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Abstract 

Detecting spoofing attacks on the positions of unmanned aerial vehicles (UAVs) within a swarm is challenging. 
Traditional methods relying solely on individually reported positions and pairwise distance measurements are 

ineffective in identifying the misbehavior of malicious UAVs. This paper presents a novel systematic structure 
designed to detect and mitigate spoofing attacks in UAV swarms. We formulate the problem of detecting malicious 

UAVs as a localization feasibility problem, leveraging the reported positions and distance measurements. To 
address this problem, we develop a semidefinite relaxation (SDR) approach, which reformulates the non-convex 

localization problem into a convex and tractable semidefinite program (SDP). Additionally, we propose two 
innovative algorithms that leverage the proximity of neighboring UAVs to identify malicious UAVs effectively. 

Simulations demonstrate the superior performance of our proposed approaches compared to existing 
benchmarks. Our methods exhibit robustness across various swarm networks, showcasing their effectiveness in 

detecting and mitigating spoofing attacks. Specifically, the detection success rate is improved by up to 65%, 55%, 
and 51% against distributed, collusion, and mixed attacks, respectively, compared to the benchmarks. 
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Abstract—Detecting spoofing attacks on the positions of un-
manned aerial vehicles (UAVs) within a swarm is challenging.
Traditional methods relying solely on individually reported posi-
tions and pairwise distance measurements are ineffective in iden-
tifying the misbehavior of malicious UAVs. This paper presents
a novel systematic structure designed to detect and mitigate
spoofing attacks in UAV swarms. We formulate the problem of
detecting malicious UAVs as a localization feasibility problem,
leveraging the reported positions and distance measurements.
To address this problem, we develop a semidefinite relaxation
(SDR) approach, which reformulates the non-convex localization
problem into a convex and tractable semidefinite program (SDP).
Additionally, we propose two innovative algorithms that leverage
the proximity of neighboring UAVs to identify malicious UAVs
effectively. Simulations demonstrate the superior performance
of our proposed approaches compared to existing benchmarks.
Our methods exhibit robustness across various swarm networks,
showcasing their effectiveness in detecting and mitigating spoof-
ing attacks. Specifically, the detection success rate is improved
by up to 65%, 55%, and 51% against distributed, collusion, and
mixed attacks, respectively, compared to the benchmarks.

Index Terms—Malicious UAV detection, position spoofing at-
tack, cooperative localization, semidefinite programming.

I. INTRODUCTION

Recently, there has been a widespread utilization of un-

manned aerial vehicles (UAVs) [1], including parcel deliv-

ery [2], radio surveillance [3], [4], and rescue missions [5].

This is due to the affordability and endurance of UAVs,

and their flexibly adjustable positions conducive to line-of-

sight (LOS) communications, facilitated by rapid technological

advancements [6]. The varieties of practical needs for UAV

swarms further ignite and necessitate the protection of security

for UAV swarms [7]. For instance, the reliability of informa-

tion propagation has been analyzed in large-scale networks,
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Fig. 1. An illustration of the attack model, where a malicious UAV falsifies
its position and broadcasts the fake position to the other benign UAVs.

including UAV swarms [8]. The connectivity of a UAV swarm

has been studied in the presence of jamming attacks from

the ground [9]. To enhance reliability and mitigate potential

flight collisions, it is crucial to establish a formation flight

and coordination among UAVs [10]. In the formation flight

of a UAV swarm, individual UAVs rely on position reports

from their peers and their pairwise distance measurements

with neighboring UAVs to maintain inter-UAV distances and

avoid collisions. Compromised or malicious UAVs can launch

position spoofing attacks, potentially leading to catastrophic

consequences for the UAV swarm [11]. A malicious UAV

might transmit a deceptive position report, misleading other

UAVs while simultaneously concealing its true location, as

illustrated in Fig. 1. Such conditions can disrupt the control

mechanism that maintains swarm formation, resulting in dis-

orders [12].

Detecting and identifying malicious UAVs within a swarm is

challenging. This problem seeks to establish whether a feasible

position realization for each UAV that aligns with all reported

distances and measurements exists. Such a feasibility problem

is non-trivial and non-convex, and has never been studied and

addressed in the existing literature. As delineated in this paper,

the problem can be transformed into a convex semidefinite

program (SDP), allowing for efficient use of convex optimiza-

tion solvers in polynomial time. However, solving the SDP

problem alone does not enable the identification of individual

malicious UAVs. On the one hand, the number of malicious

UAVs is typically unknown and needs to be detected. On the

other hand, the effectiveness of SDP can be penalized by the

interdependence among the positions of neighboring UAVs.

To address these challenges and precisely identify mali-
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cious UAVs, this paper proposes two new algorithms: the

Cooperative Detection and Identification (CDI) algorithm and

the Enhanced CDI (E-CDI) algorithm. The CDI algorithm

initiates its process by creating sets of possible malicious

and benign UAVs. Subsequently, it combines the selected

potentially malicious UAVs with the benign set, establishing a

connected sub-network for the SDP-based position feasibility

check. If all the neighboring UAVs of a selected UAV are

themselves malicious, the CDI algorithm may misjudge the

UAV as malicious, as attempting to localize a sub-network

with an entire malicious neighborhood is inherently unfeasi-

ble. In contrast, the E-CDI algorithm conducts an additional

localization feasibility check on each individual UAV in the

neighborhood, compared to the CDI algorithm. By this means,

collusion attacks launched by multiple closely located, mali-

cious UAVs can be detected and mitigated.

Compared to the existing relevant works, e.g., [11]–[14],

the new contributions of this paper include:

1) To detect position spoofing attacks, we propose a novel

mechanism for malicious UAV detection and identifi-

cation, where we cast the challenging malicious UAV

detection problem as a localization feasibility problem.

2) A semidefinite relaxation (SDR) approach is put forth

to transform the non-convex feasibility problem into

a convex problem. The presence of malicious UAVs

can then be efficiently ascertained by evaluating the

feasibility of the convex problem.

3) We develop two iterative algorithms, i.e., CDI and E-

CDI, to identify malicious UAVs by leveraging the

proximity of neighboring UAVs.

• The CDI algorithm dynamically merges selected

potentially malicious UAVs into the benign set to

form a connected positioning sub-network. This

sub-network is used to determine whether the se-

lected UAV is malicious.

• The E-CDI algorithm enhances identification effi-

ciency by further assessing each neighboring UAV

in the neighborhood of a potentially malicious UAV.

As a result, collusion attacks launched by multiple

closely located, malicious UAVs can be detected.

Both algorithms are designed to conclude within a finite

number of iterations and exhibit robust performance

across various network configurations of UAV swarms.

Extensive simulations demonstrate that the proposed CDI and

E-CDI algorithms achieve superior performance on classic

metrics compared to the benchmark techniques. Under the pro-

posed algorithms, the detection success rate can be improved

by up to 65%, 55%, and 51% against distributed, collusion,

and mixed attacks, respectively, compared to their benchmarks.

The rest of this paper is organized as follows. Section II

reviews the related works. Section III formulates and convex-

ifies the malicious UAV’s misbehavior detection problem. In

Section IV, two efficient iterative algorithms are proposed to

identify malicious UAVs. Section V provides numerical results

to evaluate the proposed algorithm, followed by conclusions

in Section VI.

Notation: Upper- and lower-case boldface symbols denote

TABLE I
NOTATION AND DEFINITION.

Notation Definition

X The set of the 3D coordinates of all the UAVs
N The total number of UAVs
xi The actual position of the i-th UAV
x̂i The reported position of the i-th UAV
rij The actual distance between UAVs i and j, i ̸= j
r̂ij The reported distance between UAVs i and j, i ̸= j
³̂ij An auxiliary variable
wi The noise vector for position measurement of UAV i
wij The noise in the reported distance measurement between

UAVs i and j, i ̸= j
I3 The 3× 3 identity matrix
X The 3×N matrix with its i-th column being xi

d The communication range for distance measurement

ϵ A small constant, e.g., 1× 10−6

ei The vector whose i-th element is one and the rest are zeros.
Äij The indicator of whether UAVs i and j are directly con-

nected.
En The matrix of the measured and reported Euclidean distances

between directly connected UAVs
Er The matrix of the Euclidean distances between directly

connected UAVs generated based on the reported positions
of the UAVs

N The set of all N UAVs.
M The set of malicious UAVs
B The set of benign UAVs
Nk The set of the one-hop neighbors of UAV k
RM The malicious ratio, i.e., the ratio of the number of malicious

UAVs to the total number of UAVs in a UAV swarm

matrices and vectors, respectively; | · | takes the absolute value

if a scalar is concerned or the cardinality if a set is concerned;

∥·∥ denotes ℓ2-norm; (̂·) indicates a reported, noise-corrupted

version of (·). The notation used is collated in Tab. I.

II. RELATED WORK

A. Spoofing Attacks on UAVs

Spoofing attacks on UAVs have been extensively inves-

tigated in the recent literature. However, most works have

focused on the direct hijack of the Global Positioning System

(GPS) of a specific single UAV. Aiming at identifying fake

GPS coordinates due to the hijack of the GPS communication

software, the authors of [15] proposed a convolutional neural

network (CNN) integrated with a recurrent neural network

(RNN) to predict a vehicle’s real-time trajectory based on

the data from multiple sensors. With a similar purpose of

handling GPS spoofing attacks, the authors of [16] proposed

a two-step approach based on data sensed and fused from

distributed radar ground stations equipped with a local tracker.

The approach consists of spoofing detection and mitigation.

In the spoofing detection step, a track-to-track association

approach was adopted to detect spoofing attacks with fused

data from UAVs and a local tracker. In the mitigation step, the

fused data was input to a controller to mitigate the spoofing

attack detected. The proposed two-step approach was reported

to achieve almost the same accuracy as GPS efficiently.

To enhance the reliability of flight controllers when the UAV

is under GPS spoofing attack, the authors of [17] utilized an

extended Kalman filter (EKF)-based approach. They inves-

tigated the impact of GPS spoofing on the EKF estimation

and the UAV itself under different levels of attack strength. It
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was reported that the classic EKF-based approach can tolerate

small errors from spoofing attacks, but can be inefficient when

the attack intensifies. Similar works on GPS-related spoofing

attacks on a specific single UAV can be found in [13], [18]–

[20], and spoofing attacks related to the time-of-arrival (TOA)

or time difference-of-arrival (TDOA) can be found in [21].

The security issue of UAV swarms has attracted increasing

attention. In order to mitigate the navigation spoofing attacks

on aerial formations, the authors of [22] proposed a cascaded

estimation algorithm used for concurrent GPS spoofing detec-

tion and localization. An attack detection module was based on

the consistency of multimodal measurement to realize thresh-

old tests. A localization module was then used for a decision

based on remarkable differences between safe and under-attack

conditions of UAV self-localization. The cascaded approach

can achieve a safe self-localization for a UAV swarm under a

spoofing attack. Aiming at solving the GPS spoofing attack in

a UAV swarm, the authors of [23] proposed a security-aware

monitoring method to monitor the potential malicious UAVs

and protect the benign ones from attacks. The method was

implemented by the received-signal-strength-indicator (RSSI)-

based triangulation.

B. Cooperative Network Localization

Position-related spoofing attacks destroy the localization of

UAVs in a UAV swarm, since a UAV swarm can be considered

a cooperative network. SDP, an efficient convex optimization

approach, has been extensively applied to cooperative network

localization. Employing the SDP, the authors of [24] proposed

a novel difference-of-convex (DC)-based algorithm to achieve

accurate cooperative localization. The authors of [25] proposed

an SDP-based method to estimate the relative transformation

of a robot in a cooperative robotic swarm. The SDP-based

method could achieve global optimality and scalability. The

authors of [26] developed an efficient SDP-based scheduling

strategy to optimize UAV deployment in intelligent trans-

portation cooperative networks. More SDP-based cooperative

localization techniques can be found in [14], [27], [28].

Unlike existing works that rely heavily on extensive training

using historical data, we put forth an SDP-based UAV misbe-

havior detection mechanism with no need for historical data.

The proposed SDP-based mechanism detects and identifies

malicious UAVs that misreport their positions by leveraging

the proximity of neighboring UAVs. This mechanism is ap-

plicable regardless of the specific type of localization signals

hijacked and spoofed, including GPS, TDA, or TDOA.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first provide the threat model considered

and formally formulate the malicious UAV detection problem

as a localization feasibility problem. By applying the SDR,

we convexify the feasibility problem into a convex problem.

A. Threat Model

Consider a swarm of UAVs executing a routine cruising

mission, during which the UAVs cooperatively maintain a

Fig. 2. An illustration of the collusion spoofing attack model, where two
malicious UAVs falsify their positions to be within the one-hop neighborhood
of the benign UAV.

Fig. 3. An illustration of the mixed spoofing attack model, where two
malicious UAVs conduct a collusion attack while the other malicious UAVs
falsify their positions.

specific formation to prevent collisions. Each UAV within the

swarm communicates its position, ascertained by the GPS,

to its counterparts. Each UAV also conducts relative distance

measurements with the other UAVs that are within the per-

missible communication range of the UAV. Random receiver

noises or GPS errors can corrupt these distance measurements,

rendering the reported positions inaccurate. During the forma-

tion flight, each UAV adjusts its flight position based on the

reported positions and distance measurements of neighboring

UAVs, thereby averting potential flight collisions.

Malicious UAVs, under the control of attackers, have the

capability to fabricate their position information and dissemi-

nate this information among all other UAVs. More precisely,

malicious UAVs can initiate a spoofing attack by falsely re-

porting their positions within the detection measurement range

of benign UAVs. This deliberate misrepresentation of positions

can directly disrupt the formation. Moreover, malicious UAVs

may target a specific benign UAV by deceptively reporting

their positions within the detection measurement range of that

UAV, which is a tactic known as a collusion attack; see Fig. 2.

This coordinated misrepresentation is aimed at framing a target

UAV. Given the substantial evidence presented through this

deceptive conspiracy, the swarm may erroneously conclude

that the framed UAV is perpetrating a spoofing attack.

The two above-mentioned attacks, i.e., the distributed attack

and the collusion attack, can be amalgamated to initiate a

mixed spoofing attack; see Fig. 3. In this composite attack,
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some malicious UAVs execute a distributed attack while the re-

maining UAVs engage in a collusion attack. The mixed nature

of this attack significantly intensifies its severity, potentially

hastening the breakdown of the entire formation.

B. Problem Statement

We propose to formulate the problem of identifying mali-

cious UAVs as a localization feasibility problem. If localization

is infeasible under the positions and distance measurements re-

ported, there is at least one malicious UAV attacking the UAV

swarm in an attempt to compromise the swarm formation.

Let X := {x1, . . . ,xN} define the three-dimensional (3D)

coordinates of the UAVs in an N -UAV swarm studied, where

xi ∈ R
3×1 is the unknown actual 3D coordinates of UAV i.

Let N = {1, . . . , N} collect the indexes of the N UAVs.

The permissible range for pairwise distance measurement is

denoted by d. The reported position of UAV i is given as x̂i,

which can be contaminated by the measurement noise, i.e.,

wi ∼ N (0, Ã2

i I3). x̂i = xi+wi, ∀i. Here, N (0, Ã2

i I3) stands

for the zero-mean Gaussian distribution with the variance of

Ã2

i I3 and I3 is the 3× 3 identity matrix.

The feasibility problem of finding a solution of X can be

formulated as

find X

s.t. ∥xi − x̂j∥
2 < d2, ∀i ∈ N, j ∈ Ni, (1a)

|xi − x̂i∥
2 f ϵ, ∀i ∈ N, (1b)

|r̂2ij − ∥xi − x̂j∥
2| < (

d

2
)2, ∀i ∈ N, j ∈ Ni, (1c)

where Ni collects all one-hop neighbors of UAV i and can

be obtained based on the reports of UAV i; ϵ g 0 is a

small constant; and r̂ij denotes the reported pairwise distance

between UAVs i and j contaminated with measurement noise,

e.g., wij ∼ N (0, Ã2

ij). Here, Ã2

ij is the variance of the distance

measurement error.

Constraint (1a) defines that the relative distance measure-

ment between UAV i and the reported position of UAV j, i.e.,

∥xi − x̂j∥, has to be within the permissible communication

range, d, if UAV i is a one-hop neighbor of UAV j and

can hear its ranging signals. Constraint (1b) dictates that the

difference between xi and x̂i is smaller than a pre-specified

threshold ϵ, ensuring that the model must rely on the individual

reported position to output a solution (if such a solution does

not exist, it is reasonable to suspect there exist misreported

UAV positions). Constraint (1c) indicates that the difference

between the reported pairwise distance and the Euclidean

distance (between the estimated and reported positions) should

be smaller than half of the distance measurement range, which

is also considered to be the maximum tolerable distance

measurement error. Nonetheless, the right-hand side (RHS) of

constraint (1c), i.e., (d
2
)2, can adapt to the needs of different

measurement devices.

C. Proposed SDP-based Reformulation

Because of the non-convex constraints (1a)–(1c), finding X
in (1) is a non-convex feasibility checking problem, which is

difficult to solve. To convexify (1a)–(1c), auxiliary variables,

denoted by ³ij , ∀i, j ∈ [1, N ], are introduced to substitute

those non-convex parts in (1a)–(1c). As a result, the non-

convex feasibility problem in (1) can be rewritten as

find X

s.t. ³ij < d2, ∀i ∈ N, j ∈ Ni, (2a)

³ii f ϵ, ∀i ∈ N, (2b)

|r̂2ij − ³ij | < (
d

2
)2, ∀i ∈ N, j ∈ Ni, (2c)

||xi − x̂j ||
2 = ³ij , ∀i ∈ N, j ∈ Ni ∪ {i}, (2d)

where constraints (2a) and (2d) are homogenized from (1a),

and (2b) is homogenized from (1b). Constraints (2a)–(2c)

are affine and convex. Constraint (2d) is still non-convex. To

convexify (2d), we rewrite ||xi − x̂j ||
2 in a matrix form as

∥xi − x̂j∥
2 = [x̂T

j − e
T
i ]

[

I3 X

X
T

Y

] [

x̂j

−ei

]

, (3)

where ei ∈ R
N×1 is a vector whose i-th element is “1” and

the rest are all “0”. X ∈ R
3×N is a 3 × N matrix with its

i-th column being xi. Moreover,

Y = X
T
X ∈ RN×N . (4)

As a result, finding X in problem (2) can be equivalently

reformulated as

find X,Y

s.t. ³ij < d2, ∀i ∈ N, j ∈ Ni, (5a)

³ii f ϵ, ∀i ∈ N, (5b)

|r̂2ij − ³ij | < (
d

2
)2, ∀i ∈ N, j ∈ Ni, (5c)

[x̂T
j − e

T
i ]

[

I3 X

X
T

Y

] [

x̂j

−ei

]

= ³ij , ∀i ∈ N, j ∈ Ni ∪ {i},

(5d)

Y = X
T
X. (5e)

Here, constraints (5d) and (5e) are non-convex. Yet, constraint

(5e) can be relaxed as [24], [29]

Y °X
T
X, (6)

where “°” stands for element-wise inequality. According to

Schur complement [30], (6) is equivalent to
[

I3 X

X
T

Y

]

° 0, (7)

Further let Z denote the left-hand side (LHS) of (7), yielding

Z =

[

I3 X

X
T

Y

]

° 0. (8)

The relaxation of (5e) to (6) is tight if Rank(Z) = 3.

Also, define

Ĝij =

[

x̂j

−ei

]

[x̂T
j − e

T
i ]. (9)

Based on (8) and (9), (5d) can be rewritten as

[x̂T
j − e

T
i ]

[

I3 X

X
T

Y

] [

x̂j

−ei

]

= Tr(ĜijZ) = ³ij , (10)
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Based on (6)–(10), the feasibility problem (5) is further

equivalently rewritten as the following feasibility problem:

find Z

s.t. Z1:3,1:3 = I3, (11a)

³ij < d2, ∀i ∈ N, j ∈ Ni, (11b)

³ii f ϵ, ∀i ∈ N, (11c)

|r̂2ij − ³ij | < (
d

2
)2, ∀i ∈ N, j ∈ Ni, (11d)

Tr(ĜijZ) = ³ij , ∀i ∈ N, j ∈ Ni ∪ {i}, (11e)

Z ° 0, (11f)

Rank(Z) = 3. (11g)

where constraint (11a) enforces the upper left 3×3 block of

Z to be an identity matrix, ensuring that the rank of the

solution is at least three. Constraints (11a), (11f), and (11g)

are equivalently derived from (5e). This is because both (11a)

and (11f) constrain Z to be symmetric and in the form of

(8), while rank constraint (11g) forces the lower right N ×N
block of Z , i.e., Y in (8), to be X

T
X , according to classic

linear algebra theory.

Dropping the rank constraint (11g), we have the following

SDR problem:

find Z

s.t. Z1:3,1:3 = I3, (12a)

³ij < d2, ∀i ∈ N, j ∈ Ni, (12b)

³ii f ϵ, ∀i ∈ N, (12c)

|r̂2ij − ³ij | < (
d

2
)2, ∀i ∈ N, j ∈ Ni, (12d)

Tr(ĜijZ) = ³ij , ∀i ∈ N, j ∈ Ni ∪ {i}, (12e)

Z ° 0. (12f)

Problem (12) is convex and can be efficiently solved using

off-the-shelf CVX solvers, e.g., MATLAB CVX toolbox [31].

Clearly, problem (12) is a relaxed (but generally tight) version

of the original feasibility problem (1), with a larger feasible

solution region. If the problem in (12) is infeasible, i.e., no

feasible solution exists for the problem in (12), then problem

(1) is surely infeasible. As a result, we can detect whether at

least one malicious UAV misreports its position by checking

the feasibility of the problem in (12).

IV. PROPOSED APPROACH FOR MALICIOUS UAV

IDENTIFICATION

Leveraging the SDP problem in (12), we proceed to develop

two new algorithms, CDI and E-CDI, to exploit the proxim-

ity of adjacent UAVs to facilitate the effective detection of

malicious UAVs and eliminate spoofing attacks.

A. Initialization of Malicious UAV Set

Let M and B denote the sets of malicious and benign UAVs,

respectively. M ∪ B = N. Based on Er and En, we propose

to initialize M and B, as follows.

We come up with two Euclidean matrices, i.e., the generated

Euclidean matrix from individual reported positions, denoted

Algorithm 1: The proposed CDI algorithm

Input: B; M; x̂i, ∀i ∈ [1, N ]; r̂ij ,

∀i, j ∈ [1, N ], i ̸= j; d; ϵ.
Output: M

1 Set k ← 1;

2 while M can be further reduced do

3 Select the k-th UAV of M and the set of its

one-hop neighbors Nk;

4 Construct T← B ∪ {k,Nk};
5 Apply T to (12), and check feasibility using SDP.

6 if problem (12) is feasible T then

7 M←M \ {k,Nk};
8 B← B ∪ {k,Nk};
9 end

10 Set k ← (k + 1) mod |M|;
11 end

by Er ∈ RN×N , and the detected Euclidean distances matrix

contaminated with noise, denoted by En ∈ RN×N , as

Er =







Ä11∥x̂1 − x̂1∥ · · · Ä1N∥x̂1 − x̂N∥
...

. . .
...

ÄN1∥x̂N − x̂1∥ · · · ÄNN∥x̂N − x̂N∥






, (13)

En =







r̂11 · · · r̂1N
...

. . .
...

r̂N1 · · · r̂NN






, (14)

where Äij indicates if UAVs i and j are directly connected.

Äij = 1, if UAVs i and j are within each other’s permissible

communication range, i.e., r̂ij > 0; otherwise, Äij = 0. In this

sense, Er can be a sparse matrix (like En), depending on the

communication range of the UAV.

We can carry out element-wise comparisons between Er

and En. Specifically, if the (i, j)-th elements of the two

matrices have a smaller difference than the pre-specified

threshold d
2

, i.e., (1c) is unsatisfied, then UAVs i and/or j are

potentially malicious. Both of the UAVs are added into M,

i.e., M = M ∪ {i, j}. After all N2 elements of Er and En

are assessed, the initial M is obtained. B can be accordingly

initialized to be B = N \M.

B. Proposed CDI Algorithm

As summarized in Algorithm 1, we propose to assess the

potentially malicious UAVs in M one after another and move

those actually benign from M to B until both M and B stop

changing. When assessing a UAV, i.e., UAV k, from M, we

also consider its one-hop neighbors. Part of Nk may belong

to B, and the rest belong to M.

We apply the feasibility checking problem in (12) to the

collection of B, {k}, and Nk, i.e., B∪{k,Nk}. If the problem

is feasible, UAV k and its one-hop neighbors Nk are benign.

They can be removed from M and added to B; i.e., M =
M \ {k,Nk} and B = B ∪ {k,Nk}. Otherwise, they remain

in M. The reason for considering a potentially malicious UAV

k together with its one-hop neighbors Nk is to increase the
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chance that UAV k is connected to B. Therefore, the feasibility

checking problem can be meaningfully carried out. In the case

where UAV k and its one-hop neighbors Nk are disconnected

from B (in other words, Nk and their neighbors all belong to

M), then UAV k and its one-hop neighbors Nk remain in M.

In this way, we repeatedly assess the remaining UAVs in

M until M cannot be further reduced. This algorithm can

quickly detect and identify malicious UAVs; but may overkill,

i.e., misjudge a benign UAV to be malicious in the situation

where the benign UAV only has a malicious one-hop neighbor

since they are always assessed together for feasibility and

cannot be individually arbitrated. In this sense, the algorithm

is conservative and can be overprotective.

C. Proposed E-CDI Algorithm

A key difference between the E-CDI algorithm and the CDI

algorithm (Algorithm 1) is that the E-CDI algorithm assesses

each of the potentially malicious one-hop neighbors of a UAV

belonging to M individually, each time the UAV and its one-

hop neighbors fail the feasibility check. Specifically, each of

UAV k and its potentially malicious one-hop neighbors in Nk

are assessed by temporarily joining B for feasibility check

again. Those that turn out to be benign are removed from

M and added to B. By this means, each connected malicious

UAV can be detected and identified. The details are provided

in Algorithm 2. The flowchart of the proposed CDI/E-CDI

algorithm is provided in Fig. 4.

Another key difference is that the E-CDI algorithm is able

to detect collusion attacks, while the CDI algorithm cannot.

This is because the E-CDI assesses individual UAVs in a

neighborhood {k,Nk} if the neighborhood is detected to be

infected by malicious UAVs in the neighborhood. As a result,

the malicious UAVs (or UAVs that cannot be confirmed benign

due to their poor connectivity to other benign UAVs) can

be individually assessed and verified. In contrast, the CDI

algorithm may not achieve this since its assessment is based

on neighborhoods {k,Nk}, ∀k ∈M.

V. SIMULATION RESULTS

In this section, we consider three types of spoofing attacks to

gauge the capability of the proposed algorithm to counteract

these attacks. We conduct extensive simulations to compre-

hensively evaluate the proposed algorithms in comparison

with the established benchmarks on the key factors, i.e., the

number of malicious UAVs, the scale of the network, distance

measurement noise, and measurement distance.

A. Simulation Setting

We consider a UAV swarm with the UAVs’ positions

randomly generated according to a uniform distribution inside

a unit cube [−0.5,+0.5]3. The malicious UAVs are randomly

chosen from the nodes. The distance measurement range is

d = 0.3. Note that both the reported positions and reported

distance measurements are contaminated with additive Gaus-

sian noises, wi ∼ N (0, 10−6
I3) [32] and wij ∼ N (0, 10−6),

respectively. The key parameters of the simulations are sum-

marized in Tab. II.

Algorithm 2: The proposed E-CDI algorithm

Input: B; M; x̂i, ∀i ∈ [1, N ]; r̂ij ,

∀i, j ∈ [1, N ], i ̸= j; d; ϵ.
Output: M

1 Set k ← 1;

2 while M can be further reduced do

3 Select the k-th UAV in M and the set of its

one-hop neighbors Nk;

4 Construct T← B ∪ {k,Nk};
5 Apply T to (12), and check feasibility using SDP.

6 if problem (12) is feasible upon T then

7 M←M \ {k,Nk};
8 B← B ∪ {k,Nk};
9 else

10 Set T1 ← {k,Nk}; i← 1;

11 while i f |T1| do

12 Select the i-th UAV of {k,Nk}, denoted

by Ãi;

13 Construct T2 ← B ∪ {Ãi};
14 Apply T2 to (12) and check feasibility

using SDP;

15 if problem (12) is feasible upon T2 then

16 M←M \ {Ãi};
17 B← B ∪ {Ãi};
18 end

19 i← i+ 1;

20 end

21 end

22 Set k ← (k + 1) mod |M|;
23 end

TABLE II
SIMULATION PARAMETERS AND CONFIGURATION.

Parameter Configuration

Simulation environment Matlab R2020b
Solver CVX solver

UAV swarm range Unit cube [−0.5,+0.5]3

Reported position noise wi ∼ N (0, 10−6
I3)

Distance measurement noise wij ∼ N (0, 10−6)
Distance measurement range [0.25, 0.45]3

We assess the performances of the proposed algorithms

against three types of position spoofing attacks, as follows.

• Distributed spoofing attack Under this attack, several

malicious UAVs independently misreport their positions

in an attempt to compromise the UAV swarm formation.

• Collusion attack Under this attack, several malicious

UAVs conspire to frame some benign UAVs and make

them falsely identified as malicious. Based on the re-

ported positions from targeted benign UAVs, the mali-

cious UAVs misreport their positions to be within the

neighborhood of those benign UAVs, though they can be

far away from the UAVs under attack.

• Mixed spoofing attack Under this attack, malicious

UAVs launch attacks in both distributed and collusive

fashions. Specifically, some of the malicious UAVs inde-

pendently carry out distributed spoofing attacks to com-
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Fig. 4. The flowchart of the proposed CDI/E-CDI algorithm, where the shaded part accounts for the CDI algorithm, which is part of the more comprehensive
E-CDI algorithm.

promise the swarm formation. The rest of the malicious

UAVs cooperate to further impair or corrode the integrity

of the UAV swarm.

The benchmark algorithms considered are

• NLOS-based approach: This approach [33] treats errors

induced by the misbehavior of malicious UAVs as a

variant of NLOS, since NLOS and spoofed positions are

alike, i.e., causing considerable deviations from the gen-

uine positions. However, NLOS is a path error involving

two UAVs in a swarm. Therefore, we mildly adjust it

to suit comparison by random sampling according to the

scale of the test sample.

• Random approach: This approach directly relies on

the earlier potential candidate set of malicious UAVs

to conduct random sampling adjusted to the number of

malicious UAVs and the sampled UAVs as the output of

the approach.

The performance metrics considered are Precision, Recall,

and F1. The three classic metrics are given by [34]

Precision =
|Qp ∩Qt|

|Qp|
, (15a)

Recall =
|Qp ∩Qt|

|Qt|
, (15b)

F1 =
2× Precision× Recall

Precision + Recall
, (15c)

where Qp stands for the predicted set by a specific algorithm,

Qt denotes the ground-truth test set, and |·| denotes cardinality.

To evaluate the effect of the network topology, we consider

two other metrics, including “malicious ratio”, i.e., the ratio

of the number of malicious UAVs detected initially (as done

in Section IV-A) to the total number of UAVs, denoted by

RM = |M|/|N|. Correspondingly, the “benign ratio”, i.e., the

ratio of the number of UAVs initially determined as benign to

the total number of UAVs, is RB = 1−RM .

B. Visualization of Proposed Malicious UAV Detection

Fig. 5 shows the identifications of malicious UAVs in a UAV

swarm with N = 30 UAVs under distributed spoofing attacks.
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Fig. 5. An identification sample of the proposed approach against distributed
spoofing attack in a UAV swarm with N = 30 UAVs and M = 4 malicious
UAVs, where d = 0.3. The dashed lines exhibit the misreported distance.

Fig. 6. An identification sample of the proposed approach against collusion
spoofing attack, in a UAV swarm with N = 30 UAVs and M = 4 malicious
UAVs, where d = 0.3. The dashed lines exhibit the misreported distance.

There are four malicious UAVs launching distributed spoof-

ing attacks. Both the proposed CDI and E-CDI algorithms

are simulated. Fig. 6 shows the identifications of malicious

UAVs in the 30-UAV swarm under collusion attacks, where

four malicious UAVs conspire collusion attacks towards a

benign UAV. In Fig. 6, we only simulate the proposed E-

CDI algorithm since the CDI algorithm is inapplicable to

collusion attacks, as discussed in Section IV-C. Fig. 7 shows

the identifications of malicious UAVs in the 30-UAV swarm

under mixed attacks, where three malicious UAVs conspire

collusion attacks towards a benign UAV, while three other

malicious UAVs launch distributed attacks. We only run the

proposed E-CDI algorithm in Fig. 7 for the same reason as

considered for Fig. 6. From Figs. 5, 6, and 7, we can see that

Fig. 7. An identification sample of the proposed approach against mixed
spoofing attack, in a UAV swarm with N = 30 UAVs and M = 6 malicious
UAVs, where d = 0.3. The dashed lines exhibit the misreported distance.
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Fig. 8. The variations of malicious ratio.

the proposed CDI and E-CDI algorithms can effectively detect

and identify malicious UAVs in applicable scenarios.

C. Resistance to Distributed Spoofing Attacks

Fig. 8 plots the malicious ratio and average available

degree across different numbers of malicious UAVs, where

the average of 100 independently randomly generated swarms

with consistent parameters with Fig. 5 is plotted. It is noticed

that the malicious ratio is nearly linear to the number of

malicious UAVs. When there are seven malicious UAVs,

the potential malicious ratio can reach zero, highlighting the

presence of multiple malicious UAVs can severely disrupt or

even dismantle the normal operation of a swarm.

In Fig. 9(a), we observe the Precision of the proposed

algorithms compared to the benchmark methods. It is evident

that both the CDI and E-CDI algorithms outperform the others

significantly. The difference in Precision between the two
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Fig. 9. (a) The performance on Precision of the proposed and baseline approaches. (b) The performance on Recall of the proposed and baseline approaches.
(c) The performance on F1 of the proposed and baseline approaches. (d) The performance on F1 of the proposed and baseline approaches under different
scales of the swarm network. (e) The performance on F1 of the proposed and baseline approaches under different levels of distance measurement noise. (f)
The performance on F1 of the proposed and baseline approaches under different levels of measurement distance.

algorithms can be attributed to the strategy they employ for

handling neighboring index sets. The E-CDI algorithm, which

selects multiple indices simultaneously, may introduce some

redundancies, leading to a slightly inferior Precision compared

to the CDI algorithm, which selects one index at a time.

Additionally, the decreasing trend in performance of both

proposed approaches can be linked to the degradation of the

network structure, as indicated by the increasing malicious

ratio in Fig. 8.

On the other hand, there is a noticeable upward trend in

the detection of malicious UAVs under the NLOS-based ap-

proach, especially those with significant distance errors akin to

NLOS conditions. The NLOS-based approach, which involves

selecting UAVs with the largest distance errors, simultaneously

amplifies the likelihood of encountering malicious UAVs. The

ascending trend in the Random approach can be explained

by the situation where the rate of capturing malicious UAVs

surpasses the expansion rate of the malicious set.

In Fig. 9(b), we examine the Recall of the proposed methods

compared to the benchmarks across varying numbers of mali-

cious UAVs. Both the CDI and E-CDI algorithms outperform

all benchmarks significantly. Moreover, E-CDI offers higher

Recall than CDI. The reason is that E-CDI sacrifices some

precision, potentially introducing redundancies, to ensure the

capture of more malicious UAVs. Given the critical security

nature of the problem studied, it is imperative to emphasize

high Recall to identify as many malicious UAVs as possible

to safeguard the swarm. As also noticed, the Recall of both

proposed algorithms declines due to the deteriorating network

structure, as discussed in Fig. 9(a). For the same reason, the

Recall of the NLOS-based approach also declines, as discussed

in Fig. 9(a). As for the Random-based approach, it is intriguing

to note that the trends in Precision in Fig. 9(a) and Recall in

Fig. 9(b) bear resemblance. The conclusion drawn is that the

expansion rate of captured malicious UAVs exceeds that of the

malicious set enlargement, leading to this consistent trend.

Fig. 9(c) illustrates the F1 of the proposed methods along-

side the benchmarks across varying numbers of malicious

UAVs, where the proposed CDI and E-CDI algorithms con-

sistently outperform all other algorithms. It is noticed that the

E-CDI algorithm is initially better than the CDI algorithm.

However, as the number of malicious UAVs increases, the CDI

algorithm gradually surpasses the E-CDI algorithm when the

number of malicious UAVs exceeds five. The reason is that

when there are only a small number of malicious UAVs in

a swarm, the E-CDI algorithm is more likely to misclassify

benign UAVs as malicious. As the number of malicious UAVs

increases and the network structure deteriorates, the E-CDI

algorithm is increasingly advantageous. With a higher number

of malicious UAVs, the E-CDI algorithm exhibits a greater

likelihood of correctly detecting malicious UAVs.

We also notice in Fig. 9(c) that the NLOS-based approach

outperforms the Random approach due to its selection from

a relatively smaller malicious set with a higher probability,

achieved through sorting based on absolute distance error.

In contrast, the Random approach selects from a larger set

encompassing all possible malicious UAVs. The increasing

trend observed in both benchmark algorithms is attributed to

the growing number of malicious UAVs, resulting in a higher

probability of detection by both benchmarks.
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Fig. 9(d) presents the F1 performance of our proposed

algorithms compared to the benchmark algorithms across these

varying network scales. Both the proposed CDI and E-CDI

algorithms consistently outperform the other algorithms. An

intriguing observation is that the CDI algorithm surpasses the

E-CDI algorithm across all network scales. This is primarily

attributed to the fixed number of malicious UAVs: As the

network scales up, a larger number of benign UAVs are likely

to be present, offering supporting evidence. However, this

also introduces a risk for the E-CDI algorithm, which, while

aiming for higher Recall, may inadvertently incorporate benign

UAVs. By contrast, the CDI algorithm, which emphasizes

higher Precision by meticulously identifying one UAV at a

time, mitigates this risk. On the other hand, the declining trend

observed in both benchmarks can be attributed to the larger

network scale, leading to a lower probability of detection

for both benchmarks. In particular, the increased number of

malicious UAVs in a larger-scale network makes it hard for

the benchmarks, which employ methods like selecting the

largest absolute distance error or sampling from the potential

malicious set, to identify the malicious UAVs effectively.

Fig. 9(e) presents the F1 performance of the proposed

algorithms in comparison to the benchmarks across different

levels of distance measurement inaccuracies. It is evident

that all the algorithms exhibit a consistent declining trend,

resulting from the adverse influence of inaccurate distance

measurements on the effectiveness of constraints in (12).

Nevertheless, the proposed algorithms maintain efficiency and

robustness even in the face of elevated levels of measurement

noise. This resilience stems from the fact that the algorithms

leverage the entire swarm to aggregate evidence, effectively

mitigating the impact of inaccurate distance measurements.

On the other hand, the benchmarks face challenges with an

increase in noise, as these inaccuracies can lead to greater

disparities between the distances computed based on reported

positions and the reported distance measurements. This, in

turn, expands the candidate set of malicious UAVs, reducing

the likelihood of detection by the benchmarks.

Fig. 9(f) provides an overview of the F1 performance of

the proposed algorithms and the benchmarks across different

measurement distances. In the case of the proposed algorithms,

both initially exhibit an ascending trend, followed by a descent

after reaching a threshold of 0.35. This is because the increase

in measurement distance prompts more UAVs to become

neighbors, thereby generating additional evidence for decision-

making at the beginning. However, the larger measurement

distance relaxes the constraints applied to directly counter-

spoofing, permitting more malicious UAVs to evade detec-

tion and the F1 declines. In contrast, when considering the

benchmark algorithms, the expansion of measurement distance

implies that more neighbors are involved in the evidence-

gathering process. This can result in a higher number of

UAVs reporting pairwise distance measurements, consequently

leading to greater disparities between the distances computed

based on reported positions and the reported distance measure-

ments. The resulting larger candidate set of malicious UAVs

reduces the probability of detection by the benchmarks.

We further compare the proposed CDI and E-CDI algo-
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Fig. 10. The number of iterations required by the CDI and E-CDI algorithms.

rithms in the number of iterations, as shown in Fig. 10. All

parameters are kept consistent with those in Fig. 5, except for

the number of malicious UAVs. When the number of malicious

UAVs is relatively small, the CDI algorithm outperforms the

E-CDI algorithm. As the number of malicious UAVs increases,

a shift unfolds: the E-CDI algorithm gradually overtakes

the CDI algorithm, and the performance gap between them

widens with the growing number of malicious UAVs. This

is because, when dealing with a small number of malicious

UAVs, the CDI algorithm’s scrutiny of each individual UAV is

advantageous. But, as the number of malicious UAVs expands,

the escalating number of malicious UAVs poses increasing

feasibility challenges for the CDI algorithm. On the other

hand, by prioritizing high Recall, the E-CDI algorithm aims

to identify as many malicious UAVs as possible.

D. Resistance to Collusion Spoofing Attacks

In line with Fig. 6, we delve into the evaluation of the

F1 metric for the proposed E-CDI algorithm in comparison

to the benchmarks. The CDI algorithm is not assessed, as

explained in Section IV. To maintain consistency, we generate

100 UAV swarms randomly and independently with consistent

parameters with those in Fig. 6, except for the number of

malicious UAVs. Each data point represents the average of

the 100 swarms.

Fig. 11(a) compares the F1 score between the E-CDI algo-

rithm and the benchmarks under a collusion spoofing attack.

Unlike the declining trend observed in Fig. 9(c), the proposed

E-CDI algorithm exhibits an upward trend as malicious UAVs

increase. On the one hand, collusion spoofing attacks have a

distinct structure compared to distributed spoofing attacks in

the sense that attackers are more likely to be densely concen-

trated around a targeted UAV. On the other hand, the E-CDI

algorithm assesses potentially malicious UAVs individually if

their neighborhood is detected to be infected by malicious

UAVs, which is particularly effective in the densely populated

neighborhood of a collusion attack. Consequently, the E-CDI

can exploit the specific characteristics of collusion spoofing

attacks.
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Fig. 11. The performance on F1 of the proposed and baseline approaches in collusion spoofing attack scenario. (a) Under different scales of malicious UAVs.
(b) Under different levels of distance measurement noise. (c) Under different levels of measurement distance.
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Fig. 12. The performance evaluation on F1 of the proposed and baseline approaches in mixed spoofing attack scenario. (a) Under different scales of malicious
UAVs. (b) Under different levels of distance measurement noise. (c) Under different levels of measurement distance.

The ascending trend is also observed under the benchmark

algorithms, resulting from the presence of densely concen-

trated UAVs, which tend to induce fewer disparities between

the distance computed based on reported positions and the re-

ported distance measurements. This, in turn, results in smaller

candidate sets of malicious UAVs, which are more likely to

be detected by the benchmarks.

We proceed to assess the impact of two critical parame-

ters: distance measurement error and the range for distance

measurement on the performance of the proposed E-CDI

algorithm. With the increasing distance measurement noises, a

descending trend of the F1 score can be observed in Fig. 11(b),

as done in Fig. 9(e). On the other hand, a descending trend

is also noticed with the increasing permissible distance in

Fig. 11(c), which is consistent with the observation made in

Fig. 9(f). Given that these two parameters exhibit a similar

influence in both distributed and collusion scenarios, we can

refer to the discussions about distributed spoofing in Sec-

tion V-C for the sake of brevity.

E. Resistance to Mixed Spoofing Attack

As considered in Fig. 7, we proceed to assess the F1

metric of the proposed E-CDI algorithm, comparing it to

the benchmarks. A total of 100 UAV swarms are generated

randomly and independently with consistent parameters with

those considered in Fig. 7, except for the number of malicious

UAVs. Each data point represents the average of the 100

swarms.

In Fig. 12(a), we analyze the F1 performance of the pro-

posed E-CDI algorithm compared to the benchmarks in the

context of a mixed spoofing attack. In order to conduct a

fair evaluation across various numbers of malicious UAVs,

we evenly distribute the malicious UAVs into two distinct

groups. For instance, when dealing with six malicious UAVs,

we assign three of them to execute distributed attacks. The re-

maining three are directed toward launching collusion attacks

against a benign UAV. It is noted that the mixed spoofing attack

cannot be simply regarded as the superposition of distributed

and collusion attacks. The amalgamation of these different

attack types within the mixed scenario introduces substantial

variations in the network structure.

Comparing the trends seen in Fig. 12(a) to those in Figs. 9(c)

and 11(a), it is evident that the performance of the proposed

E-CDI algorithm follows a similar ascending trend as observed

in Fig. 11(a), which is different from the trend in Fig. 9(c).

As malicious UAVs increase, the network structure undergoes

a notable transformation. Initially, both distributed attacks and

collusion attacks contribute evenly. However, with a greater
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number of attackers, more malicious UAVs initially involved

in distributed attacks inadvertently become participants in

collusion attacks. This shift results in the gradual dominance

of collusion attacks. Consequently, the performance trend

observed in the mixed spoofing attack aligns with the pattern

shown in Fig. 11(a), although there can be a slight performance

degradation for the same number of malicious UAVs.

In the case of the benchmarks, the ascending trend of

their F1 scores can be attributed to the presence of densely

concentrated UAVs, which tends to reduce the disparities

between the distance computed based on reported positions

and the reported distance measurements, as discussed earlier.

Last but not least, we assess the impact of distance measure-

ment error and the permissible distance for distance measure-

ment on the performance of the proposed E-CDI algorithm.

It is noticed that Fig. 12(b) yields a declining trend like

the one observed in Fig. 9(e), while Fig. 12(c) displays a

decreasing pattern like the one shown in Fig. 9(f). Given

that these two parameters have consistent effects under the

distributed and collusion attacks, the reason underlying the

observations in Figs. 12(b) and 12(c) can be established, as

discussed in Section V-C. It is worth highlighting that there

exists a marginal performance decline for the same number

of malicious UAVs when compared to the distributed attacks.

This is due to the more intricate degradation of the network

structure exacerbated by the interplay of mixed attacks.

VI. CONCLUSION

In this paper, we judiciously formulated a complicated

malicious UAV detection problem based on the reported

positions and pairwise distance measurements of the UAVs as

a localization feasibility problem. Then, we relied on an SDR

approach to recast the formulated non-convex problem into a

convex SDP, which is the key to assessing the feasibility of

the reported positions and distance measurements. Moreover,

we proposed two tailored iterative algorithms based on the

proposed SDP approach to detect and identify malicious UAVs

in UAV swarms. Extensive simulations demonstrated that the

proposed algorithms can achieve superior performance to the

existing benchmarks and exhibit robustness across various

UAV swarms.
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