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Abstract 

Unmanned aerial vehicle (UAV)-assisted sensor networks (UASNets), which play a crucial role in creating new 

opportunities, are experiencing significant growth in civil applications worldwide. UASNets provide a range of new 
functionalities for civilian sectors. Just as UASNets have revolutionized military operations with improved 

surveillance, precise targeting, and enhanced communication systems, they are now driving transformative 
change in numerous civilian sectors. For instance, UASNets improve disaster management through timely 

surveillance and advance precision agriculture with detailed crop monitoring, thereby significantly transforming 
the commercial economy. UASNets revolutionize the commercial sector by offering greater efficiency, safety, and 

cost-effectiveness, highlighting their transformative impact. A fundamental aspect of these new capabilities and 
changes is the collection of data from rugged and remote areas. Due to their excellent mobility and 

maneuverability, UAVs are employed to collect data from ground sensors in harsh environments, such as natural 
disaster monitoring, border surveillance, and emergency response monitoring. One major challenge in these 

scenarios is that the movements of UAVs affect channel conditions and result in packet loss. Fast movements of 
UAVs lead to poor channel conditions and rapid signal degradation, resulting in packet loss. On the other hand, 
slow mobility of a UAV can cause buffer overflows of the ground sensors, as newly arrived data is not promptly 

collected by the UAV. 

Our proposal to address this challenge is to minimize packet loss by jointly optimizing the velocity controls and 

data collection schedules of multiple UAVs. The states of ground sensors include battery level, data queue length, 
and channel quality. In the absence of up-to-date knowledge of ground sensors 19 states, we propose a multi-UAV 

deep reinforcement learning-based scheduling algorithm (MADRL-SA). This algorithm allows UAVs to 
asymptotically minimize packet loss due to buffer overflows and poor channel conditions, even in the presence of 

outdated knowledge of the network states at individual UAVs. 

Furthermore, in UASNets, swift movements of UAVs result in poor channel conditions and fast signal attenuation, 

leading to an extended age of information (AoI). In contrast, slow movements of UAVs prolong flight time, thereby 
extending the AoI of ground sensors. Additionally, the UAVs should consider the movements of other UAVs to 

minimize the average AoI by coordinating their velocities. Hence, finding an equilibrium solution among UAVs to 

optimize velocity and reduce the average AoI becomes crucial. 

To address this challenge, we propose a new mean-field flight resource allocation optimization to minimize the AoI 
of sensory data. Balancing the trade-off between UAV movements and AoI is formulated as a mean-field game 

(MFG). We introduce a new mean-field hybrid proximal policy optimization (MF-HPPO) scheme to handle the 
expanded solution space of MFG optimization. This scheme minimizes the average AoI by optimizing the UAV 

trajectories and ground sensor data collection schedules, considering mixed continuous and discrete actions. 
Additionally, we incorporate a long short-term memory (LSTM) in MF-HPPO to predict the time-varying network 

state and stabilize the training. 

 



Deep Reinforcement Learning for Joint

Cruise Control and Intelligent Data

Acquisition in UAVs-Assisted Sensor

Networks

Yousef Emami

Supervisor: Dr. Kai Li

Co-Supervisor: Prof. Dr. Eduardo Tovar

Co-Supervisor: Prof. Dr. Mario Sousa

Programa Doutoral em Engenharia Electrotécnica e de Computadores

February 2023



© Yousef Emami: February 2023



Faculdade de Engenharia da Universidade do Porto

Deep Reinforcement Learning for Joint Cruise
Control and Intelligent Data Acquisition in

UAVs-Assisted Sensor Networks

Yousef Emami

Dissertation submitted to Faculdade de Engenharia da Universidade do Porto

to obtain the degree of

Doctor Philosophiae in Electronic & Computer Engineering

President: Prof. Dr. Nuno Fidalgo

Referee: Prof. Dr. Xiaoming Fu

Referee: Prof. Dr. Nuno Lau

Referee: Prof. Dr. Rosario Pinho

Referee: Dr. Pedro Santos

Supervisor: Dr. Kai Li

February 2023





To my loving parents,

who have always supported and encouraged me

throughout my academic journey.





Abstract

Unmanned aerial vehicle (UAV)-assisted sensor networks (UASNets), which play a cru-

cial role in creating new opportunities, are experiencing significant growth in civil ap-

plications worldwide. UASNets provide a range of new functionalities for civilian sec-

tors. Just as UASNets have revolutionized military operations with improved surveillance,

precise targeting, and enhanced communication systems, they are now driving transfor-

mative change in numerous civilian sectors. For instance, UASNets improve disaster

management through timely surveillance and advance precision agriculture with detailed

crop monitoring, thereby significantly transforming the commercial economy. UAS-

Nets revolutionize the commercial sector by offering greater efficiency, safety, and cost-

effectiveness, highlighting their transformative impact. A fundamental aspect of these

new capabilities and changes is the collection of data from rugged and remote areas. Due

to their excellent mobility and maneuverability, UAVs are employed to collect data from

ground sensors in harsh environments, such as natural disaster monitoring, border surveil-

lance, and emergency response monitoring. One major challenge in these scenarios is that

the movements of UAVs affect channel conditions and result in packet loss. Fast move-

ments of UAVs lead to poor channel conditions and rapid signal degradation, resulting in

packet loss. On the other hand, slow mobility of a UAV can cause buffer overflows of the

ground sensors, as newly arrived data is not promptly collected by the UAV.

Our proposal to address this challenge is to minimize packet loss by jointly optimiz-

ing the velocity controls and data collection schedules of multiple UAVs. The states of

ground sensors include battery level, data queue length, and channel quality. In the ab-

sence of up-to-date knowledge of ground sensors’ states, we propose a multi-UAV deep

reinforcement learning-based scheduling algorithm (MADRL-SA). This algorithm allows

UAVs to asymptotically minimize packet loss due to buffer overflows and poor channel

conditions, even in the presence of outdated knowledge of the network states at individual

UAVs.

Furthermore, in UASNets, swift movements of UAVs result in poor channel conditions

and fast signal attenuation, leading to an extended age of information (AoI). In contrast,

slow movements of UAVs prolong flight time, thereby extending the AoI of ground sen-

sors. Additionally, the UAVs should consider the movements of other UAVs to minimize

the average AoI by coordinating their velocities. Hence, finding an equilibrium solution

among UAVs to optimize velocity and reduce the average AoI becomes crucial.

To address this challenge, we propose a new mean-field flight resource allocation op-

timization to minimize the AoI of sensory data. Balancing the trade-off between UAV

movements and AoI is formulated as a mean-field game (MFG). We introduce a new

mean-field hybrid proximal policy optimization (MF-HPPO) scheme to handle the ex-
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panded solution space of MFG optimization. This scheme minimizes the average AoI by

optimizing the UAV trajectories and ground sensor data collection schedules, considering

mixed continuous and discrete actions. Additionally, we incorporate a long short-term

memory (LSTM) in MF-HPPO to predict the time-varying network state and stabilize the

training.

Keywords: UAVs, Mean-field game, Age of information, Proximal policy opti-

mization, Long short term memory, Communication scheduling, Velocity control,

Deep Q-Network.



Resumo

As redes de sensores assistidas por veículos aéreos não tripulados (UAV) (UASNets), que

desempenham um papel crucial na criação de novas oportunidades, estão a experimen-

tar um crescimento significativo em aplicações civis em todo o mundo. As UASNets

fornecem uma gama de novas funcionalidades para setores civis. Assim como os UAS-

Nets revolucionaram as operações militares com vigilância aprimorada, direcionamento

preciso e sistemas de comunicação aprimorados, elas agora estão a conduzir mudanças

transformadoras em vários setores civis. Por exemplo, as UASNets melhoram a gestão

de desastres por meio de vigilância oportuna e avançam na agricultura de precisão com

monitoramento detalhado de culturas, transformando significativamente a economia com-

ercial. As UASNets também revolucionam o setor comercial ao oferecer maior eficiência,

segurança e economia, destacando o seu impacto transformador. Um aspeto fundamental

desses novos recursos e mudanças é a coleta de dados de áreas acidentadas e remotas.

Devido à sua excelente mobilidade e capacidade de manobra, os UAVs são empregados

para coletar dados de sensores terrestres em ambientes hostis, como monitoramento de

desastres naturais, vigilância de fronteiras, e monitoramento de resposta a emergências.

Um grande desafio nesses cenários é que os movimentos dos UAVs afetam as condições

do canal e resultam em perda de pacotes. Movimentos rápidos de UAVs levam a más

condições do canal e rápida degradação do sinal, resultando em perda de pacotes. Por

outro lado, a mobilidade lenta de um UAV pode causar estouros de buffer dos sensores de

solo, pois os dados recém-chegados não são coletados prontamente pelo UAV.

A nossa proposta para enfrentar esse desafio é minimizar a perda de pacotes otimizando

conjuntamente os controlos de velocidade e os cronogramas de coleta de dados de vários

UAVs. Os estados dos sensores de solo incluem o nível da bateria, o comprimento da

fila de dados e a qualidade do canal. Na ausência de conhecimento atualizado dos es-

tados dos sensores de solo, propomos um algoritmo de programação baseado em apren-

dizado de reforço profundo multi-UAV (MADRL-SA). Esse algoritmo permite que os

UAVs minimizem de modo assintótico a perda de pacotes devido a estouros de buffer e

más condições do canal, mesmo na presença de conhecimento desatualizado dos estados

da rede em UAVs individuais. Além disso, em UASNets, movimentos rápidos de UAVs

resultam em más condições de canal e rápida atenuação de sinal, levando a uma idade da

informação (AoI). Em contraste, os movimentos lentos dos UAVs prolongam o tempo de

voo, estendendo assim o AoI dos sensores terrestres.

Além disso, os UAVs devem considerar os movimentos de outros UAVs para mini-

mizar o AoI médio coordenando as suas velocidades. Portanto, encontrar uma solução

de equilíbrio entre os UAVs para otimizar a velocidade e reduzir o AoI médio torna-se

crucial.

v
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Para enfrentar esse desafio, propomos uma nova otimização de alocação de recursos

de voo de campo médio para minimizar o AoI dos dados sensoriais. Equilibrar o compro-

misso entre os movimentos do UAV e AoI é formulado como um jogo de campo médio

(MFG). Introduzimos um novo esquema de otimização de política proximal híbrida de

campo médio (MF-HPPO) para lidar com o espaço de solução expandido da otimização

de MFG. Este esquema minimiza o AoI médio otimizando as trajetórias do UAV e os

cronogramas de coleta de dados do sensor de solo, considerando ações mistas contínuas e

discretas. Além disso, incorporamos uma memória de longo prazo (LSTM) no MF-HPPO

para prever o estado da rede variável no tempo e estabilizar o processo de treino.

Palavras-chave: UAVs, Mean-field game, Age of Information, políticas de otimiza-

ção por proximidade, memória de longo e curto prazo, escalonamento de comunicações,

controlo de velocidade, Deep Q-Network.
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Chapter 1

Introduction

Unmanned aerial vehicles (UAVs) have become indispensable in today’s technological

advancements, bringing about significant changes in various fields. They have revolu-

tionized sectors such as agriculture, public safety, environmental monitoring, and secu-

rity. In the realm of agriculture, UAVs hold great potential for precision farming, aligning

with the European Union’s focus on sustainable and environmentally friendly agricultural

practices. Additionally, UAVs have proven their worth in assessing hazardous situations,

conducting search and rescue missions, gathering evidence for investigations, and detect-

ing potential threats Undertaking et al. (2017). Furthermore, UAVs play a crucial role

in the development of 5th generation (5G) networks, contributing to the realization of

5G’s goals, including enhanced mobile broadband (eMBB), ultra-reliable and low latency

communications (URLLC), and massive machine-type communications (mMTC). In the

context of eMBB, UAVs provide high data rates, particularly in densely populated or re-

mote areas. They can act as aerial base stations (ABS) or relays, supporting URLLC and

reducing latency for real-time communication. Moreover, UAVs facilitate mMTC by en-

abling the deployment of Internet of Things (IoT) devices in challenging environments

and optimizing network resources to handle a large number of connections. Looking

ahead, UAVs are expected to play a pivotal role in 6th generation (6G) networks, enabling

improved data collection and analysis. Enhanced data collection techniques allow for

real-time capture of a wider range of data, thereby enhancing decision-making processes.

This opens up opportunities for precise environmental monitoring, real-time traffic anal-

ysis, and prompt disaster response through immediate aerial assessments Li et al. (2018),

JIANG et al. (2022).

UAVs have the capability to operate in challenging and remote environments, making

them ideal for aerial data collection. The integration of UAVs into sensor networks for

this purpose is known as UAVs-assisted sensor networks (UASNets). UAVs can serve

1
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as aerial base stations (ABS) or relays to extend the coverage and connectivity of sensor

networks Mozaffari et al. (2019). The advancement in UAV manufacturing and the minia-

turization of communications equipment have made it possible to incorporate compact

and lightweight wireless transceivers into UAVs, enabling efficient aerial data collection.

Commercial wireless transceivers suitable for UAV installation with moderate payloads

are already available in the market. Compared to traditional terrestrial communications

that rely on fixed gateway locations, UASNets offer several advantages. Firstly, aerial

data collectors can be rapidly deployed, making them particularly beneficial for harsh and

remote areas. Secondly, due to their high altitude, UAVs have a higher probability of

establishing line-of-sight (LoS) connections with ground sensors, resulting in more reli-

able communication links. Thirdly, the mobility of UAVs provides an additional degree

of freedom (DoF) for optimizing communication performance by dynamically adjusting

their positions in three dimensions to meet the communication demands on the ground.

Integrating UAVs into wireless sensor networks (WSNs) presents new design oppor-

tunities but also brings challenges. UASNets differ significantly from terrestrial networks

due to factors such as the high altitude and mobility of UAVs, the likelihood of LoS chan-

nels between UAVs and ground sensors, varying quality of service (QoS) requirements

for payload and non-payload data, strict size, weight, and power (SWAP) constraints

of UAVs, and the need to jointly optimize UAV mobility control and communication

scheduling/resource allocation to maximize system performance.

• High altitude: UAV data collectors are positioned at much higher altitudes com-

pared to traditional terrestrial gateways. While terrestrial gateways are typically

located at around 10m for urban micro deployment and 25m for urban macro de-

ployment, UAVs can fly as high as 122m under current regulations. This higher

altitude enables UAV data collectors in UASNets to achieve wider ground coverage

compared to their terrestrial counterparts.

• Higher channel gain: The air-ground channels experienced by UAVs exhibit dis-

tinct characteristics due to their high altitude. Unlike terrestrial channels that suffer

from low channel gain due to shadowing and multipath fading, UAV ground sensor

channels generally have limited scattering and primarily rely on LoS links, resulting

in higher channel gain. This LoS-dominant air-ground channel offers more reliable

link performance between UAVs and associated ground sensors.

• Controlled mobility: Unlike fixed terrestrial gateways, UAVs possess the capability

to move at high speeds in three-dimensional space, allowing for controlled mobil-

ity. While this mobility introduces time-varying channels with ground sensors, it
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also opens up new design opportunities for communication-aware control of UAV

mobility. UAVs can optimize their position, altitude, velocity, heading direction,

and trajectories to adapt to communication objectives and improve overall network

performance.

• SWAP constraints: UAVs face significant SWAP constraints, which limit their en-

durance, computational capacity, and communication capabilities. Unlike terres-

trial communications systems that benefit from stable power supplies at fixed gate-

ways, UAVs must operate within these constraints, requiring efficient power man-

agement, lightweight hardware, and optimized communication protocols Wu et al.

(2020).

Meanwhile, UASNets enhance the decision-making process through their advanced

data collection capabilities. By gathering comprehensive and real-time information, they

provide a rich and accurate basis for decision-making. These networks combine the agility

and adaptability of UAVs with the extensive data collection capabilities of ground sensors,

creating a system that not only collects valuable data but also reacts quickly and adjusts

to changing environmental conditions. This adaptability makes UASNets highly effective

in dealing with different situations. The following reasons highlight the importance of

UASNets as a significant research area: (i) UASNets can cover large areas and collect

high-quality data in real time. This makes them valuable in various fields such as en-

vironmental monitoring, wildlife protection, and infrastructure inspection. (ii) UASNets

play a critical role in providing vital information to first responders during natural disas-

ters. This information enriches the decision-making process and allows for more efficient

resource allocation. (iii) Farmers can efficiently monitor crop health, soil conditions, and

water needs using UASNets. This improves agricultural quality, increases productivity,

and reduces environmental impact. (iv) UASNets enable agencies to regularly inspect

critical infrastructure such as bridges, dams, and power lines. This proactive approach

reduces the risk of catastrophic failures. In summary, research on UASNets contributes to

the development of innovative solutions for practical problems, improves quality of life,

and promotes sustainable development. The EU recognizes the importance of UASNets

and their integration into various disciplines. The following are reasons highlighting the

importance of UASNets in the EU: The EU is committed to sustainable development and

environmental preservation. UASNets play a crucial role in providing important data for

monitoring air pollutants, identifying their sources, and assessing ecosystem health. This

aligns with the EU’s goals of reducing emissions and preserving the environment. The

EU has an aging infrastructure network that requires regular inspection and maintenance.

UASNets can help take proactive measures by identifying potential problems, enabling
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timely maintenance, and reducing the risk of catastrophic failures. This contributes to

ensuring public safety. With a projected fleet of approximately 50,000 UAVs, UASNets

can support public safety missions. UASNets can be utilized in the energy sector for

performing preventative maintenance inspections and mitigating risks to personnel and

infrastructure. It is estimated that around 10,000 UAVs will be used in this sector, con-

tributing to efficient and safe energy operations. The EU envisions a fleet of 400,000

UAVs for civil applications by 2050. By leveraging UASNets, the EU can address vari-

ous challenges while promoting sustainability, economic growth, and improved quality of

life for its citizens.

Europe is not the only region making intensive efforts to utilize UAVs. The United

States (US) and China, two major countries, are investing significantly in technology

and innovative companies, surpassing the level of European investments. Specifically,

the US and China are leaders in the production of defense and civil UAVs Undertaking

et al. (2017). This emphasizes the transformative potential of UASNets in addressing

technological complexities and economic constraints.

A practical example of UASNets can be observed in precision agriculture. The role

of agriculture is of paramount importance to the European economy, with food security

being a top priority. UASNets can optimize agricultural practices, minimize waste, and

enhance crop productivity, thereby contributing to the overall goals of the European agri-

cultural sector. It is predicted that in the agriculture sector, more than 100,000 UAVs will

enable precision agriculture to achieve the necessary increase in productivity.

Fig. 1.1 shows a typical UASNets setup where ground sensors monitor farmland. The

ground sensors generate sensory data, which is stored in a data queue for later transmis-

sion to the UAVs. The UAVs hover over the farmland, approaching each ground sensor

closely to collect data over short distances. In this scenario, a large farm is equipped with

soil sensors that continuously monitor various parameters, including soil moisture, tem-

perature, and nutrient levels. These ground sensors consistently gather data, providing

farmers with information about irrigation, fertilization, and crop protection

UAVs are employed as aerial data collectors, patrolling over the farmland and utilizing

LoS communications. They manage their mobility to approach ground sensors and collect

sensory data. UAVs can improve overall network coverage and performance, enabling

farmers to access comprehensive and accurate data for optimizing their farming practices.

The remainder of this chapter is organized as follows: Section 1.1 presents the moti-

vation for this work. Section 1.2 outlines the thesis and research questions. Section 1.3

presents the methodology. Section 1.4 outlines the structure of the thesis.
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Figure 1.1: An overview of UASNets for precision agriculture.

1.1 Motivation

Thanks to their exceptional mobility and maneuverability, UAVs are utilized in various

civil and commercial applications, including weather monitoring, traffic control, package

delivery Shakhatreh et al. (2019a), and crop monitoring Kim et al. (2019). They are also

employed as data relays for ground sensors in challenging environments such as natural

disaster monitoring Zhao et al. (2019), border surveillance Shakhatreh et al. (2019b), and

emergency assistance Gao et al. (2020). In scenarios where ground sensors are deployed

beyond the reach of terrestrial gateways and lack a consistent power supply, UAVs can

physically approach each individual ground sensor. The short-range LoS communica-

tion link between a UAV and a ground sensor exhibits significant channel gain, enabling

high-speed data transmission. By utilizing UAVs for data collection, network throughput

can be improved, and coverage can be extended beyond terrestrial gateways. Moreover,

UASNets offer several advantages for data collection in remote and inhospitable environ-

ments. UAVs can access areas that are challenging for humans to reach, resulting in more

efficient and cost-effective data collection. This approach reduces safety risks as the use

of UAVs eliminates the need for human intervention in hazardous environments. Due to

their mobility, UAVs have the capability to cover vast areas, thereby reducing the time

and resources required for data collection.

In UASNets, ground sensors are exposed to random data inputs as data generation is

influenced by unpredictable variations in temperature and humidity. As depicted in Fig.

1.1, UAVs are deployed to hover over farmland, allowing close proximity to ground sen-
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sors and utilizing short LoS communication links for data collection. However, selecting

a ground sensor for data collection may lead to buffer overflows for other sensors if their

buffers are already full while new data continues to arrive. Moreover, transmissions from

ground sensors located far away from the UAVs, experiencing poor channel conditions,

are susceptible to errors at the UAVs. The slow mobility of a UAV can contribute to

buffer overflows in ground sensors as newly arrived data is not promptly collected by the

UAV. Properly scheduling data collection, taking into account the onboard velocity of the

UAVs, is crucial to avoid data queue overflow and communication failures. Additionally,

coordination between participating UAVs is necessary for joint velocity control and sen-

sor selection. However, real-time sharing of velocities and selected sensors among UAVs

is challenging due to limited radio coverage and the fast movements of UAVs.

In summary, the effective management of joint communication scheduling and veloc-

ity control is crucial to minimize packet loss, preventing buffer overflows and communi-

cation failures in UASNets. However, it is important to note that ensuring the freshness

and relevance of collected data is also essential. To achieve this, minimizing the age of

information (AoI) becomes necessary in UASNets.

In UASNets, the AoI is commonly used to measure the freshness of sensory data Kaul

et al. (2012) collected at ground sensors and received by the UAVs. It represents the time

elapsed between data generation at a ground sensor and its receipt at the UAV, accounting

for transmission time and network delays. When the UAV’s flight is not properly con-

trolled, it can move away from the ground sensor, increasing the AoI and causing data to

expire. Additionally, different ground sensors may have varying AoI due to the impact

of monitored natural conditions on data generation Li et al. (2022a). The optimization

of UAV cruise control and communication schedules to minimize AoI becomes challeng-

ing because the UAV has limited knowledge of ground sensors’ data generation rate and

channel conditions. Swift movements of the UAV result in poor channel conditions and

frequent data retransmissions, leading to a prolonged AoI. Conversely, slow UAV move-

ments extend flight time and increase the AoI of ground sensors. Furthermore, the UAV

needs to consider the movements of other UAVs to minimize the average AoI by coordi-

nating their velocities, highlighting the importance of finding an equilibrium solution.

Decentralized approaches are relevant when UAVs have limited information about

each other’s actions, such as trajectory, flight speed, and scheduled ground sensors. Game

theory can be applied to design decentralized control and determine equilibria in UAV net-

works Mkiramweni et al. (2019). However, traditional game theory approaches become

computationally intractable with a large number of UAVs. Mean-field game (MFG), on

the other hand, offers a scalable framework to address the joint optimization of cruise con-

trol and communication schedules. MFG approximates the interactive behavior of a large
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number of UAVs using a continuum or mean field, significantly reducing computational

complexity. It enables UAVs to make decisions based on the overall swarm behavior

rather than individual actions.

1.2 Thesis Statement and Research Questions

In this research, our proposed solutions aim to address the challenges faced by UASNets.

In this framework, the thesis statement is as follows:

We postulate that incorporating cruise control and data collection scheduling into

UASNets can effectively alleviate the impact of channel conditions and unlock the

advantages of timeliness and resource utilization in UASNets.

Based on this thesis, our research focuses on investigating and enhancing the perfor-

mance of data collection in UASNets. We envision that by adopting this new paradigm,

real-time decision-making can be facilitated, leading to improved resource utilization.

Consequently, we anticipate advancements in QoS, overall system reliability, and produc-

tivity of UASNets. However, achieving this goal entails addressing several challenging

scientific problems, which we formulate as the following two research questions.

(RQ1). Research Question 1: How can we develop a joint communication scheduling and

velocity control mechanism for data collection in UASNets to minimize packet loss

and mitigate the impact of UAV movement on data transmission, while addressing

the challenges posed by limited radio coverage and rapid movement?

How the joint communication scheduling and velocity control mitigate the

effects of UAVs’ movement on data transmission in the presence of fast

movements.

(RQ2). Research Question 2: In the presence of a large number of UAVs, the challenge

lies in developing cruise control mechanisms that minimize the AoI and mitigate the

impact of UAVs’ movements on AoI. Additionally, how can we find an equilibrium

solution and capture the temporal dependencies of cruise control?
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How can we develop cruise control and mitigate the impact of UAV move

ments on AoI.

1.3 Methodology

This work focuses on improving the performance of data collection in UASNets, partic-

ularly in lossy channels. The main objective is to minimize packet loss and AoI in order

to enhance the efficiency of data collection. To achieve this goal, the study explores the

application of deep reinforcement learning (DRL). By leveraging DRL algorithms, the

research aims to develop intelligent and adaptive solutions that can learn from the envi-

ronment and determine the optimal policy.

The use of DRL-based techniques is expected to provide valuable insights and effec-

tive approaches to significantly enhance the performance of data collection in UASNets.

The ultimate aim is to contribute to the advancement of this emerging field by proposing

novel solutions that leverage DRL for improved data collection performance.

In this thesis, the joint communication schedule and velocity control of multiple UAVs

are formulated as a multi-agent Markov decision process (MMDP) to minimize packet

loss caused by buffer overflows and communication failures. The ground sensor keeps a

record of the visit time whenever a UAV schedules data transmission from the sensor. Fur-

thermore, the visiting records of the sensor are shared with the UAV, serving as evidence

of other UAVs’ communication schedules. The network state in the MMDP includes bat-

tery levels and data queue lengths of the ground sensors, channel conditions, visit time,

and waypoints along the UAVs’ trajectories. The UAVs take actions such as selecting

ground sensors for data transmission, determining modulation schemes, and adjusting pa-

trol velocities. In practical scenarios, the UAVs lack real-time knowledge of the battery

level and data queue length of the ground sensors. Thus, multi-UAV Q-learning can be

employed to train the UAVs’ actions. However, since each UAV’s trajectory may have a

large number of waypoints, controlling the velocities of the UAVs along the trajectories

results in a vast state and action space, making multi-UAV Q-learning complex.

In our MFG approach, the optimal velocities of the UAVs are determined by solving

a Fokker–Planck–Kolmogorov (FPK) equation. This equation describes the evolution of

the mean field to achieve an equilibrium of the optimal velocities of the UAVs. However,

in practical scenarios, the proposed MFG solution is challenging to implement online due

to the lack of instantaneous knowledge of the UAV’s cruise control decisions and AoI.

To address this, we formulate the flight resource allocation optimization problem in the
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MFG framework as an MMDP. The network states in the MMDP consist of the AoI of the

ground sensors and the waypoints of the UAV swarm. The action space in the MMDP in-

cludes continuous variables such as waypoints and velocities, as well as discrete variables

representing transmission schedules. To tackle this complex problem, we propose a solu-

tion called the mean-field hybrid proximal policy optimization (MF-HPPO). MF-HPPO

aims to optimize both the cruise control of the UAVs and the transmission schedules of

the ground sensors in a coordinated manner, leveraging the advantages of the mean-field

approximation.

The research topics of this thesis can be summarized as follows:

• Joint velocity control and communication scheduling to minimize packet loss and

using DRL to find the optimal policy.

• Cruise control based on MFG to minimize AoI and using DRL to find the mean

field equilibrium.

1.4 Contributions

In this section, we summarize the main findings of our research in relation to the research

questions outlined in Section 1.2 and discuss the contribution of our work to the existing

body of knowledge in the field of data collection.

1. This contribution addresses RQ1. The problem of joint velocity control and data

collection scheduling is formulated as an MMDP to minimize packet loss caused

by buffer overflow and channel fading. To handle the large state and action spaces,

we propose the multi-UAV DRL-based scheduling algorithm (MADRL-SA) using

Deep-Q-Networks (DQN) to optimize the selection of ground sensors, instanta-

neous patrol velocities of UAVs, and modulation schemes. The inclusion of expe-

rience replay enhances the learning efficiency of the algorithm by reducing sample

correlations.

The mentioned contribution is of utmost importance as it addresses the challenges

faced by modern UAV networks in handling complex dynamic environments, in-

cluding UAV movement. The proposed methodology showcases the potential of

DRL in solving complex problems. It also contributes to the development of intel-

ligent, adaptive, and autonomous systems capable of self-optimization. The use of

DRL in conjunction with experience replay enhances the system’s ability to learn

and evolve, leading to improved performance.
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2. This contribution addresses RQ1. : In practice, the online decisions of UAVs during

flight are unknown to each other, which can hinder the training of MADRL-SA. To

address this, a local action recording process is developed where ground sensors

record historical visits of all UAVs. The UAV scheduling a ground sensor receives

these records, providing information about the past scheduling decisions of other

UAVs.

The introduction of the local action recording process in this contribution is an im-

portant step in addressing the practical challenges associated with UASNets. In

practical scenarios, UAVs are unaware of each other’s decisions, leading to uncer-

tainty and potentially incomplete training of MADRL-SA. This situation can result

in suboptimal decisions and degrade network performance. By incorporating a lo-

cal action recording process, the algorithm’s effectiveness is ensured even under

realistic operating conditions. This approach promotes a more collaborative envi-

ronment among UAVs, allowing them to adjust their actions based on the observed

behavior of other UAVs in the network.

3. This contribution addresses RQ2. A novel formulation of MFG optimization with

a large number of UAVs is proposed to address the trade-off between UAV cruise

control and AoI. Due to the computational complexity of MFG, the MF-HPPO algo-

rithm is introduced to minimize average AoI. The algorithm learns state dynamics

and optimizes UAV actions in a mixed discrete and continuous action space.

This contribution represents a significant advancement in the field of UASNets with

a large number of UAVs. By leveraging MFG optimization, we effectively address

the challenges associated with managing such complex systems. Our approach

focuses on the collective behavior of UAVs, leading to improved resource alloca-

tion and overall performance. MF-HPPO efficiently optimizes both continuous and

discrete actions to minimize the average AoI. This ability to optimize UAV ac-

tions in a mixed-action space highlights their versatility and adaptability, enabling

them to meet diverse network conditions and requirements. The proposed method

underscores the importance of advanced optimization techniques in solving com-

plex real-world problems. Moreover, this contribution pushes the boundaries of

UASNets and highlights the wider applicability of MFG optimization in addressing

complex challenges across various domains.

4. This contribution addresses RQ2. To capture temporal dependencies in cruise con-

trol and improve learning convergence, a new long short-term memory (LSTM)
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layer is developed within the MF-HPPO algorithm. This LSTM layer predicts time-

varying network states, such as AoI and UAV waypoints.

By incorporating the LSTM layer, our contribution tackles the issue of capturing

temporal dependencies in cruise control, which is crucial for efficiently manag-

ing and optimizing UASNets. This development emphasizes the significance of

combining advanced machine learning (ML) techniques to create more robust and

adaptable algorithms.

The above contributions are presented in the following publications:

• Y. Emami, B. Wei, K. Li, W. Ni and E. Tovar, Deep Q-Networks for Aerial Data

Collection in Multi-UAV-Assisted Wireless Sensor Networks, 2021 International

Wireless Communications and Mobile Computing (IWCMC), Harbin City, China,

2021, pp. 669-674, doi: 10.1109/IWCMC51323.2021.9498726.

• Y. Emami, B. Wei, K. Li, W. Ni and E. Tovar, Joint Communication Scheduling and

Velocity Control in Multi-UAV-Assisted Sensor Networks: A Deep Reinforcement

Learning Approach, in IEEE Transactions on Vehicular Technology, vol. 70, no.

10, pp. 10986-10998, Oct. 2021, doi: 10.1109/TVT.2021.3110801.

• Y. Emami, H. Gao, K. Li, L. Almeida, E. Tovar, and Z. Han, Age of Information

Minimization using Multi-agent UAVs based on AI-Enhanced Mean Field Resource

Allocation, IEEE Transactions on Vehicular Technology, 2023, under review.

1.5 Thesis Structure

The rest of this document is structured as follows.

• Chapter 2 discusses background and related work. In this chapter, we present back-

ground on DRL and then delve into the existing literature to explore related work

on flight resource allocation and scheduling. Our objective is to gain a compre-

hensive understanding of the relevant research in order to comprehend the joint

communication scheduling and velocity control in UASNets. Additionally, we re-

view the literature on mean-field flight resource allocation and time-critical flight

resource allocation to analyze their strengths and weaknesses. This analysis serves

as a foundation for developing a cruise control system based on MFG theory that

minimizes AoI.
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• Chapter 3 formulates the joint communication scheduling and velocity control prob-

lem as an MMDP to minimize packet loss resulting from communication failures

and buffer overflows. Given the large state and action spaces, we employ DRL

techniques to discover the optimal policy for this problem.

• Chapter 4 formulates cruise control based on MFG theory to minimize AoI. Solv-

ing the MFG problem online poses challenges, hence we formulate it as an MMDP,

encompassing both continuous and discrete actions. To address this MMDP formu-

lation, we propose the MF-HPPO algorithm, which optimizes actions in a mixed-

action space.



Chapter 2

Background and Related work

UASNets have emerged as an innovative technology that offers enhanced data collec-

tion capabilities for various applications, including environmental monitoring, disaster

management, and surveillance. In UASNets, UAVs play a critical role in gathering sen-

sory data. However, a significant challenge in UASNets is the dynamic nature of UAV

movements, which greatly impacts channel conditions and gives rise to issues such as

packet loss and outdated packets. The rapid movements of UAVs can result in unfavorable

channel conditions and quick signal degradation, requiring frequent data retransmissions.

Conversely, slow movements prolong the flight time, leading to delays in collecting newly

arrived data by the UAV. To tackle these challenges, one potential strategy is to perform

joint cruise control and communication scheduling in the presence of lossy channels, aim-

ing to minimize packet loss and AoI. One effective approach for addressing the challenges

in UASNets is cruise control and data collection scheduling. In the following section, we

present background information on DRL then we provide a review of the existing litera-

ture on this problem. The relevant state-of-the-art works in this area can be classified into

three categories: i) DRL-aided flight resource allocation and scheduling, ii) DRL-aided

flight resource allocation using MFG, and iii) DRL-aided flight resource allocation for

data freshness.

2.1 Deep Reinforcement Learning

DRL is a prominent branch of ML in which an agent learns to interact within an environ-

ment by taking actions and observing the resulting outcomes Sutton and Barto (2018).

DRL is particularly useful for solving MMDPs that have unknown transition proba-

bilities. During the DRL process, an agent observes its current state, selects an action, and

receives immediate feedback in the form of a cost or reward, along with the new state.

13
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The observed information, such as the immediate cost and new state, is then utilized to

adjust the agent’s policy. This iterative process continues until the agent’s policy con-

verges toward the optimal policy Luong et al. (2019). DRL can be applied to UASNets

for the following reasons: (a) UAVs may face challenges in implementing mathematical

models of the complex environment or may not have access to such models. (b) The mo-

bility feature of UAVs leads to large state spaces and action spaces. (c) UAVs often lack

up-to-date knowledge about the status of ground sensors, including battery, energy, and

channel conditions.

Formally, DRL can be described as an MMDP, which includes the number of agents,

state, action, shared cost function, and transition probability. An MMDP is a mathe-

matical framework used to model decision-making in situations where multiple agents

interact with each other in an uncertain environment. In an MMDP, the action taken by

each agent not only determines the future state but also affects the actions of other agents.

Furthermore, in an MMDP, a shared cost function is employed. This shared cost function

considers the joint action of agents and provides feedback that is common to all agents.

The objective is to encourage collaboration among the agents toward a shared goal, rather

than individual goals that may conflict with each other. Well-designed shared cost func-

tions can foster collaboration among agents and lead to more favorable outcomes for the

entire team. The MMDP framework finds applications in various domains, including

UAV swarm control and multiplayer games..

Q-learning, due to the exponential growth of states and actions caused by the mo-

bility of UAVs, is unable to handle the resource allocation problem in UASNets. This

issue, commonly referred to as the curse of dimensionality, poses a significant challenge.

However, DQN offers a solution to overcome this challenge. In the context of UASNets,

DQNs play a crucial role in optimizing various operational aspects, including flight tra-

jectory, cruise control, and data collection scheduling. They employ deep neural networks

to represent the action-value function of each agent. The state information captured by

the DQN can encompass the UAV’s current location, the status of sensor nodes, and the

traffic conditions within the network. The available actions can involve adjusting param-

eters such as speed, trajectory, or data transmission schedules. DQN incorporates the use

of a target network and experience replay for each UAV to ensure stability in the learning

process. Experience replay is utilized in DQN to eliminate correlations in the observation

sequence and mitigate abrupt changes in the data distribution by randomizing states and

actions within the MMDP. Consequently, DQN aids in forming a policy that minimizes

the cost function and enhances the overall performance of UASNets.

DQN is primarily designed to optimize discrete actions and is limited in its ability

to handle continuous actions. To address this limitation and optimize both discrete and
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continuous actions, proximal policy optimization (PPO) can be employed. In the context

of UASNets, PPO plays a crucial role in enhancing the operational efficiency of these

networks. As a type of policy gradient method, PPO enables the optimization of UAV tra-

jectories (continuous action space) and data collection schedules (discrete action space).

The algorithm maintains a delicate balance between exploring new strategies and ex-

ploiting the current strategy, which is particularly advantageous in complex and dynamic

environments like UASNets.

PPO achieves stability and efficient learning by ensuring only a small deviation from

the previous strategy during each update, thereby mitigating the risk of detrimental up-

dates. The objective of PPO is to minimize costs, which can be tailored to reflect real-

time data collection requirements. By optimizing both trajectories and data collection

schedules, PPO facilitates the development of robust policies that enhance the overall

performance of UASNets. PPO has two primary variants: PPO-penalty modifies the hard

constraint of TRPO by incorporating it as a penalty in the objective function. On the other

hand, PPO-clip does not impose a constraint but utilizes clipping techniques to bind the

changes in the policy.

2.2 DRL-aided Flight resource allocation and scheduling

The work in Wu et al. (2018) develops a framework for trajectory control, user association,

and power control in multi-UAV enabled wireless networks. Communication throughput

gains can be obtained by mobile UAVs over static UAVs/fixed terrestrial base stations,

by exploiting the design DoF via UAV trajectory adjustment. A general mixed integer

nonlinear program formulation for a multi-UAV network is presented in Thammawichai

et al. (2017) to adjust the communication and the computational energy. Chen (2020)

explores a multi-UAV-aided relaying system, where UAV relays aim to establish commu-

nication between senders and receivers and to improve the rate between the pair of sender

and receiver, the UAVs’ positions are adjusted, and resource allocations are conducted. In

Sharma et al. (2016), a cooperative framework designed which allowed the formation of

a network between the aerial and the ground nodes. Their approach provides continuous

connectivity, enhanced lifetime, and improved coverage in the UAV coordinated WSNs

and laid the foundation of guided network formations between the UAVs and the ad hoc

networks on the ground. A framework is developed in Albu-Salih and Seno (2018) to

improve energy efficiency in deadline-based WSN data collection with multiple UAVs.

In Zhan and Zeng (2019), the mission completion time is adjusted for multi-UAV-enabled

data collection. An energy-efficient transmission scheduling scheme of UAVs in a coop-
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erative relaying network is developed in Li et al. (2015) such that the maximum energy

consumption of all the UAVs is minimized, in which an applicable sub-optimal solution

is developed and the energy could be saved up to 50% via simulations. In Samir et al.

(2020) a UAV is used to collect data from time-constrained Internet of Things (IoT) de-

vices. The UAV trajectory and radio resource allocation are adjusted to collect data from

IoT devices, adapting to their deadline.

InLi et al. (2019), a single-agent DQN for UAV-assisted online power transfer and

data collection is developed. However, in most situations, multiple UAVs are needed to

interact with each other to solve a resource allocation problem. In Li et al. (2020a), on-

line velocity control and data capture are studied in UAV-enabled IoT networks. DQN is

developed in the presence of outdated knowledge to determine the patrolling velocity and

data transmission schedule of the IoT node. In Li et al. (2020b), the joint flight cruise

control and data collection scheduling in the UAV-aided IoT network is formulated as

a POMDP to minimize the data lost due to buffer overflows at the IoT nodes and fad-

ing airborne channels. A UAV-assisted IoT communication is investigated in Munaye

et al. (2020) where by applying multi-agent DRL a resource allocation scheme adapting

to bandwidth, throughput, and interference is obtained. A wireless powered communi-

cation network is developed in Tang et al. (2020) where multiple UAVs provide energy

supply and communication services to IoT devices. They used a multi-UAV DQN based

approach to improve throughput by jointly adjusting UAVs’ path design and time resource

assignment. They follow an independent learner approach without cooperation between

UAVs. In Zhang et al. (2017), the authors consider long-term, long-distance sensing tasks

in a smart city scenario where UAVs make decisions based on DQN for energy-efficient

data collection. An energy-saving DRL-based UAV control strategy is developed in Liu

et al. (2018) to enhance energy efficiency and communication coverage. They used deep

deterministic policy gradient (DDPG) method and take into account communications cov-

erage, fairness, energy consumption, and connectivity. In Wang et al. (2019), the dueling

DQN is employed to adjust the UAV deployment in the multi-UAV wireless networks

so that downlink capacity is to be enhanced while covering all ground terminals. They

modeled the problem as a constrained MDP problem.

The MARL framework is developed in Cui et al. (2020) to investigate the dynamic

resource allocation problem in UAV networks. A Q-learning based algorithm is devel-

oped to enhance the long-term rewards where each UAV runs Q-learning algorithm and

automatically selects its communication mode, power levels and sub-channels in concur-

rent manner. Shamsoshoara et al. (2019) studies spectrum sharing among a network of

UAVs. A relaying service is realized by team of UAVs to serve primary users on the

ground aiming to gain spectrum access consequently. The gained spectrum belongs to
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not only UAV relay, but also other UAVs that perform the sensing task. The problem is

formulated as deterministic MMDP and distributed Q-learning is utilized to solve it. Chal-

lita et al. (2018) develops the DRL algorithm based on echo state network cells to find

an interference-aware path and allocate resources to the UAVs. The developed scheme

reduces wireless latency and improves energy efficiency. The work in Liu et al. (2019)

adjusts trajectory and power control in multiple UAVs scenarios to enhance the users’

throughput and satisfying the users’ rate requirement.

2.3 DRL-aided flight resource allocation using mean field

game

In Chen et al. (2020), the authors explore energy-efficient control strategies for UAVs

that provide fair communication coverage for ground users. The UAV control problem

is modeled as an MFG and a mean-field TRPO algorithm is studied to design the UAVs’

trajectories. In Li et al. (2020c), the authors apply the MFG theory to the downlink power

control problem in ultra-dense UAV networks to improve the network’s energy efficiency.

Due to the complexity of the MFG, a DRL-MFG algorithm is developed to learn the

optimal power control strategy. Shi et al. (2020) studies the task allocation in cooperative

mobile edge computing and a mean field guided Q-function is formulated to reduce the

network latency. MFG and DRL are integrated to guide the learning process of DRL

according to the equilibrium of MFG. In Sun et al. (2020), the authors model the trajectory

planning and power control for heterogeneous UAVs as an MFG, aiming to reduce energy

consumption. A mean field Q-learning is studied to find the optimal solution. In Wang

et al. (2021b), the authors study UAV-assisted ultra-dense networks, where each UAV can

adjust its location to reduce the AoI. They formulate the problem as an MFG and apply a

DDPG-MFG algorithm to find the mean field equilibrium. In Li et al. (2020c), downlink

power control for a large number of UAVs is suggested to enhance the energy efficiency

by learning the optimal power control policy. MFG is used to model the power control

problem of the UAV network, where each UAV tries to enhance the energy efficiency by

adjusting its transmit power. Then, due to the complexity of solving the formulated MFG,

an effective DRL-MFG algorithm is suggested to learn the optimal power control strategy.

Although, DRL-based solutions are mainly used, the following works adopt numerical

solutions. In Xue et al. (2018), the focus is on adaptive coverage problem in emergency

communication system, where multiple UAV act as aerial base stations to serve randomly

distributed users. The problem is formulated using discrete MFG, each UAV aims to

reduce its flight energy consumption and increase the number of users it can serve. Finally,
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optimal control and state of each UAV are computed. In Xu et al. (2018), a discrete MFG

is formulated to address joint adjustment of power and velocity for a large number of

UAVs that act as aerial base stations. Decentralized control laws are developed, and mean

field equilibrium is analyzed. In Gao et al. (2022), the authors present an energy-efficient

velocity control algorithm for a large number of UAVs based on the MFG theory. The

velocity control of the UAVs is modeled using a differential game in which energy and

delay are balanced by using an original double mixed gradient method.

2.4 DRL-aided flight resource allocation for data fresh-

ness

In Oubbati et al. (2022), the authors consider ground sensors with limited energy and ap-

ply airborne base stations to collect sensory data. Each UAV’s task is decomposed into

energy transfer and fresh data collection. A centralized multi-agent DRL based on DDPG

is developed to adjust the UAV trajectories in a continuous action space, to reduce the

AoI of the ground sensors. In Chi et al. (2022), the authors study UAV-assisted sensor

networks where multiple UAVs cooperatively conduct the data collection to reduce the

AoI. The trajectory planning is formulated as a decentralized partially observable markov

decision process (Dec-POMDP). A multi-agent DRL is studied to find the optimal strat-

egy. In Hu et al. (2019) and Hu et al. (2020b), the authors develop the trajectory planning

for multiple UAVs that perform cooperative sensing and transmission, aiming to reduce

the AoI. In Samir et al. (2022), ground sensors sample and upload data in a UAV-assisted

IoT network. PPO is used to explore the optimal scheduling policy and altitude control for

the UAV to reduce the AoI. In Sun et al. (2021), a data collection scheme characterized by

AoI and energy consumption in a UAV-assisted IoT network is investigated. The average

AoI, and energy consumption of propulsion and communication are reduced by adjusting

the UAV flight speed, hovering waypoints, and bandwidth allocation for data collection

using a TD3-based approach.

Although DDPG and PPO are used to adjust continuous and discrete actions to reduce

AoI, the following works use DQN to adjust discrete actions. In Eldeeb et al. (2022), the

authors investigate UAV-assisted IoT networks where multiple UAVs relay data between

sensors and base station. A DQN-based trajectory planning algorithm is presented to re-

duce the AoI. In Abd-Elmagid et al. (2019), ground sensors with limited energy are used

to observe various physical processes in the context of a UAV-assisted wireless network.

The trajectory and scheduling policy are adjusted to reduce the weighted sum of AoI, and

a DQN-based solution is applied to obtain the best strategy. In Zhou et al. (2019), trajec-
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tory planning of the UAV is performed to reduce the AoI in a UAV-assisted IoT network.

The problem is formulated as an MDP, and a DQN-based algorithm is studied to find

the optimal trajectories of the UAV. In Tong et al. (2020), a UAV-assisted data collection

for ground sensors is studied, where the UAV with limited energy is dispatched to col-

lect sensory data. The UAV’s trajectory is adjusted to reduce the average AoI and keep

the packet loss rate low. The trajectory planning is formulated as an MDP while DQN

is applied to design the UAV’s trajectory. In Liu et al. (2021a), a UAV-assisted wireless

network with an energy supply is used, where the UAV performs wireless energy trans-

mission to ground sensors, and the sensors transmit data to the UAV using the harvested

energy. A DQN-based trajectory planning algorithm is presented to reduce the average

AoI by adjusting the trajectory, transmission schedule, and harvested energy.

2.5 Research Opportunity

The works by Li et al. (2020a) and Li et al. (2020b) address the optimization of velocity

control and data collection schedules to minimize packet loss. However, these works are

formulated for a single agent scenario. In contrast, our proposed approach, MADRL-SA,

differs from the MARL framework introduced by Cui Cui et al. (2020). In MARL, UAVs

operate based on an independent learner paradigm, whereas MADRL-SA promotes coop-

eration among UAVs to minimize packet loss. Additionally, MADRL-SA is specifically

designed for practical scenarios and utilizes DQN, unlike MARL, which relies on Q-

learning. The work by Li et al. (2019) adopts a single UAV approach, while MADRL-SA

adopts a multi-UAV approach, offering advantages in terms of scalability and robustness.

Our focus is on minimizing packet loss and providing velocity control, whereas the work

by Zhang et al. (2017). (2017) prioritizes energy efficiency while neglecting velocity

control. Furthermore, in the reviewed literature, the UAVs act independently without any

explicit strategy for collaboration among them.

The existing literature in the fields of UASNets and DRL has yielded promising out-

comes in tackling various challenges. Nevertheless, based on our current knowledge, no

work has specifically focused on jointly optimizing cruise control and communication

scheduling in the presence of multiple UAVs using DRL techniques. This presents an

intriguing opportunity to explore innovative approaches to tackle this intricate problem.

Most of the works in Section 3.2 formulate MFGs to address energy efficiency in

UASNets. For example, Wang et al. (2021b) propose an MFG formulation to minimize

AoI and suggest the use of DDPG-MFG in a continuous action space to find the optimal

solution. On the other hand, the works in Section 2.4 investigate resource allocation
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to reduce AoI, however, the actions are adjusted either in continuous or discrete action

spaces. For instance, Samir et al. (2022) formulate a resource allocation problem to reduce

AoI and employ PPO in a discrete action space to find the optimal solution.

Existing literature in the field of UASNets and AoI has shown promising results

in addressing various challenges related to trajectory optimization and communication

scheduling. However, most of the existing work focuses on single UAV scenarios, where

actions are optimized in either continuous or discrete action spaces. On the other hand,

research on multi-UAV systems using MFG formulations primarily targets energy effi-

ciency. This presents an opportunity to explore novel approaches that utilize MFG for-

mulations and optimize actions in mixed-action spaces to minimize AoI.

This thesis addresses the problem of joint velocity control and data collection schedul-

ing in UASNets by formulating it as an MMDP to minimize overall packet loss caused

by buffer overflow and channel fading. To handle the large state and action spaces, we

propose MADRL-SA, which is based on DQN and enables the optimization of ground

sensor selection, UAVs’ patrol velocity, and modulation scheme. Additionally, collabora-

tion among UAVs is facilitated by allowing each ground sensor to maintain a history of

UAV visits and share this information with other UAVs. Furthermore, this thesis formu-

lates cruise control for multiple UAVs based on MFG to minimize the average AoI. We

introduce MF-HPPO as a method to optimize the actions of UAVs in a mixed discrete and

continuous action space. To capture temporal dependencies in the cruise control prob-

lem, we leverage an LSTM layer. By adopting these approaches, we aim to enhance the

performance and efficiency of UASNets.



Chapter 3

Joint communication scheduling and

velocity control in UAVs-assisted sensor

networks: A deep reinforcement

learning approach

In this chapter, we address the joint optimization of communication scheduling and ve-

locity control for multiple UAVs in UASNets. We formulate this problem as an MMDP

aiming to minimize packet loss caused by buffer overflows and communication failures.

The MMDP network state comprises battery levels, data queue lengths of ground sen-

sors, channel conditions, visit times, and waypoints along the trajectories of the UAVs.

UAVs take actions to schedule ground sensors for data transmissions, determine modu-

lation schemes, and adjust patrol velocities. Ground sensors record and share visit times

with UAVs as evidence of other UAVs’ communication schedules. The rest of this chap-

ter is organized as follows. Section 3.1 dedicates to the problem statement, where the

system model is presented and the joint optimization of the velocity control and commu-

nication schedule is formulated. In Section 3.2, multi-UAV DQN is developed and a new

MADRL-SA scheme is designed to optimize the decision process of the MMDP, thereby

optimizing the patrol velocities as well as the transmission schedule of the ground sensors.

Performance evaluation is presented in Section 3.3. This paper is concluded in Section

3.4.

Most material included in this chapter is derived from the following scientific publi-

cations:

• Y. Emami, B. Wei, K. Li, W. Ni and E. Tovar, Joint Communication Scheduling and

Velocity Control in Multi-UAV-Assisted Sensor Networks: A Deep Reinforcement

21
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Learning Approach, in IEEE Transactions on Vehicular Technology, vol. 70, no.

10, pp. 10986-10998, Oct. 2021, doi: 10.1109/TVT.2021.3110801. Impact Factor:

6.239.

• Y. Emami, B. Wei, K. Li, W. Ni and E. Tovar,Deep Q-Networks for Aerial Data

Collection in Multi-UAV-Assisted Wireless Sensor Networks, 2021 International

Wireless Communications and Mobile Computing (IWCMC), Harbin City, China,

2021, pp. 669-674, doi: 10.1109/IWCMC51323.2021.9498726.

3.1 Problem Statement

3.1.1 System Model

The network contains J ground sensors and I UAVs. Our study focuses on the joint ve-

locity control and communication scheduling under preconfigured UAV trajectories. The

UAVs fly along pre-determined trajectories which consist of a large number of waypoints

to cover all the ground sensors in the field. The trajectories of the UAVs can be pre-

designed according to the required network capacity Choi et al. (2014), coverage Li et al.

(2019), or the UAVs’ propulsion energy consumption Zeng and Zhang (2017). The opti-

mization of UAV trajectories has been widely studied in the literature Zhao et al. (2020),

Hu et al. (2020a), Wang et al. (2021a). The proposed MADRL-SA is generic to any given

trajectory. The channel coefficient between the UAV i (∈ [1,I]) and device j (∈ [1,J]) at

t is hi
j(t), which can be known by channel reciprocity. The modulation scheme of device

j at t is denoted by φ j(t). In particular, φ j(t)= 1, 2, and 3 indicates binary phase-shift

keying (BPSK), quadrature-phase shift keying (QPSK), and 8 phase-shift keying (8PSK),

respectively, and φ j(t) ≥ 4 provides 2φ j(t) quadrature amplitude modulation (QAM).

Let hi
j(t) denote channel gain between ground sensor j and UAV i. The transmit

power of the ground sensor, denoted by Pi
j(t), isLi et al. (2020a)

Pi
j(t) =

ln
k1
ε

k2hi
j(t)

2
(2φ j(t)−1) (3.1)

where k1 and k2 are channel constants, and ε denotes the required bit error rate (BER) of

the channel. We consider that UAV i moves in low attitude for data collection, where the

probability of LoS communication between UAV i and ground sensor j can be

PrLoS(ϕ i
j) =

1

1+aexp(−b[ϕ i
j −a])

(3.2)
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Table 3.1: Notation and Definition

Notation Definition

J number of ground sensors

I number of UAVs

at−1
u past actions of other UAVs on a ground sensor

ai action of UAV i

Sα,i state of UAV i

Sβ ,i next state of UAV i

Pi
j(t) transmit power between device j and UAV i

hi
j(t) channel gain between device j and UAV i

ζi(t) location of the UAV on its trajectory

v(t) velocity of the UAV

vmax,vmin the maximum and minimum velocity of the UAV

e j(t) battery level of device j

q j(t) queue length of device j

TV Rp Time of each visiting record

D maximum queue length of ground sensor

φ j(t) modulation scheme of device j

γ discount factor for future states

θ learning weight in deep Q-network

where a and b are constants, and ϕ i
j denotes the elevation angle between UAV i and

ground sensor j. Furthermore, path loss of the channel between UAV i and device j can

be obtained by

γ i
j = PrLoS(ϕ i

j)(ηLoS−ηNLoS)+20log(r sec(ϕ i
j))+20log(λ)+20log(

4π

vc

)+ηNLoS (3.3)

where r denotes the radius of the radio coverage of UAV i, λ is the carrier frequency,

and vc is the speed of light. ηLoS and ηNLoS represent the excessive path losses of LoS or

non-LoS, respectivelyAl-Hourani et al. (2014). Please See Appendix A.

3.1.1.1 Communication Protocol

Fig. 3.1 shows the data collection protocol for the UASNets. Specifically, the proposed

MADRL-SA operates onboard at the UAVs to determine their velocities and sensor selec-

tion and allocate the modulation scheme for the selected sensors. The details of MADRL-

SA will be provided in the next section. Next, the UAV broadcasts a short beacon message

which contains the ID of the selected sensor. Upon the receipt of the beacon message, the

selected sensor transmits its data packets to the UAV, along with the state information
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of e j(t), q j(t), and TV Rp in the control segment of the data packet. Once the data is

correctly received, the UAV sends an acknowledgment to the ground sensor.

Figure 3.1: Data communication protocol for UASNets. MADRL-SA conducts velocity

determination, sensor selection, and modulation scheme allocation in each communica-

tion frame

3.1.2 Problem Formulation

In this section, we present the problem formulation.

3.1.2.1 Optimization Formulation

Let κ i
j(t) be the binary indicator of ground sensor j being selected by UAV i for data

transmission at time t. If ground sensor j is scheduled by UAV i at time t, κ i
j(t) = 1;

otherwise, κ i
j(t)=0. The joint optimization of UAV velocity and communication schedule

aims to minimize the packet loss of all the ground sensors, as given by

Optimization problem:

min
κ i

j
(t),vi(t),P

i
j
(t)

I

∑
i=1

J

∑
j=1

fi j(κ i
j(t),vi(t),Pi

j(t))+
J

∑
j=1

g j(κ i
j(t))

subject to:

0 ≤ Pi
j(t)κ

i
j(t) ≤ Pmax, (3.4)
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where

fi j(κ i
j(t),vi(t),Pi

j(t)) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1, if (κ i
j(t) = 1) & (hi

j(t) ≤ hth) & (vi(t) ≤ vmax);

0, otherwise,
(3.5)

and

g j(κ i
j(t)) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1, if (q j(t) >D) & (κ i
j(t) = 0);

0, otherwise,
(3.6)

Constraint (3.4) ensures that the transmit power of the scheduled ground sensor does

not exceed the maximum transmit power Pmax.

3.1.2.2 MMDP Formulation

MMDP can be defined by the tuple {I,{Sα,i},{ai},C{Sβ ∣ Sα ,a},Pr{Sβ ∣ Sα ,a}}

1. I is the number of agents, i.e., UAVs.

2. Sα ,i is the network state observed by agent i (i ∈ I). Sα ,i comprises: channel quality

hi
j(t), battery level e j(t), queue length q j(t), visit time TV Rp, and the location of

UAV ζi(t), i.e., Sα ,i = {(hi
j(t),e j(t),q j(t),TV Rp,ζi(t)), i = 1,2, . . . ,I}.

In particular, each ground sensor maintains a list of visiting time of the agents. Joint

state of all the agents is denoted Sα , where Sα=Sα,1×......×Sα,I .

3. ai represents the action of agent i. ai is to schedule one sensor to transmit data to the

UAV, determine the modulation and the instantaneous patrol velocity of the UAV,

i.e., ai={( j,φ j(t),v(t)), i = 1,2, ....I}. Joint action a which consists of the actions of

all the agents is a=a1×......×aI . The size of action space is JΦ ∣ v(t) ∣, where Φ is the

highest modulation order and ∣ v(t) ∣ stands for the cardinality of the set [vmin,vmax].

4. C{Sβ ∣Sα , a} is the network cost yielded when joint action a is taken at joint state

Sα and the following joint state changes to Sβ . The network cost is the packet loss

of the ground sensors.

5. Pr{Sβ ∣ Sα ,a} denotes the transition probability from joint state Sα to joint state Sβ

when joint action a is taken.
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3.1.2.3 Transition Probability

The transition probability of the MMDP, from Sα to Sβ can be given by

Pr{Sβ ∣ Sα} =
I

/
i=1

(Pr{(eβ , j,qβ , j,hβ , j,ζβ , j) ∣ (eα, j,qα , j,hα, j,ζα, j), j ∈ ai}i)

×

K

/
k=1

(Pr{(eβ ,k,qβ ,k,hβ ,k,ζβ ,k) ∣ (eα ,k,qα ,k,hα,k,ζα ,k),k ≠ ai; i ∈ [1,I]}i) (3.7)

Specifically, the state transition probability presented in (3.7) consists of two parts.

The first part, i.e., Pr{(eβ , j,qβ , j,hβ , j,ζβ , j)∣(eα, j,qα, j,hα , j,ζα , j), j ∈ ai}is the state transi-

tion probability from Sα to Sβ in terms of the selected ground sensor ( j ∈ ai). Let K denote

the total number of unselected ground sensors. The second part, i.e.,

ΠK
k=1

Pr{(eβ ,k,qβ ,k,hβ ,k,ζβ ,k)∣(eα,k,qα,k,hα ,k,ζα,k,k ≠ ai; i ∈ [1,I]}

is the probability from Sα to Sβ in terms of the unselected ground sensors, where

k ≠ ai; i ∈ [1,I] indicates the sensors that are not selected by any of the I agents.

Let di, j denote the distance between ground sensor j and UAV i, v(t) is velocity of the

UAV , R(t) is the data rate of the ground sensor and λ is the packet arrival probability. The

state transition probability of the selected sensor j, which is specified in (3.8), depends on

the following possible transitions.

1. Packet transmission is successful due to the good channel quality, i.e., hβ , j > hα, j

and low velocity. There is no packet arrival, the data queue of the selected node de-

creases, i.e., qβ , j = qα, j −1. The state transition probability is (1−ε)
2di, jR(t)

v(t) (1−λ).

2. Packet transmission is failed due to the poor channel quality, i.e., hβ , j < hα, j and

high velocity. A new data packet is generated and buffered, the data queue of

the selected node increases, i.e., qβ , j = qα , j + 1. The state transition probability

is (1−(1−ε)
2di, jR(t)

v(t) )λ .

3. Packet transmission is successful due to the good channel quality, i.e., hβ , j > hα , j

and low velocity. A new data packet is generated and buffered, the data queue of the

selected node remains unchanged, i.e., qβ , j = qα, j. The state transition probability

is (1−ε)
2di, jR(t)

v(t) λ .
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Pr{(eβ , j,qβ , j,hβ , j,ζβ , j) ∣ (eα, j,qα , j,hα, j,ζα, j), j ∈ ai} =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1−ε)
2di, jR(t)

v(t) (1−λ) if eβ , j = eα, j −∆e and qβ , j = qα, j −1

and hβ , j > hα, j

(1−(1−ε)
2di, jR(t)

v(t) )λ if eβ , j = eα, j −∆e and qβ , j = qα, j +1

and hβ , j < hα, j

(1−ε)
2di, jR(t)

v(t) λ if eβ , j = eα, j −∆e and qβ , j = qα, j

and hβ , j > hα, j

(1−(1−ε)
2di, jR(t)

v(t) )(1−λ) if eβ , j = eα, j −∆e and qβ , j = qα, j

and hβ , j < hα, j

(3.8)

Pr{(eβ ,k,qβ ,k,hβ ,k,ζβ ,k)∣(eα ,k,qα,k,hα,k,ζα,k,k ≠ai; i ∈ [1,I]}=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

λ if eβ ,k = eα,k and qβ ,k = qα,k+1

1−λ if eβ ,k = eα,k and qβ ,k = qα,k

0 otherwise

(3.9)

4. Packet transmission is failed due to the poor channel quality, i.e., hβ , j < hα , j and

high velocity. There is no packet arrival, the data queue of the selected node remains

unchanged, i.e., qβ , j =qα , j. The state transition probability is (1−(1−ε)
2di, jR(t)

v(t) )(1−
λ).

Due to the packet transmission, the battery level of the selected sensor decreases by

∆e.

(3.9) corresponds to the unselected sensors with two different cases. The first case corre-

sponds to the case when queue of the ground sensor increases, i.e., qβ ,k = qα,k+1 due to a

new packet arrival, i.e., λ . The second case gives that the data queue remains unchanged,

i.e., qβ ,k = qα,k since there is no packet arrival, i.e., (1−λ).

By solving the formulated MDP, e.g., by using dynamic programming techniques, the

optimal solution with complete states could be achieved, which could be used for per-

formance benchmarking in multi-UAV-assisted wireless sensor networks. Unfortunately,

dynamic programming (and the MDP formulation) suffers from the well-known curse-of-

dimensionality, and incurs a prohibitive complexity and intractability, which can be noted

in Appendix B. Please See Appendix B.
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3.2 Proposal

Algorithm 1 MADRL-SA

1.Initialize:

Randomly initialize the networks

Qi{Sβ ,i ∣ Sα,i,ai,a
t−1
u ;θ Qi} with θ Qi

Initialize target networks Q′i with weights θ Q′i = θ Qi

∀i ∈ (1,I)
2.Learning:

for episode=1 to M do

Obtain state Sα ,i

for t=1 to T do

if( Probability ε)

Select a random action ai

else

ai = argminai
Qi{Sβ ,i ∣ Sα ,i,ai,a

t−1
u ;θ Qi}

end

Execute action ai in the environment

Receive the visiting record

for p=1 to I do

if(i==p)

δ [p]=t

else

δ [p]=t - TV Rp

end

end for

Obtain the cost function Ct,i = {Sβ ,i ∣ Sα,i,ai,a
t−1
u } and the next state Sβ ,i at t +1

Store Transition (Sα ,i,Sβ ,i,ai,Ct,i)
Sample random minibatch (Sα,b,Sβ ,b,ab,Ct,b)
yi =C{Sβ ,b ∣ Sα ,b,ab,aub}+γmina′

b
Q′i{Sβ ,b′ ∣ Sβ ,b,a

′

b
,a′

ub
;θ Q′i}

Derive the loss function

Γ(θ Q
i ) = yi−Qi{Sβ ,b ∣ Sα ,b,ab,aub;θ Qi}

Update the target networks.

θ Q′i = θ Qi

Sα = Sβ

end for

end for
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3.2.1 Proposed MADRL-SA

We present a multi-UAV version of DQN called MADRL-SA, MADRL-SA realizes co-

operation between UAVs, by enabling them to learn the scheduling decisions of each

other.

According to Fig. 3.2, MADRL-SA has three UAVs, and each UAV is equipped with a

classical DQN algorithm and learns through interaction by environment. As can be seen in

Fig.3.2, UAV 3 performs its action and schedules a ground sensor, then receives its visiting

record and consequently calculates the time differences δ [] between its visiting time(t)

and TV Rp. δ [] is augmented to state and utilized in the learning process. Therefore, each

UAV learns to coordinate its action. The UAVs that visited the same ground sensor would

learn to improve their scheduling process based on computed timing information. For

example, if the computed time differences are large the UAV is encouraged to schedule

the ground sensor for the next time. Overall, our goal is to allow different UAVs schedule

different ground sensors (other ground sensors may have buffer overflow probability) and

if a ground sensor recently visited by an UAV no other UAV visits that ground sensor.

The proposed scheme is described in Algorithm 1, which optimizes the actions based on

the multi-UAV DQN to solve the online resource allocation problem.

Figure 3.2: Overview of MADRL-SA: UAVs observe the current environment state,

follow their policy, and take actions

Overall, two separate Q-networks are maintained with each UAV, Q-network: Qi{Sβ ,i ∣
Sα ,i,ai,a

t−1
u ;θ Qi} and target network: Q′i{Sβ ,i′ ∣ Sβ ,i,a

′

i,a
′

u;θ Q′i}, with weights θ Qi and θ Q′i
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respectively. At first step, Q-network and associated target of each UAV are initialized

and then learning is ignited. Each UAV samples its state and computes its local state Sα,i

including δ []. Each UAV receives the local state Sα ,i and selects a random action with

probability ε or exploits its knowledge and produce its action. Each UAV executes the

selected action and computes the vector of δ using t and TV Rp; then corresponding cost

and next state including δ [] are sampled. Then the associated transition (Sα,i,Sβ ,i,ai,C)
is stored. θ Qi is learned by sampling batches of transitions from the replay memory and

minimizing the squared temporal difference error:

Γ(θ Qi) = yi−Qi{Sβ ,b ∣ Sα ,b,ab,aub;θ Qi} (3.10)

where

yi = C{Sβ ,b ∣ Sα ,b,ab,aub} + γmina′
b
Q′i{Sβ ,b′ ∣ Sβ ,b,a

′

b,a
′

ub;θ Q′i} (3.11)

finally for each agent the parameters of a Q-network θ Qi copied into those of target net-

work θ Q′i after a constant number of iterations. The proposed MADRL-SA can be readily

repurposed to support different objective functions. For example, it can be potentially

repurposed to maximize the energy efficiency, which is the ratio of network throughput to

the energy consumption.

3.2.2 Energy and Feasibility

UAVs are becoming increasingly less restrictive in terms of energy due to new advance-

ments of battery and energy harvesting technologies. For example, Atlantik Solar has

developed an autonomous, solar-powered drone (UAV) that can fly up to 10 days contin-

uously. A ground sensor can be equipped with solar panels, wind power generators or

other energy harvesting mechanisms to harvest renewable energy from ambient resources

and recharge its battery.

The UAVs select the optimal sensors to transmit data and allocate their modulation

schemes, by learning the states of the ground sensors. The selected sensor uses the al-

located modulation to transmit data to the UAV, while updating the visiting time of the

UAV. In particular, the historical record of the visiting time typically has a small size.

Consider 100 UAVs, the size of the historical record at the sensor is just seven bits. The

time for updating the record is negligible. Also, the sensors only need to synchronize

with the UAVs the recent historical record of visits. The overhead is small. Therefore,
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the proposed deep reinforcement learning based data collection requires a small amount

of computation at the sensors, which is feasible and practical in real-world UASNets

3.2.3 Complexity of MADRL-SA

The time complexity for training each network Qi that has Z layers with zi neurons per

layer is given by,

O(MT ×(ΣZ−1
i=1 zizi+1)) (3.12)

where M is the number of episodes and T is the number of iterations. Therefore, the time

complexity of MADRL-SA with I networks of Qi is given by

O(I×MT ×(ΣZ−1
i=1 zizi+1)) (3.13)

The case of an equal number of neurons in each layer, the time complexity can be written

as

3.3 Evaluation

3.3.1 Implementation of MADRL-SA

J number of ground sensors are randomly deployed, where J increases from 20 to 120.

Each ground sensor has the maximum discretized battery capacity 50 Joules, the highest

modulation = 5, and the maximum transmit power 100 milliwatts. For calculating Pi
j(t) of

the ground sensor, the two channel constants, k1 and k2 are set to 0.2 and 3, respectively.

The required BER is 0.05, and the carrier frequency is 2000 MHz. ε is set to 0.05.

However, the value of ε can be configured based on the traffic type and quality-of-service

(QoS) requirement of the user’s data, as well as the transmission capability of the UAV.

Other simulation parameters are listed in Table 3.2. Moreover, the region of interest is

set to be a square area with a size of 1000 x 1000 meters, where the ground sensors

are distributed in the targeted region. MADRL-SA is implemented in Python 3.5 using

Pytorch (the Python deep learning library). A Lenovo Workstation running 64-bit Ubuntu

16.04 LTS, with Intel Core i5-7200U CPU @ 2.50GHz × 4 and 8 G memory is used

for the PyTorch setup. DRL trains MADRL-SA for 1000 episodes. The discount factor

and learning rate are set to 0.99 and 0.001, respectively. We use 2-layer fully connected

neural network for each agent, which includes 400 and 300 neurons in the first and second

layers, respectively. We utilize the rectified linear unit (ReLU) function for the activation

function. The experience replay memory with the size of 106 is created for each agent to
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store the learning outcomes in the format of a quadruplet <state, action, cost, next state>.

The memory is updated by calling the function replay bufferi.add((state, action, cost, next

state)), and retrieves the experiences by using replay bufferi.sample(batch size).

Table 3.2: PyTorch Configuration

Parameters Values

Number of ground sensors 20-120

Queue length 40

Energy levels 50

Discount factor 0.99

Learning rate 0.001

Replay memory size 106

Batch size 100

Number of episodes 1000

3.3.2 Baseline Description

For performance evaluation, the proposed MADRL-SA is compared with Random schedul-

ing policy (RSA), Channel scheduling policy (CHSA) and DRL-SA Li et al. (2019) algo-

rithms.

• RSA randomly determines the velocities of the UAVs at each waypoint, and one

of the ground sensors within the communication range of the UAV is randomly

selected to transmit data. The velocity control and sensor selection are independent

of the batteries, data queue lengths of the ground sensors, channel variation, and

UAVs’ positions.

• CHSA allows the UAVs to move with the minimum velocity and schedule the

ground sensors based on their channel quality. Each UAV sends beacons along

the trajectory. Based on the sensors’ replies to the beacons, the UAV measures

the channel gains. The ground sensor with the highest channel gain is selected to

transmit.

• DRL-SA enables a single-agent DQN, where each UAV leverages DQN to learn

the optimal velocity control and sensor selection strategy based on the data queue

length, energy level, channel variation and UAV’s positions. The selection of the

ground sensor, modulation scheme, and velocity of the UAV is jointly optimized

(independently of the rest of the UAVs).
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Figure 3.3: Network cost at each episode of MADRL-SA with I = 10 and DRL-SA. .

3.3.3 Performance Analysis of MADRL-SA

Fig. 3.3 depicts the convergence of MADRL-SA with I=10 for low and high SNR cases

and DRL-SA. MADRL-SA with I=10 and high SNR show the best performance since it

reduce the overflow cost as well as the fading cost due to good SNR. MADRL-SA with

I=10 and low SNR outperform the DRL-SA which has the highest network cost. The

reason is that when multiple UAVs act it results in the reduction of overflow cost.

Fig. 3.4 depicts the network cost of MADRL-SA (data queue length=40) and the base-

lines in term of ground sensors. MADRL-SA with I=5 and I=10 achieves a lower network

cost in comparison to CHSA. The network cost of MADRL-SA with I=5 is lower than

that of CHSA . Overall, MADRL-SA with I=5 and I=10 outperforms CHSA. Particularly,

when J=100 the packet loss of MADRL-SA with I=5 and I=10 is lower than CHSA by

around 21% and 40%, respectively.

Fig. 3.5 shows the trade-off between the number of ground sensors and UAVs. Specif-

ically, a large number of ground sensors expedites the buffer overflows in UASNets and in
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Figure 3.4: Comparison of packet loss between MADRL-SA and the baselines in terms

of ground sensors.
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Figure 3.5: Trade-off between the number of UAVs and ground sensors.

Figure 3.6: Energy consumption of ground sensors.

turn, increases the packet loss. On the other hand, increasing the number of UAVs allows

the ground sensors to be scheduled in parallel, hence reducing the buffer overflow. A

balance needs to be struck between the numbers of UAVs and ground sensors to minimize

the packet loss.

Fig. 3.6 shows the energy consumption of the ground sensors by varying the number

of ground sensors and UAVs. For a given number of UAVs, the energy consumption of the

network increases with the number of ground sensors. On the other hand, the increasing

number of UAVs helps increase the number of ground sensors scheduled to transmit data,

hence raising the energy consumption of the ground sensor network.

Fig. 4.5 show the velocities and trajectories of different UAVs for the MADRL-SA

with I=7. Fig. 4.5(a) demonstrates the velocity of 7 UAVs given 20 waypoints. The color

bar shows the range of values for velocity and color map shows the actual velocity of each
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Figure 3.7: Velocities and trajectories of MADRL-SA with I=7.(a) and (b)velocity and

trajectory given number of waypoints=20. (c) and (d) velocity and trajectory given num-

ber of waypoints=40

UAV for each waypoint in color format. As can be seen UAV 2 moves with the lowest

velocity as confirmed by its small trajectory in Fig. 4.5(b). In contrast, UAV 1 moves

with the highest velocity as confirmed by its trajectory. Overall, for waypoints 1-12, UAV

3-7 move with the lowest velocity witnessing subtle changes. After these waypoints the

velocity of these UAVs is increasing.

Fig. 4.5(c) is similar to Fig. 4.5(a) except that number of waypoints is increased to

40. Overall, the pattern for all UAVs except UAV 5 is almost similar and all of them

move with low or moderate velocity witnessing high velocity at some points, this can be

confirmed by their associated trajectories in Fig. 4.5(d). UAV 5 moves smoothly before

waypoint 20. After this point its velocity start increasing and hence a full trajectory is

shaped as can be seen in Fig. 4.5(d).

Fig. 3.8 evaluates the network cost with the increasing number of UAVs, where the

buffer size of MADRL-SA is set to 20 or 40 and the number of ground sensors is 40. For

MADRL-SA with buffer size of 40, increasing the number of UAVs from 3 to 10 leads to

a reduction of the packet loss by 68%. In contrast, when the buffer size is 20, a reduction

of 77% in the packet loss is witnessed. Fig. 3.8 also shows that MADRL-SA significantly

outperforms RSA by 80% when the buffer size is 40, and by 34% when the buffer size is
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Figure 3.8: Network cost with an increasing number of UAVs, where the data queue

length of MADRL-SA is set to 20 and 40 and number of ground sensors as 40.

20.

Fig. 3.9 demonstrates the training performance with varied learning rates(lr). After

few episodes in the beginning, the network cost have an obvious tendency to decrease and

converge in the case of lr=1e-3 and lr=5e-4. Nevertheless, the algorithm may converge

to a local optimum in case of large learning rate, this situation can be seen in the case of

lr=1e-1 and lr=1e-2.



3.4 Summary 37

0 200 400 600 800 1000

Episodes

0

10

20

30

40

50

60

70

80

90

Pa
ck
et

 L
os

s

MADRL-SA with I=10,lr=1e-1

MADRL-SA with I=10,lr=1e-2

MADRL-SA with I=10,lr=1e-3

MADRL-SA with I=10,lr=5e-4
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3.4 Summary

In the first chapter, we study the joint flight cruise control and data collection scheduling

in the UASNets. We formulate the problem using MMDP to minimize the packet loss

due to buffer overflows at the ground sensors and fading airborne channels. We propose

MADRL-SA to solve the formulated MMDP, where all UAVs utilize DQN to conduct

respective decisions. In MADRL-SA, the UAVs acting as agents learn the underlying

patterns of the data and energy arrivals at all the ground sensors as well as the scheduling

decisions of the other UAVs. We conduct simulation using PyTorch deep learning library

and results reveal that the proposed MADRL-SA for UASNets reduces packet loss by up

to 54% and 46%, as compared to the single agent case and existing non-learning greedy

algorithm, respectively.

Appendix A

The path loss of the LoS link is given by

PLLOS = 20logd+20log f +20log(4π

c
)+ηLOS (3.14)

The path loss of the non-LoS link is given by

PLNLOS = 20logd+20log f +20log(4π

c
)+ηNLOS (3.15)

The LoS probability is given by

PrLOS =
1

1+aexp(−b[ϕ i
j −a]) (3.16)
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Then, the NLoS probability is

PrNLOS = 1−PrLOS (3.17)

The expectation of the path loss between UAV i and device j can be obtained by

γ i
j = PrLOS×PLLOS+PrNLOS×PLNLOS (3.18)

By substituting (4.23) into (4.25), we have

γ i
j = PrLOS(PLLOS−PLNLOS)+PLNLOS (3.19)

Substituting (3.14),(4.22),(4.24) into (3.19) leads to

γ i
j =

(ηLOS−ηNLOS)
1+aexp(−b[ϕ i

j −a]) +20logd+20log f+

20log(4π

c
)+ηNLOS (3.20)

Rewriting 3.20 in term of ϕ i
j and r, we finally obtain

γ i
j =

(ηLOS−ηNLOS)
1+aexp(−b[ϕ i

j −a]) +20log(r sec(ϕ i
j))+20log(λ)+

20log(4π

c
)+ηNLOS (3.21)

Appendix B

Let ε denote the bit error rate, L denote the data packet length and λ denote the packet ar-

rival probability. Depending on the transmission status and arrival pattern, four transitions

may happen as presented in (3.8):

1. In the first case, the packet transmission is successful (1−ε)L and there is no packet

arrival (1− λ). The probability of such transition is (1− ε)L × (1− λ). Given

L=R(t)*T where T is the conversation time of UAV i and ground sensor j, and

T =
2di, j

v(t)
. We have L =

2di, jR(t)

v(t)
by substituting T into L. Therefore, the transition

probability of the first case is (1−ε) 2di, jR(t)

v(t) (1−λ).
2. In the second case, the packet transmission is not successful (1−(1−ε)L) and there

is packet arrival λ . The probability of such transition is (1− (1− ε)L)×λ . By
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substituting T into L, we have L =
2di, jR(t)

v(t)
. Therefore, the transition probability of

the second case is (1−(1−ε) 2di, jR(t)

v(t) )λ .

3. In the third case, the packet transmission is successful (1−ε)L and there is packet

arrival λ . The probability of such transition is (1−ε)L×λ . By substituting T into

L, we have L =
2di, jR(t)

v(t)
. Therefore, the transition probability of the third case is

(1−ε) 2di, jR(t)

v(t) λ .

4. In the fourth case, the packet transmission is not successful (1−(1−ε)L) and there

is no packet arrival (1−λ). The probability of such transition is (1−(1−ε)L)×(1−
λ). We have L =

2di, jR(t)

v(t)
. Therefore, the transition probability of the fourth case is

(1−(1−ε) 2di, jR(t)

v(t) )(1−λ).
(3.9) investigates the transmission probabilities for unselected ground sensors. These

ground sensors do not transmit data. In this case, the ground sensors either receive packet

with transition probability λ or no packet is received with transition probability 1−λ .





Chapter 4

Age of Information Minimization using

Multi-agent UAVs based on

AI-Enhanced Mean Field Resource

Allocation

In this chapter, we introduce a cruise control approach based on MFG theory to mini-

mize the AoI, while balancing the trade-off between UAVs’ movements and AoI. This

method reduces the complexity of the cruise control problem and enhances optimization

of UAVs’ movements. However, in practice, obtaining instantaneous knowledge of the

UAV’s cruise control decision and AoI is challenging, making the proposed MFG dif-

ficult to solve online. We formulate MMDP, with network states comprising the AoI of

ground sensors and waypoints of the UAV swarm. The MMDP action space includes con-

tinuous waypoints and velocities, as well as discrete transmission schedules. We propose

a mean field hybrid proximal policy optimization (MF-HPPO) approach. The rest of this

chapter is organized as follows: In Section 4.1, we present the system model in which

the channel model as well as the AoI in the UASNets is formulated. Moreover, we for-

mulate the flight resource allocation of the UAV swarm as the MFG to minimize the AoI.

Section 4.2 develops the proposed MF-HPPO, to jointly optimize the cruise control of

multiple UAVs and data collection scheduling. Section 4.3 presents the implementation

of the proposed MF-HPPO in Pytorch as well as performance evaluation. Finally, Section

4.4 concludes this paper.

The techniques in this chapter have been discussed in the following papers.

• Y. Emami, H. Gao, K. Li, L. Almeida, E. Tovar, and Z. Han, Age of Information

Minimization using Multi-agent UAVs based on AI-Enhanced Mean Field Resource

41
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Allocation, IEEE Transactions on Vehicular Technology, 2023, under review.

• Y.Emami, K. Li, Y. Niu and E. Tovar, AoI Minimization Using Multi-Agent Proxi-

mal Policy Optimization in UAVs-Assisted Sensor Networks, ICC 2023-IEEE Inter-

national Conference on Communications, Rome, Italy, 228-233. doi: 10.1109/ICC

45041.2023.10278748

4.1 Problem Statement

4.1.1 System Model

In this section, we present the system model of the considered UAVs-assisted sensor net-

work. Notations used in this paper are summarized in Table 4.1. The system consists of I

UAVs, i ∈ [1,I] and J ground sensors, j ∈ [1,J] in which the ground sensors are deployed

in a target region. The UAVs are employed to patrol in the target zone while collecting the

sensory data. Fig. 4.1 depicts an example of UASNets along with mean field representa-

tion. With the increase in the number of UAVs in Fig. 4.1 the interactions between them

become complex and can dominate the overall behavior of the system. MFG designed to

deal with the optimal control problem involving a large number of players. It has unique

characteristics suitable for UAV swarm and modelling these interactions. Each UAV seeks

to minimize the AoI according to the actions of other agents surrounded. As depicted, the

UAV consider the mean field effect of the other UAVs, which represents the collective

behavior of the UAVs in the system. The coordinates (xi,yi,zi) and (x j,y j,0) represent

the position of UAV i and ground sensor j, respectively. The UAVs fly to the ground

sensors, collect sensory data, and then their operation is terminated. The UAVs fly at a

constant altitude, represented by ζi(t) = (xi,yi,z). The distance between ground sensor j

and UAV i is
√(xi−x j)2+(yi−y j)2+ z2. For the safety of the UAV during flight by pre-

venting it from exceeding the maximum safe speed or stalling, we denote the maximum

and minimum velocity of the UAV as vmax and vmin, respectively.

We consider that UAV i moves in low attitude for data collection, where the probability

of LoS communication between UAV i and ground sensor j is given by Al-Hourani et al.

(2014)

PrLoS(ϕ i
j) = 1

1+aexp(−b[ϕ i
j −a]) (4.1)

where a and b are constants, and ϕ i
j denotes the elevation angle between UAV i and ground

sensor j. Moreover, path loss of the channel between UAV i and device j can be modeled
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by

γ i
j = PrLoS(ϕ i

j)(ηLoS−ηNLoS)+20log(r sec(ϕ i
j))+

20log(λ)+20log(4π

vc

)+ηNLoS (4.2)

where r is the radius of the radio coverage of UAV i, λ is the carrier frequency, and vc

is the speed of light. ηLoS and ηNLoS are the excessive path losses of LoS or non-LoS,

respectively.

Figure 4.1: Mean field representation of UASNets.

To characterize the freshness of the collected sensory data at the UAV, AoI is defined

as the time that has passed since ground sensor generates the latest information. The AoI

of ground sensor j that generated a data packet at t j and collected by UAV i at ti is given

by

AoIi
j(t) = ti− t j. (4.3)

According to (4.3), it can be also known that maintaining a low AoIi
j(t) is critical for

improving the effectiveness and timeliness of the sensory data, reducing the response

time, and providing real-time information for decision-making at the UAVs.

4.1.2 Problem Formulation

In this section, we formulate the MFG optimization with a large number of UAVs to

address the trade-off between the cruise control of the UAVs and AoI. We also explore

the FPK equation to determine the optimal velocities of the UAVs while characterizing the

collective behavior of the UAVs. We begin with optimal control formulation in Section

4.1.2.1 and then proceed with MFG formulation in Section 4.1.2.2.
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Table 4.1: Notation and Definition

Notation Definition

J number of ground sensors

I number of UAVs

hi
j(t) channel gain between device j and UAV i

ζi(t) location of the UAV on its trajectory

vi(t) velocity of UAV i

vmax,vmin the maximum and minimum velocity of UAV i

M number of episodes

L length of each episode

γ discount factor

η learning rate

D buffer size

B mini-batch size

ai action of UAV i

oi mean field of UAV i

ac
i continuous action of UAV i

ad
i discrete action of UAV i

sα ,i state of UAV i

E[..] mathematical expectation

A advantage function

θ network parameter

π policy

πc continuous policy

πd discrete policy

σ diffusion coefficient

W weiner process

H entropy

4.1.2.1 Optimal Control Formulation

We derive the state dynamics and cost function, then we formulate the velocity control

problem using the optimal control theory.

1. Time-varying Dynamics of Network States: Let ζi(t) denote the position of the

UAV i at time t and vi(t) denotes the velocity. According to Newton’s laws of

motion Waldrip et al. (2013), the location dynamics of UAV i can be expressed by

dζi(t) = vi(t)dt +σdWi(t) (4.4)

where Wi(t) is a standard Wiener process Mörters and Peres (2010) with a diffusion

coefficient σ .
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2. Cost Function: Each UAV intends to optimize its velocity to minimize the cost

function. Our cost is defined as the average AoI of all ground sensors. The average

AoI can be computed as:

c(t) = 1

IJ
Σ

J
j=1Σ

I
i=1AoIi

j(t). (4.5)

3. Velocity Control Problem Formulation: Given a period of time T regarding the data

collection, the velocity of UAV i at t, denoted as v∗i (t), is optimally controlled to

minimize c(t), which gives:

v∗i (t) = argmin
vi(t)

E [+ T

0
c(t)dt)] , (4.6)

s.t. (4.4).
To determine v∗i (t) in (4.6), classical game theories, such as differential game, fails to

capture the aggregate behavior of all the UAVs. Differential game assumes each agent’s

movement is independent of others. This assumption fails to capture the fact that a large

number of UAVs’ trajectories decisions are influenced by the aggregate behavior of all

the UAVs, thus hardly minimizing the average AoI, c(t).
We novelly extend MFG to capture the impact of the aggregate behavior of the UAVs,

in terms of cruise control. The MFG models the aggregate decision of UAVs as a prob-

ability distribution, rather than focusing on the actions of individual UAVs. This rec-

ognizes that the cruise control of each UAV is influenced by the behavior of all other

UAVs. Moreover, the formulated MFG is defined to minimize c(t) given a large number

of UAVs, which classical game theory struggles with due to the computational complexity

of solving for the equilibrium.

4.1.2.2 MFG Problem Formulation

We reformulate the optimal cruise control problem in (4.6) into a cooperative MFG prob-

lem. The computational complexity of the system is greatly reduced by formulating an

MFG, since a large number of interactions with other agents is converted into an interac-

tion with the mass. The interaction between each UAV with the other UAVs is modeled as

a mean-field term, which is denoted by m(ζ(t)). The mean-field term is the distribution

over agents´ state space or control to model the overall state and control of them. We can

measure the state and control of all agents in an MFG using the mean-field term.
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Given dynamics, ζi(t), the mean-field term of m(ζ(t)) can be denoted by

m(ζ(t)) = lim
I→∞

1

I
Σ

I
i=11{ζi(t) = ζ(t)}, (4.7)

where 1 is an indicator function which returns 1 if the given condition is true, or 0, other-

wise.

Given m(ζ(t)), the state dynamics, cost function and FPK equation can be defined as:

• State dynamics: The state dynamics of each UAV can be expressed by

dζ(t) = v(t)dt +σdW(t). (4.8)

• Cost function: The mean-field term affects the running cost function of each UAV.

The average AoI of the all UAVs is computed by

c(v(t),m(ζ(t))) =+ c(v(t)) ⋅m(ζ(t))dζ . (4.9)

Mathematically, the cost function can be written by

J(v(t),m(ζ(t)))) =+ T

t=0
c(v(t),m(ζ(t))dt. (4.10)

If the UAV move quickly, lead to poor channel condition and retransmissions thereby

AoI prolongs. In contrast, slow movement of the UAV, may prolong the AoI of the

ground sensors because the data are not collected in time. The cost function ad-

dresses these trade-offs and find the optimal velocity to balance these objectives.

• Focker-Planck equation: Based on (4.8) we develop the FPK equation. The FPK

equation governs the evolution of the mean field function of UAVs and given by:

∂tm(ζ(t))+∇ζ m(ζ(t)) ⋅v(t)− σ2

2
∇

2
ζ m(ζ(t)) = 0. (4.11)

See Appendix.

After deriving the state dynamics, cost function, and FPK equation, we now proceed to

present the MFG.

To summarize, the cooperative MFG problem is given by

min
v,m

J(v(t),m(ζ(t))) (4.12)
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s.t. (4.11).

4.2 Proposal

4.2.1 Proposed MF-HPPO

In this section, we describe the MFG as an MMDP in Section 4.2.1.1 so that the optimal

actions of UAVs can be learned by the proposed MF-HPPO. MF-HPPO is presented in

Section 4.2.1.2, which employs onboard PPO to minimize the average AoI of the ground

sensors. The trajectory and instantaneous speed of the UAVs, and the selection of the

ground sensors are optimized in a mixed action space. In Section 4.2.1.3, an LSTM layer

is developed with MF-HPPO to capture the long-term dependency of data.

4.2.1.1 MMDP Formulation

We reformulate the MFG using MMDP framework to enable the application of PPO for

optimizing the actions and minimizing average AoI. By adapting the MMDP framework

to our problem, we define the relevant state space, action space, transition probabilities,

policy and cost function, thus facilitating an effective solution approach based on MF-

HPPO. We define our MMDP as follows.

• Agents: the number of agents, i.e., UAVs is denoted by I.

• State: A state sα of the MMDP consists of the positions of UAV i, the AoI of

ground sensors, i.e, sα={ζi(t),AoIi
j(t) ∶ i ∈ [1,I], j ∈ [1,J]}. All states of the MMDP

constitute the state space.

• Action: Each UAV i takes an action ai that schedules a ground sensor for data trans-

mission and determines the flight trajectory and velocity, i.e, ai ={ki
j,vi(t),ζi(t)}

• Policy: Policy πi is the probability of taking each action of agent i.

• State Transition: The current state sα transit to a new state sβ according to proba-

bility P(sβ ∣ sα ,a), where a indicates a joint action set that includes the actions of

all the UAVs.

• Cost: The immediate cost of the UAVs is 1
IJ Σ

J
j=1

Σ
I
i=1

AoIi
j(sα ,a).
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4.2.1.2 MF-HPPO

The proposed MF-HPPO operates onboard at the UAVs to determine their trajectories and

sensor selection. The UAV chooses a sensor and moves to it, then sends out a short beacon

message with the ID of the chosen sensor. Upon the receipt of the beacon message, the

selected sensor transmits its data packets to the UAV, along with the state information of

AoIi
j(t) in the control segment of the data packet. After the UAV correctly receives the

data, it sends an acknowledgement to the ground sensor.

The following equation highlights the mean field idea of MF-HPPO Yang et al. (2018):

Qi(sα,i,a) =

1

Ni

Σk∈N(i)Qi(sα,i,ai,ak) = Qi(sα ,i,ai,oi). (4.13)

Here, Qi is the Q value of agent i, a represents the joint action of all agents. The neighbor

agents of agent i are characterized by Ni. oi is an indicator of the mean field. In essence,

in multi-agent systems the Q value of an agent is computed based on the current state

and joint action, but when we have a large number of agents computing joint action is

impractical, therefore (4.13) allow an agent to compute its Q value just based on the mean

field of its neighbors.

Fig. 2 shows the proposed MF-HPPO with LSTM layer, where each UAV equipped

with the MF-HPPO to minimize the average AoI by optimizing the trajectory and data

collection schedule. The use of the LSTM layer, continuous and discrete actors, and

the objective function of PPO, are the features of the MF-HPPO in this diagram. As

shown, The decision-making component of each agent consists of two actors and a critic,

which is preceded by the LSTM layer to draw conclusions based on experience. The

actor for continuous action spaces outputs continuous values for cruise control, such as

position and velocity, and the actor for discrete action spaces outputs a categorical value

that can be used to select one of the ground sensors. Each agent samples the actions and

performs in the environment. The rollout buffer is filled with data generated by these

interactions such as, state, mean field, action, cost and policy. As can be seen, we use

Generalized Advantage Estimate (GAE) Schulman et al. (2015a) as a sample-efficient

method to estimate the advantage function. As depicted, based on the RolloutBuffer,

mini-batches are then formed to train the LSTM and the actors and critics so that the

agent can continuously improve its policies. The definition of the objective function of

PPO is the total of actor losses and critic loss subtracted by entropy, as depicted in the

diagram. The actor loss is inputted by the ratio of old policy and current policy and the

advantage value. The critic loss is inputted by the critic’s output and the return value. The

policy is designed to encourage the agent to take advantageous actions, while punishing
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actions that deviate from the current policy.

Algorithm 2 summarizes the MF-HPPO with the LSTM-based characterization layer.

In the initialization step, Input and Output are characterized; the algorithm receives pa-

rameters like Clip threshold, discount factor and mini-batch size as input and specify its

output as trajectory and scheduling policy of UAV i. Next, the actor πi and critic wi are

initialized with random weights for each agent. The number of training episodes is M,

where the length of each episode is L. Each agent is trained using a predetermined set

of iterations throughout the learning phase. Sampling and optimization constitutes the

learning phase. In the beginning of learning, the state sα,i and mean field oi are randomly

initialized for each agent. With the start of the sampling policy, UAV i samples its action

based on the policy θ i
old

. The sampled action represents sensor selection, velocity and lo-

cations, and executed in the environment to obtain the cost, new state and new mean field.

Consequently, trajectories (i.e., sequence of states, actions, policy, mean field, and costs)

are gathered and stored in the RolloutBuffer. In addition, GAE is applied to calculate the

advantage that is used in (4.14). In the optimization step, the policies are optimized. In

the optimization step, the policy parameter is updated for each epoch. The PPO objective

is computed in each epoch according to the following equation:

Lclip(θ i) =min( πθ i(ai∣sα,i,oi)
πθ i

old
(ai∣sα,i,oi)Aπ

θ i
old

(sα,i,oi,ai),
g(ε,Aπ

θ i
old

(sα,i,oi,ai)))
(4.14)

where

πθ i(ai∣sα ,i,oi) = πc
θ i(ac

i ∣sα,i,oi)πd
θ i(ad

i ∣sα,i,oi). (4.15)

Here ac
i and ad

i correspond to actions in continuous and discrete spaces. In (4.15), to ob-

tain the hybrid policy πθ i(ai∣sα ,i,oi), we multiply the policies for continuous and discrete

actions Neunert et al. (2020). Meanwhile, we assume that wireless radio of the UAV can

cover the whole field.

Continuous policy πc
θ i is modeled using multivariate normal distribution and discrete

policy πd
θ i is modeled using categorical distribution. In the next step, the overall objective

function is optimized according to the following equation:

Ltotal(θ i) = Lclip(θ i)−K1LV F(θ i)+K2∗H. (4.16)

Here, LV F(θ i) is the critic loss and H acts as a regularizer encourages the agent to exe-

cute actions more unpredictably for exploration and guard against the policy being overly
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Figure 4.2: Overview of MF-HPPO: Each UAV equipped with LSTM layer to optimize

discrete and continuous actions using hybrid policy .

deterministic. The entropy for continuous and discrete actions is computed based on the

actions’ distribution. We obtain the entropy by multiplication of the entropy of continuous

and discrete action spaces to enable enforcing consistent regularization to both continu-

ous and discrete action spaces. K1 balances the importance of the critic loss and the actor

loss, and K2 coefficient controls the amount of entropy in the policy.

Finally, the sampling policy πθ i
old

is updated with the policy πθ i , and the stored data

are dropped. The next iteration then begins.

4.2.1.3 LSTM Layer

We further develop an LSTM layer in the proposed MF-HPPO, which captures long-term

dependencies of time-varying network state sα . Cell memory and the gating mechanism

are main components of LSTM. Cell memory is responsible to store the summary of

the past input data and the gating mechanism regulates the information flow between the

input, output, and cell memory. The network states are fed into LSTM one by one (one at

each step). The last hidden state κhidd
i is returned as the output of the state characterization

layer. Each agent uses an LSTM layer to predict their respective hidden states. The hidden
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states κhidd
i are calculated by the following composite function:

κhidd
i = outitanh(Ci), (4.17)

outi = σ(W0 ⋅ [Ci,κ
hidd
i−1 ,Ai]+ei), (4.18)

Ci = FiCi−1]+ pitanh(Wc.[κhidd
i−1 ,Ai]+ec), (4.19)

Fi = σ(W f ⋅ [κhidd
i−1 ,Ci−1,Ai]+e f ), (4.20)

pi = σ(W f ⋅ [κhidd
i−1 ,Ci−1,Ai]+ep), (4.21)

where the output gate, cell activation vectors, forget gate, and input gate of the LSTM

layer are denoted by outi, Ci, Fi, and pi, respectively. σ and tanh correspond to logistic

sigmoid function and the hyperbolic tangent function, respectively. W0,Wc,Wf ,W p are the

weight matrix, and e0,ec,e f ,ep are the bias matrixLi et al. (2022b), Zheng et al. (2022).

4.2.2 Complexity and Convergence of MF-HPPO

The overall complexity of MF-HPPO is calculated as follows, O(I ⋅ML ⋅ (ΣG
g=1

ng−1.ng))
where ng is the number of neural units in the g-th hidden layer. In this work, the PPO

architecture is built with the same ng in all hidden layers. Therefore, the PPO complexity

can be reduced to O(I ⋅ML ⋅(g−1) ⋅n2
g)=O(I ⋅ML ⋅n2

g). The convergence analysis is proved

by simulation results (see Fig. 4.4).
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Algorithm 2 MF-HPPO Characterized by LSTM Layer

1.Initialize

Input: Clip threshold ε , discount factor γ , learning rate η , buffer size D, mini-

batch size B

Output: The scheduled ground sensor j and trajectory ζi of UAV i

1 Randomly initialize the Actors πi and Critics wi with networks parameters θ i

The LSTM layer with {Wo,Wc,Wf ,Wp} and {eo,ec,e f ,ep}.
Initialize the sampling policy πθ i

old
with θ i

old
← θ i.

∀i ∈ (1,I)
2.Learning

for episode=1 to M do

2 Randomly obtain the initial state sα,i

for t = 1 to L do

3 *The sampling phase*

Sample: Sample action ai ∼ πθ i
old
(ai∣sα,i,oi,θ i);

Execute the action ai that specifies the scheduled ground sensor j and trajectory ζi

of UAV i.

Obtain the cost and new state sβ ,i and new mean field i(t + 1). RolloutBuffer:

store the trajectory (sα ,i,ai,c,oi,πθ i
old
(ai∣sα,i,oi,θ i))

sα,i = sβ ,i

4 end for

5 Compute the advantage using GAE

for epoch = 1 to P do

*The optimization phase*

Sample the RolloutBuffer

Compute the PPO-Clip objective function using (4.14)

Compute the critic loss.

Optimize the overall objective function using (4.16)

6 end for

7 Synchronize the sampling policy πθ i
old
← πθ i

Drop the stored data in RolloutBuffer.

8 end for
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4.3 Evaluation

4.3.1 Implementation of MF-HPPO

MF-HPPO is implemented in Python 3.8 using Pytorch (the Python deep learning library).

A Predator Workstation running 64-bit Ubuntu 20.04 LTS, with Intel Core i7-11370 H

CPU @ 3.30 GHz 8 and 16 GB memory is used for the Pytorch setup. Table 4.2 clearly

outlines the different considered simulation parameters. MF-HPPO algorithm is trained

over 3000 episodes with 40 steps each. The discount factor and learning rate are set to 0.99

and 3e-4, respectively. Each agent comprises the input layer, LSTM layer, the critic and

actors with fully-connected hidden layers of size 256 and output layer. Each neuron uses

Rectified Linear Unit (ReLU) as an activation function. In addition, Hyperbolic tangent

(tanh) and softmax are used as activation functions in the output layer of the continuous

actor-network and discrete actor network. The input of each critic network is represented

as a concatenation of states and mean field, and its output is a scalar that assesses the states

according to the global policy. The total log probability of the hybrid policy is the sum

of the log probabilities of the continuous and discrete action spaces. This log probability

would be used as part of the calculation of the objective function in MF-HPPO, along

with the estimated cost and the entropy regularization term.

4.3.2 Baseline Description

The MF-HPPO characterized with LSTM layer is compared by single-agent PPO, random

scheduling and trajectory design (RSTD), multi-agent DQN (MADQN) and MF-HPPO

without LSTM Layer. A brief introduction of the four benchmarks is given below

1. PPO, in this algorithm single-agent running PPO to optimize trajectory and trans-

mission scheduling.

2. RSTD, in this algorithm transmission scheduling and trajectory design, are ran-

domly designed.

3. MADQN, in this algorithm, each agent running DQN cooperate to reduce average

AoI following circular trajectories.

4. MF-HPPO without LSTM Layer, the structure of this algorithm is same as MF-

HPPO but without LSTM layer.
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(a) Evaluation of MF-HPPO’s performance

with a variable number of UAVs in com-

parison to RSTD, MADQN and MF-HPPO

without LSTM
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(b) Evaluation of MF-HPPO’s performance

with a variable number of ground sensors

in comparison to RSTD, MADQN and MF-

HPPO without LSTM

Figure 4.3: Performance evaluation of MFFPO by changing the number of UAVs and

ground sensors

0 500 1000 1500 2000 2500 3000
Episodes

6

8

10

12

14

Ag
e 
of
 In

fo
rm

at
io
n

MF-HPPO without LSTM, drones = 20
MF-HPPO, drones = 20
MF-HPPO, drones= 30
MF-HPPO without LSTM, drones=30

Figure 4.4: The network cost for each episode of MF-HPPO with I=30 and benchmarks

Table 4.2: PyTorch Configuration

Parameters Values

Number of ground sensors 100

Number of UAVs 30

Geographical area size [m] 1,000*1,000

Altitude of the UAVs 120 m

Activation Function for Hidden Layers Relu

Activation Function for Continuous Action Tanh

Activation Function for Discrete Action Softmax

Critic Network Learning Rate 3e-4

Actor Network Learning Rate 3e-4

Number of Hidden Layers for Networks 2

Number of Neurons 256

Loss Coefficients for K1 and K2 0.2 and 3

Optimizer Technique Adam

Clip Fraction 0.2
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4.3.3 Performance analysis of MF-HPPO

Fig. 4.3 depicts the performance evaluation of MF-HPPO in comparison to the baselines

by changing the number of UAVs and ground sensors. Fig. 4.3a shows the impact of the

number of UAVs on the AoI. Overall, the AoI decreases when more UAVs are deployed

because time efficiency increases and more ground sensors can be operated in less time.

Increasing the number of UAVs from 1 to 30 result in a 61% decrease in the average AoI

for MF-HPPO, while that of MADQN is 37%. The reason is that MF-HPPO performs

the optimization in a mixed action space with higher training stability than MADQN with

circular trajectories. Fig. 4.3b evaluates the average AoI given 20 UAVs and groups

of 100, 200, 300, and 400 ground sensors. The MADQN and the RSTD are used as

baselines. Overall, increasing the number of ground sensors results in a uniform increase

in the average AoI, since more sensor data should be collected. In particular, when the

number of ground sensors is 400, the proposed MF-HPPO outperforms the RSTD by 38%

and the MADQN by 17%.

We obtain the convergence trend of MF-HPPO in Fig. 4.4 by deploying 20 UAVs

serving 100 ground sensors. In general, the proposed MF-HPPO (I=30) achieves the

lowest AoI compared to MF-HPPO without LSTM layer (I= 20 and 30) with a gain of

33% and 66%, respectively. Since the trajectories and scheduling of data collection for

multiple UAVs are optimized with better time efficiency. At the same time, the LSTM

layer enables better exploration as agents use experience to guide their actions. Moreover,

thanks to the LSTM layer, convergence is accelerated and stabilized. The peak AoI of the

proposed MF-HPPO drops significantly from 14 seconds to 6 seconds in the first 1,000

episodes. From episode 1,500 to episode 3,000, the AoI stabilizes at 7 seconds with

minimal fluctuations.

(a) Normal Distribution (b) Square Distribution
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Figure 4.5: MF-HPPO trajectory distributions for various UAV counts and ground sensor

distributions.

MF-HPPO-generated trajectories for 20 UAVs are shown in Fig. 4.5, where the

ground sensor distribution patterns are uniform, square, or normal ones. When designing

trajectories for AoI minimization, the UAVs’ trajectories are impacted by the distribution
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of the ground sensors. The UAV needs to approach to the location of each scheduled

sensor to collect the data and update its AoI. Fig. 5(a), refer to the normal distribution

and shows trajectories for 20 UAVs, focusing on the center area of the ground sensors and

less on the corners. The normal distribution of the ground sensors can affect the UAVs’

trajectories by determining which ground sensors are prioritized for data collection. For

example, as can be seen, most ground sensors are centered and their data may become

stale, in this case, the UAVs’trajectories are designed to visit these ground sensors more

frequently to minimize the average AoI. Figs. 5(b) is related to the square distribution. As

can be seen, the ground sensors are less centered. This cause diverse set of ground sensors

in wider range to be covered in comparison to normal distribution. Fig. 5(c) refer to the

uniform distribution. As can be seen, the UAVs design wide-area trajectories due to the

wider distribution of ground sensors covering the entire area and the AoI requirements of

the scattered ground sensors.

Fig. 4.6 demonstrates the convergence figures for two variants of MF-HPPO by

changing the clip threshold. PPO uses the clip threshold, commonly referred to as ep-

silon, to regulate the amount of policy updating. A larger clip threshold allows

Figure 4.6: Performance evaluation of MF-HPPO by changing clip threshold

for more aggressive updating, while a smaller clip threshold restricts updating more

severely, resulting in less policy change. The blue curve shows the MF-HPPO with LSTM

layer and a clip threshold of 0.3 outperforming the MF-HPPO without LSTM layer clip

threshold 0.3. The latter shows a deviating behavior due to the influence of the clip thresh-

old, while the blue curve shows an absolutely stable trend despite the same value of the

clip threshold thanks to the LSTM layer. Overall, adding the LSTM layer to MF-HPPO

can stabilize the training and prevent divergence of the strategies.
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4.4 Summary

In this chapter, we propose a mean field flight resource allocation to model velocity con-

trol for a swarm of UAVs, in which each UAV minimizes the average AoI by considering

the collective behavior of others. Due to the high computational complexity of MFG, we

leverage AI and propose MF-HPPO characterized with an LSTM layer to optimize the

UAV trajectories and data collection scheduling in mixed action space. Simulation results

based on PyTorch deep learning library show that the proposed MF-HPPO for UASNets

reduces average AoI by up to 57% and 45%, as compared to existing non-learning ran-

dom algorithm and MADQN method (which performs the action of trajectory planning

in the discrete space), respectively. This confirms the AI-enhanced mean field resource

allocation is a practical solution for minimizing AoI in UAV swarms.

Proof of FPK Equation for Cruise Control

We derive the mean field via an arbitrary test function g(ζ), which is a twice contin-

uously differentiable compactly supported function of the state space. The integral of

m(ζ)g(ζ)dζ can be considered as the continuum limit of the sum g(ζ(t)), where ζ(t) is

the UAV’s state at time t. It is known that,

+ m(ζ(t))g(ζ)dζ =
1

N
Σ

N
i=1g(ζ(t)). (4.22)

At time t, the first-order differential function with regard to time t is derived to check how

this integral varies in time. By utilizing the chain rule, we can derive the heuristic formula

as

+ ∂tm(ζ(t))g(ζ)dζ =

1

N
Σ

N
i=1∂tζ(t)∇g(ζ(t))+∂ 2

t ζ(t)∇2g(ζ(t)). (4.23)

Taking the limit of the right side of the above equation when N tends to infinity, we get

+ [∂tm(ζ(t))+∇ζ m(ζ(t)) ⋅
∂ζ

∂ t
−

η2

2
∇

2
ζ m(ζ(t))]g(ζ(t))dζ = 0, (4.24)
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for any test function g through integration by parts. Then the above equation leads to the

following equation:

∂tm(ζ(t))+∇ζ m(ζ(t)) ⋅v(t)−
σ2

2
∇

2
ζ m(ζ(t)) = 0. (4.25)

which correspond to FPK equation defined in (4.11).



Chapter 5

Conclusions and Future Work

5.1 Summary

We employed UAVs for data collection from ground sensors in harsh environments, such

as crop monitoring. The use of UAVs for data collection offers advantages such as im-

proved network throughput and extended coverage range beyond terrestrial gateways.

However, a major challenge arises from the impact of UAV movements on channel condi-

tions, leading to packet loss or outdated packets. To address this challenge, we proposed

a joint optimization approach to minimize packet loss by controlling the velocities of

multiple UAVs and optimizing their data collection schedules. Our proposed solution,

MADRL-SA, enables UAVs to asymptotically minimize packet loss even when they have

outdated knowledge of the network states. Furthermore, we introduced a novel mean-

field flight resource allocation optimization method to minimize the AoI for sensory data.

This involved formulating the trade-off between UAV movements and AoI as an MFG.

To tackle practical scenarios, we proposed the MF-HPPO scheme, which optimizes UAV

trajectories and data collection scheduling for ground sensors using a combination of

continuous and discrete actions. Additionally, we incorporated LSTM to predict the time-

varying network state and enhance training stability in MF-HPPO. We conducted exten-

sive simulations to evaluate the effectiveness of our proposed approaches. The results

demonstrated that MADRL-SA reduced packet loss by up to 54% and 46% compared to

existing solutions involving single UAV with DRL and non-learning greedy heuristics,

respectively. Similarly, the simulation results showed that MF-HPPO reduced the average

AoI by up to 45% and 57% compared to the MADQN method and non-learning random

algorithm, respectively.
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5.2 Future Works

MADRL-SA and MF-HPPO can be enhanced with explainable AI and human-in-the-loop

mechanisms to significantly improve their effectiveness and usability. By enriching these

approaches, we can leverage human expertise, provide transparent explanations for deci-

sions, enhance performance, foster user trust, and promote better collaboration between

humans and AI systems in UASNets. These enhancements have the potential to improve

the efficiency and reliability of communication scheduling and cruise control, ultimately

enhancing the overall operation of UASNets. One approach to achieve this is by using

feature importance techniques to identify and quantify the contribution of input features

to the decisions made by DRL algorithms. By developing visualizations that depict the

relationships between input features, intermediate algorithm states, and output decisions,

we can provide users with a better understanding of the model’s decision-making process.

Another avenue is to incorporate human feedback to shape the cost function utilized by

DRL algorithms. By shaping the cost function based on human preferences, we can guide

the algorithms to make decisions that align better with human values and expectations.

Furthermore, adopting an interactive ML paradigm allows human experts to interact with

DRL algorithms during the training process. Human feedback, in the form of instruc-

tions or corrections, can be integrated into the learning process to improve the model’s

performance. In conclusion, the integration of explainable AI and human-in-the-loop re-

inforcement learning in this thesis can significantly enhance the performance and usability

of the proposed algorithms in UASNets.
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L. Buşoniu, R. Babuška, and B. De Schutter, Multi-agent Reinforcement Learning: An

Overview. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 183–221.

[Online]. Available: https://doi.org/10.1007/978-3-642-14435-6_7
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