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Abstract 
Wireless sensor networks (WSNs) perform collaborative processing and communication of sensor readings. 
The sensor readings are valid only during a certain time interval and hence it is necessary that a message 
reaches its destination node before a pre-specified deadline. Collaborative processing mandates that the 
network be connected whenever radio conditions permits so. This may require that a link from sensor node A 
to sensor node B is used although there is no link from B to A. Such links are called unidirectional. 
We study medium access in wireless sensor networks where links may be unidirectional and messages have 
timing requirements. Three results are presented. First, we present a medium access control (MAC) protocol 
which replicates a message with carefully selected pauses between replicas, and in this way it guarantees that 
for every message at least one replica of that message is transmitted without collision. The protocol ensures 
this with no knowledge of the network topology and it requires neither synchronized clocks nor carrier sensing 
capabilities. Second, we propose schedulability analysis techniques for the protocol. Third, we implement the 
protocol and show experimentally that it reduces the number of lost messages (and deadline misses) 
significantly as compared to schemes with pauses of random duration between replicas. We believe these 
results are significant because (i) this protocol is the only one that supports schedulability analysis and is 
designed for unidirectional links and (ii) of all MAC protocols in the literature that support schedulability 
analysis, our protocol is the one that makes the least assumptions. 
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Abstract 

Wireless sensor networks (WSNs) perform collaborative processing and communication of sensor 

readings. The sensor readings are valid only during a certain time interval and hence it is necessary 

that a message reaches its destination node before a pre-specified deadline. Collaborative processing 

mandates that the network be connected whenever radio conditions permits so. This may require that 

a link from sensor node A to sensor node B is used although there is no link from B to A. Such links 

are called unidirectional. 

We study medium access in wireless sensor networks where links may be unidirectional and 

messages have timing requirements. Three results are presented. First, we present a medium access 

control (MAC) protocol which replicates a message with carefully selected pauses between replicas, 

and in this way it guarantees that for every message at least one replica of that message is 

transmitted without collision. The protocol ensures this with no knowledge of the network topology 

and it requires neither synchronized clocks nor carrier sensing capabilities. Second, we propose 

schedulability analysis techniques for the protocol. Third, we implement the protocol and show 

experimentally that it reduces the number of lost messages (and deadline misses) significantly as 

compared to schemes with pauses of random duration between replicas. We believe these results are 

significant because (i) this protocol is the only one that supports schedulability analysis and is 

designed for unidirectional links and (ii) of all MAC protocols in the literature that support 

schedulability analysis, our protocol is the one that makes the least assumptions. 

1. Introduction 

A significant number of wireless sensor network applications involve periodic transmission of sensor 

data and notification of important sporadic events, and these messages must be guaranteed to reach their 

destination before a pre-specified deadline. Sensor nodes self-organize and perform sensing and 

aggregate data collaboratively. This requires that connectivity is achieved whenever radio conditions 

allow so. In particular, it is important to avoid network partitioning whenever possible since this prevents 
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the collaboration among all nodes, such as one node notifying other nodes that an important event has 

occurred. 

These wireless sensor networks are often intended to be deployed in a very ad-hoc fashion, such as 

thrown out from helicopters. The application designer knows the number of nodes deployed but does not 

know the topology at design time. In addition, radio irregularities, which have been found to be a 

common and non-negligible phenomenon in wireless networks [1-8], makes the design of the 

communication protocols challenging. The received signal strength from a transmitter is direction 

dependent and this makes links asymmetric; that is, the received signal strength at node B when node A 

broadcasts is different from the received signal strength at node A when node B broadcasts. When the 

asymmetry becomes large enough, a link becomes unidirectional; that is, if node A broadcasts a message 

then node B receives it, but if B broadcasts then A will not receive it. Ignoring unidirectional links can 

cause a route from source to destination to be longer than necessary. But more important, ignoring 

unidirectional links reduces connectivity; it can cause network partitioning and hence render the 

collaboration between sensor nodes impossible. Therefore, it is of paramount importance that the 

communication protocols can still be effective when unidirectional links exist. 

Unidirectional links bring significant challenges to wireless communications. A network node that 

sends cannot receive any direct feedback from the receiver. Hence, normal implementations of 

acknowledgement schemes and request-to-send/clear-to-send (RTS/CTS) dialogs used in medium access 

do not work. Unfortunately, the medium access control (MAC) layer is still poorly developed for 

unidirectional links; the only existing solution [9] today for unidirectional links is based on time division 

multiple access (TDMA) schemes. This approach in [9] is collision-free, but it requires synchronized 

clocks and it does not take deadlines into account in its decisions. Static table-driven scheduling could 

probably be used to achieve medium access for unidirectional links (although we are not aware of any 

publication on it). But it has the drawback of requiring synchronized clocks and it is also well-known to 
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be inefficient for those sporadic message streams where the deadline is short compared to the minimum 

inter-arrival time of messages within a message stream. 

In this paper we study medium access of wireless links which may be unidirectional and where 

messages have timing requirements. We show informally that under certain assumptions, designing a 

collision-free MAC protocol is impossible. For this reason, we design a MAC protocol that uses message 

replication; every message that an application requests to transmit is replicated by the MAC protocol 

with carefully selected pauses between the transmissions of replicas. This guarantees that for every 

message, at least one of its replicas is transmitted without collision. We analyze whether timing 

requirements can be met for the protocol. We also present and evaluate an implementation. The protocol 

depends neither on carrier sensing nor on synchronized clocks nor on topology information; it only 

requires that the number of sensor nodes is known. 

We believe these results are significant because: (i) this protocol is the only MAC protocol designed 

for unidirectional links that supports schedulability analysis; and (ii) of all MAC protocols in the 

literature that support schedulability analysis, our protocol is the one that makes the least assumptions. 

The remainder of this paper is organized as follows. Section 2 presents the system model as well as 

the main idea behind the protocol. Section 3 presents a schedulability analysis for the protocol whereas 

Section 4 evaluates it experimentally. The evaluation is performed over a real implementation on MicaZ 

motes [10] and performance comparison is made against other alternative MAC protocols. Additionally, 

in Section 4, a comparison through simulation is also performed. Section 5 discusses various practical 

issues of our protocol. It also reviews previous work and discusses unidirectional links in its larger 

context. Finally, Section 6 offers conclusions and future work. 

2. Preliminaries and the Main idea 

2.1. Network and Message Model 

The topology is described using a graph with nodes and links. A node represents a sensor node. A link 

is directed. Consider a node Ni that broadcasts a message or any signal (for example an unmodulated 
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carrier wave). Then node Nj will receive it if and only if there is a link from node Ni to node Nj. A node 

can only transmit by performing a broadcast and it is impossible for a node Ni to broadcast such that only 

a proper subset of its neighbor nodes receives it. No assumption on the connectivity of each node is 

made. It is allowed that a node has only outgoing links or only ingoing links or no links at all. Unless 

otherwise stated, the topology is assumed to be unknown to the MAC protocol. 

The traffic is characterized by the sporadic model [11] which can model both sporadic message 

requests and strictly period message requests. Each node has exactly one message stream. Node Ni is 

assigned the message stream τi. This message stream makes an infinite sequence of requests, and for 

each request, the message stream requests to transmit a message. The exact time of a request is unknown 

before run-time and the MAC protocol only knows about the time of the request when it occurs. But for 

every message stream τi there is at least Ti time units between those requests and the MAC protocol 

knows all Ti. For every such request, the MAC protocol must finish the transmission of ncollisionfree(τi) 

replicas of a message from stream τi without collisions at most Di time units after the request. If this is 

the case, then we say that deadlines are met; otherwise a deadline is missed. Naturally, we assume 0 ≤ Di 

and 0 ≤ Ti. We also assume that Di ≤ Ti and hence there is at most one message request at a time on a 

node (as long as all deadlines are met). 

Let mtotal denote the number of nodes and let m denote the number of nodes that can transmit. Nodes 

are indexed from 1 to mtotal. Let tofi,j denote the time of flight between nodes Ni and Nj. We assume that 

tofi,j is unknown but it is bounded such that ∀i,j∈{1..m}: 0 < tofi,j ≤ tof. Hence, tof is an upper bound on 

the time of flight. We assume that tof  is finite but we make no assumptions on its actual value. However, 

we assume the following: (i) nodes can “boot” at different times and when they boot, they do not have 

synchronized clocks; (ii) when a node is transmitting it cannot receive anything; and (iii) the MAC 

protocol can be represented as a set of timed automata, with potentially different automata on different 

nodes. 
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N1 N2 N3 

 
Fig. 1. A topology which illustrates the impossibility of collision-free medium access in the presence of unidirectional links. 
N1 can transmit to N2 but N2 cannot transmit to N1. Analogously for N2 and N3. When N1 and N3 transmit there will be a 
collision on node N2. 

 

2.2. Impossibility 

Let us now show that, under these assumptions, it is impossible to design a collision-free MAC 

protocol when there are unidirectional links. Consider Figure 1. It illustrates a simple exemplifying 

topology. For such topology and links characteristics, it is necessary that N1 does not transmit 

simultaneously with N3, in order to guarantee that collisions will not occur. This requires that N1 can get 

some information about the other nodes on whether there is an ongoing transmission on the other link. 

But N1 cannot hear anything so the transmission from N1 may overlap with the transmission from N3, and 

then N2 will not receive any of them. Hence, it is impossible to design a MAC protocol that is guaranteed 

to be collision-free in the presence of unidirectional links. Even if a node knows the topology but it does 

not know the time when other nodes will transmit then a collision can occur, and hence the above 

mentioned impossibility also extends to the case where the topology is known to the MAC protocol. 

Given the impossibility of collision-free medium access in the presence of unidirectional links we will 

now design a solution: transmit each message many times such that at least one of the transmissions is 

collision-free. 

2.3. The main idea 

For each message request of stream τi, the MAC protocol transmits the message several times. Each 

one of them is called a replica. Of those replicas from message stream τi, let τi,1 denote the one that is 

transmitted first. Analogously, let τi,2 denote the one that is transmitted second, and so on. The number of 

replicas transmitted for each message of τi is nreplicas(τi), and the time between the start of the 
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time 

Fig. 2. Transmission of replicas with a possible assignment of Δ:s for messages τ1, τ2, τ3, τ4 requested 
to transmit simultaneously at time 0. As it can be seen, at least one replica is collision-free. It turns 
out that for every possible combination of times of requests of τ1, τ2, τ3, τ4 this is true as well. 

Message arrival Replica transmission 

z 

 

transmission of τi,j and the time between the start of the transmission of τi,(j+1) is denoted as Δi,j. To give 

the intuition of the replication scheme, the remainder of this section assumes that each message stream 

performs a single transmission request (later, in Section 3, this assumption will be removed). 

Figure 2 illustrates these concepts for the case when all message streams request to transmit 

simultaneously. We let τi,1 be transmitted immediately when τi  is requested to be transmitted. We 

assume that every replica requires the same time, 1 time unit, for transmission. For convenience, we 

assume in this section (Section 2) that tof = 0 and this is known to the MAC protocol. In Section 5, we 

will discuss a simple technique to extend the theory for tof > 0. Our goal is to ensure that of those 

nreplicas(τi) replicas, the number of collision-free replicas of τi is at least ncollisionfree(τi). This should 

hold for all nodes that can transmit. 

We will now reason about how to select nreplicas(τi) and then select Δi,j. It is necessary to select 

nreplicas(τi) ≥ m because otherwise there is a topology for which it is possible that all replicas of τi 

collide. To see this, consider m nodes where one central node Nk has ingoing links from all other nodes; 

one of these other nodes is node Ni. There is also a link from Nk to Ni. Let us now consider the case 
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where Ni broadcasts its replicas. Let Nl denote any other node than Nk and Ni. The first message 

transmission of τl can happen at any time, and so it can collide with one of the replicas from τi. 

Analogously, the first replica of another message τl can collide with another replica of τi. In addition, the 

first replica from τk can occur any time too, so this first replica can be transmitted when τi sends a replica 

to Nk. Then Nk will not hear the replica from τi. Hence, if τi transmits nreplicas(τi) < m replicas, it can 

happen that none of them are received at node Nk. Therefore, nreplicas(τi) must be selected such that: 

( ) ( )ii freencollisionmnreplicas ττ +−≥ 1 .  

Later in this section, we will select Δi,j such that at most one replica from a message of τi can collide 

with a replica from a message of τj. With such an assignment of Δi,j, the assignment of nreplicas(τi) is as 

follows: 

{ } ( ) ( )ii freencollisionmnreplicasmi ττ +−=∈∀ 1:,..,1  (1) 

and this causes at least one replica from each message to be transmitted before its deadline. 

Having selected nreplicas(τi) = m – 1 + ncollisionfree(τi), the issue of selecting Δi,j will now be 

considered. Clearly, since a node i transmits nreplicas(τi) replicas, it is necessary to specify  

nreplicas(τi) – 1 values of Δi,j for node i. Consider the time span starting from when an application 

requests to transmit on a node until the last replica has finished its transmission on that node. The 

maximum duration of this time span over all nodes is z (illustrated in Figure 2). An intuitive objective is 

to minimize z, since it corresponds to the maximum response-time of a message. This can be formulated 

as a mixed linear/quadratic optimization problem. Therefore, the objective is to minimize z subject to 

{ }
( )

{ } ( ){ } jii

nreplicas

j
ji

nreplicasjmi

zmi
i

,

1

1
,

0:1,..,1,,..,1

1:,..,1

Δ≤−∈∀∈∀

≤+Δ∈∀ ∑
−

=

τ

τ

 (2) 

and (1), and subject to an additional third constraint that will be described now. Let u and v denote the 

indices of two nodes. Hence u and v belong to the set {1..m}. Let ju and jv denote the indices of the first 

replica of the sequence of replicas transmitted in nodes Nu and Nv, respectively. Hence ju belongs to 
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{1..nreplicas(τu)–1} and jv belongs to {1..nreplicas(τv)–1}. Let lu and lv denote the lengths of these 

subsequences in terms of the number of replicas. lu should be selected such that  

ju + (lu - 1) ≤ nreplicas(τu) – 1. Analogous for lv. Hence lu belongs to {1.. nreplicas(τu) – ju} and lv belongs 

to {1.. nreplicas(τv) – jv}. We say that a combination of u, v, ju, jv, lu, lv is valid if: (i) these 6 variables are 

within their ranges; and (ii) u ≠ v ∧ (ju ≠ jv ∨ lu ≠ lv). For every valid combination of u, v, ju, jv, lu, lv, the 

optimization problem must respect the following constraint: 

2

2
1

,

1

, 2≥⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Δ ∑∑

−+

=

−+

=

vv

v

uu

u

lj

jj
jv

lj

jj
ju

 (3) 

Intuitively, (3) states that there is no sum of consecutive Δ:s on node u which is equal to a consecutive 

sum of Δ:s on node v. In addition, the difference is larger than 2; this implies that it is enough to be sure 

that there is no collision. (To understand why the difference must be 2, consider the following system: 

m = 2, nreplicas(τ1) = 2 and nreplicas(τ2) = 2 and Δ1,1 = 2 and Δ2,1 = 3.98, and τ1 arrives at time 0.99 and 

τ2 arrives at time 0. Then the first replicas of τ1 and τ2 will collide, and the second replicas of τ1 and τ2 

will collide as well. One can see that the sum of Δ:s must differ by the duration of two.). 

Therefore, (3) states that at most one replica from node u can collide with a replica from node v. 

Hence, of those nreplicas(τu) replicas sent from node u, at most m – 1 of them can collide. Naturally, this 

permits stating Theorem 1 below. 

Theorem 1. If the differences between transmission start times of replicas are selected according  

(1)-(3), then it holds that: (i) for every node i, at least ncollisionfree(τi) replicas do not collide; and (ii) 

the time from when an application requests to transmit on node i until the last replica is transmitted on 

node i is at most z. 

Proof: Follows from the discussion above. � 

We will now illustrate the use of (1)-(3) in Example 1. 
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Example 1. Consider m = 4 and ∀i∈{1..m}: ncollisionfree(τi) = 1 to be solved using (1)-(3). The 

solution that is obtained is as follows: 

121212
102010
8188

16166

3,42,41,4

3,32,31,3

3,22,21,2

3,12,11,1

=Δ=Δ=Δ
=Δ=Δ=Δ
=Δ=Δ=Δ

=Δ=Δ=Δ

 

 

This is illustrated in Figure 2. � 

It is easily perceived that the number of inequalities in (3) grows as O(m6). Hence, it is only possible 

to solve small problems with this approach. (There were 232 constraints for m = 4 and 3411 constraints 

for m = 6. We used a modeling tool (AMPL [12]) and a back-end solver (LOQO [13]), and with these 

tools it was only possible to solve (1)-83) for m ≤ 6.) Many interesting systems are larger though. For 

those systems the optimization problem phrased in (1)-(3) simply cannot be solved because the number 

of inequalities in (3) is too large. For this reason, later on in this paper, another technique for selecting 

Δ:s will be proposed and discussed. 

3. Schedulability analysis 

Since wireless sensor networks interact closely with their surrounding physical environment, it is 

often necessary to guarantee that a collision-free message reaches its destination before a pre-specified 

deadline. This requires that the waiting time of a message of a single hop can be bounded and analyzed at 

design time. Such an analysis was performed in [14], but for an abstract MAC protocol. This section 

discusses how the technique with message replication described earlier can be used to guarantee that 

sporadic message streams meet their deadlines. 

From Section 2 it results that the maximum time it takes from when a message requests to send until 

the MAC protocol has transmitted a collision-free replica is z, if a message stream only makes a single 

request. Based on this, it would be tempting to think that if ∀i∈{1..m}: z ≤ Di then all deadlines are met.  
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time

τ1 

τ2 

τ3 

τ4 

Fig. 3. Consider Δ:s that are selected based on the assumption a transmission request on a node occurs at most 
once. If these Δ:s are used for sporadic message streams with T1 = T2 = T3 = T4 = z then a deadline miss can 
occur. All replicas from τ4 collide and τ4 misses its deadline. 

 

Unfortunately, this is false, as illustrated by Figure 3, even if T1 = D1 = T2 = D2 = … = Tm = Dm. A correct 

schedulability analysis is that if ∀i∈{1..m}: z + max(Tj: τj ≠ τi) ≤ Di then all deadlines are met. It is 

pessimistic however for cases where message streams have very different Ti. For this reason, a better 

schedulability analysis technique is developed. It turns out that the development of such a schedulability 

analysis is simplified by adding (carefully selected) constraints to the optimization problem (described in 

Section 2) that finds Δ:s. Thus, Section 3.1 presents an alternative algorithm to assign Δ:s. While that 

algorithm implies a slightly higher z, it makes the analysis possible. Based on these Δ:s, the 

schedulability analysis formulation is then presented in Section 3.2. An algorithmic approach to assign 

the number of replicas to nodes is presented in Section 3.3, and the Δ:s are computed. Finally, Section 

3.4 discusses how the protocol and the analysis can be extended for the case where there are many 

message streams assigned to a node. 

3.1. Alternative algorithms to assign Δ:s 

In the optimization problem phrased by (1)-(3) only constraints that were necessary to ensure that at 

least one replica from a message is collision-free where added. But, by enforcing a certain structure on 
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Δi,j, it is possible to reduce the number of sums that (3) can generate, and this also makes finding out if a 

sum in (3) causes a collision easier. Selecting 

( )1)(,3,2,1, ... −Δ==Δ=Δ=Δ
inreplicasiiii τ  (4) 

is an example of such a structure. It is advantageous because the number of sums of subsequences that 

can be created does not grow very rapidly with nreplicas(τi). For this reason, the remainder of this 

section assumes that (4) must be satisfied, and for convenience we let Δi denote Δi,j. 

By rewriting (2) it results that z must satisfy the following condition: 

{ } ( )( )
{ } i

ii

mi
znreplicasmi

Δ≤∈∀
≤+−×Δ∈∀

0:,..,1
11:,..,1 τ

 (5) 

If the sums of two subsequences differ by one then a collision can occur. Therefore it is required that: 

{ } 2:,..,1 ≥ΔΔ∈∀ ii andevenismi  (6) 

Let us now consider an arbitrary message from τu and another arbitrary message from τv. The number 

of collisions between these messages is thus given by: 

( ) 1
,

,
, +⎥

⎦

⎥
⎢
⎣

⎢
ΔΔ

=
vu

vu
vu lcm

L
coll  (7) 

where Lu,v = min(Δu × ( nreplicas(τu) − 1 ), Δv × ( nreplicas(τv) − 1) ) assuming that u ≠ v. For u = v then it 

results that collu,v = 0. Rewriting (1) yields: 

( ) ( )i

m

ivv
vii freencollisioncollnreplicas ττ +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

≠= ,1
,

 (8) 

One can satisfy (5)-(8) with different choices of nreplicas(τi) and Δ:s. In order to simplify the 

problem, the least number of replicas is privileged, and hence the following constraint must be added: 

{ } { } 1:,,..,1,,..,1 , =≠∈∈∀ vicollvimvmi  (9) 

The objective is now to minimize z subject to (5)-(9). Then, applying (4) provides values for the Δ:s. 

The following example (Example 2) illustrates this approach. 
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Example 2. Consider m = 4 and ∀i∈{1..m}: ncollisionfree(τi) = 1 to be solved using (5)-(9). 

Applying (8) and (9) gives that nreplicas(τi) = 4. Then solving (5)-(9) permits obtaining the following 

values: 

( )
( )
( )
( ) 414

410
48
42

44

33

22

11

==Δ
==Δ
==Δ
==Δ

τ
τ
τ
τ

nreplicas
nreplicas
nreplicas
nreplicas

 

 

The same Δ will be used for all replicas of a message by applying (4). Therefore, the following 

solution will be obtained. 

141414
101010
888
222

3,42,41,4

3,32,31,3

3,22,21,2

3,12,11,1

=Δ=Δ=Δ
=Δ=Δ=Δ
=Δ=Δ=Δ
=Δ=Δ=Δ

 

 

This is illustrated in Figure 4a. This solution can be compared with the solution in Example 1. One 

aspect to note is that z becomes 7% larger as compared to its value in Example 1.  � 

With the additional constraints in this subsection, we are no longer constrained by m ≤ 6; we can 

assign Δ:s to nodes even when m > 6 by simply enumerating solutions. However, the denominator in (7) 

is highly nonlinear and non-differentiable, and so its is advisable to add more (carefully selected) 

constraints on the Δ:s in order to find solutions when m is really large. 

Observe (from (5) and the numerator of (7)) that one should try to assign small numbers to Δ:s. But 

on the other hand, it can be seen (from the denominator of (7)) that one should assign Δ:s such that for a 

pair Δu, Δv it holds that lcm(Δu, Δv) is large. Clearly these two requirements are contradictory. However, 

if every pair Δu, Δv is assigned Δu = 2 × Au and Δv = 2 × Av where Au and Av are small integers and relative 

prime, then lcm(Δu, Δv) may still be fairly large. Solving this when m is large is still computationally 

expensive. For this reason, we will assume that Au and Av are prime numbers and there is no pair Au and 

Av where Au = Av.  
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τ1 

τ2 

τ3 

τ4 

8 8 8 

10 10 10 

14 14 14 

(a) Δ:s for all replicas of one message are the same. 

(b)  Δ:s for all replicas of one message are the same and they are prime numbers. 

time 

time 

Fig. 4. An example where m = 4 and ∀i: nreplicas(τv) = 4. Figure 4a and 4b show different techniques of selecting Δ:s. 

τ1 

τ2 

τ3 

τ4 

10 10 10 

14 14 14 

22 22 22 

6 6 6 

 

Let primes(j) be defined as the jth prime number. As an illustration of this definition, consider: 

primes(1) = 2; primes(2) = 3; primes(3) = 5; primes(4) = 7; primes(5) = 11 and primes(6) = 13. Then, Δ:s 

can be assigned as follows: 

( )12 −+×=Δ ikprimesi  (10) 

where k is a design parameter which controls the magnitude of the least prime numbers being used. 

Observe that the “2” in (10) assures that (6) is true. Given this restriction, now there is only one free 

variable k. Applying (10) results in the following optimization problem: minimize z subject to (10) and 

k≤1  (11) 
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and (5), (7), (8) and (9). This can be solved by simply testing k = 1, 2, …, until all constraints are 

satisfied. Example 3 illustrates this.  

Example 3. Consider m = 4 and ∀i∈{1..m}: ncollisionfree(τi) = 1 to be solved using (10)-(11) and 

(5), (7), (8) and (9). From (8) and (9) it results that ∀i∈{1..m}: nreplicas(τi) = 4. Trying k = 1 results 

that: Δ1 = 4, Δ2 = 6, Δ3 = 10, Δ4 = 14. Unfortunately, with this choice, Δ1 = 4, Δ2 = 6 inserted in (7) gives 

coll1,2 = 2, which violates (9). Hence, one can try k = 2. This results that Δ1 = 6, Δ2 = 10, Δ3 = 14, Δ4 = 22. 

This satisfies all constraints, and so the solution is: 

( )
( )
( )
( ) 422

414
410
46

44

33

22

11

==Δ
==Δ
==Δ
==Δ

τ
τ
τ
τ

nreplicas
nreplicas
nreplicas
nreplicas

  

This is illustrated in Figure 4b. By comparing this solution with the solution in Example 1 it is 

possible to observe that z becomes 63% larger. � 

With this technique, we have obtained Δ:s for 2048 nodes. Figure 5 illustrates the magnitude of the 

parameters that were obtained for m ranging from 2 up to 100. The following conclusions can be drawn. 

First, clearly a higher k is needed when the number of nodes is high. This is natural because with more 

nodes there are more possibilities for collisions between replicas. This increase in k causes Δ:s to 

increase as the number of nodes increase. It can also be seen that z (the upper bound on the time span 

starting when an application requests to transmit a message until at least one replica is transmitted 

without collision) increases as m increases. There are two reasons for that: (i) nreplicas(τi) increase and 

(ii) Δ:s values increase. 

Overall it can be seen that the overhead is quite high. Unfortunately, the current state-of-the-art offers 

no better solution. In applications with high reliability, the ultimate goal is to ensure that receivers 

receive the messages that they should receive. There are two possible threats: (i) collisions and (ii) noise 
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Fig. 5. Illustration on how the parameters z and k vary as the number of computer nodes increases. The technique with 
equal pauses between replicas of the same message and prime numbers is used. 
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that causes messages to be lost or corrupts bits leading to CRC errors. Although our protocol deals with 

the first threat, it is desirable to deal with the latter as well. Forward error correcting codes are helpful for 

the data bits but messages can still be lost due to frame synchronization errors. Regardless of the cause of 

lost messages or corrupt messages, our scheme can be used to combat them; we can require that 

ncollisionfree(τi) ≥ 2. Example 4 will study the impact of this in the overhead of our protocol.  

Example 4. Consider m = 4 and ∀i∈{1..m}: ncollisionfree(τi) = 2 to be solved using (5), (7), (8) and 

(9). Using (8) and (9) it results that nreplicas(τi) = 5. The same solution as the one obtained in Example 2 

results, but now with z = 89. By increasing ncollisionfree(τi), the following parameters are 

obtained (Table 1). 

Table 1. Δ:s and z for Example 4 

ncollisionfree(τi) Δ1 Δ2 Δ3 Δ4 z 
3 10 14 22 26 131 
4 10 14 22 26 157 
5 14 22 26 34 239 

Observe that z increases slowly with ncollisionfree(τi). � 

Example 4 shows that although our MAC protocol has a fairly high overhead for 

ncollisionfree(τi) = 1, the overhead increases (relatively) slowly as ncollisionfree(τi) grows. 
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3.2. Schedulability analysis formulation 

In order to find out whether all deadlines are met, now we analyze how one message from a message 

stream τi is affected by the other message streams. nreplicas(τi) must be sufficiently large; we choose the 

smallest number which satisfies the constraint on the number of collision-free messages. Hence, 

nreplicas(τi) should be selected as follows: 

[ )( ) )(,,#)( iiiii freencollisionDrriduringcollisionsnreplicas ττ ++≥  (12) 

#collisions during [ri,ri + Di) denotes a upper bound on the number of collisions that a message from 

message stream τi can suffer from during the time interval of length Di. Let ri denote an arbitrary arrival 

time of a message from message stream τi. The #collisions during [ri,ri+Di) can be computed as follows: 
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#collisionsi,v [ri,ri + Di) denotes an upper bound on the number of collisions from message stream v on a 

message from message stream i during a time interval of length Di. 

For computing #collisionsi,v [ri,ri + Di), the interval [ri,ri + Di) can be divided into subintervals. Let t0 

denote the first time that τv requests to transmit after ri. This time interval [ri, t0) is called the head. Let t1 

denote the largest number such that (t1 − t0) / Tv is an integer and t1 ≤ ri + Di. The time interval [t0, t1) is 

called the body. Finally, the interval [t1, ri + Di) is called the tail. 

Each of these intervals (head, body and tail) can contain a certain amount of collisions. Let x denote 

the length of the head; that is, x = t0 − ri. Based on this, an upper bound on #collisionsi,v [ri,ri + Di) can be 

computed as follows: 
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Equation (14) is still complex and will be simplified later on in this paper. Observe that this 

expression (14) takes the maximum of all x in [0, Di] of an expression with three terms. The first term 

corresponds to the number of collisions in the head, the second term corresponds to the number of 
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collisions in the body and the third term corresponds to the collisions in the tail. The term collu,v 

represents an upper bound on the number of collisions every time τu and τv request to transmit. The term 

collborderu,v(x) is similar to collu,v but the number of collisions is only counted during a time interval of 

length x. Computing collu,v is similar (7), but now Du can be used to bound the time interval over which 

collisions can occur. Hence, by adapting (7) to the context of sporadic message streams, collu,v is given 

by: 
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where Lu,v = min(Δu × ( nreplicas(τu) − 1 ), Δv × ( nreplicas(τv) − 1) ). Observe that collu,v ≠ collv,u. 

Calculating collborderu,v(x) is very similar but now there is an additional limitation on the length of 

the time interval during which collisions can occur. Adapting (15) gives: 
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where Lu,v = min(Δu × ( nreplicas(τu) − 1 ), Δv × ( nreplicas(τv) − 1) ).  

Once again, observe that collborderu,v(x) ≠ collborderv,u(x). 

With (15) and (16), it is possible to simplify (14). If x ≥ Tv then Tv can be subtracted from x until 

x < Tv and this maintains or increases the number of collisions. Since 0 ≤ x < Tv, one can find upper 

bounds for the first term in (14) and the sum of the other terms in (14). #collisionsi,v [ri,ri + Di) can then 

be computed as follows: 
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Transferring (5) to the sporadic model implies that the following must be satisfied: 
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This finalizes the reasoning on the schedulability analysis. 
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3.3. Assigning number of replicas and sequences of Δ:s to message streams 

We will now design the MAC protocol to satisfy the constraints (12)-(13) and (15-18). It can be seen 

that (14)-(16) are highly non-linear and non-differentiable and so a heuristic will be designed. 

First, an algorithm that selects nreplicas(τi) when Δ:s are known and fixed is developed. Then an 

algorithm that finds the correct Δ:s and uses the previous algorithm as a subroutine will be designed. 

§Δ:s are fixed. Consider the case when Δ:s are fixed and the goal is to find nreplicas(τi). The 

technique employed to solve this is based on fixed-point iteration. Before doing so, some lemmas need to 

be established. The proof of these lemmas is based on direct inspection of (12), (13) and (15-18). 

Let nreplicas(τ1)*, nreplicas(τ2)*,…., nreplicas(τm)* denote a solution to (12), (13) and (15-18).  

Let us consider a vector nreplicas(τ1), nreplicas(τ2),…., nreplicas(τm) such that  

∀i∈{1..m}: 0 ≤ nreplicas(τi) ≤ nreplicas(τi)*. 

Lemma 1.  nreplicas(τ1), nreplicas(τ2),…., nreplicas(τm) is a solution to (13) and (15-18). 

Observe that Lemma 1 does not say anything about whether (12) is satisfied or not. 

Lemma 2. Consider the case ∀i { }m,..,1∈ : 0 ≤ nreplicas(τi) ≤ nreplicas(τi)*. If one makes the assignment 

nreplicas(τi) ← right hand side (RHS) of (12) for any i then the resulting vector of nreplicas(τi) still satisfies 

 ∀i { }m,..,1∈ : nreplicas(τi)≤ nreplicas(τi)*. 

Lemma 2 can be generalized to the case where a subset is updated. Lemma 3 does that. 

Lemma 3. Consider the case ∀i { }m,..,1∈ : 0 ≤ nreplicas(τi) ≤ nreplicas(τi)*. If one makes the assignment 

nreplicas(τi) ← RHS of (12) for any subset of i:s, then the resulting vector of nreplicas(τi) still satisfies 

 ∀i∈{1..m}: nreplicas(τi)≤ nreplicas(τi)*. 

Lemma 1 gives a suggestion on where to find an initial solution, and Lemma 3 gives a suggestion on 

how to iterate towards a solution. Based on this, Algorithm 1 (in Figure 6) is proposed. From Lemmas  

1-3, the following theorem (Theorem 2) can be stated. 
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Algorithm 1: Assigning nreplicas(τi) to nodes. 

1. assign ∀i∈{1..m}: nreplicas(τi)←2 
2. while (18) is satisfied for all τi do 
3.  calculate the RHS from (13) and (15)-(17) and then calculate the RHS of (12) 
4.  if ∀i∈{1..m}: (12) is satisfied then  
5.   declare SUCCESS  
6.  else 
7.   for ∀i∈{1..m}: nreplicas(τi) such that (12) is not satisfied then for those i, do: 
8.    nreplicas(τi) ← RHS of (12) for that i  
9.   end for 
10.   end if 
11.  end while 

Fig. 6. An algorithm for assigning nreplicas(τi) to nodes when the Δ:s are already assigned. This 
algorithm is designed for the case when a node has a single sporadic message stream. 

Theorem 2. Consider the case where Δ:s are fixed. If there is a solution to (12), (13) and (15-18) then 

Algorithm 1 will declare success. If there is no solution to (12), (13) and (15-18) then Algorithm 1 will 

declare failure. 

Proof: Follows from Lemmas 1-3. 

Although Algorithm 1 is useful, it requires the assignment of values to the Δ:s first. That will be 

addressed below. 

§Δ:s are not assigned yet. Consider now the case when Δ:s are not yet assigned values. Observe 

(from (18)) that message streams with small Δ:s tend to be able to satisfy short Di.  

The algorithm is called Algorithm 2 and it is described in Figure 7. It assumes message streams are 

sorted already and the idea is similar to the one used in Algorithm 1. 

In general, however, message streams are not sorted according to their deadlines. For this reason, 

Algorithm 3, described in Figure 7 sorts messages streams and applies then Algorithm 2. The use the 

Algorithm 3 is shown through Example 5. 

Example 5. Consider m = 4 and ∀i∈{1..m}: ncollisionfree(τi) = 1 and the set of message streams as 

shown in Table 2. It is noteworthy to see that this set of message streams cannot be guaranteed to meet 

deadlines with optimal Δ:s and the schedulability test “if ∀i∈{1..m}: z + max(Tj: τj ≠ τi) ≤ Di then 
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Algorithm 2: Assigning Δ:s to nodes, assuming D1≤D2≤…≤Dm. 

1. k ← 0 
2. repeat  
3.  k ← k +1 
4.  assign Δ:s according to (10) 
5.  if there is an i that violates (18) when nreplicas(τi)=2 is inserted in (18) then 
6.   declare FAILURE  
7.  end if 
8  assign nreplicas(τi) according to Algorithm 1. 
9. until line 8 declared FAILURE 
10. declare SUCCESS 

 

Algorithm 3: Assigning Δ:s to nodes. 

1. Sort message streams such that D1≤D2≤…≤Dm. 
2. Run Algorithm 2. 
3. Assign to node Ni: the Δi,k ∀k ∈{1.. nreplicas(τ1)} 

Fig. 7. An algorithm for assigning Δ:s to nodes. 
 

all deadlines are met”. Algorithm 3 will now be applied on this example. 

Table 2. Message streams used in Example 5. 

message streams Ti Di 
τ1 35 35 
τ2 92 92 
τ3 184 184
τ4 550 550

 

First, Algorithm 3 sorts message streams according to their deadlines. It can be seen in Table 2 that 

they are already sorted. Then Algorithm 2 is called and k is initialized to 0. k is incremented so k = 1 and 

line 4 in Algorithm 2 provides Δ1 = 4, Δ2 = 6, Δ3 = 10, Δ4 = 14. Inserting nreplicas(τi) = 2 in (18) and 

inserting the Δ:s gives the following tests: 
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It can be seen that all of these inequalities are true, and Algorithm 2 proceeds to line 8 and it executes 

Algorithm 1. Line 1 in Algorithm 1 assigns nreplicas(τ1) = 2, nreplicas(τ2) = 2, nreplicas(τ3) = 2, 
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nreplicas(τ4) = 2. The inequalities of (18) are tested again and they are true. The execution of line 3 in 

Algorithm 3 gives: 
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Combining these (using (13)) yields: 
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Applying this in (12) yields that: 
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must be tested, and it can be seen that all of them are false. Hence, Algorithm 1 proceeds to line 7 and 

line 8, where it assigns: nreplicas(τ1) = 7; nreplicas(τ2) = 9; nreplicas(τ3) = 13 and nreplicas(τ4) = 29. 

Algorithm 1 and Algorithm 2 proceed in the same way. Finally, it results in: nreplicas(τ1) = 9; 

nreplicas(τ2) = 14; nreplicas(τ3) = 18 and nreplicas(τ4) = 33. This satisfies the deadlines. � 

3.4. Many messages streams per node 

Now, considering the case where each computer node has many message streams assigned to it, and 

that every message stream can request to transmit a message. 

This case can be simply dealt with by treating each message stream as if it was on its own node and 

assign nreplicas(τi) and Δi, accordingly. If they are on their own nodes they will meet all deadlines. 

Message streams should be assigned to the nodes where they should be and the number of collisions will 

not be higher. Example 6 illustrates this. 
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Example 6. Consider 4 message streams with timing parameters as given by Table 2. Message stream 

τ1 should be assigned to N1 and τ2 should be assigned to N2. But node N3 is special; it is assigned two 

messages streams τ3 and τ4. The approach is considering 4 network nodes and 1 message stream on each 

one of them. The following values can then be taken from the results in Example 5: nreplicas(τ1) = 9; 

nreplicas(τ2) = 14; nreplicas(τ3) = 18 and nreplicas(τ4) = 33; and Δ1 = 4; Δ2 = 6; Δ3 = 10; Δ4 = 14. These 

values can be used for the 4 message streams that are assigned to the 3 nodes.   � 

4. Implementation and Experiments 

Having seen that the replication scheme can guarantee that ncollisionfree(τi) replicas are collision-free 

in theory, we now turn to practice. We want to address the following hypotheses: 

1. The replication scheme is easy to implement. 

2. The number of lost or corrupted messages at the receiver is smaller when the replication 

scheme in this paper is used, as compared to a replication scheme with random pauses. This 

applies even if the random scheme transmits only a single replica per message. 

3. The replication scheme guarantees that ncollisionfree(τi) replicas are indeed collision-free. 

4. If a link is bidirectional then our replication scheme can be extended so that it still offers a 

bounded number of collisions but it also has a low average-case overhead. 

In order to test these hypotheses, we implement the replication protocol both on a real platform and 

use simulation1. The following sections describe the implementation, experimental setup and results 

obtained. But first we turn our attention to how the Δ:s for the experimental setup were determined. 

4.1. Finding Near Optimal Δ:s 

To test the hypotheses stated above, the network should be as loaded as possible (high utilization). 

The way to achieve this would be to employ optimal Δ:s (the approach described in Section 2.3) because 
                                                      
1 Both implementations and all parameters used for the simulation runs can be downloaded from 

http://www.hurray.isep.ipp.pt/hydra/ 
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they minimize z, allowing Ti to be low and this causes the utilization to be high. However finding optimal 

Δ:s for m > 6 is currently not possible, and therefore another technique to obtain Δ:s was developed. This 

technique gives a near-optimal solution to (1)-(3). 

The algorithm for doing that (Algorithm 4) is presented in Figure 8. The algorithm does not find Δ:s 

directly; it finds sequences of integers and the goal is to find m sequences. One sequence is assigned to 

each network node and each sequence contains (m − 1) positive even integers. Consider a node i, which 

is assigned the sequence Si. Then Δi,k is assigned the kth number in sequence Si.  

The algorithm works as follows. First, a “guess” on an upper bound on z is put forward and this guess is 

denoted maxz (line 1). Then, sequences of numbers are generated (on lines 2-13). It is known that if the 

sum of the numbers in the sequence exceeds maxz then such a sequence should not be used because it 

cannot produce the set of sequences with the minimum z (assuming that z ≤ maxz). Hence, such a 

sequence should not be considered further. Not all possible sequences are enumerated. This would be too 

time-consuming. Instead those sequences that are likely to be useful are enumerated. It was previously 

seen, in Section 3, that if Δ:s in a sequence are the same, then the number of unique sums that can be 

generated is small. For this reason such sequences are considered (the variable sequences  

contains all sequences that will be considered). However, it is desirable to obtain a z that is smaller than 

the one obtained in Section 3.1. For this reason, different values in a sequence are allowed. However, to 

ensure that the number of unique sums that can be generated do not increase too much, special care is 

taken: (i) all numbers in a sequence should have a large common denominator and (ii) the sequence 

should be symmetric in that the sequence should be the same if the order of the elements are reversed. 

After generating those sequences that appear promising, a selection of a subset of them (lines 23-26) is 

performed. Sequences S and S´ are said to collide if there is a subsequence of S and a subsequence of S´ 

such that the sums of the elements in the subsequences are equal. When sequences are selected, one must 

ensure that for every pair S, S´ of selected sequences it holds that S and S´ do not collide. This is 
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Algorithm 4: The algorithm for finding near-optimal Δ:s 
 
Input:  m 
Output:  sequences of Δ:s 
const NDELTAS = m-1 
type sequence = record 
                                the_numbers : array[1..NDELTAS] of integer 
                                the_sums : set of integer 
                                n_conflict_with : integer 
                          endrecord 
asequence : sequence 
sequences : set of sequence initialized to ∅ 
selected_sequences : set of sequence initialized to ∅ 
  1. Guess an upper bound on z. It is denoted maxz  
  2. for factor ← 2 to  ⎡maxz /NDELTAS⎤  step 2 loop 
  3.     asequence.the_numbers ← < factor, factor, ..., factor > 
  4.     sequences ← sequences ∪ {asequence} 
  5.     for indent ← 1 to ⎣ NDELTAS/2 ⎦ loop 
  6.         for multiplier ← 2 to ⎣maxz /factor⎦ loop 
  7.             for k ← 1+indent to NDELTAS - indent loop 
  8.                 asequence.the_numbers[k] ← asequence.the_numbers[k] × multiplier 
  9.             if sum of all numbers in asequence ≤ maxz  then 
10.                 sequences ← sequences ∪ {asequence} 
11.         endfor 
12.     endfor 
13. endfor 
14. for each sequence S in sequences do 
15.     S.the_sums ← ∅ 
16.     for each subsequence S´ that can be created from S such that consecutive elements in S´ are 
            also consecutive in S 
17.        S.the_sums ← S.the_sums ∪ {sum of all elements in S´}.  
18.     end for 
19. endfor 
20. for each sequence S in sequences do 
21.     S.n_conflict_with ← |{ S´ : (S´ ∈ sequences )∧((S.the_sums ∩ S´.the_sums) ≠ ∅) } | 
22. endfor 
23. for each sequence S in sequences in ascending order of n_conflict_with do 
24.     if there is no sequence S´ in selected_sequences such that (S.the_sums ∩ S´.the_sums ≠ ∅) then 
25.         selected_sequences ← selected_sequences ∪ {S} 
26. endfor 
27. return selected_sequences 

Fig. 8. An algorithm for finding and assigning Δ:s. 

 

checked on line 24. When sequences are considered for selection, they are considered in the reverse 

order of how many collide with them. 

4.2. Implementation and Experimental Setup 

The replication protocol was implemented on the MicaZ platform [10], and this implementation was 

dubbed HYDRA. MicaZ is a sensor network platform offering a low power microcontroller, 128 Kbytes 
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of program flash memory and an IEEE 802.15.4 compliant radio transceiver, capable of 250 kbps data 

rate. The MicaZ supports running TinyOS [15], an open-source operating system designed for wireless 

sensor networks. This platform was found to be attractive for the implementation of our experiments 

because of some particularly relevant characteristics: (i) it allowed us to replace the MAC protocol; (ii) 

the timers available where reasonably precise for our application; (iii) the radio transceiver makes 

automatic CRC checks and inserts a flag indicating the result of this check along with the packet, and 

(iv) the spread spectrum modulation used makes data frames resistant to noise and distortion. Hence, 

collisions due to medium access are the main source of lost frames or corrupted frames.  

The experimental application setup was composed of one receiving node and a number of sending 

nodes. Efforts where made such that the experiments took place under a similar, noise-free, environment. 

The sending nodes send messages with sequence numbers so that the receiving node can detect when a 

message has been lost. Additionally, the receiver collected some other statistics, such as total number of 

replicas and redundant replicas received (by redundant replicas we mean replicas for which a previous 

replica of the same message has already been received). The time to transmit a replica is 928 us. So, we 

let one time unit represent 1 ms to improve robustness against time of flight and clock inaccuracies. 

First, to acquire the probability that a replica is not correctly received (this is due to noise or 

distortion), we set up a scenario with one sending node (N1) and one receiving node (N2). Node N1 

transmitted 2 replicas per message and N2 gathered statistics on the number of received replicas. We 

obtained that the probability of a having a replica lost is approximately 0.002737%. If the events “a 

replica is lost” were independent, we would expect that the probability that two consecutive replicas are 

lost is 0.000027372. Hence we would expect the probability that a message was lost is 0.000027372 as 

well. However, we observed a 0.00153% probability for messages loss; this indicates that errors are 

correlated, which was expected. 

After that, we ran experiments with different number of nodes, for three different MAC protocols: 

(i) one where we use our scheme with deterministic Δ:s (HYDRA);  (ii) another where we used a similar  



- 26 - 

Table 3. Parameters of experimental scenarios 

MAC Protocol and Configuration 
m Inter-arrival 

time (ms) HYDRA 
(ms) 

RHYDRA 
(ms) 

RMAC 
(ms) 

2 [10,12] Δ1,1=2 
Δ1,2=4 [1,9] [0,9] 

3 [34,42] 
Δ1,1=Δ1,2=6 
Δ2,1=Δ2,2=2 
Δ3,1=Δ3,2=8 

[1,16] [0,33] 

4 [86,107] 

Δ1,1=Δ1,2=Δ1,3=10 
Δ2,1=Δ2,2=Δ2,3=14 
Δ3,1=Δ3,2=Δ3,3=8 
Δ4,1=Δ4,2=Δ4,3=2 

[1,28] [0,85] 

5 [178,222] 

Δ1,1=Δ1,2=Δ1,3=Δ1,4=22 
Δ2,1=Δ2,2=Δ2,3=Δ2,4=14 
Δ3,1=Δ3,2=Δ3,3=Δ3,4=10 
Δ4,1=Δ4,2=Δ4,3=Δ4,4=18 
Δ5,1=Δ5,2=Δ5,4=2; Δ5,3=74 

[1,44] [1,177] 

6 [262,327] 

Δ1,1=Δ1,2=Δ1,3=Δ1,4=Δ1,5=26 
Δ2,1=Δ2,2=Δ2,3=Δ2,4=Δ2,5=22 
Δ3,1=Δ3,2=Δ3,3=Δ3,4=Δ3,5=14 
Δ4,1=Δ4,2=Δ4,3=Δ4,4=Δ4,5=18 
Δ5,1=Δ5,2=Δ5,5=2;  Δ5,3=Δ5,4=58 
Δ6,1=Δ6,2=Δ6,3=Δ6,4=Δ6,5=19 

[1,52] [0,261] 

7 [314,392] 

Δ1,1=Δ1,2=Δ1,3=Δ1,4=Δ1,5=Δ1,6=26 
Δ2,1=Δ2,2=Δ2,3=Δ2,4=Δ2,5=Δ2,6=22 
Δ3,1=Δ3,2=Δ3,3=Δ3,4=Δ3,5=Δ3,6=14 
Δ4,1=Δ4,2=Δ4,3=Δ4,4=Δ4,5=Δ4,6=18 
Δ5,1=Δ5,2=Δ5,3=Δ5,5=Δ5,6=2; Δ5,4=142 
Δ6,1=Δ6,2=Δ6,3=Δ6,4=Δ6,5=Δ6,6=16 
Δ7,1=Δ7,2=Δ7,3=Δ7,4=Δ7,5=Δ7,6=10 

[1,52] [0,313] 

8 [534,667] 

Δ1,1=Δ1,2=Δ1,3=Δ1,4=Δ1,5=Δ1,6=Δ1,7=38 
Δ2,1=Δ2,2=Δ2,3=Δ2,4=Δ2,5=Δ2,6=Δ2,7=34 
Δ3,1=Δ3,2=Δ3,3=Δ3,4=Δ3,5=Δ3,6=Δ3,7=26 
Δ4,1=Δ4,2=Δ4,3=Δ4,4=Δ4,5=Δ4,6=Δ4,7=22 
Δ5,1=Δ5,2=Δ5,3=Δ5,4=Δ5,5=Δ5,6=Δ5,7=32 
Δ6,1=Δ6,2=Δ6,3=Δ6,4=Δ6,5=Δ6,6=Δ6,7=36 
Δ7,1=Δ7,2=Δ7,3=Δ7,6=Δ7,7=2; Δ7,4=Δ7,5=120 
Δ8,1=Δ8,2=Δ8,3=Δ8,4=Δ8,5=Δ8,6=Δ8,7=14 

[1,76] [0,533] 

 

scheme, but where the Δ:s were random variables within an interval between 1 ms and  

(Ti − 1)/(nreplicas(τi) − 1) time units, which was named Random HYDRA (RHYDRA) and (iii) finally a 

third MAC protocol where only one replica is sent at a random time within the interval [0, Ti − 1] time 

units after the message was requested, which will be referred to as Random MAC (RMAC). The Δ:s 

were obtained from the algorithm are described in Section 4.1. From these Δ:s, we derived z and Ti; the 

application message periods in Table 3 are between Ti and Ti × 1.25. Table 3 also shows all the 
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Fig. 9. Message loss ratio of experiments with MicaZ platforms 

parameters for the several experimental setups. Random times are represented as intervals and are all 

uniformly distributed. 

The experiments where performed until each node transmitted 100000 messages, for m = 2 and m = 4. 

The resulting message loss rate is shown in Figure 9, which is presented in a logarithmic scale. By these 

results, we can observe that HYDRA obtained a message loss rate always better to the replica loss rate 

(0.002737%) previously obtained, indicating that noise was the cause for application message loss. 

Performing statistically significant experiments with the actual implementations was very time 

consuming. Therefore, in order to test our protocol further, a simulation model for the protocol in 

OMNeT++ [16] was implemented. With this model we study the message loss ratio for different numbers 

of nodes with HYDRA, RHYDRA and RMAC. The parameters of the simulation experimental setup are 

given in Table 3 as well. The simulator assumes that replicas cannot get lost or corrupted due to noise, 

but it does model collisions which is the only source of lost messages.  

All simulations were executed for a length of 10 simulated hours. For simulations involving random 

numbers generation, several independent runs were executed to verify the statistical validity of the 

results. The results of the simulations are given in Figure 10 with respective error bars which are mostly 

not visible due to the small variation found throughout the simulation runs. Observe that the application 

message loss for the scheme using deterministic Δ:s is always zero. This is expected as the simulation 

only models collisions, no noise in transmission was introduced, whereas the other schemes suffer from 

application message loss. 
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Fig. 10. Message loss ratio in simulation 

4.3. Support of Hypotheses 

§Hypothesis 1. In order to test Hypothesis 1 the time required to implement HYDRA was measured. 

We spent approximately 7 days on implementing the protocol and running experiments. Almost a third 

of this time was spend getting familiar with the platform details. The time for coding the protocol was 

less than a day and we encountered no relevant bugs that were related to the implementation of the 

protocol. We did however encountered and fixed some bugs related to the platform. This suggests that 

Hypothesis 1 withstood our test. 

§Hypothesis 2. The experiments presented in Section 4.2. corroborate Hypothesis 2. 

§Hypothesis 3. Testing Hypothesis 3 is difficult because it is difficult to know if a lost frame is due to 

a collision or due to noise/distortion. Corrupt CRC may be because of noise or it may be because of 

collisions. Based on the experiments with the actual implementation of HYDRA in Section 4.2, it results 

that the number of lost messages is less than the probability of a single message with a single sender 

being lost; this corroborates our hypothesis that the implementation of our protocol indeed guarantees 

that ncollisionfree(τi) replicas are collision-free. Furthermore, we have run simulations during a period of 

100 simulated hours for the scheme using deterministic Δ:s for 2 ≤ m ≤ 8 and found that no application 

messages were lost during these simulation runs. This suggests that Hypothesis 3 withstood our test. 

§Hypothesis 4. In order to test Hypothesis 4, we considered the experiments used to test Hypothesis 3 
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Fig. 11. The frequency of the number of necessary replicas and variation of the number of redundant replicas with m. 

and acquired both the frequency of the number of replicas necessary until the first replica is transmitted 

without collision (Figure 11a) and the number of redundant replicas for 2 ≤ m ≤ 8 (Figure 11b). Observe, 

in Figure 11b, that for the case with m = 8 we obtain that approximately 84% of the first replicas of a 

message are collision-free. Hence, if most (but not all) links are bidirectional and we would have used a 

scheme where the receiver sends an acknowledgement when it receives the first successful replica then in 

approximately 84% of the cases the sender Ns only needs to send one replica. Hence, in 84% of the cases, 

Ns can send 7 non real-time messages instead of the replicas that Ns would normally send. This 

discussion supports, Hypothesis 4.  

In order for the acknowledgement scheme described above to be efficient, it is necessary that the time 

required to send acknowledgements is negligible. Nonetheless, it could easily been the case by using 

longer packets (say 1500 bytes) for data and short packets (say 20 bytes) for the acknowledgements. But 

unfortunately this is not supported by our experimental platform so we did not implement it. 

5. Discussion and Previous Work 

Bidirectional links are useful for MAC and routing protocols. Let us categorize a MAC protocol 

based on whether it can suffer from collisions. If it can suffer from collisions then a sender typically 

retransmits data packets until it receives an acknowledgement from the intended receiver. Typically the 

data and the acknowledgement are transmitted on the same link, and so this requires bidirectional links. 

This is exemplified by ALOHA [17] and some CSMA/CA protocols. MAC protocols that are collision-
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free typically rely on that senders receive feedback from the intended receiver. Some protocols, such as 

MACA [18] do this using an RTS/CTS dialog before the data packet is sent. In other protocols, a 

receiver sends a busy tone when it receives a packet and other senders can hear thus avoiding the 

collision. Common to all these MAC protocols is that they depend on bidirectional links. Routing 

algorithms also typically assume that links are bidirectional, being one notable exception the Dynamic 

Source Routing (DSR) [19]. We can conclude that the current communication protocols are heavily 

dependent on bidirectional links. 

Unfortunately, unidirectional links are not rare and they are caused by a variety of reasons such as: 

(i) differences in antenna and transceivers even from the same type of devices; (ii) differences in the 

voltage levels due to different amounts of stored energy in the battery; (iii) different properties of the 

medium in different directions (anisotropic medium) and (iv) different interferences from neighboring 

nodes. 

Given that protocol stacks tend to be implemented based on the assumption that unidirectional links 

do not exist, three techniques have been used to "hide" the unidirectional links: (i) tunneling; (ii) 

blacklisting and (iii) transmission power increase. If a link from node u to v is unidirectional, the 

tunneling approach attempts to find a path from v to u and give higher level protocols the illusion of a 

link from v to u. In order to achieve this, some routing functionality has to be performed at the lower 

layers of the protocol stack [20]. Packets sent across the tunnel have larger delays because they have to 

cross several hops. This is not too important though, because often the tunnel is used only for 

acknowledgements to packets that were sent across the unidirectional link. It is important however to 

avoid the ACK explosion [21]. Consider a unidirectional link from node Nu to node Nv. Consider also that 

there is a path from Nv to Nu. A data message has been sent across the link Nu to Nv and now the node Nv 

should send an ACK across the path back to Nu. However, the path from Nv to Nu contains a 

unidirectional link too. This link is from node Nx to Ny. When a packet has crossed the hop from Nx to Ny, 

node Ny should send an ACK to Nx. In order to do this, it may have to find a path to Nx. It is possible that 
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the path from Ny to Nx uses the link from Nu to Nv. This may generate an ACK from Nu to Nv and this 

process continues forever. 

The technique of blacklisting detects unidirectional links when sending data messages, and does not 

use them in the future. The technique "hello" is similar but here “hello” messages are exchanged so a 

node i knows about the existence of a neighbor and whether they can hear i. This exchange is periodic 

and occurs regardless of whether the nodes are involved in routing data traffic or not. These techniques 

are sometimes called ignoring [22] or check symmetry [1]. Yet another technique to ignore unidirectional 

links is to treat it as a fault. This technique has been applied in conjunction with Ad-hoc On-Demand 

Distance Vector Routing (AODV) and it works as follows. When a source node attempts to find a route 

to the destination, it floods the network with Route-Request (RREQ) packets. In the normal AODV, 

when RREQ packet reaches a node which knows a route to the destination, this node sends Route Reply 

(RREP) back on the same paths as the RREQ was sent on. With the normal AODV, RREP would fail on 

a unidirectional links but instead this technique attempts to find a new path back to the source. When it 

finds a node with RREQ it knows a route back to the source node [23]. A similar scheme was proposed 

in [1] called Bidirectional flooding. Another technique (which we call “transmission power increase”) 

lets a downstream node of a unidirectional link to temporarily increase its power for sending responses 

such as acknowledgements and clear-to-send [24]. This technique is based on the sender to piggyback its 

geographical position obtained by GPS and the receiver should use this information to calculate the 

distance, which in turn is used to know how much the transmission power should be increased. We think 

the idea of increasing transmission power is interesting but in [24] the authors do neither give any details 

on how this increase transmission power is computed nor state the assumed path loss. Common to these 

techniques is that they require no or minimal changes to routing protocols. 

Several routing algorithms have been proposed for unidirectional links. A common challenge that 

faces routing with unidirectional links is knowledge asymmetry; that is, if a link from u to v is 

unidirectional, only v can detect the existence of the link (by hearing a broadcast from u) but u is the one 
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that will use the knowledge of the link for routing purposes. One technique builds on distance vector. 

The classic distance vector algorithm maintains a vector at each node and this vector stores the hop count 

to every other node Ni and the next node that should be used for forwarding to this node Ni (sometimes a 

sequence number is added too; it is used for updates). 

Consider a node Nu with a neighbor Nv. Node Nv knows a route to node Nw. The number of hops from 

Nu to Nw is no larger than the number of hops from Nv to Nw plus one. If the link Nu to Nv is bidirectional 

this fact can be easily exploited in the design of a routing protocol because the length of the route Nv to 

Nw can simply be communicated over one hop to Nu. However, if the link Nu to Nv is unidirectional this is 

more challenging. 

One extension of distance vector [22] however stores all distance vectors of all nodes in the network 

(hence it requires O(m2) storage). Another extension [25] sends information "downstream" until every 

node knows a circuit to itself. The node selects the shortest circuit and informs its upstream neighbors, 

and then the standard distance vector algorithm is used. Other techniques [20, 26] and [27] disseminate 

link state information across a limited number of hops. This is based on the assumption that the reverse 

path of a unidirectional link is short and this assumption has been supported empirically [20]. 

Pure link-state routing disseminates the topology information to all nodes and then the routes are 

calculated. This avoids the problem of asymmetric information (mentioned earlier) but the overhead of 

this scheme is large already. 

In order to reduce the routing cost in networks with unidirectional links, it has been suggested that a 

subset of nodes should be selected and only they should maintain routing information about all nodes in 

the network. It is required that all nodes which are not in this subset have a link from the subset and a 

link to the subset. Algorithms for selecting this subset of nodes have been proposed and they have very 

low overhead [28].  

It has often been pointed out that unidirectional links should be avoided altogether because existing 

MAC protocols cannot deal with them (as we already mentioned MACA, which was the basis for the 
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RTS/CTS dialogue in IEEE 802.11 relies on bidirectional links). But recently, this view has been 

challenged. For example [29] mentioned that their routing protocol works well for multicast and that it 

could be used for unicast routing as well – if there was a MAC protocol for unidirectional links. 

To the best of our knowledge, the only previous MAC protocols that work for unidirectional links 

require synchronized clocks and it suffers from (an unbounded number of) collisions [9].  

The technique in [9] addresses medium access control on unidirectional links. The technique 

generates pseudo-random numbers on each node and these numbers act as priorities. Every node knows 

the seed of the pseudo-random numbers on other nodes and hence a node knows if it has a higher priority 

than its neighbors. If it has then it is the winner; otherwise it is not a winner. If it is a winner then it 

transmits in that time slot. Every new time slot, a new pseudo-random number is generated. This 

protocol is designed to deal with hidden nodes in the following way: if a node Ni has a neighbor with 

higher priority two hops way then node Ni simply does not transmit. This scheme is collision-free but it 

depends on synchronized clocks and the MAC protocol does not take deadlines into account in its 

decisions. Our protocol does not have those shortcomings. 

One of our schemes to determine Δ:s depends on the use of prime numbers. This has been observed in 

nature, where cicadas sleep and periodically wakes up every 7, 9 or 11 years. It has been explained that 

this minimizes “collisions” with predatory animals with other periods [30]. 

We have also borrowed ideas from real-time scheduling theory and in particular: static-priority 

preemptive scheduling of uniprocessor system. Our concept of message stream is equivalent to a task in 

processor scheduling theory. Algorithm 3, the algorithm that assigns small Δ:s to message streams with a 

small Di is similar to the deadline-monotonic priority-assignment scheme [31]. Our equation for 

computing the number of collisions has similarities to a sufficient schedulability tests [32] and our 

iterative procedure (in Algorithm 2) is similar to the response-time calculation [33]. The argument for 

correctness of the iterative procedure (in Algorithm 2) is similar to the argument [34] why the iterative 
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Fig. 12. An example of how the performance of our MAC protocol can be significantly improved if the topology is 
known. If we assume the topology is unknown, then we must assume that all 13 nodes can transmit simultaneously and 
can collide. This gives us (using Section 3) Δ1 = 22, Δ2=26, Δ3 = 34, Δ4 = 38, Δ5 = 46, Δ6 = 58,  Δ7 = 62, 
Δ8 = 74, Δ9 = 82, Δ10 = 86, Δ11 = 94, Δ12 = 106, Δ13 = 118 and z = 1417. The interference graph is shown in (b). We 
observe that every node has at most 4 links. This gives us m = 5, and we calculate the following Δ:s:  6, 10, 14, 22, 26. 
Now we can assign Δ1 = 6, Δ2 = 10, Δ3 = 14, Δ4 = 22, Δ5 = 26, Δ6 = 6,  Δ7 = 10, Δ8 = 14, Δ9 = 22, Δ10 = 26, Δ11 = 6, 
Δ12 = 10, Δ13 = 14. Observe that we reuse Δ:s and this does not cause any collisions. In this way, we obtain z = 105, 
which is significantly lower. 

 

(a) Connectivity graph. 

(b) Interference graph. 

N1 N3 N5 N7 N9 N11 N13 N2 N4 N6 N8 N10 N12 

N1 N3 N5 N7 N9 N11 N13 N2 N4 N6 N8 N10 N12 

 

response-time calculation finds a solution to the equation if and only if there is a solution. There is a 

difference however in that the equation used in the response-time calculation [33] is a necessary and 

sufficient schedulability test; whereas the inequalities that we use in our schedulability test is only 

sufficient. For this reason, our schedulability test is only sufficient; it is not necessary. 

In the theory we assumed that tof = 0. We can easily extend the theory for the case when tof > 0. We 

can do it as follows. Select the time unit such that (1 − tof) is the time it takes to transmit a replica. 

Hence, if tof = 1μs and the time to transmit a replica is 1 ms, then let 1.001 ms denote a time unit. 

In the paper, we assumed topology is not known. However, if the topology is known we can perform 

significantly better (assuming that we also know the interference graph). Every node in the connectivity 

graph also exists in the interference graph. The links in the interference graph are non-directed. The links 

in the interference graph cannot simply be computed from the connectivity graph. However, there are 

some links in the interference graph that are necessary. Consider two nodes in the connectivity graph Ni 

and Nj. If there is a link from Ni to Nj or from Nj to Ni then there is a link between Ni and Nj in the 

interference graph as well. If there is a node Nk with a link from Ni to Nk and a link from Nj to Nk then 

there is a link between Ni and Nj in the interference graph as well. Figure 12 illustrates this. In general 
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this requires solving the problem Achromatic Number which is known to be NP-hard (see page 191 

in [35]) but several approximation algorithms are available. We can see from Figure 12 that the z is 

unaffected by the size of the network; only the number of neighbors 2-hops away matters. Hence, this 

approach is efficient in large networks if they are not dense. 

6. Conclusions and Future Work 

We have presented the first MAC protocol that can guarantee that the time from when an application 

requests to transmit until the message is transmitted is bounded even in the presence of unidirectional 

links and without using synchronized clocks or taking advantage of topology knowledge. A 

schedulability analysis technique was proposed for sporadic message streams. We implemented the 

protocol and observed (i) the effort required to implement it is small, (ii) by observing the number of lost 

messages we found that the implementation guaranteed that at least one replica of a message is  

collision-free and (iii) the number of lost messages at the receiver is significantly lower using our 

protocol than a replication scheme with random delays between replicas. We also run a scheme with 

random time for transmission with only one replica; this should perform similar to ALOHA [17], and 

found that our protocol performed significantly better. 

We consider for future work (i) the development of even better techniques for computing Δ:s and 

(ii) schedulability analysis techniques with probabilistic guarantees but with fewer replicas and hence 

lower overhead. 
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