pd

CISTER

Research Centre in

Computing Systems

Conference Paper

Emulation-in-the-loop for simulation and
testing of real-time critical CPS

Renato Oliveira*
Manuel Meireles
Claudio Maia*

Luis Miguel Pinho*

*CISTER Research Centre
CISTER-TR-180501

2018/05/15

Conference Paper CISTER-TR-180501 Emulation-in-the-loop for simulation and testing of ...

Emulation-in-the-loop for simulation and testing of real-time critical CPS

Renato Oliveira*, Manuel Meireles, Claudio Maia*, Luis Miguel Pinho*

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. Ant6nio Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: prmol@isep.ipp.pt, mjcdm@isep.ipp.pt, clrrm@isep.ipp.pt, Imp@isep.ipp.pt
http://www.cister.isep.ipp.pt

Abstract

Complex cyber-physical systems are more and more a set of components working tightly coupled, with little or no
human intervention. Assessing the correctness of these systems by testing components individually, one-by-one, is
obviously not sufficient, being required to also test and validate the overall system. KhronoSim is a modular and
extensible platform for testing cyber-physical systems in closed-loop, which enables the integration of simulation
models and platform emulators to build a closed loop test environment. This paper presents the emulator module
of KhronoSim, developed to integrate the well-known QEMU emulator in the closed-loop testing platform.

© CISTER Research Center 1
www.cister.isep.ipp.pt

Emulation-in-the-loop for simulation and testing of
real-time critical CPS

Paulo Renato Oliveira, Manuel Meireles,
Claudio Maia, Luis Miguel Pinho

CISTER Research Centre
School of Engineering of the Polytechnic Institute of Porto
Porto, Portugal

Abstract— Complex cyber-physical systems are more and
more a set of components working tightly coupled, with little or
no human intervention. Assessing the correctness of these
systems by testing components individually, one-by-one, is
obviously not sufficient, being required to also test and validate
the overall system. KhronoSim is a modular and extensible
platform for testing cyber-physical systems in closed-loop, which
enables the integration of simulation models and platform
emulators to build a closed loop test environment. This paper
presents the emulator module of KhronoSim, developed to
integrate the well-known QEMU emulator in the closed-loop
testing platform.

Keywords—CPS; Emulation; Testing

1. INTRODUCTION

Complex systems and systems of systems are an integrated
set of components and sub-systems, tightly interacting
together to achieve a specific goal. While guaranteeing that
individual sub-systems behave according to their
specifications is a (relatively) “simple” task, the magnitude of
the validation largely increases when it comes to providing
guarantees on the correct integrated behaviour. As a matter of
fact, all the possible interactions between the sub-systems
must be properly tested in order to capture all the system
properties. In addition, testing a system in its actual
environment of operation can be overly expensive and/or too
slow, in particular when considering Cyber-Physical Systems
(CPS), which are known by their interaction with specific
physical environments.

The use of model and platform simulators is spreading
around and growing in importance to address the
aforementioned issues. Simulators allow for an increase in the
productivity of software development, enabling three key
features:

1. simultaneous development of software and hardware;
2. testing software before actual hardware exists; and

3. providing an environment for software testing,
without requiring actual hardware-in-the-loop.

Gongalo Gouveia, Jodo Esteves

Critical Software
Coimbra, Portugal

As it can be inferred from the third feature, an abstracted
model of the underlying hardware platform is key for the
software development. This is usually done by creating a
software version of the target platform that (completely)
mimics its behavior, i.e., an emulator.

In this context, KhronoSim [1] is a modular and extensible
system for simulation and test of complex systems that enables
the integration of simulation models and platform emulators in
a closed-loop test environment consisting of physical and
virtual systems. The main objectives of KhronoSim are:

e to make it possible to simulate complex systems in real-
time by including either the whole or part of the system
under test, including the simulation of the environment and
other interacting systems;

e to allow for a distributed testing architecture, supporting
real-time stimuli from a scalable number of inputs,
distributed over several systems;

e to make it possible to emulate the hardware platform upon
which the system will execute, specifically by assuming
that it is a multicore embedded platform.

This latter objective is also of paramount importance, as
one of the goals of KhronoSim is to be able to test multicore
hardware platforms, in several system configurations and thus
providing a better understanding of the design choices. This
will accelerate the certification and the development process
in the aerospace industry (e.g., for real-time operating systems
(RTOS), mixed-criticality systems (MCS), etc.) and it will
provide a further insight into the latest developed methods and
techniques to solve key challenges, which are inherent to
multiprocessor systems and continue to raise concerns to
certification authorities [2] [3] (e.g., the application-to-core
mapping, temporal and spatial protection mechanisms, etc.).

In order to support hardware emulation in the loop, a
specific module was developed to integrate the well-known
QEMU emulator in KhronoSim. This paper discusses the
different emulator choices considered and describes the main
architectural features of the developed module as well as the
addition of the capability to control the speed of emulation.

Application SW

Application SW

Host Platform

Figure 1 — Hardware Emulation

The paper is structured as follows. Section II briefly
discusses the features and advantages of hardware emulation,
whilst section III reviews the emulation options considered in
KhronoSim. Afterwards, Section IV provides the architecture
and features of the emulator module. Finally, Section V
concludes the paper.

II. EMULATION

Emulation ! is the process of having both the interface and
the functionality of a system (the Guest) implemented on top
of another system (the Host) with a different interface and
functionality [4]. It thus follows that an emulator is a piece of
software that executes an application or a set of applications
that were initially built for a different computer architecture
than the host platform upon which they are executing [5]
(Figure 1).

Broadly speaking, we can classify emulators in two
distinct categories, depending on the level of details required
during their implementation: (1) instruction set emulators; and
(2) functional emulators.

In the first category, the emulator behaves identically as
the emulated platform (also known as target platform), on an
instruction level. These emulators are predominantly time-
driven and cycle-accurate, with the interpretation that each
clock cycle of the target platform has to be faithfully
simulated. This approach requires that the application source
code (and Operating System) are cross-compiled to the target
machine code and then interpreted by the emulator.

The advantage of this approach is that the performed
execution will match the execution on the target . In addition,
the timing properties of the execution will also be maintained
at the cycle level, an important issue in the domain of real-
time systems, where it is mandatory to provide guarantees for
a correct timing behaviour of the system. The disadvantage of
this kind of emulators is that they are exposed to a
performance penalty: as the hardware becomes more complex,
maintaining a reasonable ratio between the simulated time and
the actual time becomes increasingly expensive. From these
drawbacks, it follows that this type of simulators is inherently
expensive and very difficult to develop.

In the second category, the emulator imitates the behaviour
of the target platform only at a functional level without trying

! In this paper we do not discuss the differences between emulation
and simulation. Since the hardware platform internals are being
abstracted away we consider only the use of emulation.

to exactly match the system behaviour, by exposing only the
same interface. These emulators are mostly event-driven, with
the interpretation that, at times, they can work with the
granularity significantly larger than the target platform cycle.
One sub-category of these is called host-compiled emulators,
where functions, execution blocks and sets of instructions of
the target platform, are converted into the corresponding
entities of the host. The advantage is that they are faster than
instruction set emulators, and they are easier to deploy.
However, an important disadvantage is that the timing
properties are not faithfully replicated, as execution is
performed on the native platform in its own environment,
which may be significantly different from the corresponding
environment of the actual target platform. This means that
functions can take arbitrarily different execution time.

Using a host compiled system means that the application
source code and Operating System are compiled using the
native host compiler, as opposed to a cross-compiler in the
former approach. Since it uses a native compiler, the resulting
executable does not need to be interpreted and therefore it can
reach much higher levels of performance. The downside is the
inaccuracy in the number of clock cycles required since the
assembly code generated by the host compiler does not match
with the code in the actual platform. This situation represents a
huge hurdle for system designers when it comes to provide
timing guarantees for the system as it renders their work of
providing guarantees for a correct timing behaviour during
execution very difficult, if not impossible.

A. Instruction set emulation techniques

Instruction set emulation is the process of converting the
binary data written for a given instruction set to a host
processor with a different instruction set. This conversion is
usually done by taking the original binary instruction and
translating it into one or more equivalent instructions for
execution on the host processor. As a 1:1 instruction
conversion rate is usually difficult, if not impossible to
achieve, the emulator's equivalent to the original program is
often much larger. The lower the overheads of the conversion,
the faster the emulated software will execute. There are
various techniques for the emulation of classical instruction
sets and we focus on two of the most popular ones, namely
interpretation and binary translation:

e Interpretation. This method is the easiest to implement, but
also the slowest in terms of execution time. Here, the
binary data is read and each instruction is decoded,
translated and executed. It is required from the interpreter
to step through each instruction of the source program, to

read it and modify the state of the program accordingly.
Then, it is required from the interpretation routine to
emulate this instruction on the target instruction set, before
the next instruction is fetched.

e Binary translation. This emulation method (also called
recompilation), involves a directly binary conversion from
the binary data for the emulated instruction set into binary
data suitable for execution on the host instruction set.
Blocks of source instructions are converted into
instructions that are equivalent in terms of functionality.
From this viewpoint, this method provides a significant
performance boost. Recompilation typically comes in two
variants: (1) dynamic recompilation — In this variant, the
binary data is translated only on the first pass and is kept in
a cache where the translated binary equivalent is stored
and referenced whenever that section is executed again;
and the (2) static recompilation — In this variant, the binary
data is translated once in a single pass over the code. The
code to be emulated can be scanned and the translation can
be optimized by applying various algorithms. The
translated data is then usually saved either in a file or
memory, where it is referenced by the program upon
execution. While this can sometimes improve performance
even over dynamic recompilation, if the code is self-
modifying, this method usually fails to properly translate
the executable, thus forcing a fall back to a dynamic
recompiler or an interpreter to handle the modified code.

In summary, interpretation has a nearly zero start-up
overheads but suffers from a slower emulation of the
instructions themselves. In the other hand, binary translation
suffers instead from a slow start-up due to the need of
interpreting and translating the operations. However, once
these operations are translated, their repeated execution
becomes much faster.

III. EMULATION TOOLS

In this section we provide a non-exhaustive analysis of the
emulator tools which were considered for the KhronoSim
platform. Since one of the main targets of emulation is the
LEON platform (for space applications), a sub-section is
dedicated to existent emulators for this processor. Higher
details are provided for QEMU, which was selected for the
platform due to its support to a multitude of devices, stability,
community support, and throttle support.

A. EMULS

Emul8 [6] is a recent Instruction Set Simulator developed
in C#. Currently, the following architectures are supported:
ARM Cortex-A and Cortex-M, SPARC, PowerPC and an
experimental version of x86. Emul8 also supports several
peripherals such as USB, I2C, SPI, etc. including those that
connect directly to the system bus. It can be installed under
Mac OS and Linux (using Mono 4.6 or newer). Concerning its
license, Emul8 is released under the MIT license.

B. GEM5

Gem5 [7] is a simulator that can be used for computer
architecture research, both for system level architecture as

well as microprocessor architecture. Gem5 provides
interpretation based-CPU models, for instance in-order and
out-of-order CPUs, and an event-driven memory system that
includes caches, crossbars and a DRAM controller model.
Currently, it supports the following architectures: Alpha,
ARM, SPARC, MIPS, POWER, RISC-V and x86 and it
executes on top of Mac OS X, Linux, etc. gemS5 is released
under a BSD-style open source license.

C. BOCHS

Bochs [8] is an open-source emulator for the x86
architectures, which is written in C++ and licensed under the
lesser GNU Public License (GPL). With this emulator, an
entire PC platform, including an Intel x86 CPU and several
input/output devices such as memory, display, hard disks,
network, among others can be emulated. The x86 CPUs that
can be emulated notably includes: 386, 486, Pentium and x86-
64 (with some Intel and AMD extensions supported as well).
Bochs can execute a variety of x86 operating systems, such as:
Windows 95/98/NT/2000/XP and Vista, Linux and BSD.

Bochs can be compiled to support SMP (Symmetric
multiprocessing) so that it emulates multiprocessors with up to
254 processor threads. However, this feature is still
experimental and Bochs does not use threading and
consequently executes sequentially even when the host is a
multiprocessor hardware. This emulator does not support
dynamic translation nor virtualization. Instead, each x86/x86-
64 instruction is directly interpreted. During the execution
phase, Bochs adopts a lazy approach to update the registers
and flags, that is, registers and flags are updated only when it
is necessary to do so [9].

D. Emulation Tools for LEON

LEON is a synthesizable VHDL (VHSIC Hardware
Description Language) model of 32-bit microprocessors
compliant with SPARC V8 RISC (Reduced Instruction Set
Computer) architectures, developed by Cobham Gaisler.
Currently, LEON is at its fourth version - LEON4. In
comparison to the previous versions, this version 4 supports a
number of features among the following are noticeable: a 7-
stage pipeline with branch prediction and 64-bit internal
load/store data paths; optional L2 cache support; AMBA
(Advanced Microcontroller Bus Architecture) interface of
either 64/128-bits; and SMP support (this feature was already
available in LEON3) [10] [11].

1) GRSIM

GRSIM [12] is an event-driven tool developed by Cobham
Gaisler, which simulates devices based on the AMBA bus.
This tool is suitable for simulating LEON3 and LEON4
systems with multiprocessor configurations and can be used as
a standalone application or as a thread-safe library to be
integrated into a larger simulating framework. The advantage
of this tool is that it fully supports read and write accesses to
all LEON registers and memory. Also, it offers a debugger
and disassembler. Currently it executes on top of Linux or
Windows. Regarding its license policy, GRSIM requires a
HASP USB hardware key with proper device drivers installed.

QemulnstancesManager QMPClient Request
: : P-sends 0.° 0. ®buids 1
-gemulnstances : Map Ab-sltj:ﬂm senas <<Interface>>
-QemulnstancesManager() i JSONParsar
etinsta . Qemulnstances 8 +OMPClientiip : string, port @ int) Reply - -
startQl{options : string) : Id +sendcmd : string) : Reply P receives 0.7 0. buiids
+prepareQ|{options : stiing) : Id 1
+axecuteQI(id : 1d) ; int ‘ A communicates through
+continueQl(id : int) :int 1
+suspendQlid ¢ Id) : int Qemulnstance
+shutdownQI(id : Id).: int - id : Id 1 known by 1 id
istQls() : List 1 Pmanages 0. |oomm : QMPGHent
+axecuteCMD(id ;. Id, cmd | string) : Reply +Qemulnstance(options | sting)
+axecuteCMDs(cmds | Map) | Map sstart(} : int
+shutdown(} - int +execute(cmd : string) : Reply
+loadConfigurationFile(file : string) : int
-trapCMDs{cmd . string) : int Longer
-file.: string 1 logs 1.° c:maﬁw
1 P uses 1 |[-Logger() ogEntryType
getinstancel) - Logger
+setOutputFile(file : string) : int
+writejcontent ! string, type : LogEntry Type) ¢ int

Figure 2 — KhronoSim QEMU Module

2) T-EMU

The Terma Emulator, in short T-EMU [13], is a tool
provided by TERMA for the emulation of microprocessors,
including multicores, based on the LLVM framework.
Currently, it supports the SPARC V8 processors namely,
ERC32, LEON2, LEON3 and LEON4. T-EMU can also
emulate a full system by adding memory and peripheral
emulation to processor emulation. Devices are written as
plugins that can be connected together in order to be possible
to emulate a certain system using a specific configuration.
Several device models and bus models (e.g., AMBA, CAN,
etc.) are supported. T-EMU can only be installed on Linux
machines and in order to use it a license key is needed.

3) Spacecraft Multicore Emulator
The Spacecraft Multicore Emulator [14] is based on Leon
3 Sparc V8 RISC architecture for spacecraft operational
simulation. It uses direct interpretation to emulate the
functionality of the On-board Software of a spacecraft. It is
still a work-in-progress.

E. QEMU

QEMU [15] (Quick Emulator) is a processor emulator with
two operating modes: namely full system emulation and user
mode emulation. It can be installed on Windows, Linux and
Mac OS X and can emulate several architectures (e.g. x86/x86
64, PowerPC, Sparc, ARM, etc). QEMU is released open-
source under the GNU General Public License, version 2.
Under the full system emulation, it is possible to emulate a full
guest machine with a set of devices such as configurable
CPUs, video card, memory, hard disk, etc. Here, every device
is emulated and complete isolation from the host is achieved.
In user mode emulation, QEMU can execute processes
compiled for a specific CPU on a different CPU, translating
system calls during runtime. The limitation of this mode is that
not all system calls are supported and some system calls may

not even be implemented in the target machine. QEMU uses a
dynamic binary translation to native code with support for
self-modifying code. The Tiny Code Generator (TCG) is
responsible for the transformation of source instructions to an
intermediate representation which is then transformed to target
instructions.

Currently, QEMU supports SMP architectures with up to
255 CPUs depending on the guest/host architecture. In full
system emulation mode, only a single thread is used by the
host (usually in a round-robin fashion) even though the guest
CPUs are emulated in parallel. With the increase of interest in
multicore platforms, several efforts are currently being made
to take advantage of these platforms and to map what is
executing in multiple guest cores into multiple host threads.
Several authors have already developed proof of concept
implementations for multicore processors. Few examples
include: HQEMU [16] implements a dynamic binary
translation (DBT) mechanism; PQEMU [17] presents a similar
approach to HQEMU where not only a parallelized DBT
engine is tried, but advantage is also taken from the parallel
code execution; Last but not least, COREMU [18] emulates
multicore processors by creating separate instances of DBT
per core with a library layer responsible for handling inter-
core communication, device communication and
synchronization. The multiprocessor support provided by
QEMU is still in a work-in-progress state as several issues,
such as atomicity and memory consistency still need to be
addressed [19].

IV. KHRONOSIM QEMU MODULE

As discussed in the introduction, the goal of this work is to
enable the integration of a hardware emulator in the closed-
loop testing environment of the KhronoSim platform (the
integration of the different components is out of scope of this

paper.). For this purpose, a specific module (KqgM -
KhronoSim QEMU Module) was implemented which allows
to create and control QEMU instances from the KhronoSim
platform.

QEMU contains a QEMU Machine Protocol (QMP) that
allows one to interact with QEMU instances using predefined
commands. The KgM monitor natively implements this
system and uses TCP sockets to communicate with each
instance, by setting a TCP server on each instance and then
sending QMP commands to interact, using JSON format. This
approach allows for a simpler and suitable way to interact with
QEMU. Moreover, it allows one to add new commands to the
QEMU system, such as the throttle command which is
discussed later in this section.

The KgM module (depicted in Figure 2) allows one to
dynamically create and interact with several QEMU instances.
The QemulnstanceManager is the entry point — each client
must create an instance of this class (a singleton) in order to
use the functionality of KqM. A private map structure holds
all the active QEMU instances started by the manager. The
following features are already implemented:

e startQI — This method creates a new Qemulnstance object
according to the given options passed as a string. On
success, the method adds the new instance to the map and
returns a Qemu instance identifier (ID), an internal
identifier that univocally identifies the new instance. Upon
invocation this method calls prepareQI() and executeQI().

e prepareQl — Prepares the new QEMU instance for
execution and adds it to the map of available instances.
From this state, a QEMU instance can be executed to start
the guest machine. As input it accepts a string with the
guest boot options.

e executeQI - Starts a previously prepared QEMU instance
with the given ID.

e continueQI - Continues execution of a suspended QEMU
instance. Takes the instance identifier as parameter.

e suspendQI - Suspends the execution of a QEMU instance.
The machine can then be considered paused. Takes the
instance identifier as parameter.

e shutdownQI — Shuts down a QEMU instance. Takes the
instance identifier as parameter.

e listQIs — Lists all the QEMU instances in the system.

e executeCMD/executeCMDs — Executes one or a set of
commands in a instance. Receives as arguments the
instance ID and the command(s) to execute.

e shutdown() — Shuts down the QEMU instances manager.

e loadConfigurationFile — Loads the configurations of a
given configuration file provided in the argument.

e trapShutdownCMD - Private method to check if a given
command breaks the behavior of KqM. E.g. when a
shutdown command is passed as input in executeCMD and
it is not trapped, then a given QEMU instance would be
terminated without the module knowing it.

The Qemulnstance class serves as a bridge between the
QemulnstanceManager and the QEMU instance itself. It
encloses the private communication client (QMPClient) that
interacts with the QEMU instance via sockets using the QMP
protocol. Figure 3 shows a simplified code for this
communication.

string QMPClient::send(string cmd) {

if (this—->isConnected == false) {
connect_to_server();

}

if(this->isConnected == true) {
Json_Parser parser;
string parsed_cmd = parser.parse (cmd);
write (this->socket_fd, parsed_cmd.c_str(),

parsed_cmd.size());

read_reply();
return parsed_cmd;

}

return NULL_REPLY;

}

string QMPClient::read_reply () {
string reply;
reply.resize (BUFFER_SIZE) ;
read(this->socket_£fd, &reply([0], reply.size()-1);
return reply;

}

void QMPClient::connect_to_server () {
int socket_fd = socket (AF_INET, SOCK_STREAM, 0) ;
if (socket_fd <0)
{ /* Error treatment */ }
struct sockaddr_in addr;
addr.sin_family = AF_INET;
const char * addr_const_char =
this->ip_address.c_str();

in_addr_t in_addr = inet_addr (addr_const_char);
if (INADDR_NONE == in_addr)

{ /* Error treatment */ }
addr.sin_addr.s_addr = in_addr;
addr.sin_port = htons(this->port);

if (connect (socket_fd, (struct sockaddr *) &addr,
sizeof (addr))<0)
{ /* Error treatment */ }
else
{
this->socket_fd = socket_fd;
this->isConnected = true;

Figure 3 — Interfacing with QEMU

A. Throttle control

An important feature to support in order to be able to
integrate the emulator in the KhronoSim platform is the ability
to control and align the time base of the emulator with the
overall timebase of the other modules (e.g., the control
simulation provided by external components). Although this
can be done by suspending/resuming the instance, a better
interface is provided by accessing the QEMU throttle control
(mostly used during VM migrations during heavy /O
operations).

The throttling of the CPU functionality achieves a
reduction in instruction execution speed via non-blocking

micro sleeps which result in executing less virtual machine
related instructions per host clock cycle. This functionality is
accessed by setting the desired throttle percentage, using the
cpu_throttle_set function of QEMU (Figure 4).

void cpu_throttle_set (int new_throttle_pct)
{
/* Ensure throttle percentage is
within valid range */
new_throttle_pct =
MIN (new_throttle_pct, CPU_THROTTLE_PCT_MAX);
new_throttle_pct =
MAX (new_throttle_pct, CPU_THROTTLE_PCT_MIN);
atomic_set (&throttle_percentage,
new_throttle_pct);
timer_mod (throttle_timer,
gemu_clock_get_ns (QEMU_CLOCK_VIRTUAL_RT)

CPU_THROTTLE_TIMESLICE_NS) ;

Figure 4 — Throttle control

For this purpose, QEMU is changed to expose this
function to external commands. This is done by adding a new
throttle_cpu command and the respective hmp_throttle_cpu
function (Figure 5) in QEMU.

STEXI
@item throttle_cpu
@findex throttle_cpu

ETEXI
{
.name = "t_cpulthrottle_cpu",
.args_type = "index:i",
.params = "index",
.help = "throttles the cpu to given pct",
.cmd = hmp_throttle_cpu,
}!
STEXI

void hmp_throttle_cpu (Monitor *mon,
const QDict *gdict)
{
//get percentage value
int pct = gdict_get_int (gdict, "index");
cpu_throttle_set (pct) ;
monitor_printf (mon,
"CPU executing at %d%% speed.\n",100-pct);

Figure 5 — Exposing the throttle control

V. CONCLUSIONS

This paper discusses the challenge of testing and validation
of complex CPS, and the use of hardware emulation in the
testing loop. To address this challenge the paper presents an
overview of the KhronoSim QEMU Module, which was
developed to enable the integration of hardware emulation in a
closed loop in the KhronoSim platform, used to test and
validate critical real-time CPS. This module enables
KhronoSim to use the QEMU emulator to mimic the hardware
platform, enabling the start, suspend or resume of QEMU
instances as well as controlling the actual speed of emulation
(interfacing with QEMU’s throttle control).

ACKNOWLEDGMENT

This work was partially supported by FCT (Portuguese
Foundation for Science and Technology) and co-financed by
ERDF (European Regional Development Fund) under the
Portugal2020 Program, within the CISTER Research Unit
(CEC/04234); also by ANI (Portuguese Innovation Agency)
under the ERDF (European Regional Development Fund)
through “Portugal 2020” program, within project
KHRONOSIM, n° 017611, POCI-01-0247-FEDER-017611.

REFERENCES

[1]1 Critical Software, KhronoSim — System for Simulation and Test of
Complex Systems, Portuguese National Project POCI-01-0247-FEDER-
017611.

[2] CAST, “CAST-32A, multi-core processors,” Position paper, 2016, FAA.

[3] J. Xavier, G. Marc, B. Guy and F. Marc, “MULCORS project - The use
of multicore processors in airborne systems,” EASA 2011/6, 2012.

[4] S.Jim and N. Ravi, “Virtual Machines: Versatile Platforms for Systems
and Processes,” The Morgan Kaufmann Series in Computer Architecture
and Design, 2005.

[51 G. Phillips, “Simplicity betrayed,” Commun. ACM, vol. 53, no. 4, pp.
52-58,2010.

[6] Antmicro, “Emul8,” [Online]. Available: http://www.emul8.se/, last
accessed March 2018.

[7]1 B. Nathan, B. Bradford, B. Gabriel, R. S. K., S. Ali, B. Arkaprava, H.
Joel, R. H. Derek, K. Tushar, S. Somayeh, S. Rathijit, S. Korey, S.
Muhammad, V. Nilay, D. H. Mark and A. W. David, “The gem5
simulator,” SIGARCH Comput. Archit. News, 39(2), pp. 1-7, 2011.

[8] The Bochs Project, “bochs: The open source IA-32 emulation project,”
[Online]. Available: http://bochs.sourceforge.net/, last accessed March
2018.

[91 M. T. Jones, “Platform emulation with bochs,” [Online]. Available:

http://www.ibm.com/developerworks/library/l-bochs/, last accessed
March 2018.

[10] ESA - European Space Agency, “Onboard computer and data handling -
microprocessors,” [Online]. Available: http://www.esa.int/
Our_Activities/Space_Engineering_Technology/Onboard_Computer_an
d_Data_Handling/Microprocessors, last accessed March 2018.

[11] C. Gaisler, “LEON4,” [Online]. Available:
http://www.gaisler.com/index.php/products/processors/leon4, last
accessed March 2018.

[12] C. Gaisler, “GRSIM,” [Online]. Available:
http://www.gaisler.com/index.php/products/simulators/grsim, last
accessed March 2018.

[13] TERMA, “T-EMU,” [Online]. Available: http://t-
emu.terma.com/index.html, last accessed March 2018.

[14] Spacecraft Multicore Emulator, [Online], Available:

https://github.com/kmonahopoulos/Spacecraft-Multicore-Emulator, last
accessed March 2018.

[15] QEMU [Online]. Available: https://www.qemu.org/, last accessed
March 2018.

[16] H. Ding-Yong, H. Chun-Chen, Y. Pen-Chung, W. Jan-Jan, H. Wei-
Chung, L. Pangfeng, W. Chien-Min and C. Yeh-Ching, “Hgemu: A
multi-threaded and retargetable dynamic binary translator on
multicores,” in Tenth International Symposium on Code (CGO'12), New
York, 2012.

[171 J. H. Ding, P. C. Chang, W. C. Hsu and Y. C. Chung, “Pgemu: A
parallel system emulator based on QEMU”, in IEEE 17th International
Conference on Parallel and Distributed Systems, 2011.

[18] W. Zhaoguo, L. Ran, C. Yufei, W. Xi, C. Haibo, Z. Weihua and Z.
Binyu, “Coremu: A scalable and portable parallel full-system emulator,”
SIGPLAN Not., vol. 46, no. 8, pp. 213-222, 2011.

[19] QEMU, “QEMU - Features/tcg-multithread.,” [Online]. Available:

http://wiki.qemu-project.org/Features/tcg-multithread, last accessed
March 2018.

