IPP HURRAY!

www.hurray.isep.ipp.pt

Technical Report

Short Paper: Experiences on the
Implementation of a Cooperative
Embedded System Framework

Claudio Maia
Luis Miguel Nogueira
Luis Miguel Pinho

HURRAY-TR-100801
Version:
Date: 08-19-2010

Technical Report HURRAY-TR-100801 Short Paper: Experiences on the Implementation of a Cooperative

Embedded System Framework

Short Paper: Experiences on the Implementation of a Cooperative Embedded
System Framework

Claudio Maia, Luis Miguel Nogueira, Luis Miguel Pinho

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. Anténio Bernardino de Almeida, 431
4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509
E-mail:

http://www.hurray.isep.ipp.pt

Abstract

As the complexity of embedded systems increases, multiple services have to compete for the limited resources of a
single device. This situation is particularly critical for small embedded devices used in consumer electronics,
telecommunication, industrial automation, or automotive systems. In fact, in order to satisfy a set of constraints related
to weight, space, and energy consumption, these systems are typically built using microprocessors with lower
processing power and limited resources.

The CooperatES framework has recently been proposed to tackle these challenges, allowing resource constrained
devices to collectively execute services with their neighbours in order to fulfil the complex Quality of Service (QoS)
constraints imposed by users and applications. In order to demonstrate the framework's concepts, a prototype is being
implemented in the Android platform. This paper discusses key challenges that must be addressed and possible
directions to incorporate the desired real-time behaviour in Android.

© IPP Hurray! Research Group 1
www.hurray.isep.ipp.pt

Short Paper: Experiences on the Implementation of a
Cooperative Embedded System Framework

Claudio Maia
CISTER Research Centre
School of Engineering of the
Polytechnic Institute of Porto
Porto, Portugal

crrm@isep.ipp.pt

ABSTRACT

As the complexity of embedded systems increases, multiple
services have to compete for the limited resources of a sin-
gle device. This situation is particularly critical for small
embedded devices used in consumer electronics, telecommu-
nication, industrial automation, or automotive systems. In
fact, in order to satisfy a set of constraints related to weight,
space, and energy consumption, these systems are typically
built using microprocessors with lower processing power and
limited resources.

The CooperatES framework has recently been proposed
to tackle these challenges, allowing resource constrained de-
vices to collectively execute services with their neighbours
in order to fulfil the complex Quality of Service (QoS) con-
straints imposed by users and applications. In order to
demonstrate the framework’s concepts, a prototype is be-
ing implemented in the Android platform. This paper dis-
cusses key challenges that must be addressed and possible
directions to incorporate the desired real-time behaviour in
Android.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Program-
ming — Distributed programming; D.2.11 [Software En-
gineering]: Software architectures; J.7 [Computers in
Other Systems]: Real-Time

Keywords

Distributed Real-Time Embedded Systems, Cooperative Com-

puting, Android

1. INTRODUCTION

During the past years the embedded device industry has
faced a huge growth and the tendency is to grow even more
in the next years [10]. Following this tendency, new applica-
tions, functionalities and more diverse devices are becoming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

JTRES’10 August 19-21, 2010 Prague, Czech Republic

Copyright 2010 ACM 978-1-4503-0122-0/10/08 ...$10.00.

Luis Nogueira
CISTER Research Centre
School of Engineering of the
Polytechnic Institute of Porto
Porto, Portugal

Imn@isep.ipp.pt

70

Luis Miguel Pinho
CISTER Research Centre
School of Engineering of the
Polytechnic Institute of Porto
Porto, Portugal

Imp@isep.ipp.pt

available to the general audience in a fast pace, therefore
bringing new technological and scientific challenges.

One of these challenges is how to efficiently execute com-
plex applications in these new embedded systems while meet-
ing non-functional requirements, such as timeliness, robust-
ness, dependability, performance, etc. In this context, a co-
operative QoS-aware execution of resource intensive services
among neighbour nodes seems a promising solution to ad-
dress these increasingly complex demands on resources and
desirable performance. The CooperatES (Cooperative Em-
bedded Systems) framework [8] facilitates the cooperation
among neighbours when a particular set of QoS constraints
cannot be satisfyingly answered by a single node. Nodes dy-
namically group themselves into a new coalition, allocating
resources to each new service and establishing an initial Ser-
vice Level Agreement (SLA). The proposed SLA maximises
the satisfaction of the QoS constraints associated with the
new service and minimises the impact on the global QoS
caused by the new service’s arrival.

This paper builds on our previous work [7] and presents
the motivation and the key challenges concerning the im-
plementation of the CooperatES framework in the Android
mobile platform [1]. The paper allows one to better under-
stand the current limitations of the Android platform and
identify possible directions for a better support of a cooper-
ative QoS-aware execution of resource intensive applications
in Android.

The remainder of this paper is organised as follows: Sec-
tion II briefly presents the CooperatES framework. Sec-
tion III points out the key challenges and focus in one of
the possible extensions to incorporate real-time behaviour
in Android. Finally, Section IV concludes the paper.

2. THE COOPERATES FRAMEWORK

Many embedded real-time systems evolved to open and
dynamic environments where the characteristics of the com-
putational load cannot be predicted in advance and resource
needs are usually data dependent and may vary over time,
as tasks enter and leave the system. Nevertheless, response
to events still has to be provided within precise timing con-
straints in order to guarantee a desired level of performance.

In this context, a cooperative QoS-aware execution among
neighbour nodes seems a promising solution. The goal of the
CooperatES framework [8] is to satisfy multiple QoS dimen-
sions imposed by users and applicatons by forming tempo-
rary coalitions of heterogeneous nodes whenever a particu-
lar set of QoS constraints cannot be satisfyingly answered

by a single node. Nodes may either cooperate because they
cannot deal alone with the resource allocation demands im-
posed by users’ QoS constraints or because they can reduce
the associated cost of execution by working together.

Resource reservation is the basis for supporting QoS mech-
anisms. It is not possible to provide stable QoS characteris-
tics to an application without some guarantees on the avail-
able amount of resources. While individual resource man-
agement is an important factor for an efficient QoS manage-
ment, we believe that it is not sufficient for the ultimate end-
users who experience the resulting QoS. In order to achieve
the users’ acceptance requirements and to satisfy the im-
posed constraints, the framework enables a QoS-aware re-
source management scheme that supports QoS negotiation,
admission, and reservation mechanisms in an integrated and
accessible way.

However, the CooperatES framework differs from other
QoS-aware frameworks by considering, due to the increas-
ing size and complexity of distributed embedded real-time
systems, the needed trade-off between the level of optimi-
sation and the usefulness of an optimal runtime system’s
adaptation behaviour. Nodes start by negotiating partial,
acceptable service proposals that are latter refined if time
permits, in contrast to a traditional QoS optimisation ap-
proach that either runs to completion or is not able to pro-
vide a useful solution. Thanks to the anytime nature of the
proposed approach, it is possible to interrupt the optimisa-
tion process at any point in its execution and still be able to
obtain a service solution and a measure of its quality, which
is expected to improve as the run time of the algorithms
increases.

Taking into consideration works made in the past such as
[9, 4], either concerning the Linux kernel or Virtual Machine
(VM) environments, there is the possibility of introducing
temporal guarantees allied with QoS guarantees in each of
the aforementioned layers, or even in both, in a way that a
possible integration may be achieved, fulfilling the temporal
constraints imposed by the applications.

In order to verify the feasibility of the framework’s con-
cepts, namely the cooperative execution allied with real-time
characteristics as means to satisfy the QoS constraints im-
posed by applications, it was decided by the project’s team
to explore the capabilities of the Android platform. Among
the positive features, one may find: (i) its software licence;
(ii) the target devices in which Android can be run, i.e. mo-
bile devices and devices based on x86 architecture [2], use-
ful to prove the heterogeneous capabilities of the proposed
framework; (iii) its Linux-based architecture; and finally,
(iv) its VM environment. Also, the work described in [6]
shows that the implementation of a resource management
framework is possible in Android.

3. EXTENDING ANDROID FOR REAL-TIME

EMBEDDED SYSTEMS

The Android’s architecture is composed by five layers:
Applications, Application Framework, Libraries, Android
Runtime and finally the Linux kernel.

For the purpose of this paper it is just considered the inter-
action between the two bottommost layers - Android Run-
time and the Linux Kernel. Regarding the Android Run-
time, Android provides its own VM named Dalvik. Dalvik
[3] was designed from scratch and it is specifically targeted

71

for memory-constrained and CPU-constrained devices. It
runs Java applications on top of it and unlike the stan-
dard Java VMs, which are stack-based, Dalvik is an infi-
nite register-based machine. Dalvik uses its own byte-code
format name Dalvik Executable (.dezx), with the ability to
perform several optimisations during dex generation when
concerning the internal storage of types and constants by
using principles such as minimal repetition; per-type pools;
and implicit labelling.

In [7], we have discussed the suitability of Android for
open embedded real-time systems, analysed its architecture
internals, pointed out its current limitations, and proposed
four possible directions to incorporate real-time behaviour
into the Android platform, namely:

e Inclusion of a real-time VM, besides Dalvik, along with
the inclusion of a real-time Operating System (OS);

e Extension of Dalvik with real-time features based on
the Real-Time Specification for Java [5], as well as the
inclusion of a real-time OS;

e Inclusion of a real-time OS in order to allow only native
applications to have the desired real-time behaviour;

e Inclusion of a real-time hypervisor that parallelises the
execution of Android and real-time applications. Both
run as guests over the hypervisor which is responsible
for handling the scheduling and memory management
operations.

This paper focus the discussion on the first two direc-
tions. The first possible direction, depicted in Figure 1, re-
places the standard Linux kernel with a real-time OS and
includes a real-time Java VM together with Dalvik. It is
then possible to have bounded memory management, real-
time scheduling within the VM, and better synchronisation
mechanisms. The real-time VM interacts directly with the
OS’s kernel, meaning that most of the operations provided
by the real-time Java VM are limited to the integration be-
tween the VM’s supported features and the supported OS’s
features.

Applications

Application Framework
Libraries

Android Runtime

Core Libraries

Dalvik VM RT-JVM

Linux Real-Time

Figure 1: Android full Real-Time

The second possible direction, presented in Figure 2, intro-
duces modifications both in the OS and VM environments.
The major difference between this direction and the previous

one lies on the extension of Dalvik with real-time capabili-
ties based on the Real-Time Specification for Java (RTSJ)
[5].

By extending Dalvik with RTSJ features we are refer-
ring to the addition of the following API classes: Real-
TimeThread, NoHeapRealTimeThread, as well as the imple-
mentation of generic objects related to real-time scheduling
and memory management, such as Scheduler and Memor-
yAreas. All of these objects will enable the implementation
of real-time garbage collection algorithms, synchronisation
algorithms and finally, asynchronous event handling algo-
rithms.

Applications

Application Framework

Libraries Android Runtime
Dalvik VM
Core Libraries With RT
Extensions

Linux Real-Time

Figure 2: Android Extended

The acquired experiences with the directions proposed in
[7] allows us to conclude that the first direction is the one
that causes less impact in the system as a whole. It al-
lows the possibility of having Dalvik VM serving the needs
of any native Android application, while at the same time,
the real-time VM can handle the specific requests made
by any real-time application. Nevertheless, while the in-
clusion of this second VM brings the desired real-time be-
haviour to the Android platform, it also brings important
challenges that should be considered. One may think of how
the scheduling operations between both VMs are mapped
into the OS, how the memory management operations will
be managed in order to take advantage from the system’s
resources, and finally, how to handle thread synchronisation
and asynchronous events in this dual VM environment.

Regarding scheduling, it must be assured by the OS that
all the real-time tasks have higher priority than the normal
Android tasks. This can be achieved by having a mechanism
that maps each of the real-time tasks to a higher priority OS
task. Then, the OS scheduler is responsible for assuring that
these tasks are dispatched earlier than the remaining tasks.
Thus, at a lower end limit a simple mapping mechanism
must exist to perform this operation.

As for the memory management, one possible solution to
consider would be to have a memory management abstrac-
tion layer that handles all the memory operations requested
by both VMs, i.e. allocation and deallocation through the
use of a smart garbage collector. The main benefit from this
layer would come from the fact that it would be possible to
have a single heap where all the objects would be managed
and thus, the system’s resources to deal with the dual VM
environment would be optimised. The disadvantage lies in

72

the way that Dalvik performs. Each Android application
runs on its own Linux process with its own VM and garbage
collector instances. Also, there is a part of the heap that is
shared among all the processes. This modus operandi entails
the need to, at least, integrate Dalvik with the abstraction
layer and at the same time to modify its behaviour related
to the per-process garbage collector instances.

Regarding thread synchronisation, as long as the real-time
threads do not have the need to communicate with Dalvik
threads, it is assured that this will not pose any kind of
problems. However, if this communication is desired, a pro-
tection mechanism must be implemented in order to assure
that a real-time thread will not block on a Dalvik thread
and that priority inversion does not happen.

In terms of asynchronous events, a mapping mechanism
must be sufficient to assure that the task that is waiting for
the event will receive it in a bounded time interval. This
mechanism must be implemented at the OS level in order to
forward the events to the correct VM. Both VMs just need
to implement the handlers for the events.

4. CONCLUSION

Android was chosen as a testbed for demonstrating the
feasibility of the CooperatES framework, a QoS-aware frame-
work that addresses the increasing demands on resources
and performance by allowing services to be executed by tem-
porary coalitions of nodes.

Android was designed to serve the mobile industry pur-
poses which clearly has an impact on the way that the plat-
form behaves. However, with some effort, as discussed in
this paper, it is possible to incorporate the desired real-time
behaviour and resource reservation mechanisms in an in-
tegrated and accessible way. These capabilities may suit
specific applications by providing them the ability of taking
advantage of temporal and resource guarantees, and there-
fore, to behave in a more predictable manner.

Acknowledgements
This work was supported by FCT through projects CooperatES

(PTDC/ EIA/ 71624/ 2006) and RESCUE (PTDC/EIA/65862,/2006),

and by the European Commission through the ArtistDesign NoE
(IST-FP7-214373).

S. REFERENCES

1] Android. Home page, Jan. 2010.
2] Android-x86. Android-x86 project, Jan. 2010.
| D. Bornstein. Dalvik vm internals, Mar. 2010.
] A. Corsaro. jrate home page, Mar. 2010.
| R.-T. S. for Java. Rtsj 1.0.2, Jan. 2010.
| R. Guerra, S. Schorr, and G. Fohler. Adaptive resource
management for mobile terminals - the actors approach. In
Proceedings of 1st Workshop on Adaptive Resource
Management (WARM10), Stockholm, Sweden, April 2010.
C. Maia, L. Nogueira, and L. M. Pinho. Evaluating android
os for embedded real-time systems. In Proceedings of the
6th International Workshop on Operating Systems
Platforms for Embedded Real-Time Applications, Brussels,
Belgium, July 2010.
L. Nogueira and L. M. Pinho. Time-bounded distributed
qos-aware service configuration in heterogeneous
cooperative environments. Journal of Parallel and
Distributed Computing, 69(6):491-507, June 2009.

[9] RTMACH. Linux/rk, Mar. 2010.
[10] M. Stanley. The mobile internet report, Jan. 2010.

~

5
6

SO E =

[7]

(8]

