
Converging Safety and High-performance Domains:
Integrating OpenMP into Ada

Sara Royuela†, Luis Miguel Pinho‡, Eduardo Quiñones†
†Barcelona Supercomputing Center (BSC), Spain

{sara.royuela, eduardo.quinones}@bsc.es
‡Polytechnic Institute of Porto (ISEP), Portugal

lmp@isep.ipp.pt

Abstract—The use of parallel heterogeneous embedded archi-
tectures is needed to implement the level of performance required
in advanced safety-critical systems. Hence, there is a demand
for using high level parallel programming models capable of
efficiently exploiting the performance opportunities.

In this paper, we evaluate the incorporation of OpenMP, a
parallel programming model used in HPC, into Ada, a language
spread in safety-critical domains. We demonstrate that the
execution model of OpenMP is compatible with the recently pro-
posed Ada tasklet model, meant to exploit fine-grain structured
parallelism. Moreover, we show the compatibility of the OpenMP
and tasklet models, enabling the use of OpenMP directives in Ada
to further exploit unstructured parallelism and heterogeneous
computation. Finally, we state the safety properties of OpenMP
and analyze the interoperability between the OpenMP and Ada
runtimes. Overall, we conclude that OpenMP can be effectively
incorporated into Ada without jeopardizing its safety properties.

I. INTRODUCTION

Parallel computation is fundamental to provide the level
of performance needed in the most advanced safety-critical
systems, such as autonomous driving or unmanned aerial
vehicles. In that regard, the use of parallel heterogeneous
architectures rely on the use of parallel programming models
to exploit their massively parallel performance capabilities.
There is therefore a strong need to integrate these models in
the development of safety-critical systems.

Safety and correctness are crucial concepts in languages
targeting safety-critical systems. This is the case of Ada [1],
a language widely used in critical systems (e.g. avionics or
railway) because its design meets the safety requirements:
reliability (allow compilers develop correctness techniques to
certify algorithms regarding their functional specification) and
analyzability (ensure predictability while facilitating analysis).

Recently there has been a significant effort to extend Ada
to support fine-grain parallelism, with the objective of taking
benefit from parallel architectures while maintaining safety
guarantees. As a result, the recently proposed tasklet model
[2], [3] includes features for exploiting structured parallelism
on shared memory architectures.

There is however a need to introduce more advanced parallel
programming models into Ada to exploit more complex forms
parallelism and heterogeneous architectures. From the variety
of languages available, OpenMP has proven many advantages:
a) it offers performance and efficiency levels comparable to
highly tunable models such as TBB [4] and OpenCL [5], b) it
is robust while not locking the software to a specific number

of threads compared to low level libraries such as Pthreads
[6], and c) the use of OpenMP implies less effort to introduce
fine-grained parallelism in Ada instead of implementing the
Ada tasklet model. Additionally, recent works demonstrate that
OpenMP provides the safety properties required by Ada [7].

Based on that, this paper evaluates the incorporation of
OpenMP into Ada in three blocks:
1) A comparison of the Ada tasklet and the OpenMP execu-

tion models that states these are compatible. As a result,
OpenMP can be used to implement the tasklet model,
by automatically transforming Ada parallel constructs into
OpenMP directives at compile-time.

2) Prove of the benefit of using raw OpenMP in Ada to exploit
both structured and unstructured parallelism, and heteroge-
neous architectures (this paper leaves the accelerator model
as a future work).

3) An analysis of the interoperability needed between OpenMP
and Ada runtimes to fulfill the corresponding specifications,
without jeopardizing the safety guarantees provided by Ada.

II. RELATED WORK

Ada has long been a very strong language concerning
its concurrency model, with the specification of tasks (in-
dependent threads of control) at the language level, and a
set of language mechanisms for inter-task communication
and synchronization. The rationale is that providing language
concurrency mechanisms gives the compiler information on
the tasking behavior, which allows building safer programs.

Nevertheless, Ada only considers coarse-grain concurrency.
Without the tasklet model recently proposed, programmers
need to manually craft fine-grain parallelism using Ada tasks,
or use user-level libraries to manage parallel computation on
top of Ada tasks. Hereof, Paraffin [8], [9] consists of a set
of generic Ada libraries that dynamically manage fine-grain
parallelism, incorporating mechanisms for parallel blocks,
parallel loops and reductions, and recursive parallelism. This
library provides parallelism managers following work-sharing,
work-stealing and work-seeking approaches, on top of pools
of worker tasks. Using Ada generics, it provides a simple
interface to create and manage parallel execution, and delivers
comparable performance to OpenMP or Cilk on structured
parallelism for a small number of cores [10].

As noted, one of the strengths of Ada is that it has been care-
fully designed to prevent faulty executions. When considering



parallel programming, the main issues are data races and dead-
locks. In that regard, the Ada tasklet model proposes to palliate
the lack of information at compile-time when third-party
libraries or external components are used by including two
new aspects [2]: 1) Global, which identifies shared data used
within a function, and 2) Potentially_Blocking, which
identifies functions containing potentially blocking statements.
In the same line, there is a proposal to extend OpenMP with
new directives, i.e. globals and usage critical, to
allow identifying data races and deadlocks when third-party
code is used [11]. These directives cover the lack of safety
features in C/C++ and Fortran, but they are not needed when
using OpenMP with Ada, as the Ada aspects can be used.

III. ANALYSIS OF ADA AND OPENMP PARALLEL MODELS

This section analyses Ada and OpenMP parallel models,
comparing their specification and implementation.

A. Forms of parallelism
Ada tasklets and OpenMP implement a fork-join execution

model where parallelism is spawned when a parallel statement
(in Ada) or a parallel construct (in OpenMP) is reached, and it
is joined at the end of the parallel region. Both models define
execution containers, named executor in Ada and thread in
OpenMP, and managed by the respective runtimes.

Ada tasklets introduce two new statements to spawn and
distribute parallel work among executors: 1) the parallel block
allows defining several blocks of code that can execute in
parallel, and 2) the parallel loop denotes that loop iterations
can execute in parallel. Both mechanisms define a form of
structured parallelism. Listings 1 and 2 show the syntax of
these new statements.

Listing 1: Parallel blocks Ada syntax

1 parallel
2 x := a * a;
3 and
4 y := b * b;
5 end parallel;
6 res := x + y;

Listing 2: Parallel loop Ada syntax

1 for I in parallel lb..ub loop
2 a[I] := a[I] + b[I];
3 end loop;

Unlike Ada, OpenMP does not for the spawning and
distribution to be done at the same point. Instead, OpenMP
defines the parallel construct to spawn work, and several
constructs to distribute this work to threads. These can be
classified in two different models:
– The thread-centric model exploits structured parallelism

distributing work by means of work-sharing constructs. It
provides a fine-grain control of the mapping between work
and threads. The most representative constructs are for
and sections.

– The task-centric model (tasking model henceforward) ex-
ploits both structured and unstructured parallelism dis-
tributing work by means of tasking constructs. It provides a
higher abstraction level in which threads are fully controlled
by the runtime. The most representative constructs are
task and taskloop.
The two models have tantamount performance [12]. Listings

3 and 4 are equivalent to Listings 1 and 2, using the OpenMP
tasking model instead of Ada tasklets.

Fig.1 illustrates the flexibility of the OpenMP fork-join
model compared to that of Ada tasklets. Due to the separation

Listing 3: Parallel blocks OpenMP
tasking model syntax

1 pragma OMP (parallel);
2 pragma OMP (single);
3 begin
4 pragma OMP (task);
5 x := a * a;
6 pragma OMP (task);
7 y := b * b;
8 end;
9 res := x + y;

Listing 4: Parallel loop OpenMP tasking
model syntax

1 pragma OMP (taskloop);
2 for I in range lb..ub loop
3 a[I] := a[I] + b[I];
4 end loop;

of the spawn and distribution operations, OpenMP allows exe-
cuting simultaneously several constructs, which can potentially
increase parallelism and reduce unnecessary synchronizations
(in the Figure, the taskgroup avoids the barrier after the
first taskloop). Besides, in OpenMP the thread that spawns
work may not be the same as the one that distributes it, while
in Ada, the sames thread spawns and distributes.

parallel 

loop 

end loop 

end loop 

parallel 

loop 

sp
aw

n
 &

 
d

is
tr

ib
u

te
 

jo
in

 
sp

aw
n

 &
 

d
is

tr
ib

u
te

 
jo

in
 

parallel 

single 

taskgroup 

taskloop 

taskloop 

sp
aw

n
 

barrier 

d
is

tr
ib

u
te

 
jo

in
 

Fig. 1: Execution model of two parallel loops using Ada (left) and OpenMP tasks (right).

B. Execution model
In the Ada tasklet model, the tasklet is the unit of paral-

lelism. Tasklets come into existence when the parallel work
starts, and terminate at the end of the parallel work.

The Ada execution model is based on a limited form of
run-to-completion, i.e. tasklets are typically executed by a
unique executor, unless they perform an operation that requires
blocking1 or suspension; at these points, the tasklet is allowed
to migrate to a different executor. Note that, even if the tasklet
does not change executor, it is not mandatory for it to run
uninterruptedly or to execute in the same core, since executors
may be scheduled in a preemptive scheduler.

The concept of tasklet is very similar to an OpenMP task2:
a) both are containers that enable fine-grain parallelism, b) the
existence of the container is limited to the work it encloses,
and c) OpenMP tasks, as Ada tasklets, can be prioritized and
preempted. In that regard, OpenMP defines task scheduling
points (TSPs) as the moments at which a thread can stop
executing a specific task and start executing a different one3.
It is responsibility of the runtime to decide whether a task
is preempted (and potentially migrated) or not. Furthermore,
OpenMP defines two different approaches to relate tasks to
threads: 1) tied tasks are those that are tied to the thread
that starts executing them, and 2) untied tasks are those that
can migrate among threads. Similarly to Ada, both tied and

1Ada blocking operations are: external calls to protected objects, entry calls,
Ada task creation or activation, calls to a subprogram containing blocking
operations, and select, accept, delay and abort statements.

2The equivalence between the Ada tasklet and the OpenMP thread-centric
model is not straight-forward for two main reasons: 1) OpenMP maps logical
concurrent units of work to threads directly, and 2) neither the specification
nor the runtime provide any feature for preempting work-sharings.

3OpenMP associates Task Scheduling Points to different points in a pro-
gram, e.g. after the generation of an explicit task. The language also defines
the directive taskyield to explicitly introduce a TSP.



untied tasks are not forced to run uninterruptedly. The main
difference between Ada tasklets and OpenMP tasks is that
OpenMP allows users to explicitly define tasks whereas in
Ada, tasklets are transparent.

C. Use of resources

OpenMP allows programmers to define the amount of com-
puting resources to be used in a parallel region by means of the
num_threads clause attached to the parallel construct.
If none is defined, then the number is implementation defined
(although the number of cores is commonly considered).

The Ada tasklet model does not yet define whether the
programmer can control the number of executors assigned to a
parallel region. In this direction, Ada denotes that the parallel
execution progresses if at least one of the spawned tasklets
is being executed by an executor. The tasklet model defines
three classes of progression as defined below:
– Immediate progress. Ready tasklets can always execute if

there are available cores.
– Eventual progress. Ready tasklets may require to wait for

the availability of an executor even if cores are available,
but it is guaranteed that one executor will become available
so that the tasklet will eventually be executed.

– Limited progress. Ready tasklets may require to wait for
the availability of an executor even if cores are available,
and it is not guaranteed that one executor will eventually
become available. This may happen when there is a limited
number of executors and all are blocked.
Runtime implementations must guarantee one class of

progress. The two first classes guarantee progression for
any program, even if the runtime does not support tasklet
migration between executors when tasklets block. The third
class requires static analysis to determine the tasks neither
starve nor deadlock, and it is suitable when the resources of the
program and the runtime structures are statically determined.

The OpenMP specification does not impose any model
of progression, as it is responsibility of the programmer to
guarantee that the execution does not stall or starve. However,
the execution model enables to mimic progression as defined
for Ada tasklets (see details in Section IV-B).

D. Memory model

OpenMP and Ada tasklets define a relaxed-consistency
memory model where the visibility of the variables may vary
within parallel regions. For safety reasons, Ada delegates the
responsibility of defining this visibility to the compiler. On the
contrary, OpenMP allows three different possibilities: 1) apply
the default data-sharing attributes defined in the specification
and based in the storage of the variables; 2) manually define
the visibility be means of data-scoping clauses (i.e. shared,
firstprivate, lastprivate and private); and 3)
use auto-scoping techniques [13] to automatically determine
the visibility based on the usage and liveness of the variables.

IV. SUPPORTING ADA TASKLETS WITH OPENMP

This section further analyses the execution model of
OpenMP and Ada tasklets, and demonstrates that OpenMP
is a firm candidate to implement parallel blocks and loops.

A. Preemption

The limited form of run-to-completion implemented in the
tasklet model is mappable to the OpenMP tasking model (see
details in Section III-B). The points where a tasklet can be
preempted (at blocking or suspension) can be implemented
using the OpenMP taskyield operation.

Considering the tasking model, untied tasks are more suit-
able to implement tasklets, because tasks can migrate between
threads. Moreover, untied tasks have better time predictability
than tied tasks, due to their work-conserving nature [14].

Considering the thread-centric model, the work-sharing con-
structs can implement the same semantics as Ada parallel
blocks and parallel loops do. Despite this, work-sharing enti-
ties cannot be preempted by the runtime. Therefore, the thread
model is not suitable to support the Ada completion model.

B. Progression Model

The OpenMP specification does not impose any model of
progression, however it supports progress as defined for Ada
tasklets. Although the OpenMP runtime cannot dynamically
modify the number of threads in a team (and therefore it
cannot create a new thread when a task blocks), it can move
blocked tasks to a waiting queue and reuse threads to execute
other tasks. To implement immediate progress, the OpenMP
runtime must enforce a work-conserving scheduler, and the
number of threads assigned to parallel regions must be bigger
or equal than the number of cores. This way, whenever there
are resources available, tasks will be scheduled.

OpenMP tied tasks are not suitable to implement immediate
progress due to the non-work-conserving nature of the sched-
uler. Oppositely, these are convenient for eventual progress as
long as threads are reused when tasks block. The same happens
if the number of threads is smaller than the number of cores.

C. Fork-join Model

The fully strict fork-join model required by the tasklet
model is fully supported by OpenMP. Since OpenMP does
not force the distribution of work to be done at the same point
as the spawn of parallelism, explicit synchronizations may be
needed. This is the case when implementing nested parallelism
in Ada. Fig.2a presents a code snippet with nested parallelism
using nested Ada parallel blocks, which spawn and distribute
twice (at lines 1 and 3). This code can be transformed in two
ways using the OpenMP tasking model. The first one, shown in
Fig.2b, uses nested parallel regions, which supposes spawning
parallelism twice as well (lines 1 and 7). The second one,
shown in Fig.2c, uses nested tasks, and supposes spawning
parallelism just once (line 1). It needs a taskwait before code
4 to force the synchronization of the inner block.

The Ada tasklet model does not specify how the runtime
manages resources of parallel executions, therefore both trans-
formations are possible. The version shown in Fig.2c may
reduce the overhead of creating and destroying an extra team
of threads. However, it is interesting to have the possibility of
exploiting two different levels of parallelism for those cases
where the parallelism is not exposed at the same level, or
where there are load balancing problems.



1 parallel
2 -- code 1
3 parallel
4 -- code 2
5 and
6 -- code 3
7 end parallel
8 -- code 4
9 and

10 -- code 5
11 end parallel;

(a) Ada

1 pragma OMP (parallel);
2 pragma OMP (single);
3 begin
4 pragma OMP (task, untied);
5 begin
6 -- code 1
7 pragma OMP (parallel);
8 pragma OMP (single);
9 begin

10 pragma OMP (task, untied);
11 -- code 2
12 pragma OMP (task, untied);
13 -- code 3
14 end;
15 -- code 4
16 end;
17 pragma OMP (task, untied);
18 -- code 5
19 end;

(b) OpenMP with nested parallels

1 pragma OMP (parallel);
2 pragma OMP (single);
3 begin
4 pragma OMP (task, untied);
5 begin
6 -- code 1
7 pragma OMP (task, untied);
8 -- code 2
9 pragma OMP (task, untied);

10 -- code 3
11 pragma OMP (taskwait);
12 -- code 4
13 end;
14 pragma OMP (task, untied);
15 -- code 5
16 end;

(c) OpenMP with nested tasks

Fig. 2: Mapping nested parallelism between Ada and OpenMP

V. SUPPORTING THE OPENMP TASKING MODEL IN ADA

Previous sections of this paper propose OpenMP as an
implementation for Ada tasklets. This section evaluates the
direct use of OpenMP in Ada to increase its parallel features.

In that respect, OpenMP supports point-to-point synchro-
nizations by means of the depend clause, which defines the
input and/or output data dependencies existing between tasks.
The task dependency graph that honors these dependences
is used to drive the execution. The use of dependences can
significantly improve performance of parallel Ada programs,
as will be shown in Section VII.

A fundamental requirement of Ada systems is safety, which
can be certified at different levels by means of particular
standards (e.g. the ISO26262 [15] for automotive, the DO178C
[16] for avionics or the IEC61508 [17] for industry). Prob-
lems with certification might be due to error-prone features
(compromising reliability) or features with complex semantics
(complicating analyzability). In that regard, OpenMP has been
proven to provide the safety requirements imposed by such
systems [7] if the language incorporates:
– Limits in the specification that may vary depending on the

level of criticality (e.g. task priorities and explicit flushes).
– Extensions to the specification to enable whole program

analysis when third-party components are used. These are
similar to the Global and Potentially_Blocking
Ada aspects and needed only to cover the lack of such
support in C and Fortran, thus not needed if using Ada.

– Extensions to include error-handling techniques.
– Runtime implementation guidelines to avoid faulty results.

VI. INTEROPERABILITY OF OPENMP AND ADA RUNTIMES

Supporting OpenMP in Ada or using it to implement tasklets
requires integrating the OpenMP and Ada runtimes, ensuring
their interoperability does not compromise compliance with
the respective specifications. This section analyzes three levels
of interplay: 1) Ada tasks scheduling, 2) Ada tasks synchro-
nization and 3) Ada and OpenMP control structures.

A. Ada Task Scheduling

The Ada runtime is in charge of scheduling Ada tasks.
When the scheduling conditions change, e.g. a high priority
task arrives, a running Ada task can be preempted in favor
of other. If this occurs, the Ada runtime must inform the
OpenMP runtime so any parallel execution is stopped, and

save the context of the task. However, if only resources
are redistributed, then the preempted portion of the parallel
execution must be safely stopped because OpenMP does not
allow dynamically changing the number of threads of a team.

A possible solution is the Ada runtime informing the
operating system (OS) to release the corresponding cores from
the selected Ada task, and the OpenMP runtime informing
the OS when the OpenMP tasks executed in the cores to be
stopped reach a task scheduling point. Preempted tasks are put
back into the task ready queue to resume its execution when
an OpenMP thread becomes available.

B. Ada Task Synchronization: Protected Objects
Ada incorporates a deadlock-free mutual exclusion mech-

anism, named protected objects, that can be applied at both
Ada task and tasklet levels. Protected objects are commonly
implemented with conditional locks.

When applying protected objects to tasklets from the same
Ada task (synchronizing tasklets from different Ada tasks is
not allowed), the OpenMP runtime has access to all threads
spawned by the Ada task, so OpenMP synchronization mech-
anisms can be used to implement protected objects. However,
when synchronizing two different Ada tasks, the correspond-
ing OpenMP data structures are not shared among Ada tasks,
hence they cannot access their respective team of threads.
As a result the synchronization must be managed by the
Ada runtime, although initiated within the OpenMP runtime.
That said, when an OpenMP task accesses a protected object,
the Ada runtime is invoked to determine the value of the
associated conditional lock. If it is available, the corresponding
Ada task will acquire it. If not, the OpenMP task will be
preempted and placed in the waiting queue, and the OpenMP
thread executing that task assigned to a different OpenMP
task. When the conditional lock becomes available, the Ada
runtime must inform the OpenMP runtime, which will include
the OpenMP tasks associated to that conditional lock back to
the ready queue to acquire the lock and continue the execution.

C. Ada Task Attributes
When executing an OpenMP parallel region (corresponding

to either the lowering of an Ada parallel code or a pragma
OMP(parallel) call), threads must have access to some
information of the Ada task (e.g. task id). To do so, OpenMP
control structures must include information about the Ada
task, so any thread in the parallel region can have access to



2 4 8 16 24 48
Number of workers

0

10

20

30

40

50

Sp
ee

du
p

Ada tasklets (OpenMP)
Ada tasks
Ada Paraffin

2 4 8 16 24 48
Number of workers

5

10

15

20

25

30

35

Sp
ee

du
p

Ada tasklets (OpenMP)
Ada tasks
Ada Paraffin

2 4 8 16 24 48
Number of workers

2

3

4

5

6

7

8

9

Sp
ee

du
p

Ada tasklets (OpenMP)
Ada tasks
Ada Paraffin

(a) Matrix (b) LU (c) Cholesky
Fig. 3: Performance speedup of Ada tasklets (implemented with OpenMP), Ada tasks and Paraffin

it. Similarly, Ada control structures must include information
about OpenMP execution (e.g. the team of threads that is being
executed by an Ada task at any point).

VII. EVALUATION

This section evaluates the integration of OpenMP into
Ada from three different angles: 1) the benefits of OpenMP
compared to other implementations that exploit parallelism in
Ada, i.e. native Ada tasks [1] and Paraffin [8]; 2) the benefit of
OpenMP regardless the base language considered (C and Ada);
and 3) the interplay between Ada and OpenMP runtimes.

A. Experimental setup
Runtimes. We use three runtime implementations that support
parallelism: 1) the GNU libgomp library for OpenMP from
GCC 7.1 [18] 2) the GNAT runtime library for Ada from
GCC 7.1 [19], and 3) the Paraffin suit for Ada [8].
Applications. We consider four applications: 1) a matrix
intensive computation resembling image processing algorithms
(Matrix), 2) the LU factorization (LU), 3) the Cholesky
decomposition (Cholesky), 4) a synthetic application that com-
bines several OpenMP constructs and Ada tasks (Synthetic).
All, the Matrix, LU and Cholesky benchmarks have been
parallelized using the Ada tasklet model (implemented with
OpenMP), native Ada tasks, Paraffin and C/OpenMP. Addi-
tionally, Cholesky has been parallelized using OpenMP task
dependences as well, in order to demonstrate the benefits of
fully integrating OpenMP into Ada by exploiting unstructured
parallelism. Finally, Synthetic is used to demonstrate how Ada
and OpenMP runtimes coexist by combining OpenMP tasks
called within tasks, and managed by the OpenMP and Ada
runtimes respectively.
Platform. We run our experiments in a computing node from
the MareNostrum IV [20]. It consists of a 2 sockets Intel
Xeon Platinum 8160 CPU with 24 cores each. The processor
operates at 2.10GHz, and features a 33MB L3 cache.
Libraries. We use two instrumentation libraries to analyze
the correct interoperability between the Ada and OpenMP
runtimes: 1) Extrae [21], a tool that gathers information about
the performance of parallel applications and generates traces in
textual files, and 2) Paraver [22], a performance visualization
and analysis tool that uses Extrae traces.

B. Structured parallelism: Ada tasklets, Ada tasks and Paraffin
This section compares the performance speedup of the

Ada tasklet model (implemented with OpenMP4) with the
use of Ada tasks and Paraffin. For such purpose, we use

4There is yet no implementation of the Ada tasklet model.

the Matrix, LU and Cholesky benchmarks. Fig.3 shows the
speedup obtained for the three benchmarks, considering the
three implementations.

In the Matrix example (Fig.3a), Ada tasklets and Ada
tasks produce equivalent speedups. The regular nature of the
algorithm can be efficiently mapped to both Ada and OpenMP
tasks. In LU and Cholesky (Fig.s3b and c), Ada tasklets clearly
outperform the other implementations because the fine-grain
synchronization mechanisms provided by OpenMP are more
efficient than the manual mapping of parallelism into Ada
tasks and the parallelism management performed by Paraffin.
Performance drops down when increasing the number of cores
up to 48 because of two reasons: the NUMA effect of the
machine, and the small amount of work of the tasks.

C. Unstructured parallelism: Ada tasklets and OpenMP task
dependences

OpenMP allows the definition of point-to-point synchro-
nizations to extract parallelism out of highly unstructured
applications by means of task dependence clauses.

2 4 8 16 24 48
Number of workers

2

4

6

8

10

12

14

16

Sp
ee

du
p

Ada tasklets (OpenMP)
Ada + OpenMP dependences

Fig. 4: Speedup of Cholesky using Ada tasklets implemented with OpenMP (structured
parallelism) and Ada with raw OpenMP dependences (unstructured parallelism)

Fig.4 shows the results obtained with the Cholesky bench-
mark parallelized with Ada tasklets, using OpenMP taskwaits
to synchronize tasks, and Ada with raw OpenMP, using
dependences. The version with dependences outperforms when
then number of cores is higher than 4, because it takes profit of
all the parallelism existing in the application, while taskwaits
are coarse-grain synchronizations that limit parallelism.

D. Performance benefit of OpenMP: Ada and C

The OpenMP API efficiently supports the development of
parallel applications written in C and Fortran. This section
proves worth the effort to integrate OpenMP into Ada on
account of the performance gains. To this end, the section com-
pares the speedups obtained with C and Ada, and establishes
that OpenMP provides tantamount performance, regardless of
the differences between the two base languages (evaluating the
differences of C and Ada is out of the scope of this paper).

Fig.5 shows the performance obtained for Matrix, LU and
Cholesky implemented with Ada and C, using the same



2 4 8 16 24 48
Number of workers

0

5

10

15

20

25

30

Ex
ec

ut
io

n 
tim

e

C + OpenMP
Ada + OpenMP

2 4 8 16 24 48
Number of workers

1

2

3

4

5

6

7

8

Ex
ec

ut
io

n 
tim

e

C + OpenMP
Ada + OpenMP

2 4 8 16 24 48
Number of threads

0

1

2

3

4

5

6

7

8

Ex
ec

ut
io

n 
tim

e 
(s

)

Performance of OpenMP Cholesky decomposition

C + OpenMP (dependences)
C + OpenMP (taskwaits)
Ada + OpenMP (dependences)
Ada + OpenMP (taskwaits)

(a) Matrix (b) LU (c) Cholesky
Fig. 5: Execution time of OpenMP running with Ada and C

OpenMP parallelization. Ada scales similarly to C in all cases,
proving that OpenMP can be used to satisfactorily exploit par-
allelism in Ada applications. Furthermore, OpenMP reduces
the effect of the differences in the underlying languages (C
and Ada) when executed sequentially, delivering a similar
execution time for the best parallel versions of both languages.

E. Interplay of Ada and OpenMP runtimes
We use a synthetic application to show the coexistence of

Ada and OpenMP tasks. The algorithm contains two Ada tasks
(one executing periodically every 200ns, and one executing
sporadically), and two OpenMP tasks (one performing the
intensive computation of Matrix, and one performing light
arithmetic computations). OpenMP parallelism is executed
within Ada tasks, and the Ada sporadic tasks are released by
calling Ada protected objects from within OpenMP tasks.

Fig.6 shows a trace of the execution of this algorithm. The
x axis represents time, and the y axis represents available
workers. The horizontal bars contain a unit of execution run in
a given period in a given worker, where each color represents
a different conceptual unit: the Ada sporadic tasks in yellow
(executed in threads 1 and 2), the Ada periodic tasks in
turquoise (executed periodically in thread 1), the OpenMP
heavy tasks in lilac, and the OpenMP light tasks in pink (the
last two executed in all threads). The trace shows how Ada
and OpenMP tasks share resources and interplay correctly.

Fig. 6: Execution trace of the Synthetic benchmark mixing OpenMP and Ada tasks

VIII. CONCLUSION

This paper addresses the integration of OpenMP into Ada,
converging the HPC and the safety-critical domains. By
comparing the two language specifications, we state that the
OpenMP runtime can be used to implement the recently
proposed Ada tasklet model, and thus exploit structured fine-
grain parallelism in Ada applications. Concretely, we analyze
how the OpenMP tasking model, using tied tasks, supports all
the preemption model, the progression model and the memory
model defined for Ada tasklets.

There are though other implementations that exploit paral-
lelism in Ada, such as Ada tasks and Paraffin. So as to motivate
the use of OpenMP to implement tasklets, we compare the
three implementations in several benchmarks. Our results show

the important benefit obtained with OpenMP, mainly because
of the efficiency of its fine-grain synchronization mechanisms
in front of those of Ada tasks and Paraffin.

Furthermore, we propose to introduce OpenMP directly into
Ada, and thus allow the exploitation of unstructured fine-
grain parallelism with the use of task dependence clauses. Our
results demonstrate the benefits of this kind of point-to-point
synchronization against the use of full barrier synchronizations
(implemented with the use of taskwaits).

Overall, and given that previous works already proved that
OpenMP keeps Ada safety requirements, we propose OpenMP
as a firm candidate to express fine-grain parallelism in Ada.

REFERENCES

[1] IEC, “8652: 2012 Programming Languages and their Environments–
Programming Language Ada,” International Standards Organization.

[2] S. T. Taft, B. Moore, L. M. Pinho, and S. Michell, “Safe parallel
programming in Ada with language extensions,” Ada Letters, 2014.

[3] L. M. Pinho, B. Moore, S. Michell, and S. T. Taft, “An Execution Model
for Fine-Grained Parallelism in Ada,” in Ada-Europe, 2015.

[4] J. Reinders, Intel Threading Building Blocks. O’Reilly & Associates,
Inc., 2007.

[5] J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A parallel programming
standard for heterogeneous computing systems,” CS&E, vol. 12, no. 3,
pp. 66–73, 2010.

[6] D. R. Butenhof, Programming with POSIX threads. Addison-Wesley
Professional, 1997.

[7] S. Royuela, X. Martorell, E. Quinones, and L. M. Pinho, “OpenMP
tasking model for Ada: safety and correctness,” in Ada-Europe, 2017.

[8] B. J. Moore, “Parallelism generics for Ada 2005 and beyond,” in Ada
Letters, 2010.

[9] “Paraffin,” 2017. [Online]. Available: http://paraffin.sourceforge.net
[10] B. Moore, “Paraffin: a parallelism api for multiple languages,” Ada User

Journal, 2016.
[11] S. Royuela, A. Duran, M. A. Serrano, E. Quiñones, and X. Martorell, “A

Functional Safety OpenMP for Critical Real-Time Embedded Systems,”
in IWOMP, 2017.

[12] A. Podobas and S. Karlsson, “Towards Unifying OpenMP Under the
Task-Parallel Paradigm,” in IWOMP, 2016.

[13] S. Royuela, A. Duran, C. Liao, and D. J. Quinlan, “Auto-scoping for
OpenMP tasks,” in IWOMP, 2012.

[14] M. A. Serrano, A. Melani, R. Vargas, A. Marongiu, M. Bertogna, and
E. Quinones, “Timing characterization of OpenMP4 tasking model,” in
CASES, 2015.

[15] ISO/DIS 26262. Road Vehicles – Functional Safety, 2009.
[16] R. DO, “178C,” Software considerations in airborne systems and equip-

ment certification, 2011.
[17] IEC 61508, Functional Safety of Electrical/Electronic/Programmable

Electronic Safety-related Systems, Edition 2.0, 2009.
[18] GNU, “The GOMP project,” 2017. [Online]. Available:

https://gcc.gnu.org/projects/gomp
[19] AdaCore, “GNAT User’s Guide for Native Platform,” 2017. [Online].

Available: https://gcc.gnu.org/onlinedocs/gnat ugn.pdf
[20] BSC, “Marenostrum IV,” 2017. [Online]. Available:

https://www.bsc.es/support/MareNostrum4-ug.pdf
[21] ——, “Extrae,” 2017. [Online]. Available: https://tools.bsc.es/extrae
[22] ——, “Paraver,” 2017. [Online]. Available: https://tools.bsc.es/paraver


