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Abstract 

Mobile edge computing (MEC) enables the Internet of Things (IoT) with seamless integration of multiple 

application services. Federated learning is increasingly considered to improve training accuracy in MEC-IoT while 

circumventing the disclosure of private data, where the IoT nodes collaboratively train a machine learning model 

without disclosing their private data. In this paper, we propose a new cyber-epidemic attack that progressively 

manipulates federated learning and reduces the training accuracy of the benign MEC-IoT. The proposed cyber-

epidemic attack explores adversarial graph autoencoders (GACE) to generate malicious local model updates that 

extract correlated features with the benign local and global models. The proposed GACE attack epidemically 

infects all the benign IoT nodes along with the training iterations in federated learning, while highly enhancing 

concealment of the attack. 
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Abstract—Mobile edge computing (MEC) enables the In-
ternet of Things (IoT) with seamless integration of multi-
ple application services. Federated learning is increasingly
considered to improve training accuracy in MEC-IoT while
circumventing the disclosure of private data, where the IoT
nodes collaboratively train a machine learning model without
disclosing their private data. In this paper, we propose a
new cyber-epidemic attack that progressively manipulates
federated learning and reduces the training accuracy of
the benign MEC-IoT. The proposed cyber-epidemic attack
explores adversarial graph autoencoders (GACE) to generate
malicious local model updates that extract correlated features
with the benign local and global models. The proposed GACE
attack epidemically infects all the benign IoT nodes along
with the training iterations in federated learning, while highly
enhancing concealment of the attack.

Index Terms—Mobile edge computing (MEC), Internet of
Things (IoT), federated learning, adversarial graph autoen-
coders, cyber-epidemic attacks

I. INTRODUCTION

With the growing development of Internet of Things
(IoT), mobile edge computing (MEC) is enabled to leverage
powerful computing capabilities at an edge server for
processing compute-intensive tasks offloaded by IoT nodes.
The MEC-IoT is widely applied to a large number of ap-
plications, such as smart grids [1], intelligent transportation
systems [2], and metaverse [3]. The IoT nodes upload their
data to the edge server in which machine learning is used to
train the IoT data. Nevertheless, this source data offloading
is vulnerable to wireless attacks, such as eavesdropping [4],
[5], denial of service [6], or blackhole attacks [7]. To avoid
possible data privacy leakage, federated learning is studied
to train a global shared model at the edge server, which
aggregates local model updates instead of original training
data of the IoT nodes.

Figure 1 describes an MEC-IoT system in which the
edge server and the IoT nodes conduct federated learning
for image classification, as an example. Specifically, the
IoT node equipped with a video camera is deployed to

track people’s movements in a train station or airport,
which generates large amounts of images. At the IoT node,
the data is used to train a machine learning model, such
as convolutional neural network (CNN) [8], long short-
term memory (LSTM) [9], or support vector machine
(SVM) [10], that produce a local model update (i.e., the
weight vector of the machine learning model) [11]. The
local model updates of the IoT nodes are sent to an edge
server at which a global model is created by averaging
the weight vectors. Next, the global model is sent back
to the IoT nodes that can adjust the weight vectors in
their machine learning models according to the updated
parameters in the global model. Thanks to the collaborative
training of the global and local models, federated learning
iteratively improves the training accuracy, leading to an
accurate people movement’ tracking. In addition, the global
model and local model updates of federated learning are
trained without collecting the private data from the IoT
nodes, thus protecting data privacy.

Despite federated learning can prevent the data privacy
leakage, a number of data or model poisoning attacks [12]
are studied against federated learning, all of which aim
to manipulate the local and global model training. In
particular, existing data or model poisoning attacks en-
able the adversarial IoT node to create a malicious local
model update with falsified weight vectors or fake training
datasets to compromise the learning accuracy. Generally,
the existing attacks against federated learning prevent being
detected by ensuring that an Euclidean distance between
the malicious local model update and the global model is
smaller than a predetermined threshold. Unfortunately, such
attacks can still be detected by the recent poisoning defense
countermeasures, which utilize the feature correlation of the
weight vectors of all benign local model updates to learn
abnormal fluctuation among the IoT nodes.

In this paper, a new adversarial graph autoencoders-based
cyber-epidemic (GACE) attack is proposed to progressively



Local model 
updates

Global model

The IoT node equipped with a 
video camera

Edge server

Fig. 1: The MEC-IoT system, where a machine learning
model is trained at the IoT node to produce a local model
update. The edge server aggregates all the local model
updates from the IoT nodes to train a global model.

manipulate federated learning and compromise the training
accuracy of the benign MEC-IoT devices. The proposed
attack explores adversarial graph autoencoders (GAE) to
generate a malicious local model update that holds a strong
feature correlation with the benign local model updates
and the global model overheard. The adversarial GAE at
the attacker constructs an adjacency matrix based on the
overheard benign local model updates and the global model
as the input, and outputs a reconstructed adjacency matrix,
with the reconstruction loss maximized. According to the
reconstructed adjacency matrix, the attacker reconstructs
the malicious local model update that manipulates federated
learning convergence while containing correlated features
with the benign ones.

The GACE attack guarantees that the Euclidean distance
between the reconstructed malicious local model update
and the global model below a threshold [13]. Next, the
attacker uploads the malicious local model update to the
edge server, which aims to maximize the training loss
of federated learning and diverge the federated learning
performance. As a result, the training accuracy of federated
learning gradually decreases. Since the malicious local
model updates are uploaded to the edge server for training
the global model, the proposed GACE attack gives rise to
an epidemical infection over all the benign local model
updates.

The rest of this paper is organized as follows. Section II
discusses related work about exiting adversarial attacks
against federated learning. Section III discusses federated
learning mechanism with the benign IoT nodes and the edge
server, as well as the eavesdropping model. In Section IV,
we study the proposed GACE attack. Section V evaluates
the performance. Section VI concludes the paper.

II. RELATED WORK

In this section, we present the related studies about the
exiting adversarial attacks to federated learning in MEC-

IoT. We also discuss the new characteristics of the proposed
GACE attack compared to the attacks in the literature.

A data poisoning attack against federated learning is
studied in [14]. A number of adversarial nodes generate
mislabeled data and upload their malicious local model
updates to the server, to poison the global model. The data
poisoning attack results in substantial drops in the training
accuracy of data classification, even with a small percentage
of malicious local model updates. By analyzing several
data poisoning attacks according to poisoning and adversary
capabilities, an attack is developed based on the classic
label flipping data poisoning [15]. Their data poisoning
attack can adjust the amount of label flipped data used
to evade the model aggregation rule at the edge server,
since the malicious local model update generated with a
large volume of fake data is easy to be detected. In [16],
a data poisoning attack is studied, where a backdoor is
embedded into the malicious local model update. Once
the malicious local model update is aggregated by the
edge server, the global model can be falsely trained, which
identifies the malicious local model as a benign one. To
generate a persistent data poisoning attack against federated
learning, the authors of [17] analyze model capacity so that
the model poisoning attack can inject adversarial neurons
in the redundant space of a neural network. Since the
redundant neurons have limited correlations to the main
task of federated learning, their poisoning attack does not
affect the global model training at the edge server.

Generative adverserial networks (GANs) can be used to
build the poisoning attack against federated learning with
MEC [18], which obtains hidden features from the local
model updates and recovers the local data. The GANs-
based poisoning attack applies the support vector machine
(SVM) model to generate the malicious data and local
model updates via imitating the generation of benign data
and local models. Different from the random data selection
as the local training data in federated learning, the GANs
developed in [19] allocates a distinct data class to the local
node for creating the privacy leakage attack. The GAN is
developed to balance the learning rate of the discriminator
and the one of the generator. By measuring the Euclidean
distance between the real data and its reconstructed ma-
licious peer, performance of the attacks, such as training
accuracy and detection rate, can be evaluated. In [20],
a GAN-based poisoning attack is presented, where the
adversarial node disguises itself as a benign node. The GAN
is trained to generate the malicious data via imitating the
benign one while the adversarial node flips the labels of
the GAN generated data.

The exiting data poisoning and GAN-based poisoning
attacks lack the description of the implicit relationship
between different local model updates, which can be de-
tected by recent poisoning defense strategies in federated
learning [21], [22]. In addition, the output features of the
attacks can be oversmoothed by multiple convolutional
layers at the edge server, making the differences between



the malicious local model update and the benign ones
distinguishable. This exceptionally alleviates the malicious
epidemic threat to federated learning.

III. FEDERATED LEARNING IN MEC-IOT SYSTEMS

In this section, we present the training of the local model
update and the global model in the MEC-IoT system.

A. Federated learning formulation

Federated learning allows the IoT nodes to independently
train the data without sharing to the other nodes and the
edge server. The sensory data, e.g., images captured by the
camera in Figure 1, is trained at the IoT node to generate
the local model update. The edge server aggregates all the
local model updates for training the global model, which
is used to classify and analyze the captured images. With
an increase of the training iterations, federated learning can
gradually improve the image classification accuracy.

In the MEC-IoT system, the benign IoT node i generates
Di datasets at time t, where i ∈ [1, N ] and N denotes the
total number of benign IoT nodes. We denote ai and yi
as the input images of federated learning and output (e.g.,
the classified images) at node i, respectively. At the IoT
node, the local model update is trained by neural networks
to minimize a loss function Li(wwwi; ai, yi) that measures
approximation errors over ai and yi, where wwwi is the model
parameter of IoT node i. For instance, Li(wwwi; ai, yi) can
be given by Li(wwwi; ai, yi) = 1/2(ai

Twwwi − yi), for linear
regression; or Li(wwwi; ai, yi) = − log(1 + exp(ai

T yiwwwi)),
for logistic regression. Thus, we can define the loss function
as

Lloss(wwwi) :=
1

Di

Di∑
i=1

Li(wwwi; ai, yi) + b · reg(wwwi), (1)

where b ∈ [0, 1]. The effect of the local training noise is
described by a regularizer function reg(·) [23].

The local model updates of the IoT nodes are aggregated
at the edge server to create a comprehensive and effective
global model. Letwwwglb represent the global model. We have

wwwglb =
1

D(N)

N∑
i=1

DiLloss(wwwi), (2)

where D(N) =
∑N
i=1Di presents the total data size of all

the IoT nodes.
Minimizing Lloss(wwwi) can be formulated as

min
wwwi

Lloss(wwwi) :=
1

D(N)

N∑
i=1

Di∑
ai=1

Li(wwwi; ai, yi) (3)

+ b · reg(wwwi)

B. System and eavesdropping models

1) System model of MEC-IoT: Let pi(t) =
(xi(t), yi(t), zi(t)) denote the position of node i. The

distance between the IoT node and the edge server can be
expressed as

di(t) = ||pi(t)− pedge||

=
√

(xi(t)− xedge)2 + (yi(t)− yedge)2 + zi(t)2, (4)

where pedge = (xedge, yedge, 0) is the location of the edge
server [24].

Let hi denote the channel gain between the i-th benign
IoT node and the edge server. We have hi(t) = P0

di(t)2 ,
where P0 is a reference transmit power of an IoT node
at the distance di = 1 m. Furthermore, the signal-to-noise
ratio (SNR) of the channel between the IoT node and the
edge server can be given by ηi(t) = hi(t)Pi(t)

σ2
0

, where Pi(t)
is the transmit power of node i, and σ2

0 is the noise power
at the edge server.

2) The attacker’s eavesdropping model: Likewise, the
channel gain of the eavesdropping link, i.e., between a
benign IoT node and the attacker, is given by

h′i(t) =
%4h
′(t− 1) + %3

√
1− %2

4

d′i(t)
%5

, (5)

where %3 is a Gaussian random variable, and %4 is the
coefficient adjusting the weights of the two components. %5

denotes the path-loss exponent. d′i(t) defines the distance
between the IoT node i and the attacker.

The SNR of the eavesdropping link, denoted by η′i(t), is

η′i(t) =
h′i(t)Pi(t)

σ2
0

. (6)

In addition, the channel gains hi, h′i and σ2
0 are known to

the attacker at the beginning of time t, since the attacker
can overhear the benign IoT nodes’ channels and the
eavesdropping links via channel probing.

IV. ADVERSARIAL GRAPH AUTOENCODERS-BASED
CYBER-EPIDEMIC ATTACKS

In this section, we propose the GACE attack that aims
to progressively manipulate federated learning in MEC-
IoT. The attacker explores the adversarial GAE to create
the malicious model update, which extracts the feature
correlation among the benign local model updates.

Let www′k denote the malicious local model update created
by the attacker k. In particular, the arbitrary features of www′k
and the ones in the benign local model updates could be
highly irrelevant. This leads to a low feature correlation
between the malicious local model update and the benign
ones, which can still be detected by the edge server. To ad-
dress this, the GACE attack is presented in Figure 2, where
the global model wwwglb and the benign local model updates
(i.e., www1,www2, ...,wwwi, ...,wwwN ) are eavesdropped on by the
attacker. Next, the attacker disguises as one of the benign
IoT nodes and creates a malicious local model update being
uploaded to the edge server. The edge server aggregates all
wwwi for training wwwglb, which is progressively contaminated
along with federated learning iterations. Eventually, the



GACE attack compromises all the benign IoT nodes and
manipulates federated learning training.

The attacker aims to iteratively construct www′k based on
the eavesdropped wwwglb and wwwi in which the attacker has
no knowledge of the IoT data (ai, yi). A graph G(V, E ,FFF)
is formulated at the attacker to train the malicious local
model update, where V , E and FFF represent vertexes,
edges and a feature matrix of the graph, respectively. Let
AAA = {www(i,i′)|Ni,i′=1} ∈ RN×N define an adjacent matrix
indicating the correlation among the benign local model
updates, where www(i,i′) is the inner product between wwwi and
wwwi′ . Since the topological structure of the graph is built
according to the adjacency matrix, www(i,i′) = 1 if there is
an edge between wwwi and wwwi′ ; www(i,i′) = 0, otherwise. The
feature matrix FFF = {www1,www2, ...,wwwi}, where wwwi contains
the feature of the benign local model updates with regard
to the data dimension.

The GACE attack is based on the adversarial GAE that
consists of an encoder and a decoder. The encoder encodes
the graph data with the features and the decoder takes
the encoder’s output as the input to reconstruct the graph.
Specifically, the encoder takes the input matrixes of FFF and
AAA. The encoder is built based on a K-layer GCN. The
output of convolution at the k-th layer can be presented as

ZZZk = S(ZZZk−1,AAA|γγγk), (7)

where S(·) is a spectral convolution function and γγγk defines
the weight matrix at the k-th layer.

Given an identify matrix I, we define ÃAA = AAA + I and
AAAii =

∑
i′ ÃAAii′ . To generate a feature representation of the

graph, the encoder is formulated as

S(ZZZk−1,AAA|γγγk) = Sk(AAA
− 1

2 ÃAAAAA
− 1

2ZZZk−1γγγk), (8)

where Sk(·) represents a nonlinear activation function (e.g.,
tanh(·) or ReLU(·)). AAA

− 1
2 ÃAAAAA

− 1
2 is the symmetrically

normalized adjacency matrix.
The input to the decoder is ZZZK , which is the last layer

output of the GCN. Let ZZZT denote the transpose matrix of
the ZZZK . A reconstructed adjacency matrix is generated at
the decoder, which is defined as

ÂAA = sigmoid(ZZZK ZZZT), (9)

where sigmoid(x) = 1/(1 + e−x) is the sigmoid function.
In addition, the larger the inner product (ZZZk ZZZT) in the
embedding, the more likely vertexes i and i′ are connected
in the graph according to the autoencoder. The output of
the decoder is the reconstructed adjacency matrix ÂAA as
well as FFF∗ = {www∆

1 ,www
∆
2 , ...,www

∆
i }∗, where www∆

i denotes the
reconstructed model update used to generate the malicious
model update.

Here, G(V, E ,FFF) measures the similarity between AAA and
ÂAA. A weighted cross entropy loss is used to describe its
reconstruction loss η. It defines

η = ES(ZZZk−1,AAA|γγγk)

[ log p( ÂAA | ZZZk )

C(
∑N

i=1www
∆
i

N ,www∆
glb)

]
, (10)
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Fig. 2: The proposed GACE attack that aims to progres-
sively manipulate federated learning in MEC-IoT.

where C(·) calculates the Euclidean distance between the
two input vectors. p( ÂAA | ZZZk ) at the decoder indicates the
correlation among the embedding vertexes, which is

p( ÂAA | ZZZk ) = ΠN
i ΠN

i′ p( ÂAAii′ | ZZZki ,ZZZki′ ), (11)

and

p( ÂAAii′ = 1 | ZZZki ,ZZZki′ ) = sigmoid(ZZZki ZZZ
T
i′ ). (12)

Since the attacker aims to generate the malicious local
model updates www′k to disorient federated learning, GACE is
designed to maximize η in (10), which leads to a minimized
C(

∑N
i=1www

∆
i

N ,www∆
glb). Moreover, maximizing p( ÂAA | ZZZk )

satisfies C(
∑N

i=1www
∆
i

N ,www∆
glb) ≤ Cth, where Cth is a threshold

value that ensures the generated www′k is close to www∆
glb in the

Euclidean space. As a result, www′k iteratively contaminates
federated learning without being detected.

A Laplacian matrix ΩΩΩ is formulated at the attacker based
on the adjacency matrix of AAA, which is ΩΩΩ = diag(AAA)−AAA.
By applying singular value decomposition to ΩΩΩ, a complex
unitary matrix can be obtained BBB ∈ RN×N . Therefore, the
attacker can formulate a matrixBBB′ that contains the features
of the benign model updates, namely, BBB′ = BBB−1FFF .

In this case, the attacker can also formulate a Laplacian
matrix based on the output of the adversarial GAE, which is
Ω̂ΩΩ = diag(ÂAA)− ÂAA. In addition, the complex unitary matrix
B̂̂B̂B is obtained by applying the singular value decomposition
to Ω̂ΩΩ. Therefore, the malicious local model update www′k that
follows the design of AAA in the adversarial GAE can be
constructed, which is

F̂FF = B̂BBBBB′, (13)

where F̂FF is the feature matrix containing all the malicious
local model updates, F̂FF = {www′1,www′2, ...,www′k}.

According to the design of the GACE attack in Figure 2,
the edge server broadcasts wwwglb in every communication
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round of federated learning. The benign node performs
the local training for the local model update wwwi. The
attacker eavesdrops on the global model wwwglb and the
local model update wwwi of the benign IoT nodes. Given
a number of federated learning iterations, the adversarial
GAE is trained to maximize the reconstruction loss with
the adjacent matrix AAA and the feature matrix FFF . At the
output of the adversarial GAE, the attacker achieves the
optimal malicious local model update, i.e., www′k. Next, www′k is
uploaded to the edge server for the next round of federated
learning training.

V. PERFORMANCE ANALYSIS

The proposed GACE attack is implemented in PyTorch.
Modified national institute of standards and technology
(MNIST) database that contains a large number of hand-
written digits are used to train federated learning at the
IoT nodes. Moreover, we compare the average training
accuracy of FL under the proposed GACE attack and a
BackdoorFL attack [25]. The attacker with BackdoorFL
creates an arbitrary local model update that contains a
malicious backdoor for poisoning the global model update.

Figure 3 shows the training accuracy of the global
model at the edge server with or without the proposed
GACE attack. Given 100 federated learning episodes, the
training accuracy of the benign global model (without the
GACE attack) gradually converges to 99.6%. Under the
GACE attack, the training accuracy convergence regarding
the global model is deviated, which drastically fluctuates
between 7.5% and 89.2%. This indicates that the GACE
attack has effectively compromised all the benign IoT nodes
and manipulated federated learning training.

Given five benign IoT nodes as an example, Figure 4
presents the training accuracy of the local model updates at
each of the IoT nodes. Due to the GACE attack, the training
accuracy of the local model updates at the IoT nodes
drops about 27.3% at maximum according to federated
learning episodes. This confirms that the malicious local
model update generated by the GACE attack successfully
contaminates the benign ones.

At the edge server, the Euclidean distance between the
local model updates and the global model can be measured
in order to detect the malicious local model update. In
this case, we set node 3 as the attacker, and the Euclidean
distance is presented in Figure 5 to validate that the GACE
attack is undetectable. As observed, the Euclidean distance
of all the five nodes randomly varies between 8×10−3 and
1 × 10−3, while the Euclidean distance of the malicious
local model update generated at node 3 hides among the
benign local model updates. Thus, it is hard for the edge
server to identify the malicious local model update. The
GACE attack achieves this because the adversarial GAE
extracts the feature correlation among the benign local
model updates.

In Table I, we compare the average training accuracy of
FL under the proposed GACE attack and the BackdoorFL
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Fig. 3: Under the GACE attack, the training accuracy of
the global model at the edge server given 100 federated
learning episodes.
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Fig. 4: Under the GACE attack, the training accuracy of the
local model updates at the IoT nodes given 100 episodes.

attack, where the number of devices, i.e., N , increases from
5 to 25. In particular, the GACE attack reduces the training
accuracy of FL for about 12% lower than BackdoorFL
since the adversarial GAE maximizes the reconstruction
loss η, thus maximizing Lloss(wwwi). Table II shows the

TABLE I: The average training accuracy under attacks

N GACE BackdoorFL
5 79.8% 92.3%
10 82.7% 94.7%
15 81.3% 93.4%
20 88.5% 99.1%
25 92.1% 99.8%
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Fig. 5: The Euclidean distance between the local model
updates and the global model under the GACE attack.



TABLE II: The average detection rate of the attack

N GACE BackdoorFL
5 0.8% 15.1%
10 0.7% 38.3%
15 0.9% 48.6%
20 1.1% 75.9%
25 1.5% 96.3%

detection rate of the GACE attack and the BackdoorFL
attack. It can be observed that GACE is hardly detected by
the edge server, compared to BackdoorFL. This is because
the malicious local model update of GACE maintains a
strong feature correlation with the benign models, while
the update of BackdoorFL is arbitrarily generated.

VI. CONCLUSION

This paper proposed a new GACE attack that progres-
sively manipulates federated learning process of some be-
nign IoT devices in an MEC-IoT system. The GACE attack
explores the adversarial GAE to generate the malicious
local model updates that hold feature correlations with the
benign models, which improves the concealment of the
malicious local model update. As a result, the benign IoT
nodes are epidemically infected along with the training
iterations in federated learning, where the training loss of
the benign IoT devices increases considerably.

ACKNOWLEDGEMENTS

This work was supported by the CISTER Research
Unit (UIDP/UIDB/04234/2020), project ADANET
(PTDC/EEICOM/3362/2021) and project IBEX
(PTDC/CCI-COM/4280/2021), financed by National
Funds through FCT/MCTES (Portuguese Foundation for
Science and Technology).

REFERENCES

[1] M. Laroui, B. Nour, H. Moungla, M. A. Cherif, H. Afifi, and
M. Guizani, “Edge and fog computing for IoT: A survey on current
research activities & future directions,” Computer Communications,
vol. 180, pp. 210–231, 2021.

[2] K. Xiong, S. Leng, C. Huang, C. Yuen, and Y. L. Guan, “Intelligent
task offloading for heterogeneous V2X communications,” IEEE
Transactions on Intelligent Transportation Systems, vol. 22, no. 4,
pp. 2226–2238, 2020.

[3] K. Li, Y. Cui, W. Li, T. Lv, X. Yuan, S. Li, W. Ni, M. Simsek, and
F. Dressler, “When internet of things meets metaverse: Convergence
of physical and cyber worlds,” IEEE Internet of Things Journal,
2022.

[4] K. Li, W. Ni, J. Zheng, E. Tovar, and M. Guizani, “Confidentiality
and timeliness of data dissemination in platoon-based vehicular
cyber-physical systems,” IEEE Network, vol. 35, no. 4, pp. 248–254,
2021.

[5] K. Li, R. C. Voicu, S. S. Kanhere, W. Ni, and E. Tovar, “Energy
efficient legitimate wireless surveillance of UAV communications,”
IEEE Transactions on Vehicular Technology, vol. 68, no. 3, pp.
2283–2293, 2019.

[6] V. Borgiani, P. Moratori, J. F. Kazienko, E. R. Tubino, and S. E.
Quincozes, “Toward a distributed approach for detection and mitiga-
tion of denial-of-service attacks within industrial internet of things,”
IEEE Internet of Things Journal, vol. 8, no. 6, pp. 4569–4578, 2020.

[7] A. Alwarafy, K. A. Al-Thelaya, M. Abdallah, J. Schneider, and
M. Hamdi, “A survey on security and privacy issues in edge-
computing-assisted internet of things,” IEEE Internet of Things
Journal, vol. 8, no. 6, pp. 4004–4022, 2020.

[8] A. Noor, K. Li, A. Ammar, A. Koubaa, B. Benjdira, and E. Tovar, “A
hybrid deep learning model for UAVs detection in day and night dual
visions,” in IEEE International Conference on Cognitive Machine
Intelligence (CogMI). IEEE, 2021, pp. 221–231.

[9] K. Li, W. Ni, and F. Dressler, “LSTM-characterized deep reinforce-
ment learning for continuous flight control and resource allocation
in UAV-assisted sensor network,” IEEE Internet of Things Journal,
vol. 9, no. 6, pp. 4179–4189, 2021.

[10] S. Makkar and L. Sharma, “A face detection using support vector
machine: Challenging issues, recent trend, solutions and proposed
framework,” in International Conference on Advances in Computing
and Data Sciences. Springer, 2019, pp. 3–12.

[11] J. Zheng, K. Li, E. Tovar, and M. Guizani, “Federated learning
for energy-balanced client selection in mobile edge computing,”
in International Wireless Communications and Mobile Computing
(IWCMC). IEEE, 2021, pp. 1942–1947.

[12] B. Ghimire and D. B. Rawat, “Recent advances on federated learning
for cybersecurity and cybersecurity for federated learning for internet
of things,” IEEE Internet of Things Journal, 2022.

[13] X. Li, Z. Qu, S. Zhao, B. Tang, Z. Lu, and Y. Liu, “Lomar: A
local defense against poisoning attack on federated learning,” IEEE
Transactions on Dependable and Secure Computing, 2021.

[14] V. Tolpegin, S. Truex, M. E. Gursoy, and L. Liu, “Data poisoning
attacks against federated learning systems,” in European Symposium
on Research in Computer Security. Springer, 2020, pp. 480–501.

[15] V. Shejwalkar, A. Houmansadr, P. Kairouz, and D. Ramage, “Back
to the drawing board: A critical evaluation of poisoning attacks on
production federated learning,” in 2022 IEEE Symposium on Security
and Privacy (SP). IEEE, 2022, pp. 1354–1371.

[16] T. D. Nguyen, P. Rieger, M. Miettinen, and A.-R. Sadeghi, “Poi-
soning attacks on federated learning-based IoT intrusion detection
system,” in Workshop Decentralized IoT System Security (DISS),
2020, pp. 1–7.

[17] X. Zhou, M. Xu, Y. Wu, and N. Zheng, “Deep model poisoning
attack on federated learning,” Future Internet, vol. 13, no. 3, p. 73,
2021.

[18] P. Manoharan, R. Walia, C. Iwendi, T. A. Ahanger, S. Suganthi,
M. Kamruzzaman, S. Bourouis, W. Alhakami, and M. Hamdi, “Svm-
based generative adverserial networks for federated learning and
edge computing attack model and outpoising,” Expert Systems, p.
e13072, 2022.

[19] Y. Sun, N. S. Chong, and H. Ochiai, “Information stealing in feder-
ated learning systems based on generative adversarial networks,” in
IEEE International Conference on Systems, Man, and Cybernetics
(SMC). IEEE, 2021, pp. 2749–2754.

[20] J. Zhang, J. Chen, D. Wu, B. Chen, and S. Yu, “Poisoning attack
in federated learning using generative adversarial nets,” in IEEE
TrustCom/BigDataSE. IEEE, 2019, pp. 374–380.

[21] Z. Zhang, X. Cao, J. Jia, and N. Z. Gong, “Fldetector: Defending
federated learning against model poisoning attacks via detecting
malicious clients,” in ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, 2022, pp. 2545–2555.

[22] A. Manna, H. Kasyap, and S. Tripathy, “Moat: Model agnostic
defense against targeted poisoning attacks in federated learning,”
in International Conference on Information and Communications
Security. Springer, 2021, pp. 38–55.

[23] J. Zheng, K. Li, N. Mhaisen, W. Ni, E. Tovar, and M. Guizani,
“Exploring deep-reinforcement-learning-assisted federated learning
for online resource allocation in privacy-preserving edgeiot,” IEEE
Internet of Things Journal, vol. 9, no. 21, pp. 21 099–21 110, 2022.

[24] K. Li, W. Ni, X. Wang, R. P. Liu, S. S. Kanhere, and S. Jha, “Energy-
efficient cooperative relaying for unmanned aerial vehicles,” IEEE
Transactions on Mobile Computing, vol. 15, no. 6, pp. 1377–1386,
2015.

[25] M. Asad, A. Moustafa, and C. Yu, “A critical evaluation of privacy
and security threats in federated learning,” Sensors, vol. 20, no. 24,
p. 7182, 2020.


