origin. Consider-
ing that Min-O selects a point close to the origin as the “anchor” point, its slope must be small so
that the line remains below the function S (t ). With a low slope, it is likely that the vertical distance
between the function S (t ) and the line will be high (particularly if S (t ) increases quickly). These
phenomena can be observed, to a limited extent, in Figure 7.

4.2 Phase Execution Time for Homogeneous Load Distribution

We compare the execution time of the phases ϕ3 and ϕ4 in Figure 12, again for the cluster sizes
defined by nradius = 1, 3, and 5 and varying the burstiness of the initial flows from 0.02 to 1 by a
step of 0.02. The execution times are computed by using Equation (9). As seen in all graphics of
Figure 12, increasing the burstiness considerably reduces the execution time of the phases (note
that the plots are in logarithmic scale), which remains constant after a point. This point is reached
only for high burstiness in Figure 12(a), whereas it is reached almost immediately in Figure 12(b).
This threshold beyond which the execution time cannot be further reduced can be explained by
looking at the utilization of input link of cluster heads (for phase ϕ3) and the sink (for phase
ϕ4). Those thresholds correspond to specific values of the burstiness for which the links saturate,
and therefore any further increase in burstiness only results in longer queues but not in reduced
execution time.
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Fig. 13. LQ heuristic: maximum queue size (a), link utilization (b), and total execution time (c), with varying
burstiness and nradius = [1, 2, 3, 4, 5].

From the preceding results, we observe that the LQ heuristic performs better overall. We vary
nradius from 1 to 5, with β varying as before, for both ϕ3 and ϕ4. The results are shown in Figure 13.
Figure 13(b) and (e) show the inverse relationship with nradius. In ϕ3, the smaller the nradius, the
smaller the clusters, and hence reduced traffic. In ϕ4, there are more clusters transmitting to the
sink, and consequently more traffic and link utilization.
It is also worth noting that the increase/decrease on the link utilization changes nonlinearly

with nradius. This is because the number of nodes in each cluster grows with the square of the
nradius.

By looking at Figure 13(a) and (c), we can observe a property of the LQ heuristic (this also
occurs for the other heuristics, which are not shown for brevity). For all values of nradius, both
maximum queue size and total execution time remain constant (from β > 0.4). Thus, even when
link utilization is saturated, an increase in burstiness at flows’ sources does not lead to worst
queues and total time. We explain this phenomenon in Section 4.1. The same behavior can mostly
be observed also during ϕ4 in Figure 13(d) and (f).

4.3 Maximum Queue Size with Heterogeneous Load Distribution

The results for maximum queue sizes for heterogeneous loads (Figure 14), while tending to show
the same trends as for homogeneous loads, present more chaotic behavior. BE performance is
degraded. This implies that in more scenarios, applying traffic shaping is enough to reduce queue
sizes compared to the case with homogeneous loads.
In addition, in Figure 15, one can see that the link utilization due to heterogeneous load distri-

bution presents similar overall behavior when compared to the homogeneous scenario. This was
expected, as the network load was intentionally designed to be approximately the same. But apart
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Fig. 14. Heterogeneous flow scenario: maximum queue size for traffic-shaping heuristics against simulation.
Results are for phases ϕ3 (a-c) and ϕ4 (d-f) and nradius set to 1, 3 and 5.

from that, we can see that the Max-S heuristic performs better than before, especially during phase
ϕ4 (Figure 15(d)–(f)), in which it provides higher link utilization when compared to LQ (in most
cases for β < 0.6), while keeping queue size and total execution time approximately the same.

4.4 Phase Execution Time for Heterogeneous Load Distribution

Total execution time again presents the same results, as the total number of packets and average
burstiness among nodes is the same for both scenarios. This is shown in Figure 16.

Once again, we take a closer look at the LQ heuristic alone to understand the impact of nradius.
These results are show in Figure 17 for phases ϕ3 and ϕ4. There is a clear drop in performance in
all metrics for this specific heuristic. The same drop is not observed for the Max-S heuristic, that
improves BE performance for heterogeneous flow sources.
To summarize, the heuristics Max-S and LQ, in both homogeneous and heterogeneous flow

sources, perform close to that of BE, which does not use traffic shaping. This means that by apply-
ing our heuristics for traffic shaping, we are able to provide timing and resource usage determinism,
and yet impose very little loss in terms of performance as compared to a best-effort solution.

5 RELATEDWORK

In this section, we briefly discuss the differences between XDense and other sensor networks tai-
lored to dense sensing, and we go through a few systems that use similar mesh-grid network
architectures. Then, we discuss some seminal works on real-time communication in multihop net-
works and traffic shaping to provide communication bounds for real-time applications.
A multimodal sensor network was proposed in Lifton et al. [17] as a scalable sensor network

with up to hundreds of nodes per square meter. However, due to the wireless nature of the links
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Fig. 15. Heterogeneous flow scenario: link utilization for traffic-shaping heuristics against simulation. Re-
sults are for phases ϕ3 (a-c) and ϕ4 (d-f) and nradius set to 1, 2 and 5.

(infrared), contentions and collisions substantially increase the cost of communication. Their re-
search leans more toward wireless sensor networks whose performance does not suit the applica-
tion scenarios on which we focus. Instead of wireless links, Mistree and Paradiso [23] use wired
links to deploy few sensors in a grid network, to act as an electronic skin. However, nodes are
interconnected using shared buses, an approach that differs from ours.
More recently, Dementyev et al. [7] presented a modular and dense sensor network in a form

factor of a tape, tailored to wearables. In their work, however, master-slave buses are used to
interconnect nodes (through SPI or I2C), regardless of the shape of the network. Not only do shared
buses drastically decrease the opportunity for distributed processing due to their finite bandwidth
that do not scale along with the number of nodes, but they also constraint the number of nodes
due to limited address space and related electrical limitations. They are therefore not a scalable
solution.
Related to the challenges of dense sensing on aircraft wings, Kopsaftopoulos et al. [15] demon-

strate a design integration and experimental assessment of a stretchable sensor network that is
embedded inside a wing. The network consists of a passive and static structure, in which nodes
are individually read from the exterior. The authors provide a good technological solution to inte-
gration related challenges, but they do not address network communication issues.
XDense uses a 2D mesh network architecture that resembles common NoC architectures [1,

14]. Numerous works to achieve real-time guarantees have been proposed for NoCs. For instance,
Shi and Burns [34] proposed a worst-case analysis technique for priority-preemptive, wormhole-
switched NoCs. This approach was later extended in the work of Indrusiak [12], in which an end-
to-end schedulability analysis was proposed for many-core systems. Additionally, Rahmati et al.
[27] provide methods to efficiently calculate the worst-case bandwidth and latency bounds for
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Fig. 16. Heterogeneous flow scenario: Execution time of phases ϕ3 (a-c) and ϕ4 (d-f) computed for traffic
shaping heuristics against simulation.

real-time traffic streams onwormhole-switchedNoCswith arbitrary topology. However, wormhol-
ing is tailored to parallel links, where very high bandwidth is required, and for a large amount of
data transfer between cores. Because XDense relies on nonprioritized packet-switched serial com-
munication, this approach does not apply to our network architecture.
More in line with our approach, initially proposed by Cruz [6], network calculus enables real-

time communication for packet-switched multihop point-to-point networks, addressing the issue
of guaranteeing the delivery of messages with time constraints. This problem has been extensively
researched since then. Fidler [10] surveys the state of the art of deterministic and probabilistic net-
work calculus by providing a review of service curve models of common schedulers along with
different types of networks and methods for identification of a system’s service curve representa-
tion. With a slightly different concept, Fan et al. [9] propose a feasibility analysis of periodic hard
real-time traffic in packet-switched networks using first-come first-served queuing, without traffic
shaping. Their framework suite real-time analysis of switched Ethernet can provide better results
compared to network calculus in some cases.
Traffic shaping to achieve tighter and deterministic bounds has also been investigated. For ex-

ample, Sivaraman et al. [35] use rate-controlled Earliest Deadline First scheduling in conjunction
with per-hop traffic shaping to provide deterministic end-to-end delay guarantees. They identify
the shaping parameters that result in maximal network utilization. This has also been studied for
NoCs in the work of Manolache et al. [22] for worst-case response guarantees and buffer space
optimization. In the work of Specht and Samii [36], traffic shaping is also used on Ethernet net-
works to provide real-time guarantees by shaping the packet sources. The authors provide an
asynchronous traffic scheduling algorithm, which gives low delay guarantees while keeping low
implementation complexity.
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Fig. 17. (a) Link utilization, (b) maximum queue size and (c) total execution time with varying burstiness,
for the LQ heuristic only, for nradius = [1, 2, 3, 4, 5].

6 CONCLUSIONS AND FUTURE WORK

The proposed traffic-shaping heuristics enable us to endow XDense networks with real-time capa-
bilities. We showed that the performance of XDense is approximately the same, with and without
traffic shaping. This means that the proposed traffic-shaping techniques allow determining tim-
ing and memory requirements while imposing minor performance overheads. The performance
of XDense, in both homogeneous and heterogeneous scenarios, also showcases its stable perfor-
mance. However, further experiments exploiting distributed processing algorithms on CFD input
data for AFC need to be performed (as discussed in Section 2.3).
Even though it has not been discussed in the article, the analysis framework that we propose

can also serve as a basis to reason on the dimensioning of the system, in the choice of network
size, the cluster size, and other configurations that may impact performance. The framework was
designed to allow modeling different clustering, event detection, and actuation algorithms to meet
the demands of different application scenarios.
We also believe that the proposed framework can be used in other kinds of synchronous multi-

hop networks. The requirements are that the flow sources (the nodes from which the packets are
generated) are known and can be modeled according to our flow model. This should allow us to
shape each of the output/input flows on the network and provide real-time guarantees based on the
calculations. We believe that there are opportunities on designing new traffic-shaping heuristics
that would provide reduced queue sizes and delays compared to the actual ones.
Improvements to the model can be made along many dimensions. One would be to bring in

CFD data to analyze the performance of the model versus synthetic data. The model can also be
improved with more accurate portrayal of hardware (e.g., to consider the internal delays). One

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 3, Article 27. Publication date: August 2019.



27:26 J. Loureiro et al.

way to do this is to measure delays on real hardware and incorporate it. We have already made
some progress along these lines [21].
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