

Delay-Bounded Medium Access for
Unidirectional Wireless Links

Björn Andersson
Nuno Pereira
Eduardo Tovar

www.hurray.isep.ipp.pt

Technical Report

TR-060701

Version: 1.0

Date: July 2006

Delay-Bounded Medium Access for Unidirectional Wireless Links
Björn ANDERSSON, Nuno PEREIRA, Eduardo TOVAR

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: {bandersson, npereira, emt}@dei.isep.ipp.pt

http://www.hurray.isep.ipp.pt

Abstract
Wireless sensor networks (WSNs) perform collaborative processing and communication of sensor readings.
The sensor readings are valid only during a certain time interval and hence it is necessary that a message
reaches its destination node before a pre-specified deadline. Collaborative processing mandates that the
network be connected whenever radio conditions permits so. This may require that a link from sensor node A
to sensor node B is used although there is no link from B to A. Such links are called unidirectional.
We study medium access in wireless sensor networks where links may be unidirectional and messages have
timing requirements. Three results are presented. First, we present a medium access control (MAC) protocol
which replicates a message with carefully selected pauses between replicas, and in this way it guarantees that
for every message at least one replica of that message is transmitted without collision. The protocol ensures
this with no knowledge of the network topology and it requires neither synchronized clocks nor carrier sensing
capabilities. Second, we propose schedulability analysis techniques for the protocol. Third, we implement the
protocol and show experimentally that it reduces the number of lost messages (and deadline misses)
significantly as compared to schemes with pauses of random duration between replicas. We believe these
results are significant because (i) this protocol is the only one that supports schedulability analysis and is
designed for unidirectional links and (ii) of all MAC protocols in the literature that support schedulability
analysis, our protocol is the one that makes the least assumptions.

- 1 -

Delay-Bounded Medium Access for Unidirectional Wireless Links

Björn Andersson, Nuno Pereira, Eduardo Tovar
IPP Hurray Research Group

Polytechnic Institute of Porto, Portugal
{bandersson, npereira, emt}@dei.isep.ipp.pt

Abstract

Wireless sensor networks (WSNs) perform collaborative processing and communication of sensor

readings. The sensor readings are valid only during a certain time interval and hence it is necessary

that a message reaches its destination node before a pre-specified deadline. Collaborative processing

mandates that the network be connected whenever radio conditions permits so. This may require that

a link from sensor node A to sensor node B is used although there is no link from B to A. Such links

are called unidirectional.

We study medium access in wireless sensor networks where links may be unidirectional and

messages have timing requirements. Three results are presented. First, we present a medium access

control (MAC) protocol which replicates a message with carefully selected pauses between replicas,

and in this way it guarantees that for every message at least one replica of that message is

transmitted without collision. The protocol ensures this with no knowledge of the network topology

and it requires neither synchronized clocks nor carrier sensing capabilities. Second, we propose

schedulability analysis techniques for the protocol. Third, we implement the protocol and show

experimentally that it reduces the number of lost messages (and deadline misses) significantly as

compared to schemes with pauses of random duration between replicas. We believe these results are

significant because (i) this protocol is the only one that supports schedulability analysis and is

designed for unidirectional links and (ii) of all MAC protocols in the literature that support

schedulability analysis, our protocol is the one that makes the least assumptions.

1. Introduction

A significant number of wireless sensor network applications involve periodic transmission of sensor

data and notification of important sporadic events, and these messages must be guaranteed to reach their

destination before a pre-specified deadline. Sensor nodes self-organize and perform sensing and

aggregate data collaboratively. This requires that connectivity is achieved whenever radio conditions

allow so. In particular, it is important to avoid network partitioning whenever possible since this prevents

- 2 -

the collaboration among all nodes, such as one node notifying other nodes that an important event has

occurred.

These wireless sensor networks are often intended to be deployed in a very ad-hoc fashion, such as

thrown out from helicopters. The application designer knows the number of nodes deployed but does not

know the topology at design time. In addition, radio irregularities, which have been found to be a

common and non-negligible phenomenon in wireless networks [1-8], makes the design of the

communication protocols challenging. The received signal strength from a transmitter is direction

dependent and this makes links asymmetric; that is, the received signal strength at node B when node A

broadcasts is different from the received signal strength at node A when node B broadcasts. When the

asymmetry becomes large enough, a link becomes unidirectional; that is, if node A broadcasts a message

then node B receives it, but if B broadcasts then A will not receive it. Ignoring unidirectional links can

cause a route from source to destination to be longer than necessary. But more important, ignoring

unidirectional links reduces connectivity; it can cause network partitioning and hence render the

collaboration between sensor nodes impossible. Therefore, it is of paramount importance that the

communication protocols can still be effective when unidirectional links exist.

Unidirectional links bring significant challenges to wireless communications. A network node that

sends cannot receive any direct feedback from the receiver. Hence, normal implementations of

acknowledgement schemes and request-to-send/clear-to-send (RTS/CTS) dialogs used in medium access

do not work. Unfortunately, the medium access control (MAC) layer is still poorly developed for

unidirectional links; the only existing solution [9] today for unidirectional links is based on time division

multiple access (TDMA) schemes. This approach in [9] is collision-free, but it requires synchronized

clocks and it does not take deadlines into account in its decisions. Static table-driven scheduling could

probably be used to achieve medium access for unidirectional links (although we are not aware of any

publication on it). But it has the drawback of requiring synchronized clocks and it is also well-known to

- 3 -

be inefficient for those sporadic message streams where the deadline is short compared to the minimum

inter-arrival time of messages within a message stream.

In this paper we study medium access of wireless links which may be unidirectional and where

messages have timing requirements. We show informally that under certain assumptions, designing a

collision-free MAC protocol is impossible. For this reason, we design a MAC protocol that uses message

replication; every message that an application requests to transmit is replicated by the MAC protocol

with carefully selected pauses between the transmissions of replicas. This guarantees that for every

message, at least one of its replicas is transmitted without collision. We analyze whether timing

requirements can be met for the protocol. We also present and evaluate an implementation. The protocol

depends neither on carrier sensing nor on synchronized clocks nor on topology information; it only

requires that the number of sensor nodes is known.

We believe these results are significant because: (i) this protocol is the only MAC protocol designed

for unidirectional links that supports schedulability analysis; and (ii) of all MAC protocols in the

literature that support schedulability analysis, our protocol is the one that makes the least assumptions.

The remainder of this paper is organized as follows. Section 2 presents the system model as well as

the main idea behind the protocol. Section 3 presents a schedulability analysis for the protocol whereas

Section 4 evaluates it experimentally. The evaluation is performed over a real implementation on MicaZ

motes [10] and performance comparison is made against other alternative MAC protocols. Additionally,

in Section 4, a comparison through simulation is also performed. Section 5 discusses various practical

issues of our protocol. It also reviews previous work and discusses unidirectional links in its larger

context. Finally, Section 6 offers conclusions and future work.

2. Preliminaries and the Main idea

2.1. Network and Message Model

The topology is described using a graph with nodes and links. A node represents a sensor node. A link

is directed. Consider a node Ni that broadcasts a message or any signal (for example an unmodulated

- 4 -

carrier wave). Then node Nj will receive it if and only if there is a link from node Ni to node Nj. A node

can only transmit by performing a broadcast and it is impossible for a node Ni to broadcast such that only

a proper subset of its neighbor nodes receives it. No assumption on the connectivity of each node is

made. It is allowed that a node has only outgoing links or only ingoing links or no links at all. Unless

otherwise stated, the topology is assumed to be unknown to the MAC protocol.

The traffic is characterized by the sporadic model [11] which can model both sporadic message

requests and strictly period message requests. Each node has exactly one message stream. Node Ni is

assigned the message stream τi. This message stream makes an infinite sequence of requests, and for

each request, the message stream requests to transmit a message. The exact time of a request is unknown

before run-time and the MAC protocol only knows about the time of the request when it occurs. But for

every message stream τi there is at least Ti time units between those requests and the MAC protocol

knows all Ti. For every such request, the MAC protocol must finish the transmission of ncollisionfree(τi)

replicas of a message from stream τi without collisions at most Di time units after the request. If this is

the case, then we say that deadlines are met; otherwise a deadline is missed. Naturally, we assume 0 ≤ Di

and 0 ≤ Ti. We also assume that Di ≤ Ti and hence there is at most one message request at a time on a

node (as long as all deadlines are met).

Let mtotal denote the number of nodes and let m denote the number of nodes that can transmit. Nodes

are indexed from 1 to mtotal. Let tofi,j denote the time of flight between nodes Ni and Nj. We assume that

tofi,j is unknown but it is bounded such that ∀i,j∈{1..m}: 0 < tofi,j ≤ tof. Hence, tof is an upper bound on

the time of flight. We assume that tof is finite but we make no assumptions on its actual value. However,

we assume the following: (i) nodes can “boot” at different times and when they boot, they do not have

synchronized clocks; (ii) when a node is transmitting it cannot receive anything; and (iii) the MAC

protocol can be represented as a set of timed automata, with potentially different automata on different

nodes.

- 5 -

N1 N2 N3

Fig. 1. A topology which illustrates the impossibility of collision-free medium access in the presence of unidirectional links.
N1 can transmit to N2 but N2 cannot transmit to N1. Analogously for N2 and N3. When N1 and N3 transmit there will be a
collision on node N2.

2.2. Impossibility

Let us now show that, under these assumptions, it is impossible to design a collision-free MAC

protocol when there are unidirectional links. Consider Figure 1. It illustrates a simple exemplifying

topology. For such topology and links characteristics, it is necessary that N1 does not transmit

simultaneously with N3, in order to guarantee that collisions will not occur. This requires that N1 can get

some information about the other nodes on whether there is an ongoing transmission on the other link.

But N1 cannot hear anything so the transmission from N1 may overlap with the transmission from N3, and

then N2 will not receive any of them. Hence, it is impossible to design a MAC protocol that is guaranteed

to be collision-free in the presence of unidirectional links. Even if a node knows the topology but it does

not know the time when other nodes will transmit then a collision can occur, and hence the above

mentioned impossibility also extends to the case where the topology is known to the MAC protocol.

Given the impossibility of collision-free medium access in the presence of unidirectional links we will

now design a solution: transmit each message many times such that at least one of the transmissions is

collision-free.

2.3. The main idea

For each message request of stream τi, the MAC protocol transmits the message several times. Each

one of them is called a replica. Of those replicas from message stream τi, let τi,1 denote the one that is

transmitted first. Analogously, let τi,2 denote the one that is transmitted second, and so on. The number of

replicas transmitted for each message of τi is nreplicas(τi), and the time between the start of the

- 6 -

τ1

τ2

τ3

τ4

6 16 16

8 18 8

10 20 10

12 12 12

time

Fig. 2. Transmission of replicas with a possible assignment of Δ:s for messages τ1, τ2, τ3, τ4 requested
to transmit simultaneously at time 0. As it can be seen, at least one replica is collision-free. It turns
out that for every possible combination of times of requests of τ1, τ2, τ3, τ4 this is true as well.

Message arrival Replica transmission

z

transmission of τi,j and the time between the start of the transmission of τi,(j+1) is denoted as Δi,j. To give

the intuition of the replication scheme, the remainder of this section assumes that each message stream

performs a single transmission request (later, in Section 3, this assumption will be removed).

Figure 2 illustrates these concepts for the case when all message streams request to transmit

simultaneously. We let τi,1 be transmitted immediately when τi is requested to be transmitted. We

assume that every replica requires the same time, 1 time unit, for transmission. For convenience, we

assume in this section (Section 2) that tof = 0 and this is known to the MAC protocol. In Section 5, we

will discuss a simple technique to extend the theory for tof > 0. Our goal is to ensure that of those

nreplicas(τi) replicas, the number of collision-free replicas of τi is at least ncollisionfree(τi). This should

hold for all nodes that can transmit.

We will now reason about how to select nreplicas(τi) and then select Δi,j. It is necessary to select

nreplicas(τi) ≥ m because otherwise there is a topology for which it is possible that all replicas of τi

collide. To see this, consider m nodes where one central node Nk has ingoing links from all other nodes;

one of these other nodes is node Ni. There is also a link from Nk to Ni. Let us now consider the case

- 7 -

where Ni broadcasts its replicas. Let Nl denote any other node than Nk and Ni. The first message

transmission of τl can happen at any time, and so it can collide with one of the replicas from τi.

Analogously, the first replica of another message τl can collide with another replica of τi. In addition, the

first replica from τk can occur any time too, so this first replica can be transmitted when τi sends a replica

to Nk. Then Nk will not hear the replica from τi. Hence, if τi transmits nreplicas(τi) < m replicas, it can

happen that none of them are received at node Nk. Therefore, nreplicas(τi) must be selected such that:

() ()ii freencollisionmnreplicas ττ +−≥ 1 .

Later in this section, we will select Δi,j such that at most one replica from a message of τi can collide

with a replica from a message of τj. With such an assignment of Δi,j, the assignment of nreplicas(τi) is as

follows:

{ } () ()ii freencollisionmnreplicasmi ττ +−=∈∀ 1:,..,1 (1)

and this causes at least one replica from each message to be transmitted before its deadline.

Having selected nreplicas(τi) = m – 1 + ncollisionfree(τi), the issue of selecting Δi,j will now be

considered. Clearly, since a node i transmits nreplicas(τi) replicas, it is necessary to specify

nreplicas(τi) – 1 values of Δi,j for node i. Consider the time span starting from when an application

requests to transmit on a node until the last replica has finished its transmission on that node. The

maximum duration of this time span over all nodes is z (illustrated in Figure 2). An intuitive objective is

to minimize z, since it corresponds to the maximum response-time of a message. This can be formulated

as a mixed linear/quadratic optimization problem. Therefore, the objective is to minimize z subject to

{ }
()

{ } (){ } jii

nreplicas

j
ji

nreplicasjmi

zmi
i

,

1

1
,

0:1,..,1,,..,1

1:,..,1

Δ≤−∈∀∈∀

≤+Δ∈∀ ∑
−

=

τ

τ

 (2)

and (1), and subject to an additional third constraint that will be described now. Let u and v denote the

indices of two nodes. Hence u and v belong to the set {1..m}. Let ju and jv denote the indices of the first

replica of the sequence of replicas transmitted in nodes Nu and Nv, respectively. Hence ju belongs to

- 8 -

{1..nreplicas(τu)–1} and jv belongs to {1..nreplicas(τv)–1}. Let lu and lv denote the lengths of these

subsequences in terms of the number of replicas. lu should be selected such that

ju + (lu - 1) ≤ nreplicas(τu) – 1. Analogous for lv. Hence lu belongs to {1.. nreplicas(τu) – ju} and lv belongs

to {1.. nreplicas(τv) – jv}. We say that a combination of u, v, ju, jv, lu, lv is valid if: (i) these 6 variables are

within their ranges; and (ii) u ≠ v ∧ (ju ≠ jv ∨ lu ≠ lv). For every valid combination of u, v, ju, jv, lu, lv, the

optimization problem must respect the following constraint:

2

2
1

,

1

, 2≥⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Δ ∑∑

−+

=

−+

=

vv

v

uu

u

lj

jj
jv

lj

jj
ju

 (3)

Intuitively, (3) states that there is no sum of consecutive Δ:s on node u which is equal to a consecutive

sum of Δ:s on node v. In addition, the difference is larger than 2; this implies that it is enough to be sure

that there is no collision. (To understand why the difference must be 2, consider the following system:

m = 2, nreplicas(τ1) = 2 and nreplicas(τ2) = 2 and Δ1,1 = 2 and Δ2,1 = 3.98, and τ1 arrives at time 0.99 and

τ2 arrives at time 0. Then the first replicas of τ1 and τ2 will collide, and the second replicas of τ1 and τ2

will collide as well. One can see that the sum of Δ:s must differ by the duration of two.).

Therefore, (3) states that at most one replica from node u can collide with a replica from node v.

Hence, of those nreplicas(τu) replicas sent from node u, at most m – 1 of them can collide. Naturally, this

permits stating Theorem 1 below.

Theorem 1. If the differences between transmission start times of replicas are selected according

(1)-(3), then it holds that: (i) for every node i, at least ncollisionfree(τi) replicas do not collide; and (ii)

the time from when an application requests to transmit on node i until the last replica is transmitted on

node i is at most z.

Proof: Follows from the discussion above. �

We will now illustrate the use of (1)-(3) in Example 1.

- 9 -

Example 1. Consider m = 4 and ∀i∈{1..m}: ncollisionfree(τi) = 1 to be solved using (1)-(3). The

solution that is obtained is as follows:

121212
102010
8188

16166

3,42,41,4

3,32,31,3

3,22,21,2

3,12,11,1

=Δ=Δ=Δ
=Δ=Δ=Δ
=Δ=Δ=Δ

=Δ=Δ=Δ

This is illustrated in Figure 2. �

It is easily perceived that the number of inequalities in (3) grows as O(m6). Hence, it is only possible

to solve small problems with this approach. (There were 232 constraints for m = 4 and 3411 constraints

for m = 6. We used a modeling tool (AMPL [12]) and a back-end solver (LOQO [13]), and with these

tools it was only possible to solve (1)-83) for m ≤ 6.) Many interesting systems are larger though. For

those systems the optimization problem phrased in (1)-(3) simply cannot be solved because the number

of inequalities in (3) is too large. For this reason, later on in this paper, another technique for selecting

Δ:s will be proposed and discussed.

3. Schedulability analysis

Since wireless sensor networks interact closely with their surrounding physical environment, it is

often necessary to guarantee that a collision-free message reaches its destination before a pre-specified

deadline. This requires that the waiting time of a message of a single hop can be bounded and analyzed at

design time. Such an analysis was performed in [14], but for an abstract MAC protocol. This section

discusses how the technique with message replication described earlier can be used to guarantee that

sporadic message streams meet their deadlines.

From Section 2 it results that the maximum time it takes from when a message requests to send until

the MAC protocol has transmitted a collision-free replica is z, if a message stream only makes a single

request. Based on this, it would be tempting to think that if ∀i∈{1..m}: z ≤ Di then all deadlines are met.

- 10 -

time

τ1

τ2

τ3

τ4

Fig. 3. Consider Δ:s that are selected based on the assumption a transmission request on a node occurs at most
once. If these Δ:s are used for sporadic message streams with T1 = T2 = T3 = T4 = z then a deadline miss can
occur. All replicas from τ4 collide and τ4 misses its deadline.

Unfortunately, this is false, as illustrated by Figure 3, even if T1 = D1 = T2 = D2 = … = Tm = Dm. A correct

schedulability analysis is that if ∀i∈{1..m}: z + max(Tj: τj ≠ τi) ≤ Di then all deadlines are met. It is

pessimistic however for cases where message streams have very different Ti. For this reason, a better

schedulability analysis technique is developed. It turns out that the development of such a schedulability

analysis is simplified by adding (carefully selected) constraints to the optimization problem (described in

Section 2) that finds Δ:s. Thus, Section 3.1 presents an alternative algorithm to assign Δ:s. While that

algorithm implies a slightly higher z, it makes the analysis possible. Based on these Δ:s, the

schedulability analysis formulation is then presented in Section 3.2. An algorithmic approach to assign

the number of replicas to nodes is presented in Section 3.3, and the Δ:s are computed. Finally, Section

3.4 discusses how the protocol and the analysis can be extended for the case where there are many

message streams assigned to a node.

3.1. Alternative algorithms to assign Δ:s

In the optimization problem phrased by (1)-(3) only constraints that were necessary to ensure that at

least one replica from a message is collision-free where added. But, by enforcing a certain structure on

- 11 -

Δi,j, it is possible to reduce the number of sums that (3) can generate, and this also makes finding out if a

sum in (3) causes a collision easier. Selecting

()1)(,3,2,1, ... −Δ==Δ=Δ=Δ
inreplicasiiii τ (4)

is an example of such a structure. It is advantageous because the number of sums of subsequences that

can be created does not grow very rapidly with nreplicas(τi). For this reason, the remainder of this

section assumes that (4) must be satisfied, and for convenience we let Δi denote Δi,j.

By rewriting (2) it results that z must satisfy the following condition:

{ } ()()
{ } i

ii

mi
znreplicasmi

Δ≤∈∀
≤+−×Δ∈∀

0:,..,1
11:,..,1 τ

 (5)

If the sums of two subsequences differ by one then a collision can occur. Therefore it is required that:

{ } 2:,..,1 ≥ΔΔ∈∀ ii andevenismi (6)

Let us now consider an arbitrary message from τu and another arbitrary message from τv. The number

of collisions between these messages is thus given by:

() 1
,

,
, +⎥

⎦

⎥
⎢
⎣

⎢
ΔΔ

=
vu

vu
vu lcm

L
coll (7)

where Lu,v = min(Δu × (nreplicas(τu) − 1), Δv × (nreplicas(τv) − 1)) assuming that u ≠ v. For u = v then it

results that collu,v = 0. Rewriting (1) yields:

() ()i

m

ivv
vii freencollisioncollnreplicas ττ +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

≠= ,1
,

 (8)

One can satisfy (5)-(8) with different choices of nreplicas(τi) and Δ:s. In order to simplify the

problem, the least number of replicas is privileged, and hence the following constraint must be added:

{ } { } 1:,,..,1,,..,1 , =≠∈∈∀ vicollvimvmi (9)

The objective is now to minimize z subject to (5)-(9). Then, applying (4) provides values for the Δ:s.

The following example (Example 2) illustrates this approach.

- 12 -

Example 2. Consider m = 4 and ∀i∈{1..m}: ncollisionfree(τi) = 1 to be solved using (5)-(9).

Applying (8) and (9) gives that nreplicas(τi) = 4. Then solving (5)-(9) permits obtaining the following

values:

()
()
()
() 414

410
48
42

44

33

22

11

==Δ
==Δ
==Δ
==Δ

τ
τ
τ
τ

nreplicas
nreplicas
nreplicas
nreplicas

The same Δ will be used for all replicas of a message by applying (4). Therefore, the following

solution will be obtained.

141414
101010
888
222

3,42,41,4

3,32,31,3

3,22,21,2

3,12,11,1

=Δ=Δ=Δ
=Δ=Δ=Δ
=Δ=Δ=Δ
=Δ=Δ=Δ

This is illustrated in Figure 4a. This solution can be compared with the solution in Example 1. One

aspect to note is that z becomes 7% larger as compared to its value in Example 1. �

With the additional constraints in this subsection, we are no longer constrained by m ≤ 6; we can

assign Δ:s to nodes even when m > 6 by simply enumerating solutions. However, the denominator in (7)

is highly nonlinear and non-differentiable, and so its is advisable to add more (carefully selected)

constraints on the Δ:s in order to find solutions when m is really large.

Observe (from (5) and the numerator of (7)) that one should try to assign small numbers to Δ:s. But

on the other hand, it can be seen (from the denominator of (7)) that one should assign Δ:s such that for a

pair Δu, Δv it holds that lcm(Δu, Δv) is large. Clearly these two requirements are contradictory. However,

if every pair Δu, Δv is assigned Δu = 2 × Au and Δv = 2 × Av where Au and Av are small integers and relative

prime, then lcm(Δu, Δv) may still be fairly large. Solving this when m is large is still computationally

expensive. For this reason, we will assume that Au and Av are prime numbers and there is no pair Au and

Av where Au = Av.

- 13 -

τ1

τ2

τ3

τ4

8 8 8

10 10 10

14 14 14

(a) Δ:s for all replicas of one message are the same.

(b) Δ:s for all replicas of one message are the same and they are prime numbers.

time

time

Fig. 4. An example where m = 4 and ∀i: nreplicas(τv) = 4. Figure 4a and 4b show different techniques of selecting Δ:s.

τ1

τ2

τ3

τ4

10 10 10

14 14 14

22 22 22

6 6 6

Let primes(j) be defined as the jth prime number. As an illustration of this definition, consider:

primes(1) = 2; primes(2) = 3; primes(3) = 5; primes(4) = 7; primes(5) = 11 and primes(6) = 13. Then, Δ:s

can be assigned as follows:

()12 −+×=Δ ikprimesi (10)

where k is a design parameter which controls the magnitude of the least prime numbers being used.

Observe that the “2” in (10) assures that (6) is true. Given this restriction, now there is only one free

variable k. Applying (10) results in the following optimization problem: minimize z subject to (10) and

k≤1 (11)

- 14 -

and (5), (7), (8) and (9). This can be solved by simply testing k = 1, 2, …, until all constraints are

satisfied. Example 3 illustrates this.

Example 3. Consider m = 4 and ∀i∈{1..m}: ncollisionfree(τi) = 1 to be solved using (10)-(11) and

(5), (7), (8) and (9). From (8) and (9) it results that ∀i∈{1..m}: nreplicas(τi) = 4. Trying k = 1 results

that: Δ1 = 4, Δ2 = 6, Δ3 = 10, Δ4 = 14. Unfortunately, with this choice, Δ1 = 4, Δ2 = 6 inserted in (7) gives

coll1,2 = 2, which violates (9). Hence, one can try k = 2. This results that Δ1 = 6, Δ2 = 10, Δ3 = 14, Δ4 = 22.

This satisfies all constraints, and so the solution is:

()
()
()
() 422

414
410
46

44

33

22

11

==Δ
==Δ
==Δ
==Δ

τ
τ
τ
τ

nreplicas
nreplicas
nreplicas
nreplicas

This is illustrated in Figure 4b. By comparing this solution with the solution in Example 1 it is

possible to observe that z becomes 63% larger. �

With this technique, we have obtained Δ:s for 2048 nodes. Figure 5 illustrates the magnitude of the

parameters that were obtained for m ranging from 2 up to 100. The following conclusions can be drawn.

First, clearly a higher k is needed when the number of nodes is high. This is natural because with more

nodes there are more possibilities for collisions between replicas. This increase in k causes Δ:s to

increase as the number of nodes increase. It can also be seen that z (the upper bound on the time span

starting when an application requests to transmit a message until at least one replica is transmitted

without collision) increases as m increases. There are two reasons for that: (i) nreplicas(τi) increase and

(ii) Δ:s values increase.

Overall it can be seen that the overhead is quite high. Unfortunately, the current state-of-the-art offers

no better solution. In applications with high reliability, the ultimate goal is to ensure that receivers

receive the messages that they should receive. There are two possible threats: (i) collisions and (ii) noise

- 15 -

Fig. 5. Illustration on how the parameters z and k vary as the number of computer nodes increases. The technique with
equal pauses between replicas of the same message and prime numbers is used.

0

20000

40000

60000

80000

100000

120000

140000

0 50 100

m

z

0

10

20

30

0 50 100

m

k

a) b)

that causes messages to be lost or corrupts bits leading to CRC errors. Although our protocol deals with

the first threat, it is desirable to deal with the latter as well. Forward error correcting codes are helpful for

the data bits but messages can still be lost due to frame synchronization errors. Regardless of the cause of

lost messages or corrupt messages, our scheme can be used to combat them; we can require that

ncollisionfree(τi) ≥ 2. Example 4 will study the impact of this in the overhead of our protocol.

Example 4. Consider m = 4 and ∀i∈{1..m}: ncollisionfree(τi) = 2 to be solved using (5), (7), (8) and

(9). Using (8) and (9) it results that nreplicas(τi) = 5. The same solution as the one obtained in Example 2

results, but now with z = 89. By increasing ncollisionfree(τi), the following parameters are

obtained (Table 1).

Table 1. Δ:s and z for Example 4

ncollisionfree(τi) Δ1 Δ2 Δ3 Δ4 z
3 10 14 22 26 131
4 10 14 22 26 157
5 14 22 26 34 239

Observe that z increases slowly with ncollisionfree(τi). �

Example 4 shows that although our MAC protocol has a fairly high overhead for

ncollisionfree(τi) = 1, the overhead increases (relatively) slowly as ncollisionfree(τi) grows.

- 16 -

3.2. Schedulability analysis formulation

In order to find out whether all deadlines are met, now we analyze how one message from a message

stream τi is affected by the other message streams. nreplicas(τi) must be sufficiently large; we choose the

smallest number which satisfies the constraint on the number of collision-free messages. Hence,

nreplicas(τi) should be selected as follows:

[)())(,,#)(iiiii freencollisionDrriduringcollisionsnreplicas ττ ++≥ (12)

#collisions during [ri,ri + Di) denotes a upper bound on the number of collisions that a message from

message stream τi can suffer from during the time interval of length Di. Let ri denote an arbitrary arrival

time of a message from message stream τi. The #collisions during [ri,ri+Di) can be computed as follows:

[)() [)∑
≠=

+=+
m

ivv
iiiviiii DrrcollisionsDrriduringcollisions

,1
, ,#,,# (13)

#collisionsi,v [ri,ri + Di) denotes an upper bound on the number of collisions from message stream v on a

message from message stream i during a time interval of length Di.

For computing #collisionsi,v [ri,ri + Di), the interval [ri,ri + Di) can be divided into subintervals. Let t0

denote the first time that τv requests to transmit after ri. This time interval [ri, t0) is called the head. Let t1

denote the largest number such that (t1 − t0) / Tv is an integer and t1 ≤ ri + Di. The time interval [t0, t1) is

called the body. Finally, the interval [t1, ri + Di) is called the tail.

Each of these intervals (head, body and tail) can contain a certain amount of collisions. Let x denote

the length of the head; that is, x = t0 − ri. Based on this, an upper bound on #collisionsi,v [ri,ri + Di) can be

computed as follows:

()
⎜
⎜

⎝

⎛
⎟
⎟
⎠

⎞
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
×⎥

⎦

⎥
⎢
⎣

⎢ −
−−+×⎥

⎦

⎥
⎢
⎣

⎢ −
+≤≤ v

v

i
ivivi

v

i
viDx T

T
xDxDcollbordercoll

T
xDxcollborder

i ,,,0max (14)

Equation (14) is still complex and will be simplified later on in this paper. Observe that this

expression (14) takes the maximum of all x in [0, Di] of an expression with three terms. The first term

corresponds to the number of collisions in the head, the second term corresponds to the number of

- 17 -

collisions in the body and the third term corresponds to the collisions in the tail. The term collu,v

represents an upper bound on the number of collisions every time τu and τv request to transmit. The term

collborderu,v(x) is similar to collu,v but the number of collisions is only counted during a time interval of

length x. Computing collu,v is similar (7), but now Du can be used to bound the time interval over which

collisions can occur. Hence, by adapting (7) to the context of sporadic message streams, collu,v is given

by:

()
() 1

,
,min ,

, +⎥
⎦

⎥
⎢
⎣

⎢
ΔΔ

=
vu

uvu
vu lcm

DL
coll (15)

where Lu,v = min(Δu × (nreplicas(τu) − 1), Δv × (nreplicas(τv) − 1)). Observe that collu,v ≠ collv,u.

Calculating collborderu,v(x) is very similar but now there is an additional limitation on the length of

the time interval during which collisions can occur. Adapting (15) gives:

() ()
() 1

,
,,min ,

, +⎥
⎦

⎥
⎢
⎣

⎢
ΔΔ

=
vu

uvu
vu lcm

xDL
xcollborder (16)

where Lu,v = min(Δu × (nreplicas(τu) − 1), Δv × (nreplicas(τv) − 1)).

Once again, observe that collborderu,v(x) ≠ collborderv,u(x).

With (15) and (16), it is possible to simplify (14). If x ≥ Tv then Tv can be subtracted from x until

x < Tv and this maintains or increases the number of collisions. Since 0 ≤ x < Tv, one can find upper

bounds for the first term in (14) and the sum of the other terms in (14). #collisionsi,v [ri,ri + Di) can then

be computed as follows:

[) () ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×⎥

⎦

⎥
⎢
⎣

⎢
−+×⎥

⎦

⎥
⎢
⎣

⎢
+=+ v

v

i
ivivi

v

i
vviiiivi T

T
DDcollbordercoll

T
DTcollborderDrrcollisions ,,,, ,# (17)

Transferring (5) to the sporadic model implies that the following must be satisfied:

{ } ()()
{ } i

iii

mi
Dnreplicasmi

Δ≤∈∀
≤+−×Δ∈∀

0:,..,1
11:,..,1 τ

 (18)

This finalizes the reasoning on the schedulability analysis.

- 18 -

3.3. Assigning number of replicas and sequences of Δ:s to message streams

We will now design the MAC protocol to satisfy the constraints (12)-(13) and (15-18). It can be seen

that (14)-(16) are highly non-linear and non-differentiable and so a heuristic will be designed.

First, an algorithm that selects nreplicas(τi) when Δ:s are known and fixed is developed. Then an

algorithm that finds the correct Δ:s and uses the previous algorithm as a subroutine will be designed.

§Δ:s are fixed. Consider the case when Δ:s are fixed and the goal is to find nreplicas(τi). The

technique employed to solve this is based on fixed-point iteration. Before doing so, some lemmas need to

be established. The proof of these lemmas is based on direct inspection of (12), (13) and (15-18).

Let nreplicas(τ1)*, nreplicas(τ2)*,…., nreplicas(τm)* denote a solution to (12), (13) and (15-18).

Let us consider a vector nreplicas(τ1), nreplicas(τ2),…., nreplicas(τm) such that

∀i∈{1..m}: 0 ≤ nreplicas(τi) ≤ nreplicas(τi)*.

Lemma 1. nreplicas(τ1), nreplicas(τ2),…., nreplicas(τm) is a solution to (13) and (15-18).

Observe that Lemma 1 does not say anything about whether (12) is satisfied or not.

Lemma 2. Consider the case ∀i { }m,..,1∈ : 0 ≤ nreplicas(τi) ≤ nreplicas(τi)*. If one makes the assignment

nreplicas(τi) ← right hand side (RHS) of (12) for any i then the resulting vector of nreplicas(τi) still satisfies

 ∀i { }m,..,1∈ : nreplicas(τi)≤ nreplicas(τi)*.

Lemma 2 can be generalized to the case where a subset is updated. Lemma 3 does that.

Lemma 3. Consider the case ∀i { }m,..,1∈ : 0 ≤ nreplicas(τi) ≤ nreplicas(τi)*. If one makes the assignment

nreplicas(τi) ← RHS of (12) for any subset of i:s, then the resulting vector of nreplicas(τi) still satisfies

 ∀i∈{1..m}: nreplicas(τi)≤ nreplicas(τi)*.

Lemma 1 gives a suggestion on where to find an initial solution, and Lemma 3 gives a suggestion on

how to iterate towards a solution. Based on this, Algorithm 1 (in Figure 6) is proposed. From Lemmas

1-3, the following theorem (Theorem 2) can be stated.

- 19 -

Algorithm 1: Assigning nreplicas(τi) to nodes.

1. assign ∀i∈{1..m}: nreplicas(τi)←2
2. while (18) is satisfied for all τi do
3. calculate the RHS from (13) and (15)-(17) and then calculate the RHS of (12)
4. if ∀i∈{1..m}: (12) is satisfied then
5. declare SUCCESS
6. else
7. for ∀i∈{1..m}: nreplicas(τi) such that (12) is not satisfied then for those i, do:
8. nreplicas(τi) ← RHS of (12) for that i
9. end for
10. end if
11. end while

Fig. 6. An algorithm for assigning nreplicas(τi) to nodes when the Δ:s are already assigned. This
algorithm is designed for the case when a node has a single sporadic message stream.

Theorem 2. Consider the case where Δ:s are fixed. If there is a solution to (12), (13) and (15-18) then

Algorithm 1 will declare success. If there is no solution to (12), (13) and (15-18) then Algorithm 1 will

declare failure.

Proof: Follows from Lemmas 1-3.

Although Algorithm 1 is useful, it requires the assignment of values to the Δ:s first. That will be

addressed below.

§Δ:s are not assigned yet. Consider now the case when Δ:s are not yet assigned values. Observe

(from (18)) that message streams with small Δ:s tend to be able to satisfy short Di.

The algorithm is called Algorithm 2 and it is described in Figure 7. It assumes message streams are

sorted already and the idea is similar to the one used in Algorithm 1.

In general, however, message streams are not sorted according to their deadlines. For this reason,

Algorithm 3, described in Figure 7 sorts messages streams and applies then Algorithm 2. The use the

Algorithm 3 is shown through Example 5.

Example 5. Consider m = 4 and ∀i∈{1..m}: ncollisionfree(τi) = 1 and the set of message streams as

shown in Table 2. It is noteworthy to see that this set of message streams cannot be guaranteed to meet

deadlines with optimal Δ:s and the schedulability test “if ∀i∈{1..m}: z + max(Tj: τj ≠ τi) ≤ Di then

- 20 -

Algorithm 2: Assigning Δ:s to nodes, assuming D1≤D2≤…≤Dm.

1. k ← 0
2. repeat
3. k ← k +1
4. assign Δ:s according to (10)
5. if there is an i that violates (18) when nreplicas(τi)=2 is inserted in (18) then
6. declare FAILURE
7. end if
8 assign nreplicas(τi) according to Algorithm 1.
9. until line 8 declared FAILURE
10. declare SUCCESS

Algorithm 3: Assigning Δ:s to nodes.

1. Sort message streams such that D1≤D2≤…≤Dm.
2. Run Algorithm 2.
3. Assign to node Ni: the Δi,k ∀k ∈{1.. nreplicas(τ1)}

Fig. 7. An algorithm for assigning Δ:s to nodes.

all deadlines are met”. Algorithm 3 will now be applied on this example.

Table 2. Message streams used in Example 5.

message streams Ti Di
τ1 35 35
τ2 92 92
τ3 184 184
τ4 550 550

First, Algorithm 3 sorts message streams according to their deadlines. It can be seen in Table 2 that

they are already sorted. Then Algorithm 2 is called and k is initialized to 0. k is incremented so k = 1 and

line 4 in Algorithm 2 provides Δ1 = 4, Δ2 = 6, Δ3 = 10, Δ4 = 14. Inserting nreplicas(τi) = 2 in (18) and

inserting the Δ:s gives the following tests:

()
()
()
() 55011214

18411210
921126
351124

≤+−×
≤+−×
≤+−×
≤+−×

It can be seen that all of these inequalities are true, and Algorithm 2 proceeds to line 8 and it executes

Algorithm 1. Line 1 in Algorithm 1 assigns nreplicas(τ1) = 2, nreplicas(τ2) = 2, nreplicas(τ3) = 2,

- 21 -

nreplicas(τ4) = 2. The inequalities of (18) are tested again and they are true. The execution of line 3 in

Algorithm 3 gives:

[)
[)
[)

[)
[)
[)

[)
[)
[)

[)
[)
[) 4,#

7,#
17,#

2,#
2,#
4,#

2,#
3,#
7,#

2,#
2,#
2,#

41443,4

4442,4

4441,4

2224,2

2223,2

2221,2

3334,3

3332,3

3331,3

1114,1

1113,1

1112,1

=+
=+

=+

=+
=+
=+

=+
=+
=+

=+
=+
=+

Drrcollisions
Drrcollisions

Drrcollisions

Drrcollisions
Drrcollisions
Drrcollisions

Drrcollisions
Drrcollisions
Drrcollisions

Drrcollisions
Drrcollisions
Drrcollisions

Combining these (using (13)) yields:

[)() [)()
[)() [)() 28,,4#8,,2#

12,,3#6,,1#

444222

333111

=+=+
=+=+

DrrduringcollisionsDrrduringcollisions
DrrduringcollisionsDrrduringcollisions

Applying this in (12) yields that:

1281182
1121162

+≥+≥
+≥+≥

must be tested, and it can be seen that all of them are false. Hence, Algorithm 1 proceeds to line 7 and

line 8, where it assigns: nreplicas(τ1) = 7; nreplicas(τ2) = 9; nreplicas(τ3) = 13 and nreplicas(τ4) = 29.

Algorithm 1 and Algorithm 2 proceed in the same way. Finally, it results in: nreplicas(τ1) = 9;

nreplicas(τ2) = 14; nreplicas(τ3) = 18 and nreplicas(τ4) = 33. This satisfies the deadlines. �

3.4. Many messages streams per node

Now, considering the case where each computer node has many message streams assigned to it, and

that every message stream can request to transmit a message.

This case can be simply dealt with by treating each message stream as if it was on its own node and

assign nreplicas(τi) and Δi, accordingly. If they are on their own nodes they will meet all deadlines.

Message streams should be assigned to the nodes where they should be and the number of collisions will

not be higher. Example 6 illustrates this.

- 22 -

Example 6. Consider 4 message streams with timing parameters as given by Table 2. Message stream

τ1 should be assigned to N1 and τ2 should be assigned to N2. But node N3 is special; it is assigned two

messages streams τ3 and τ4. The approach is considering 4 network nodes and 1 message stream on each

one of them. The following values can then be taken from the results in Example 5: nreplicas(τ1) = 9;

nreplicas(τ2) = 14; nreplicas(τ3) = 18 and nreplicas(τ4) = 33; and Δ1 = 4; Δ2 = 6; Δ3 = 10; Δ4 = 14. These

values can be used for the 4 message streams that are assigned to the 3 nodes. �

4. Implementation and Experiments

Having seen that the replication scheme can guarantee that ncollisionfree(τi) replicas are collision-free

in theory, we now turn to practice. We want to address the following hypotheses:

1. The replication scheme is easy to implement.

2. The number of lost or corrupted messages at the receiver is smaller when the replication

scheme in this paper is used, as compared to a replication scheme with random pauses. This

applies even if the random scheme transmits only a single replica per message.

3. The replication scheme guarantees that ncollisionfree(τi) replicas are indeed collision-free.

4. If a link is bidirectional then our replication scheme can be extended so that it still offers a

bounded number of collisions but it also has a low average-case overhead.

In order to test these hypotheses, we implement the replication protocol both on a real platform and

use simulation1. The following sections describe the implementation, experimental setup and results

obtained. But first we turn our attention to how the Δ:s for the experimental setup were determined.

4.1. Finding Near Optimal Δ:s

To test the hypotheses stated above, the network should be as loaded as possible (high utilization).

The way to achieve this would be to employ optimal Δ:s (the approach described in Section 2.3) because

1 Both implementations and all parameters used for the simulation runs can be downloaded from

http://www.hurray.isep.ipp.pt/hydra/

- 23 -

they minimize z, allowing Ti to be low and this causes the utilization to be high. However finding optimal

Δ:s for m > 6 is currently not possible, and therefore another technique to obtain Δ:s was developed. This

technique gives a near-optimal solution to (1)-(3).

The algorithm for doing that (Algorithm 4) is presented in Figure 8. The algorithm does not find Δ:s

directly; it finds sequences of integers and the goal is to find m sequences. One sequence is assigned to

each network node and each sequence contains (m − 1) positive even integers. Consider a node i, which

is assigned the sequence Si. Then Δi,k is assigned the kth number in sequence Si.

The algorithm works as follows. First, a “guess” on an upper bound on z is put forward and this guess is

denoted maxz (line 1). Then, sequences of numbers are generated (on lines 2-13). It is known that if the

sum of the numbers in the sequence exceeds maxz then such a sequence should not be used because it

cannot produce the set of sequences with the minimum z (assuming that z ≤ maxz). Hence, such a

sequence should not be considered further. Not all possible sequences are enumerated. This would be too

time-consuming. Instead those sequences that are likely to be useful are enumerated. It was previously

seen, in Section 3, that if Δ:s in a sequence are the same, then the number of unique sums that can be

generated is small. For this reason such sequences are considered (the variable sequences

contains all sequences that will be considered). However, it is desirable to obtain a z that is smaller than

the one obtained in Section 3.1. For this reason, different values in a sequence are allowed. However, to

ensure that the number of unique sums that can be generated do not increase too much, special care is

taken: (i) all numbers in a sequence should have a large common denominator and (ii) the sequence

should be symmetric in that the sequence should be the same if the order of the elements are reversed.

After generating those sequences that appear promising, a selection of a subset of them (lines 23-26) is

performed. Sequences S and S´ are said to collide if there is a subsequence of S and a subsequence of S´

such that the sums of the elements in the subsequences are equal. When sequences are selected, one must

ensure that for every pair S, S´ of selected sequences it holds that S and S´ do not collide. This is

- 24 -

Algorithm 4: The algorithm for finding near-optimal Δ:s

Input: m
Output: sequences of Δ:s
const NDELTAS = m-1
type sequence = record
 the_numbers : array[1..NDELTAS] of integer
 the_sums : set of integer
 n_conflict_with : integer
 endrecord
asequence : sequence
sequences : set of sequence initialized to ∅
selected_sequences : set of sequence initialized to ∅
 1. Guess an upper bound on z. It is denoted maxz
 2. for factor ← 2 to ⎡maxz /NDELTAS⎤ step 2 loop
 3. asequence.the_numbers ← < factor, factor, ..., factor >
 4. sequences ← sequences ∪ {asequence}
 5. for indent ← 1 to ⎣ NDELTAS/2 ⎦ loop
 6. for multiplier ← 2 to ⎣maxz /factor⎦ loop
 7. for k ← 1+indent to NDELTAS - indent loop
 8. asequence.the_numbers[k] ← asequence.the_numbers[k] × multiplier
 9. if sum of all numbers in asequence ≤ maxz then
10. sequences ← sequences ∪ {asequence}
11. endfor
12. endfor
13. endfor
14. for each sequence S in sequences do
15. S.the_sums ← ∅
16. for each subsequence S´ that can be created from S such that consecutive elements in S´ are
 also consecutive in S
17. S.the_sums ← S.the_sums ∪ {sum of all elements in S´}.
18. end for
19. endfor
20. for each sequence S in sequences do
21. S.n_conflict_with ← |{ S´ : (S´ ∈ sequences)∧((S.the_sums ∩ S´.the_sums) ≠ ∅) } |
22. endfor
23. for each sequence S in sequences in ascending order of n_conflict_with do
24. if there is no sequence S´ in selected_sequences such that (S.the_sums ∩ S´.the_sums ≠ ∅) then
25. selected_sequences ← selected_sequences ∪ {S}
26. endfor
27. return selected_sequences

Fig. 8. An algorithm for finding and assigning Δ:s.

checked on line 24. When sequences are considered for selection, they are considered in the reverse

order of how many collide with them.

4.2. Implementation and Experimental Setup

The replication protocol was implemented on the MicaZ platform [10], and this implementation was

dubbed HYDRA. MicaZ is a sensor network platform offering a low power microcontroller, 128 Kbytes

- 25 -

of program flash memory and an IEEE 802.15.4 compliant radio transceiver, capable of 250 kbps data

rate. The MicaZ supports running TinyOS [15], an open-source operating system designed for wireless

sensor networks. This platform was found to be attractive for the implementation of our experiments

because of some particularly relevant characteristics: (i) it allowed us to replace the MAC protocol; (ii)

the timers available where reasonably precise for our application; (iii) the radio transceiver makes

automatic CRC checks and inserts a flag indicating the result of this check along with the packet, and

(iv) the spread spectrum modulation used makes data frames resistant to noise and distortion. Hence,

collisions due to medium access are the main source of lost frames or corrupted frames.

The experimental application setup was composed of one receiving node and a number of sending

nodes. Efforts where made such that the experiments took place under a similar, noise-free, environment.

The sending nodes send messages with sequence numbers so that the receiving node can detect when a

message has been lost. Additionally, the receiver collected some other statistics, such as total number of

replicas and redundant replicas received (by redundant replicas we mean replicas for which a previous

replica of the same message has already been received). The time to transmit a replica is 928 us. So, we

let one time unit represent 1 ms to improve robustness against time of flight and clock inaccuracies.

First, to acquire the probability that a replica is not correctly received (this is due to noise or

distortion), we set up a scenario with one sending node (N1) and one receiving node (N2). Node N1

transmitted 2 replicas per message and N2 gathered statistics on the number of received replicas. We

obtained that the probability of a having a replica lost is approximately 0.002737%. If the events “a

replica is lost” were independent, we would expect that the probability that two consecutive replicas are

lost is 0.000027372. Hence we would expect the probability that a message was lost is 0.000027372 as

well. However, we observed a 0.00153% probability for messages loss; this indicates that errors are

correlated, which was expected.

After that, we ran experiments with different number of nodes, for three different MAC protocols:

(i) one where we use our scheme with deterministic Δ:s (HYDRA); (ii) another where we used a similar

- 26 -

Table 3. Parameters of experimental scenarios

MAC Protocol and Configuration
m Inter-arrival

time (ms) HYDRA
(ms)

RHYDRA
(ms)

RMAC
(ms)

2 [10,12] Δ1,1=2
Δ1,2=4 [1,9] [0,9]

3 [34,42]
Δ1,1=Δ1,2=6
Δ2,1=Δ2,2=2
Δ3,1=Δ3,2=8

[1,16] [0,33]

4 [86,107]

Δ1,1=Δ1,2=Δ1,3=10
Δ2,1=Δ2,2=Δ2,3=14
Δ3,1=Δ3,2=Δ3,3=8
Δ4,1=Δ4,2=Δ4,3=2

[1,28] [0,85]

5 [178,222]

Δ1,1=Δ1,2=Δ1,3=Δ1,4=22
Δ2,1=Δ2,2=Δ2,3=Δ2,4=14
Δ3,1=Δ3,2=Δ3,3=Δ3,4=10
Δ4,1=Δ4,2=Δ4,3=Δ4,4=18
Δ5,1=Δ5,2=Δ5,4=2; Δ5,3=74

[1,44] [1,177]

6 [262,327]

Δ1,1=Δ1,2=Δ1,3=Δ1,4=Δ1,5=26
Δ2,1=Δ2,2=Δ2,3=Δ2,4=Δ2,5=22
Δ3,1=Δ3,2=Δ3,3=Δ3,4=Δ3,5=14
Δ4,1=Δ4,2=Δ4,3=Δ4,4=Δ4,5=18
Δ5,1=Δ5,2=Δ5,5=2; Δ5,3=Δ5,4=58
Δ6,1=Δ6,2=Δ6,3=Δ6,4=Δ6,5=19

[1,52] [0,261]

7 [314,392]

Δ1,1=Δ1,2=Δ1,3=Δ1,4=Δ1,5=Δ1,6=26
Δ2,1=Δ2,2=Δ2,3=Δ2,4=Δ2,5=Δ2,6=22
Δ3,1=Δ3,2=Δ3,3=Δ3,4=Δ3,5=Δ3,6=14
Δ4,1=Δ4,2=Δ4,3=Δ4,4=Δ4,5=Δ4,6=18
Δ5,1=Δ5,2=Δ5,3=Δ5,5=Δ5,6=2; Δ5,4=142
Δ6,1=Δ6,2=Δ6,3=Δ6,4=Δ6,5=Δ6,6=16
Δ7,1=Δ7,2=Δ7,3=Δ7,4=Δ7,5=Δ7,6=10

[1,52] [0,313]

8 [534,667]

Δ1,1=Δ1,2=Δ1,3=Δ1,4=Δ1,5=Δ1,6=Δ1,7=38
Δ2,1=Δ2,2=Δ2,3=Δ2,4=Δ2,5=Δ2,6=Δ2,7=34
Δ3,1=Δ3,2=Δ3,3=Δ3,4=Δ3,5=Δ3,6=Δ3,7=26
Δ4,1=Δ4,2=Δ4,3=Δ4,4=Δ4,5=Δ4,6=Δ4,7=22
Δ5,1=Δ5,2=Δ5,3=Δ5,4=Δ5,5=Δ5,6=Δ5,7=32
Δ6,1=Δ6,2=Δ6,3=Δ6,4=Δ6,5=Δ6,6=Δ6,7=36
Δ7,1=Δ7,2=Δ7,3=Δ7,6=Δ7,7=2; Δ7,4=Δ7,5=120
Δ8,1=Δ8,2=Δ8,3=Δ8,4=Δ8,5=Δ8,6=Δ8,7=14

[1,76] [0,533]

scheme, but where the Δ:s were random variables within an interval between 1 ms and

(Ti − 1)/(nreplicas(τi) − 1) time units, which was named Random HYDRA (RHYDRA) and (iii) finally a

third MAC protocol where only one replica is sent at a random time within the interval [0, Ti − 1] time

units after the message was requested, which will be referred to as Random MAC (RMAC). The Δ:s

were obtained from the algorithm are described in Section 4.1. From these Δ:s, we derived z and Ti; the

application message periods in Table 3 are between Ti and Ti × 1.25. Table 3 also shows all the

- 27 -

0.0001%

0.0010%

0.0100%

0.1000%

1.0000%

10.0000%

2 4
m

m
es

sa
ge

 lo
ss

 p
ro

ba
bi

lit
y

HYDRA

RHYDRA

RMAC

Fig. 9. Message loss ratio of experiments with MicaZ platforms

parameters for the several experimental setups. Random times are represented as intervals and are all

uniformly distributed.

The experiments where performed until each node transmitted 100000 messages, for m = 2 and m = 4.

The resulting message loss rate is shown in Figure 9, which is presented in a logarithmic scale. By these

results, we can observe that HYDRA obtained a message loss rate always better to the replica loss rate

(0.002737%) previously obtained, indicating that noise was the cause for application message loss.

Performing statistically significant experiments with the actual implementations was very time

consuming. Therefore, in order to test our protocol further, a simulation model for the protocol in

OMNeT++ [16] was implemented. With this model we study the message loss ratio for different numbers

of nodes with HYDRA, RHYDRA and RMAC. The parameters of the simulation experimental setup are

given in Table 3 as well. The simulator assumes that replicas cannot get lost or corrupted due to noise,

but it does model collisions which is the only source of lost messages.

All simulations were executed for a length of 10 simulated hours. For simulations involving random

numbers generation, several independent runs were executed to verify the statistical validity of the

results. The results of the simulations are given in Figure 10 with respective error bars which are mostly

not visible due to the small variation found throughout the simulation runs. Observe that the application

message loss for the scheme using deterministic Δ:s is always zero. This is expected as the simulation

only models collisions, no noise in transmission was introduced, whereas the other schemes suffer from

application message loss.

- 28 -

0% 0% 0% 0% 0% 0% 0%

8.4336%

1.5070%

0.1647%
0.0540%

0.0029%
0.0015%

0.0001%

16.5021%
9.4810% 5.6374% 3.6505% 3.1127% 3.1049% 2.1439%

0.0000%

0.0001%

0.0010%

0.0100%

0.1000%

1.0000%

10.0000%

100.0000%

2 3 4 5 6 7 8
m

m
es

sa
ge

 lo
ss

 p
ro

ba
bi

lit
y

HYDRA

RHYDRA

RMAC

Fig. 10. Message loss ratio in simulation

4.3. Support of Hypotheses

§Hypothesis 1. In order to test Hypothesis 1 the time required to implement HYDRA was measured.

We spent approximately 7 days on implementing the protocol and running experiments. Almost a third

of this time was spend getting familiar with the platform details. The time for coding the protocol was

less than a day and we encountered no relevant bugs that were related to the implementation of the

protocol. We did however encountered and fixed some bugs related to the platform. This suggests that

Hypothesis 1 withstood our test.

§Hypothesis 2. The experiments presented in Section 4.2. corroborate Hypothesis 2.

§Hypothesis 3. Testing Hypothesis 3 is difficult because it is difficult to know if a lost frame is due to

a collision or due to noise/distortion. Corrupt CRC may be because of noise or it may be because of

collisions. Based on the experiments with the actual implementation of HYDRA in Section 4.2, it results

that the number of lost messages is less than the probability of a single message with a single sender

being lost; this corroborates our hypothesis that the implementation of our protocol indeed guarantees

that ncollisionfree(τi) replicas are collision-free. Furthermore, we have run simulations during a period of

100 simulated hours for the scheme using deterministic Δ:s for 2 ≤ m ≤ 8 and found that no application

messages were lost during these simulation runs. This suggests that Hypothesis 3 withstood our test.

§Hypothesis 4. In order to test Hypothesis 4, we considered the experiments used to test Hypothesis 3

- 29 -

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1 2 3 4 5 6 7 8

number of replicas until success

fr
eq

ue
nc

y

a)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

2 3 4 5 6 7 8

m

re
du

nd
an

t r
ep

lic
as

b)

Fig. 11. The frequency of the number of necessary replicas and variation of the number of redundant replicas with m.

and acquired both the frequency of the number of replicas necessary until the first replica is transmitted

without collision (Figure 11a) and the number of redundant replicas for 2 ≤ m ≤ 8 (Figure 11b). Observe,

in Figure 11b, that for the case with m = 8 we obtain that approximately 84% of the first replicas of a

message are collision-free. Hence, if most (but not all) links are bidirectional and we would have used a

scheme where the receiver sends an acknowledgement when it receives the first successful replica then in

approximately 84% of the cases the sender Ns only needs to send one replica. Hence, in 84% of the cases,

Ns can send 7 non real-time messages instead of the replicas that Ns would normally send. This

discussion supports, Hypothesis 4.

In order for the acknowledgement scheme described above to be efficient, it is necessary that the time

required to send acknowledgements is negligible. Nonetheless, it could easily been the case by using

longer packets (say 1500 bytes) for data and short packets (say 20 bytes) for the acknowledgements. But

unfortunately this is not supported by our experimental platform so we did not implement it.

5. Discussion and Previous Work

Bidirectional links are useful for MAC and routing protocols. Let us categorize a MAC protocol

based on whether it can suffer from collisions. If it can suffer from collisions then a sender typically

retransmits data packets until it receives an acknowledgement from the intended receiver. Typically the

data and the acknowledgement are transmitted on the same link, and so this requires bidirectional links.

This is exemplified by ALOHA [17] and some CSMA/CA protocols. MAC protocols that are collision-

- 30 -

free typically rely on that senders receive feedback from the intended receiver. Some protocols, such as

MACA [18] do this using an RTS/CTS dialog before the data packet is sent. In other protocols, a

receiver sends a busy tone when it receives a packet and other senders can hear thus avoiding the

collision. Common to all these MAC protocols is that they depend on bidirectional links. Routing

algorithms also typically assume that links are bidirectional, being one notable exception the Dynamic

Source Routing (DSR) [19]. We can conclude that the current communication protocols are heavily

dependent on bidirectional links.

Unfortunately, unidirectional links are not rare and they are caused by a variety of reasons such as:

(i) differences in antenna and transceivers even from the same type of devices; (ii) differences in the

voltage levels due to different amounts of stored energy in the battery; (iii) different properties of the

medium in different directions (anisotropic medium) and (iv) different interferences from neighboring

nodes.

Given that protocol stacks tend to be implemented based on the assumption that unidirectional links

do not exist, three techniques have been used to "hide" the unidirectional links: (i) tunneling; (ii)

blacklisting and (iii) transmission power increase. If a link from node u to v is unidirectional, the

tunneling approach attempts to find a path from v to u and give higher level protocols the illusion of a

link from v to u. In order to achieve this, some routing functionality has to be performed at the lower

layers of the protocol stack [20]. Packets sent across the tunnel have larger delays because they have to

cross several hops. This is not too important though, because often the tunnel is used only for

acknowledgements to packets that were sent across the unidirectional link. It is important however to

avoid the ACK explosion [21]. Consider a unidirectional link from node Nu to node Nv. Consider also that

there is a path from Nv to Nu. A data message has been sent across the link Nu to Nv and now the node Nv

should send an ACK across the path back to Nu. However, the path from Nv to Nu contains a

unidirectional link too. This link is from node Nx to Ny. When a packet has crossed the hop from Nx to Ny,

node Ny should send an ACK to Nx. In order to do this, it may have to find a path to Nx. It is possible that

- 31 -

the path from Ny to Nx uses the link from Nu to Nv. This may generate an ACK from Nu to Nv and this

process continues forever.

The technique of blacklisting detects unidirectional links when sending data messages, and does not

use them in the future. The technique "hello" is similar but here “hello” messages are exchanged so a

node i knows about the existence of a neighbor and whether they can hear i. This exchange is periodic

and occurs regardless of whether the nodes are involved in routing data traffic or not. These techniques

are sometimes called ignoring [22] or check symmetry [1]. Yet another technique to ignore unidirectional

links is to treat it as a fault. This technique has been applied in conjunction with Ad-hoc On-Demand

Distance Vector Routing (AODV) and it works as follows. When a source node attempts to find a route

to the destination, it floods the network with Route-Request (RREQ) packets. In the normal AODV,

when RREQ packet reaches a node which knows a route to the destination, this node sends Route Reply

(RREP) back on the same paths as the RREQ was sent on. With the normal AODV, RREP would fail on

a unidirectional links but instead this technique attempts to find a new path back to the source. When it

finds a node with RREQ it knows a route back to the source node [23]. A similar scheme was proposed

in [1] called Bidirectional flooding. Another technique (which we call “transmission power increase”)

lets a downstream node of a unidirectional link to temporarily increase its power for sending responses

such as acknowledgements and clear-to-send [24]. This technique is based on the sender to piggyback its

geographical position obtained by GPS and the receiver should use this information to calculate the

distance, which in turn is used to know how much the transmission power should be increased. We think

the idea of increasing transmission power is interesting but in [24] the authors do neither give any details

on how this increase transmission power is computed nor state the assumed path loss. Common to these

techniques is that they require no or minimal changes to routing protocols.

Several routing algorithms have been proposed for unidirectional links. A common challenge that

faces routing with unidirectional links is knowledge asymmetry; that is, if a link from u to v is

unidirectional, only v can detect the existence of the link (by hearing a broadcast from u) but u is the one

- 32 -

that will use the knowledge of the link for routing purposes. One technique builds on distance vector.

The classic distance vector algorithm maintains a vector at each node and this vector stores the hop count

to every other node Ni and the next node that should be used for forwarding to this node Ni (sometimes a

sequence number is added too; it is used for updates).

Consider a node Nu with a neighbor Nv. Node Nv knows a route to node Nw. The number of hops from

Nu to Nw is no larger than the number of hops from Nv to Nw plus one. If the link Nu to Nv is bidirectional

this fact can be easily exploited in the design of a routing protocol because the length of the route Nv to

Nw can simply be communicated over one hop to Nu. However, if the link Nu to Nv is unidirectional this is

more challenging.

One extension of distance vector [22] however stores all distance vectors of all nodes in the network

(hence it requires O(m2) storage). Another extension [25] sends information "downstream" until every

node knows a circuit to itself. The node selects the shortest circuit and informs its upstream neighbors,

and then the standard distance vector algorithm is used. Other techniques [20, 26] and [27] disseminate

link state information across a limited number of hops. This is based on the assumption that the reverse

path of a unidirectional link is short and this assumption has been supported empirically [20].

Pure link-state routing disseminates the topology information to all nodes and then the routes are

calculated. This avoids the problem of asymmetric information (mentioned earlier) but the overhead of

this scheme is large already.

In order to reduce the routing cost in networks with unidirectional links, it has been suggested that a

subset of nodes should be selected and only they should maintain routing information about all nodes in

the network. It is required that all nodes which are not in this subset have a link from the subset and a

link to the subset. Algorithms for selecting this subset of nodes have been proposed and they have very

low overhead [28].

It has often been pointed out that unidirectional links should be avoided altogether because existing

MAC protocols cannot deal with them (as we already mentioned MACA, which was the basis for the

- 33 -

RTS/CTS dialogue in IEEE 802.11 relies on bidirectional links). But recently, this view has been

challenged. For example [29] mentioned that their routing protocol works well for multicast and that it

could be used for unicast routing as well – if there was a MAC protocol for unidirectional links.

To the best of our knowledge, the only previous MAC protocols that work for unidirectional links

require synchronized clocks and it suffers from (an unbounded number of) collisions [9].

The technique in [9] addresses medium access control on unidirectional links. The technique

generates pseudo-random numbers on each node and these numbers act as priorities. Every node knows

the seed of the pseudo-random numbers on other nodes and hence a node knows if it has a higher priority

than its neighbors. If it has then it is the winner; otherwise it is not a winner. If it is a winner then it

transmits in that time slot. Every new time slot, a new pseudo-random number is generated. This

protocol is designed to deal with hidden nodes in the following way: if a node Ni has a neighbor with

higher priority two hops way then node Ni simply does not transmit. This scheme is collision-free but it

depends on synchronized clocks and the MAC protocol does not take deadlines into account in its

decisions. Our protocol does not have those shortcomings.

One of our schemes to determine Δ:s depends on the use of prime numbers. This has been observed in

nature, where cicadas sleep and periodically wakes up every 7, 9 or 11 years. It has been explained that

this minimizes “collisions” with predatory animals with other periods [30].

We have also borrowed ideas from real-time scheduling theory and in particular: static-priority

preemptive scheduling of uniprocessor system. Our concept of message stream is equivalent to a task in

processor scheduling theory. Algorithm 3, the algorithm that assigns small Δ:s to message streams with a

small Di is similar to the deadline-monotonic priority-assignment scheme [31]. Our equation for

computing the number of collisions has similarities to a sufficient schedulability tests [32] and our

iterative procedure (in Algorithm 2) is similar to the response-time calculation [33]. The argument for

correctness of the iterative procedure (in Algorithm 2) is similar to the argument [34] why the iterative

- 34 -

Fig. 12. An example of how the performance of our MAC protocol can be significantly improved if the topology is
known. If we assume the topology is unknown, then we must assume that all 13 nodes can transmit simultaneously and
can collide. This gives us (using Section 3) Δ1 = 22, Δ2=26, Δ3 = 34, Δ4 = 38, Δ5 = 46, Δ6 = 58, Δ7 = 62,
Δ8 = 74, Δ9 = 82, Δ10 = 86, Δ11 = 94, Δ12 = 106, Δ13 = 118 and z = 1417. The interference graph is shown in (b). We
observe that every node has at most 4 links. This gives us m = 5, and we calculate the following Δ:s: 6, 10, 14, 22, 26.
Now we can assign Δ1 = 6, Δ2 = 10, Δ3 = 14, Δ4 = 22, Δ5 = 26, Δ6 = 6, Δ7 = 10, Δ8 = 14, Δ9 = 22, Δ10 = 26, Δ11 = 6,
Δ12 = 10, Δ13 = 14. Observe that we reuse Δ:s and this does not cause any collisions. In this way, we obtain z = 105,
which is significantly lower.

(a) Connectivity graph.

(b) Interference graph.

N1 N3 N5 N7 N9 N11 N13 N2 N4 N6 N8 N10 N12

N1 N3 N5 N7 N9 N11 N13 N2 N4 N6 N8 N10 N12

response-time calculation finds a solution to the equation if and only if there is a solution. There is a

difference however in that the equation used in the response-time calculation [33] is a necessary and

sufficient schedulability test; whereas the inequalities that we use in our schedulability test is only

sufficient. For this reason, our schedulability test is only sufficient; it is not necessary.

In the theory we assumed that tof = 0. We can easily extend the theory for the case when tof > 0. We

can do it as follows. Select the time unit such that (1 − tof) is the time it takes to transmit a replica.

Hence, if tof = 1μs and the time to transmit a replica is 1 ms, then let 1.001 ms denote a time unit.

In the paper, we assumed topology is not known. However, if the topology is known we can perform

significantly better (assuming that we also know the interference graph). Every node in the connectivity

graph also exists in the interference graph. The links in the interference graph are non-directed. The links

in the interference graph cannot simply be computed from the connectivity graph. However, there are

some links in the interference graph that are necessary. Consider two nodes in the connectivity graph Ni

and Nj. If there is a link from Ni to Nj or from Nj to Ni then there is a link between Ni and Nj in the

interference graph as well. If there is a node Nk with a link from Ni to Nk and a link from Nj to Nk then

there is a link between Ni and Nj in the interference graph as well. Figure 12 illustrates this. In general

- 35 -

this requires solving the problem Achromatic Number which is known to be NP-hard (see page 191

in [35]) but several approximation algorithms are available. We can see from Figure 12 that the z is

unaffected by the size of the network; only the number of neighbors 2-hops away matters. Hence, this

approach is efficient in large networks if they are not dense.

6. Conclusions and Future Work

We have presented the first MAC protocol that can guarantee that the time from when an application

requests to transmit until the message is transmitted is bounded even in the presence of unidirectional

links and without using synchronized clocks or taking advantage of topology knowledge. A

schedulability analysis technique was proposed for sporadic message streams. We implemented the

protocol and observed (i) the effort required to implement it is small, (ii) by observing the number of lost

messages we found that the implementation guaranteed that at least one replica of a message is

collision-free and (iii) the number of lost messages at the receiver is significantly lower using our

protocol than a replication scheme with random delays between replicas. We also run a scheme with

random time for transmission with only one replica; this should perform similar to ALOHA [17], and

found that our protocol performed significantly better.

We consider for future work (i) the development of even better techniques for computing Δ:s and

(ii) schedulability analysis techniques with probabilistic guarantees but with fewer replicas and hence

lower overhead.

References
[1] G. Zhou, T. He, S. Krishnamurthy, and J. Stankovic, "Impact of Radio Irregularities on Wireless

Sensor Networks," presented at International Conference on Mobile Systems, Applications, and
Services, 2004.

[2] A. Woo, T. Tong, and D. Culler, "Taming the underlying challenges of reliable multihop routing in
sensor networks," presented at Conference On Embedded Networked Sensor System, Los Angeles,
California, USA, 2003.

[3] J. Zhao and R. Govindan, "Understanding packet delivery performance in dense wireless sensor
networks," presented at Conference On Embedded Networked Sensor Systems, Los Angeles,
California, USA, 2003.

- 36 -

[4] A. Cerpa, N. Busek, and D. Estrin, "SCALE: A Tool for Simple Connectivity Assessment in Lossy
Environments," UCLA Center for Embedded Network Sensing (CENS), Technical report 0021
September 2003.

[5] D. Ganesan, D. Estrin, A. Woo, A. Culler, B. Krishnamachari, and B. Wicker, "Complex Behavior
at Scale: An Experimental Study of Low-Power Wireless Sensor Networks," 2002.

[6] D. Kotz, C. Newport, R. Gray, J. Liu, Y. Yuan, and C. Ellliot, "Experimental Evaluation of
Wireless Simulation Assumptions," presented at International Workshop on Modelling Analysis
and Simulation of Wireless and Mobile Systems, 2004.

[7] A. Cerpa, J. L. Wong, L. Kuang, M. Potkonjak, and D. Estrin, "Statistical Model of Lossy Links in
Wireless Sensor Networks," presented at ACM/IEEE Fourth International Conference on
Information Processing in Sensor Networks (IPSN'05), Los Angeles, California, USA, 2005.

[8] G. Zhou, T. He, S. Krishnamurthy, and J. A. Stankovic, "Models and Solutions for Radio
Irregularity in Wireless Sensor Networks," ACM Transactions on Sensor Networks, 2006.

[9] L. Bao and J. J. Garcia-Luna-Aceves, "Channel access scheduling in Ad Hoc networks with
unidirectional links," presented at Workshop on Discrete Algothrithms and Methods for MOBILE
Computing and Communications, Rome, Italy, 2001.

[10] Crossbow, "MICAz - Wireless Measurement System Product Datasheet," 2005.

[11] A. Mok, "Fundamental Design Problems of Distributed Systems for the Hard Real-Time
Environment," in Electrical Engineering and Computer Science. Cambridge, Mass.: Massachusetts
Institute of Technology, 1983.

[12] "AMPL, www.ampl.com."

[13] "LOQO,http://www.princeton.edu/~rvdb/."

[14] T. F. Abdelzaher, S. Prabh, and R. Kiran, "On Real-Time Capacity Limits of Multihop Wireless
Sensor Networks," presented at IEEE International Real-Time Systems Symposium, Lisbon,
Portugal, 2004.

[15] J. Hill, "System Architecture for Wireless Sensor Networks," in Computer Science Department:
University of California, Berkeley, 2003.

[16] A. Varga, "OMNeT++ Discrete Event Simulation System," Tech. University of Budapest,
Budapest, User Manual; June, 15th 2003.

[17] N. Abrahamson, "The ALOHA system - another alternative for computer communications,"
presented at 1970 fall joint computer communications, AFIPS Conference Proceedings, Montvale,
1970.

[18] P. Karn, "MACA - A New Channel Access Method for Packet Radio," presented at ARRL/CRRL
Amateur Radio 9th Computer Networking Conference, 1990.

[19] D. B. Johnson and D. A. Maltz, "Dynamic Source Routing in Ad Hoc Wireless Networks," in
Mobile Computing, T. Imielinski and H. Korth, Eds.: Kluwer Academic Publishers, 1996.

[20] V. Ramasubramanian, R. Chandra, and D. Mossé, "Providing a Bidirectional Abstraction for
Unidirectional Ad Hoc Networks," presented at IEEE INFOCOM, New York NY, 2002.

[21] S. Nesargi and R. Prakash, "A Tunneling Approach to Routing with Unidirectional Links in Mobile
Ad-Hoc Networks," presented at Proceedings of the IEEE International Conference on Computer
Communications and Networks (ICCCN), Las Vegas, 2000.

- 37 -

[22] R. Prakash, "A routing algorithm for wireless ad hoc networks with unidirectional links," Wireless
Networks, vol. 7, pp. 617 - 625, 2001.

[23] M. K. Marina and S. R. Das, "Routing performance in the presence of unidirectional links in
multihop wireless networks," presented at Proceedings of the 3rd ACM international symposium on
Mobile ad hoc networking & computing, Lausanne, Switzerland, 2002.

[24] D. Kim, C.-K. Toh, and Y. Choi, "GAHA and GAPA : Two Link-level Approaches for Supporting
Link Asymmetry in Mobile Ad Hoc Networks," IEICE Transaction on Communication, vol. E-86B,
pp. 1297-1306, 2003.

[25] M. Gerla, L. Kleinrock, and Y. Afek, "A Distributed Routing Algorithm for Unidirectional
Networks.," presented at Proceedings of IEEE GLOBECOM, 1983.

[26] L. Bao and J. J. Garcia-Luna-Aceves, "Unidirectional Link-State Routing with Propagation
Control," presented at Proceedings of IEEE Mobile Multimedia Communications (MoMuC),
Tokyo, Japan, 2000.

[27] T. Ernst, "Dynamic Routing in Networks with Unidirectional Links," in Sophia Antipolis: INRIA,
1997.

[28] J. Wu and H. Li, "Domination and Its Applications in Ad Hoc Wireless Networks with
Unidirectional Links," presented at Proceedings of the 2000 International Conference on Parallel
Processing, Toronto, Ontario, Canada, 2000.

[29] M. Gerla, L. Y.-Z., J.-S. Park, and Y. Yi, "On Demand Multicast Routing with Unidirectional
Links," presented at Proceeding of IEEE Wireless Communications & Networking Conference
(WCNC), New Orleans, LA, USA., 2005.

[30] E. Goles, O. Schulz, and M. Markus, "Prime number selection of cycles in a predator-prey mode,"
Complexity, vol. 6, pp. 33 - 38, 2001.

[31] J. Leung and J. Whitehead, "On the Complexity of Fixed-priority Scheduling of Periodic Real-Time
Tasks," Performance Evaluation, Elsevier Science, vol. 22, pp. 237-250, 1982.

[32] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings, "Hard Real-Time Scheduling: The
Deadline-Monotonic Approach," presented at Proceedings 8th IEEE Workshop on Real-Time
Operating Systems and Software, 1991.

[33] M. Joseph and P. Pandya, "Finding Response Times in a Real-Time System," The Computer
Journal, British Computer Society, vol. 29, pp. 390-395, 1986.

[34] M. Sjödin and H. Hansson, "Improved Response-Time Analysis Calculations," presented at Real-
Time Systems Symposium, Madrid, Spain., 1998.

[35] M. R. Garey and D. S. Johnson, Computers and Intractability A guide to the Theory of NP-
Completeness New York: W. H. Freeman and Company, 1979.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings to create PDF documents suitable for IEEE Xplore. Created 15 December 2003.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

