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Abstract 

Thanks to flexible deployment and excellent maneuverability, autonomous drones are regarded as an effective 

means to enable aerial data capture in large-scale wireless sensor networks with limited to no cellular 
infrastructure, e.g., smart farming in a remote area. A key challenge in drone-assisted sensor networks is that the 

autonomous drone's maneuvering can give rise to buffer overflows at the ground sensors and unsuccessful data 
collection due to lossy airborne channels. In this paper, we propose a new Deep Deterministic Policy Gradient 

based Maneuver Control (DDPG-MC) scheme which minimizes the overall data packet loss through online training 
instantaneous headings and patrol velocities of the drone, and the selection of the ground sensors for data 

collection in a continuous action space. Moreover, the maneuver control of the drone and communication 
schedule is formulated as an absorbing Markov chain, where network states consist of battery energy levels, data 

queue backlogs, timestamps of the data collection, and channel conditions between the ground sensors and the 
drone. An experience replay memory is utilized onboard at the drone to store the training experiences of the 

maneuver control and communication schedule at each time step. 
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Abstract—Thanks to flexible deployment and excellent maneuverability, autonomous drones are regarded as an effective means to

enable aerial data capture in large-scale wireless sensor networks with limited to no cellular infrastructure, e.g., smart farming in a

remote area. A key challenge in drone-assisted sensor networks is that the autonomous drone’s maneuvering can give rise to buffer

overflows at the ground sensors and unsuccessful data collection due to lossy airborne channels. In this paper, we propose a new deep

deterministic policy gradient based maneuver control (DDPG-MC) scheme which minimizes the overall data packet loss through online

training instantaneous headings and patrol velocities of the drone, and the selection of the ground sensors for data collection in a

continuous action space. Moreover, the maneuver control of the drone and communication schedule is formulated as an absorbing

Markov chain, where network states consist of battery energy levels, data queue backlogs, timestamps of the data collection, and

channel conditions between the ground sensors and the drone. An experience replay memory is utilized onboard at the drone to store

the training experiences of the maneuver control and communication schedule at each time step. Numerical results demonstrate that

the proposed DDPG-MC achieves 15.2 and 47.6 percent lower packet loss rate than deep Q-learning-based flight control and non-

learning scheduling policies, respectively.

Index Terms—Autonomous drone, maneuver control, data collection, deep reinforcement learning, absorbing markov chain
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1 INTRODUCTION

RECENT advances of wireless sensing techniques allow for
deploying a large number of sensing devices for sustain-

able environmental monitoring [1], [2]. Sensory data are
generated and stored in a data queue at the sensor, awaiting
to be uploaded to a remote base station. Data collection in
large-scale wireless sensor networks is difficult since sen-
sors can be airlifted to remote, human-unfriendly environ-
ments, e.g., disaster stricken areas, rural vineyards, or
battlefields [3]. In such harsh environments, conventional
terrestrial communication networks requiring persistent
power supplies are unavailable or unreliable. Thanks to
their flexible deployment and excellent maneuverability,
autonomous drones provide an effective means to collect
data from the ground sensors, offload command or software
patch, or restore communications [4], [5]. The drone can
move sufficiently close to a ground sensor, leveraging a
dominant line-of-sight (LoS) between the drone and the sen-
sor [6]. The drone maneuver can enhance the network

coverage while the LoS link enables a high data rate for the
drone-sensor communications. Several international initia-
tives have been launched to study the feasibility of using
drones for providing wireless access for ground sensor net-
works. For example, SoftBank company partnered with
NASA and U.S. aerospace company AeroVironment devel-
oped a high-altitude autonomous drone to provide commu-
nication connectivity from the sky [7]. Optus and Ericsson
delivered Australia’s first 5G teleoperated drone controlled
over a live 5G network to track and identify objects [8]. Veri-
zon tested different types of drones to improve network
connectivity [9]. The 3rd Generation Partnership Project
(3GPP) studied capability of the Long Term Evolution
(LTE) to support drones [10].

Fig. 1 illustrates an application of drone-assisted sensor
networks for precision agriculture. Specifically, a large
number of energy harvesting powered sensors are deployed
in a vineyard for sensing and monitoring temperature, soil
moisture, and illumination time. The ground sensor can be
equipped with solar panels, wind power generators, or
wireless power receiver to harvest renewable energy from
ambient resources for opportunistically recharging its bat-
tery [11], [12], [13]. A drone equipped with a wireless radio
and onboard data processors hovers over the vineyard. The
drone is typically powered by batteries, which leads to a
finite cruising time. Moreover, the heading and patrol veloc-
ity of the drone can adaptively change and select the ground
sensors for data collection along the flight trajectory.

A low battery level of the ground sensor can potentially
prevent data inside the finite buffers from being transmitted
in time, hence resulting in the overflow of the buffers upon
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the arrivals of new data. Specifically, the newly arrived data
packets are generally queued in the buffer of a ground sen-
sor, until the battery level of the ground sensor is sufficient
to complete the transmissions of the earlier packets and
power the transmissions of the newly arrived packets. The
battery of the ground sensor is recharged by harvesting
renewable energy from solar, wind, or other renewable
energy sources. The energy harvesting depends heavily on
the environmental conditions. For example, a cloudy or
rainy weather, or a windless day would result in a small
amount of harvested energy [14].

Despite their consistent sampling intervals, the sensory
data arrivals at the transmit buffer of the ground sensors
can have large variations. This is because in many cases,
only changes get reported to reduce the communication
overhead of a system and the energy requirement of the
transmitter [15]. In many other cases, the packet generation
of the ground sensors can be event-triggered, e.g., wildlife
camera traps which shoot photos only when their infrared
sensors are triggered by passing animals. In the above cases,
it is reasonable to assume that the ground sensors undergo
random data arrivals (at their transmit buffers). Some sen-
sors may periodically generate packets. The periodic packet
arrivals in the data queue are predictable; while the battery
energy levels and channel conditions still experience time-
varying randomness, depending on the environments.

Selecting a ground sensor for data collection may result
in a buffer overflow at other unselected sensors, since new
data arrivals at those sensors may have to be dropped if
their buffers are already full and overflow. Despite memory
chips and storage capacity of sensors have been continu-
ously improving, the data buffer can still overflow for two
reasons. First, according to queueing theory, a queue grows
infinitely, as long as the incoming data rate into the queue is
higher than the outgoing data rate from the queue. In the
situation where the network has too many sensors to get
their data collected in a timely manner or the drone’s trajec-
tory is poorly planned, the queues would build up and the
sensors would suffer from buffer overflows. Second, there
is a trend of increasingly large data sizes being exported in

emerging sensing platforms, e.g., weed identification or
wildlife monitoring with cameras [16], [17], and insect
detection based on optoacoustic sensors [18]. The typical
sizes of high-resolution images and acoustic data are several
megabytes. However, many off-the-shelf sensors have a
limited data memory with the consideration of the cost and
market competitiveness.

Moreover, selecting a ground sensor with a poor channel
condition gives rise to packet errors of the transmissions or
buffer overflows at other sensors. In practice, the instanta-
neous knowledge of the battery energy levels, data queue
backlogs, and channel conditions of the ground sensors is
not available at the drone. Therefore, the joint optimization
of the maneuver control of the drone and the selection of
the ground sensors is crucial to minimize packet losses
resulting from buffer overflows and fading channels in the
drone-assisted sensor network.

In this paper, we investigate the continuous maneuver
control and data capture scheduling of autonomous drone
in wireless sensor networks. The main contributions can be
summarized as follows:

1) To the best of our knowledge, this is the first attempt
to investigate the joint optimization of the continu-
ous maneuver control of an autonomous drone and
the communication schedule to minimize the data
loss. The drone-assisted data collection in wireless
sensor networks is formulated as an absorbing Mar-
kov chain, where the network states consist of the
battery energy levels, data queue backlogs, Time-
To-be-Alive (TTA) values, and the channel condi-
tions between the ground sensors and the drone.

2) An onboard Deep Deterministic Policy Gradient
based Maneuver Control (DDPG-MC) is proposed to
optimize the continuous maneuver control of the
drone, which is typically with large state and action
spaces. The onboard DDPG-MC jointly optimizes
the online maneuver control and communication
schedule through online training actions of the
drone, i.e., the instantaneous headings, patrol veloci-
ties, and the real-time selection of the transmitting
ground sensors. An experience replay memory is uti-
lized to store the training experiences of the maneu-
ver control and communication schedule at each
time step, which stabilizes the training of DDPG-MC
and improves sample efficiency by repeatedly reus-
ing experience tuples.

3) To verify our design, we implement DDPG-MC in
Python 3.5 running on top of Google TensorFlow.
Numerical results demonstrate that the proposed
DDPG-MC achieves at least 47.6 percent reduction
in the overall packet loss, as compared to existing
non-learning heuristics.

The rest of this paper is organized as follows. Section 2
reviews the related work on the trajectory planning of
drones and communication scheduling schemes. Section 3
presents the flight model of autonomous drones and the
channel model. The joint optimization of the maneuver con-
trol and communication schedule is formulated as the
absorbing Markov chain in Section 4. In Section 5, a new
onboard DDPG-MC scheme is designed to optimize the

Fig. 1. A large number of sensors are deployed in a vineyard for preci-
sion agriculture. The autonomous drone adjusts the heading and the
patrol velocity to maneuver over the target field, while selecting the
ground sensors to transmit data.
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decision process of the absorbing Markov chain, thereby
optimizing the headings and patrol velocities, as well as the
transmission schedule of the ground sensors. Numerical
results are presented in Section 6. Section 7 concludes the
paper.

2 RELATED WORK

2.1 Trajectory Planning

A trajectory planning algorithm is presented in [19] to
reduce the communication delay of data collection. Given
the predetermined waypoints, the radius of the trajectory
is adjusted to alleviate data traffic congestion according to
data buffer occupancy at the drone. The communication
delay between the drone and the ground nodes can be
reduced via the trajectory planning and the communication
scheduling [20]. The propulsion energy of the drone can
be the dominant factor determining the throughput-energy
tradeoff in air-ground communications. In [21], an
energy tradeoff is studied, where the transmission energy
reduction at the ground sensor is at an increasing cost of
the propulsion energy at the drone. The energy tradeoff is
characterized by a circular or straight-line trajectory in
accordance with the transmit power allocation of the
ground sensors. The authors of [22] present a trajectory
planning algorithm based on the data uploading time and
the elapsed time since the drone leaves the radio coverage
of the sensor. It is shown that the trajectory corresponds to
the shortest Hamiltonian path in the ground sensor net-
work, where the distance between the two sensors indi-
cates their inter-visit time. In [23], the trajectory planning is
formulated as a mixed integer non-linear programming to
reduce the average path loss between the drone and the
ground sensor. The trajectory planning is decoupled
between multiple sub-problems which separately schedule
the ground sensors’ transmissions, trajectories, and alti-
tudes of the drone.

In [24], drones provide emergent wireless coverage to a
remote area. The deployment time of the drone depends on
the velocity, altitude and radio coverage radius. The drone
deployment algorithm is developed to reduce the deploy-
ment time given the same initial or different dispatching
locations. A trajectory planning algorithm based on random
tree generation is studied in [25] to avoid collisions with
moving obstacles. The random tree generated by sampling
the waypoints adds the trajectory with no collision to a
graph as a candidate feasible path. The trajectory of the
drone can also be designed with a continuous-time formula-
tion for collision avoidance [26]. A replanning system is
constructed from mapping to trajectory generation, where
the trajectory responds to some previously unknown or
unseen obstacles. In [27], a trajectory planning algorithm is
developed for data sender localization. The waypoints are
generated at the drone to reduce the localization uncer-
tainty, while a maximum likelihood estimator estimates the
data sender’s location based on the ground sensor
measurements.

In [28], a number of charging stations on the ground are
uniformly deployed to satisfy the energy needs of the drone.
The drone is assigned to serve the entire area in a sustain-
able way. The charging stations are allocated to charge the

drone along its flight trajectory. In [29], the trajectory of a
drone is designed to improve the energy efficiency of a
point-to-point communication between the drone and a
ground device, by taking into account the propulsion
energy consumption of the drone. An algorithm is devel-
oped to maximize the energy efficiency, subject to the con-
straints on the drone’s trajectory, including its initial/final
locations and velocities, and maximum speed. The drone
can adapt its displacement direction and distance to serve
the ground users’ wireless traffic [30]. The optimal displace-
ment distance is designed to improve the average through-
put for variable-rate applications and the success
probability for fixed-rate applications.

2.2 Communication Scheduling

Energy harvesting drones are employed to extend network
coverage and wireless access for ground sensors in [31]. The
energy consumption of a drone is reduced by adapting the
ground sensor assignment, the trajectory, and transmit
power of the drone. In [32], the trajectory of the drone and
the communication schedules are designed to improve net-
work throughput of OFDMA users on the ground. Since the
network throughput decreases with the increasing transmit
rate of the OFDMA user, the throughput gain arising from
the drone’s mobility becomes less significant. The work
in [33] focuses on network congestion prediction for drone-
assisted data communications. A drone deployment algo-
rithm is developed to reduce the transmit power of the
drone, while reducing the propulsion energy based on the
predicted network traffic. In the drone-assisted sensor net-
work, the wake-up schedule of the ground sensors and the
trajectory of the drone are jointly optimized to lower the
energy consumption of the ground sensors [34]. The optimi-
zation also ensures the required amount of data collected
from each ground sensor.

3 AUTONOMOUS FLIGHT AND CHANNEL MODEL

In this section, we present the flight model of the autono-
mous drone and the channel model. A communication pro-
tocol for the drone-assisted data collection in wireless
sensor networks is also studied. Specific notations used in
this article are summarized in Table 1.

3.1 Flight Model of the Autonomous Drone

Let ðxðtÞ; yðtÞ; zÞ denote the position of the drone at time t.
The drone is assumed to manoeuvre in an altitude hold
mode [35], i.e., the altitude of the drone can be maintained
steady. The instantaneous patrol velocity of the drone is
vðtÞ, where Vmin < vðtÞ � Vmax. Vmin and Vmax are the mini-
mum and the maximum velocities allowed, respectively.
Let Dt denote the flight duration from ðxðtÞ; yðtÞ; zÞ to ðxðtþ
1Þ; yðtþ 1Þ; zÞ and DvðtÞ=Dt ¼ ðvðtþ 1Þ � vðtÞÞ=Dt is the
acceleration of the drone. Consider Vmin � vðtÞ � Vmax,
where Vmin and Vmax are the minimum and the maximum
velocities of the drone, respectively. The acceleration of the
drone fulfills 0 � DvðtÞ=Dt � ðVmax � VminÞ=Dt. For example,
we set Vmax = 15 m/s, Vmin > 0, and Dt = 1 s, the accelera-
tion of the drone DvðtÞ=Dt is within ½0; 15Þm/s2.

By applying the proposed DDPG-MC framework, ðxðtþ
1Þ; yðtþ 1Þ; zÞ and vðtþ 1Þ, are learned and optimized given
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the location ðxðtÞ; yðtÞ; zÞ and the velocity vðtÞ at the location.
Given the current and the next locations and their associ-
ated speeds, and the current heading, the tangential
acceleration DvðtÞ=Dt can be evaluated by satisfying
DvðtÞ=Dt � ðVmax � VminÞ=Dt, the rotation center and radius
can be specified, and the heading at the next location, i.e.,
uðtþ 1Þ, can be specified accordingly.

Fig. 2 describes the flight model of the drone, where uðtÞ
is the heading at t [36], [37], and the coordinates of the circle
centre are ðxcðtÞ; ycðtÞ; zÞ. Therefore, the drone’s location at
time tþ 1 is given by

xðtþ 1Þ ¼ xcðtÞ þ
h

ðxðtÞ � xcðtÞÞ cos uðtÞ

� ðyðtÞ � ycðtÞÞ sin uðtÞ
i

yðtþ 1Þ ¼ ycðtÞ þ
h

ðxðtÞ � xcðtÞÞ sin uðtÞ

þ ðyðtÞ � ycðtÞÞ cos uðtÞ
i

;

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(1)

where uðtÞ 2 ð0;p�. In particular, uðtÞ ¼ p indicates that the
drone moves forward without changing the heading. It is
assumed that the drone does not move backward, i.e.,
uðtÞ 6¼ 0.

The drone flies along a trajectory which consists of a
large number of waypoints ðxðtÞ; yðtÞ; zÞ. The instantaneous
headings and patrol velocities of the drone can be adjusted
online according to the proposed DDPG-MC framework.
The drone also collects sensory data from the ground sen-
sors. Beamforming is enabled at the drone to enhance the
received signal strength (RSS) in both directions and reduce
the bit error rate (BER) in the uplink.

The battery level of the autonomous drone is denoted by
edroneðtÞ, which can be measured by the onboard sensors.
The drone has to suspend the cruise when the propulsion
energy of the drone drops below the minimum energy level
emin
drone.

3.2 Channel Model

We consider that N ground sensors are deployed in a
remote area. Sensor i 2 ½1; N� can harvest renewable energy
from the ambient environment to recharge its battery and
power its operations, e.g., sensing, computing and commu-
nication. The battery level of sensor i is denoted by eiðtÞ �
E, where E is the battery capacity of the ground sensor. The
data queue length of the ground sensor is diðtÞ 2 ½1; D�,
where D is the buffer size. In addition, the ground sensors
undergo random data arrivals, and buffer the data to be col-
lected by the drone. The buffers are finite, and the new data
arrivals have to be dropped if the buffers are full and
overflow.

The drone moves at a low altitude for data collection,
where the probability of LoS between the drone and the
ground sensors is given by [38]

PrLoSðtÞ ¼
1

1þ aexpð�b½’iðtÞ � a�Þ
; (2)

where a and b are two Sigmoid function parameters. ’iðtÞ is
the elevation angle between the drone and sensor i at time t.
Furthermore, the path loss between the drone and sensor i
is given by

hiðtÞ ¼ PrLoSð’iðtÞÞðhLoS � hNLoSÞ þ 20log ðR sec’iðtÞÞ

þ 20log ðfcÞ þ 20log ð4p=vcÞ þ hNLoS;
(3)

where R, fc, and vc are the radius of the radio coverage of
the drone, the carrier frequency, and the speed of light,
respectively. hLoS and hNLoS stand for the excessive path loss
of LoS and non-LoS, respectively. The value of (hLoS, hNLoS)
pair can be (0.1, 21), (1.0, 20), (1.6, 23), or (2.3, 34), corre-
sponding to suburban, urban, dense urban, or highrise
urban scenarios [39].

The complex coefficient of the reciprocal wireless chan-
nel between the drone and the ground sensor can be known
by channel reciprocity. Given the data rate of the ground
sensor riðtÞ, the transmit power of the ground sensor,
denoted by PiðtÞ, can be given by

PiðtÞ �
k�12 ln

k1
"

khiðtÞk
2
ð2riðtÞ � 1Þ; (4)

where k1 and k2 are two channel constants [40]. " is the
required BER between the ground sensors and the drone.

TABLE 1
The List of Fundamental Variables Defined in System Model

Notation Definition

N total number of ground sensors
eiðtÞ battery energy level of ground sensor i at time t
diðtÞ data buffer length of ground sensor i at time t
PiðtÞ transmit power of the ground sensor at time t
edroneðtÞ battery energy of the drone at time t
uðtÞ turning angle of the drone at time t
vðtÞ patrol velocity of the drone at time t
hiðtÞ channel condition between the drone and sensor i at

time t
ti TTA value of the ground sensor
A total number of absorbing states in the formulated

Markov chain
a;b network states of the formulated Markov chain
zepisode random process for action exploration
d discount factor
Ua the action taken by the drone at state a
K minibacth size of the experience replay
M number of episodes in the proposed DDPG-MC

framework

Fig. 2. The flight model of the autonomous drone.
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4 FORMULATION OF ABSORBING MARKOV CHAIN

Let eiðtÞ, diðtÞ, and hiðtÞ denote the battery level and the
queue length of the ground sensors, and the channel qual-
ity, respectively. At each time slot t, a ground sensor, e.g.,
the ith sensor, is selected by the drone for data transmission.
To estimate the battery level and the queue length of the
ground sensors, the TTA value, denoted by ti, is recorded
and updated at the drone for sensor i. ti increases by 1 at
time t if sensor i is not selected, and ti returns to 0 when a
new packet is collected from i.

Due to the limited battery energy of the drone, the
maneuver control of the drone and communication sched-
ule can be modeled as an absorbing Markov chain. The net-
work state a is given by

a ¼ hedroneðtÞ; eiðtÞ; diðtÞ; hiðtÞ; tiðtÞi (5)

where i 2 ½1; N�, and the absorbing states are referred to as
network states with edroneðtÞ ¼ emin

drone.
Let A denote the number of the absorbing states in which

edroneðtÞ ¼ emin
drone. Assume that the number of transitions

from state a to the absorbing state is B. In other words, the
drone can take B actions for the maneuver control and com-
munication scheduling until the drone depletes the propul-
sion energy. Moreover, the absorbing Markov chain can be
characterized by using the following transition matrix Z in
the canonical form:

Z ¼
X Y

0 1

� �

; (6)

where 0 is an A�B zero matrix, 1 is an A�A identity
matrix, X is a B�B transition probability matrix with the
elements of {Prifbjag} (a;b ¼ ½1; B�) that specifies the transi-
tion probability of i from state a to state b, and Y is the
absorbing probability matrix containing the probabilities
{Prifb

0jag} of the transition from state a to the absorbing
state b0.

At state a, a sensor, i.e., sensor i, is selected by the drone
and the sensor transits to the next state, i.e., state b. The
transition probability depends on the following possible
transitions.
� ðeiðaÞ; diðaÞ; edroneðaÞÞ transits to ðeiðbÞ ¼ eiðaÞ þ

Dei; diðbÞ ¼ diðaÞ þ 1; edroneðbÞ ¼ edroneðaÞ � DedroneÞ: Herein,
diðbÞ ¼ diðaÞ þ 1 indicates a new data packet is buffered; or
in other words, the data transmission of sensor i is unsuc-
cessful. The drone’s battery at state b is edroneðbÞ ¼
edroneðaÞ � Dedrone, where Dedrone is the propulsion energy
consumption of the drone. Let PrDe denote the probability
that the ground sensor harvests the energy. If the sensor
manages to harvest the energy (i.e., Dei > 0), then

Prifbjag ¼ �ð1� ð1� �ÞDÞPrDe: (7)

Otherwise, energy harvesting is unsuccessful, i.e., 1� PrDe,
and Dei ¼ 0, we have

Prifbjag ¼ �ð1� ð1� �ÞDÞð1� PrDeÞ: (8)

Moreover, if the drone does not have sufficient propulsion
energy, then state a is the absorbing state, i.e., edroneðaÞ �
Dedrone � 0. The transition probability is Prifbjag ¼ 0.

� ðeiðaÞ; diðaÞ; edroneðaÞÞ transits to ðeiðbÞ ¼ eiðaÞ þ Dei;
diðbÞ ¼ diðaÞ � 1; edroneðbÞ ¼ edroneðaÞ � DedroneÞ: Here, diðbÞ ¼
diðaÞ � 1 indicates that the buffer of the selected sensor i
decreases by 1; or in other words, the data transmission is
successful. If the battery of the drone is non-empty at state
b, i.e., edroneðaÞ � Dedrone > 0 and the energy Deið> 0Þ is
harvested by sensor i, the transition probability is given by

Prifbjag ¼ ð1� �Þð1� �ÞDPrDe; (9)

where 1� � indicates that there is no new packet arrival at
state a. If the energy harvesting of sensor i is unsuccessful,
i.e., Dei ¼ 0, then

Prifbjag ¼ ð1� �Þð1� �ÞDð1� PrDeÞ: (10)

In addition, Prifbjag ¼ 0 if state a is the absorbing state, i.e.,
edroneðaÞ � Dedrone � 0.
� ðeiðaÞ; diðaÞ; edroneðaÞÞ transits to ðeiðbÞ ¼ eiðaÞ þ Dei;

diðbÞ ¼ diðaÞ; edroneðbÞ ¼ edroneðaÞ � DedroneÞ: Here, diðbÞ ¼
diðaÞ indicates that the buffer of the selected ground sensor
remains unchanged, due to either a successful transmission
with a new packet arrival (which gives �ð1� �ÞD), or a failed
transmission with no new packet arrival (which gives
ð1� �Þð1� ð1� �ÞDÞ). If the harvested energy Dei > 0 and
edroneðaÞ � Dedrone > 0,

Prifbjag ¼ ½ð1� �Þð1� ð1� �ÞDÞ þ �ð1� �ÞD�PrDe: (11)

If Dei ¼ 0, then

Prifbjag ¼ ½ð1� �Þð1� ð1� �ÞDÞ þ �ð1� �ÞD�ð1� PrDeÞ:

(12)

Otherwise, state a is the absorbing state and Prifbjag ¼ 0.
For the unselected ground sensors j 2 ½1; N � and j 6¼ i, at

the next state, their buffers can either remain unchanged
(djðbÞ ¼ djðaÞ) or increase by 1 due to a new packet arrival
(djðbÞ ¼ djðaÞ þ 1). Consequently, we have the state transi-
tion probability, as follows.
� ðejðaÞ; djðaÞ; edroneðaÞÞ transits to ðejðbÞ ¼ ejðaÞ þ Dej;

djðbÞ ¼ djðaÞ; edroneðbÞ ¼ edroneðaÞ � DedroneÞ: If Dej is har-
vested and edroneðaÞ � Dedrone > 0, then

Prjfbjag ¼ ð1� �ÞPrDe: (13)

If the energy is not harvested, i.e., ð1� PrDeÞ, then

Prjfbjag ¼ ð1� �Þð1� PrDeÞ: (14)

Otherwise, state a is the absorbing state and Prjfbjag ¼ 0.
� ðejðaÞ; djðaÞ; edroneðaÞÞ transits to ðejðbÞ ¼ ejðaÞ þ Dej;

djðbÞ ¼ djðaÞ þ 1; edroneðbÞ ¼ edroneðaÞ � DedroneÞ: In this case,
a new packet is buffered with probability �, thus

Prjfbjag ¼
�PrDe; if Dej > 0;

�ð1� PrDeÞ; otherwise:

�

(15)

At the absorbing state a, Prjfbjag ¼ 0.
The optimal policy in the absorbing Markov chain can be

obtained by classical approaches, e.g., value iteration or pol-
icy iteration. The value iteration method repeatedly updates
the estimate of the optimal action-value function until the
Bellman optimality equation converges. The policy iteration
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method evaluates the optimized policy at each of iterations,
which is a protracted iterative computation involving multi-
ple sweeps through the state set. However, both the value
iteration and policy iteration methods require the transition
probabilities of all states to be known at the drone in prior.
In contrast, this paper is interested in a practical scenario
where the drone has no a-priori knowledge on Prifbjag.
Reinforcement learning can solve Markov decision pro-
cesses in the absence of the knowledge of the state transition
probabilities, i.e., Prifbjag. One of the popular reinforce-
ment learning techniques is Q-learning, where an agent
interacts with the environment to minimize the long-term
cost. Q-learning typically supports discrete state and action
spaces, and therefore is not suitable for the continuous state
and action spaces in the drone maneuver problem consid-
ered here. Even after being discretized, the state and action
spaces in the drone-assisted sensor network are typically
large. Q-learning would suffer from the well-known curse-
of-dimensionality [41], and therefore is not adequate to
solve the online maneuver control and communication
schedule.

5 DDPG FOR MANEUVER CONTROL AND

COMMUNICATION SCHEDULING

In this section, we propose to use DDPG-MC to solve the
Markov decision process with the large and continuous
state and action spaces. As an effective deep reinforcement
learning technique, DDPG-MC can optimize the continuous
maneuver control and communication schedule in the
absence of the a-priori knowledge of the state transition
probabilities, i.e., Prifbjag, and minimize the long-term
accumulated costs of the system (i.e., the packet loss of all
ground sensors).

5.1 DDPG-MC Framework

DDPG is a learning approach that concurrently learns an
action-value function and a policy. DDPG utilizes an Actor-
Critic architecture to combine the value iteration and the
policy iteration to implement the proposition of the

continuous state space and the continuous action space by
using deep reinforcement learning. This is different from
deep Q-networks which focus on a discrete action space.
Moreover, DDPG can enlarge the state space of the absorb-
ing Markov chain compared with reinforcement learning
which suffers from the well-known curse of dimensional-
ity [42]. Therefore, in this paper, the joint optimization of
the online continuous maneuver control and communica-
tion schedule is developed based on DDPG.

As a form of stochastic policy gradient, deterministic pol-
icy gradients enable a deterministic mapping from the net-
work state to the optimal actions of the drone in the
absorbing Markov chain. The structure of the proposed
DDPG-MC framework is depicted in Fig. 3, where DDPG is
trained onboard at the drone for the maneuver control and
the ground sensor selection. The actions of the drone in
DDPG-MC define

Ua ¼ ðuðaÞ; vðaÞ; fia 2 ½1; N�gÞ; (16)

where Ua 2 A, and A contains all the actions that the drone
can carry out for optimization of the maneuver control and
communication schedule.

In Fig. 3, the network states, including eiðtÞ and diðtÞ
(i 2 ½1; N �) from the ground sensors, and edroneðtÞ, ðxðtÞ;
yðtÞ; zÞ, ti and hiðtÞ from the drone, are observed in the envi-
ronment for training DDPG-MC. Cfbja; Uag is the network
cost when action Ua is taken and the system transits from
state a to state b. Cfbja; Uag is measured by the packet loss
of the system. In other words, Cfbja; Uag counts the number
of packets dropped or lost during the state transition. The
packet loss can be caused by both buffer overflows and
channel fading during the state transition. Moreover, the
experience tuple ða;b; Ua; Cfbja; UagÞ is stored in the replay
memoryMreplay of the drone at each training step. K sam-
ples (or minibatches) of the experience in Mreplay are used
along with the input states from the environment to train
the DDPG-MC onboard.

DDPG-MC is built based on the actor-critic neural net-
work structure [43]. Due to the continuity of the maneuver
control of the drone, the action-value function Qfa; Uag is
presumed to be differentiable with respect to the action
argument. This allows us to set up a gradient-based learn-
ing rule for the maneuver control and communication
scheduling policy mðaÞ. Instead of exhaustively evaluating
the entire action space to minimize Qfa; Uag, DDPG-MC
approximates the optimal actions of the maneuver control
and communication schedule with Qfa;mðaÞg.

The actor neural network in DDPG-MC generates the
actions of setting uðtÞ and vðtÞ, and selects the ground sensor
fit 2 ½1; N �g. The critic neural network approximates the
optimal action-value function Qfa; Uag that calculates the
expected accumulated network cost, i.e., the overall data
loss, after observing the state a and taking the action Ua. Let
mfaj#mg and m0faj#m0g denote the actor’s policy of maneu-
ver control and sensor selection, and the target actor func-
tion, respectively. #m and #m0 are the two weights for policy
update.

As shown in Fig. 3, the critic network learns the optimal
Qfa; Uag using the Bellman equation to minimize the
approximation loss Dloss that defines

Fig. 3. An illustration of the DDPG-MC architecture, where deep rein-
forcement learning with experience relay is carried out at the drone to
optimize its actions.
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Dloss ¼
1

K

X

k

ðCfbja; Uagk þ dQ0fakþ1;m
0fakþ1j#

m0gj#Q0g

�Qfak; Uak
j#QgÞ2;

(17)

where d is the discount factor, and Qfak; Uak
j#Qg is parame-

terized by the weight #Q in the critic network. Q0f�g is the
target action-value function in the critic network.

The objective of DDPG-MC is to minimize the expected
packet loss of the ground sensors, i.e., E½Qfa; Uag�. The actor
network in DDPG-MC is updated by applying the chain
rule on the expected packet loss from the initial distribution
J with respect to the actor weights #m. The gradient of the
DDPG-MC policy is given by

r#mJ � Eat ½r#mQfa; Uaj#
Qgja¼at;Ua¼mðatj#mÞ

�: (18)

Furthermore, the policy in DDPG-MC is also trained withK
minibatches of experience in Mreplay, as depicted in Fig. 3.
Hence, r#mJ can be calculated by the mean of the sum of
gradients from the experience replay, which is

r#mJ �
1

K

X

k

rUaQfa; Uaj#
Qgja¼ak;Ua¼mðakÞ

�r#mmfaj#
mgjak :

(19)

According to the DDPG-MC architecture in Fig. 3, Algo-
rithm 1 is formulated to demonstrate the DDPG-MC imple-
mentation with deep reinforcement learning. Given a total
ofM episodes and a training time of tlearning, action Ua is car-
ried out by the drone at every time step with a random pro-
cess zt for action exploration, as given by

Ua ¼ mfaj#mgt þ zt; (20)

The experience of maneuver control and sensor selection,
i.e., ða;b; Ua; Cfbja; UagÞ, is stored in Mreplay, and K sam-
ples are used to minimize Dloss. Moreover, the actor policy is
updated at the drone with the sampled policy gradients
according to (19). With the optimized actor policy, the two
target neural networks can be updated onboard at the
drone, where

#Q0  �#Q þ ð1� �Þ#Q0

#m0  �#m þ ð1� �Þ#m0

�

: (21)

The drone can only observe the network state of itself and
the selected ground sensor at any moment, including the
sensor’s battery level, queue length, channel quality, and
TTA. Suppose that sensor i is selected at time t. The
observed network state is ai ¼ hedroneðtÞ; eiðtÞ; diðtÞ;
hiðtÞ; tiðtÞi. The drone can evaluate the packet loss per-
taining to the selection, based on this observation and the
records of the rest of the ground nodes in the experience
replay memory. In the experience replay memory, each
record is associated with a timestamp, i.e., TTA, indicat-
ing how many slots have elapsed since the latest observa-
tion of a node. By replaying the memory of the
unselected sensors based on their TTAs, the drone can
approximate the network state (in addition to the obser-
vation of the selected sensors), evaluate the packet loss,
and produce a piece of training experience. As part of the
network state, the TTA can have a strong impact on the

actions of the drone. In particular, a ground sensor with a
large TTA value potentially has a long data queue and is
likely to suffer from a buffer overflow. Moreover, with
the increasing TTA of a sensor, the experience replay can
become less accurate at the drone. To this end, the pro-
posed approach is effective, as reduces the TTAs of the
sensors and improves the learning accuracy.

The observation and evaluation are also used to update
the experience replay memory of the drone. Specifically, the
training experience of selecting the particular sensor,
including the packet loss and the timestamps of all the rest
of the sensors, is associated with the TTA of the sensor and
added to the experience replay memory. By carrying out
the experience replay, DDPG-MC can learn online the
underlying patterns of the data and energy arrivals, and the
channel dynamics of the ground sensors.

Some sensors may periodically generate packets. The
periodic packet arrivals in the data queue are predictable,
while the battery energy levels and channel conditions still
experience time-varying randomness, depending on the
environments. The proposed DDPG-MC can optimize the
actions of the drone by learning the dynamics of these
elements.

Algorithm 1. DDPG-MC Framework

1: 1. Initialize:
2: a;b 2 S, Ua 2 A, learning time ! tlearning, and experience

replay capacity!Mreplay.
3: The critic network Qfa; Uaj#

Qg and the actor network
mfaj#mg are randomly initialized, where the two weights
are #Q and #m.

4: Initializing target networks Q0 and m0 with the weights
#Q0  #Q and #m0  #m.

5: 2. Learning:
6: for episode 1!M do
7: The drone observes network state a. Random process for

exploration! zt.
8: while t � tlearning do
9: Action Ua is carried out by the drone, where Ua ¼

mfaj#mgt þ zt, which sets uðaÞ and vðaÞ of the drone,
and selects a sensor for data collection.

10: The drone calculates Cfbja; Uag, and obtains a new
state observation b.

11: Onboard at the drone: ða;b; Ua; Cfbja; UagÞ !Mreplay.
12: The drone randomly takes a minibatch ofK samples

from the onboard memoryMreplay.
13: For each sample k, yk ¼ Cfbja; Uagk þ dQ0fakþ1;

m0fakþ1j#
m0gj#Q0g.

14: Minimizing the loss function onboard at the drone,
where Dloss  

1
K

P

kðyk �Qfak; Uak
j#QgÞ2.

15: According to (19), the drone updates the actor policy
with the sampled policy gradients.

16: With the optimized actor policy, #Q0  �#Q þ ð1�
�Þ#Q0 and #m0  �#m þ ð1� �Þ#m0.

17: end while
18: end for

5.2 Complexity Analysis

To minimize Dloss, the complexity of the proposed DDPG-
MC lies in updating the actor policy with r#mJ and con-
ducting the experience replay for training the four neural
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networks. Moreover, the drone observes a network state
from the environment at each training episode. This leads
to OðSÞ, where S is the total number of network states. Con-
sider W and G fully connected layers in the actor and critic
networks, respectively. The computations of activation
layers in DDPG-MC lead to the complexity of
Oð

PW�1
w¼0 ntensor

w ntensor
wþ1 þ

PG�1
g¼0 ntensor

g ntensor
gþ1 Þ, where ntensor

w

is the number of tensors at the wth layer in the actor
network, and ntensor

g is that in the critic network. Therefore,
the overall time complexity of DDPG-MC is OðSÞþ
Oð

PW�1
w¼0 ntensor

w ntensor
wþ1 þ

PG�1
g¼0 ntensor

g ntensor
gþ1 Þ.

6 PERFORMANCE EVALUATION

In this section, we first demonstrate the implementation of
the proposed DDPG-MC framework on Google TensorFlow
(the symbolic math library for numerical computation) [35].
Numerical results are presented to evaluate the packet loss
rate against the maneuver control of the drone, the number
of ground sensors, the data buffer size and the data arrivals
of the ground sensor.

6.1 Implementation of DDPG-MC on TensorFlow

DDPG-MC is implemented in Python 3.5 on TensorFlow.
A desktop with 4-core Intel i7-6700K 4 GHz CPUs and
16 G memory based on 64-bit Ubuntu 16.04 is used for
the TensorFlow setup. DDPG-MC is trained for 300 epi-
sodes, where M = 300, while tlearning = 200 epochs. The
onboard memory Mreplay keeps 10,000 training records,
while each training episode can use the mini-bacth of
100 samples.

The area of interest is set to be a square area with a size of
1,000 m � 1,000 m. N ground sensors are distributed in the
region, where N is from 100 to 600. The data packets are
generated at each sensor according to the packet arrival
probability � = 0.5. The maximum transmit power is 100
milliwatts. The battery energy of the ground sensor has 800
Joules, while the battery capacity of the drone has 2:5� 105

Joules. The drone has the highest patrol velocity V = 15 m/
s. In addition, we assume that the BER needs to be no
greater than 0.05 percent, i.e., " � 0.05 percent, to achieve
correct detection and decoding at the drone. Thus, the
required transmit power of the ground sensor can be given
in (4).

6.2 Performance of DDPG-MC

For performance comparison, DDPG-MC is compared with
three other onboard online trajectory planning and commu-
nication scheduling policies as

� Sequential visiting and Random Scheduling policy
(SeqRS). The area of interest is evenly divided into
25 subareas, where each subarea contains one way-
point. The drone sequentially visits all the 25 way-
points, while the drone randomly selects one ground
sensor to collect data at each time slot. The maneuver
control and communication schedule of SeqRS are
independent of the battery and buffer length of the
ground sensor, or channel variation.

� Sequential visiting and Channel-Aware scheduling
policy (SeqCA). The drone sequentially visits the 25

predetermined waypoints, where a-prior knowledge
on the channels in the target field is assumed to be
known to the drone. At each time slot, the ground
sensor with the highest SNR is given the highest pri-
ority to transmit data.

� Deep Q-Networks based transmission scheduling
policy (DQN) [44]. Given the predetermined trajec-
tory of the drone, DQN is trained to schedule the
data transmission of the ground sensors by learning
the change of their battery levels, buffer lengths, and
channels.

6.2.1 Network Cost of DDPG-MC

The total number of episodes, i.e., learning iterations, is
set to 300, each of which contains a series of consecutive
training epochs. The ground sensors are uniformly dis-
tributed in the target area. Fig. 4 shows the network cost,
i.e., packet loss, at each training episode of the proposed
DDPG-MC, given N = 100 or 600, and tlearning = 100 or
200, respectively. Generally, DDPG-MC has a high net-
work cost at the first 10 episodes of the training process.
With an increasing number of episodes, the network cost
drops significantly until it reaches a relatively stable
value. It confirms the fact that DDPG can converge after
a number of episodes when the actor and the critic neural
networks are sufficiently trained. Particularly, the net-
work cost of DDPG-MC with tlearning = 100 is about 2968
packets lower than the one with tlearning = 200, when N =
600. The reason is that more data packets are generated
at the ground sensors in an extended tlearning, which leads
to more overflowed buffers.

6.2.2 Maneuver Control

Figs. 5a, 5b, and 5c study the trajectories of the drone with
regard to three deployments of the ground sensors, i.e., uni-
form distribution, normal distribution, and ring-shaped dis-
tribution, where N = 100. Moreover, Fig. 5d presents the
network cost of DDPG-MC according to the above three
deployments. As observed, the maneuver control of the
drone is persistently adapted by DDPG-MC given different
deployments of the sensors. This is because DDPG-MC opti-
mizes uðaÞ and vðaÞ in the continuous action space while
learning the network state dynamics, to determine the opti-
mal trajectory as well as the ground sensor for minimizing
the network cost.

Fig. 4. Network cost, i.e., packet loss, in terms of the episodes of DDPG-
MC.
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Furthermore, we also observe in Fig. 5d that the net-
work cost of DDPG-MC with the uniform deployment of
the sensors is slightly higher than the ones with the ring-
shaped and the normal deployment. This is reasonable
because the ground sensors within the radio coverage of
the drone can be selected for the data collection, while the
others may experience buffer overflows. Therefore, a
dense deployment of the ground sensors is likely to reduce
the packet loss stemming from overflowing buffers.

Fig. 5e shows that the velocity of the drone is dynami-
cally adjusted by DDPG-MC according to the sensor
deployment. The velocity has the largest fluctuation, rang-
ing between 2 m/s and 10 m/s, when the ground sensors
are uniformly deployed. The velocity fluctuates between 3.5
m/s and 6 m/s given the ring-shaped deployment of the
sensors. In addition, the velocity in the normal deployment
is between 4 m/s and 8 m/s, which is smaller than the one
in the uniform deployment, while the value is generally
higher than the one in the ring-shaped deployment. Fig. 5e
indicates that the regular shape of the sensor deployment
leads to the stable velocity control carried out by DDPG-

MC, while the sparse deployment can fluctuate the velocity
in a wide range.

6.2.3 Packet Loss Rate

In this case, the deployment of the ground sensors follows
the uniform distribution. Fig. 6 presents the packet loss rate
of DQN, SeqRS, SeqCA, and the proposed DDPG-MC with
regards to the number of ground sensors, the buffer sizes,
the packet arrival probabilities, and the altitudes of the
drone. The altitude of the drone is maintained at 100 meters
during the flight, unless otherwise specified. In Fig. 6a,
DDPG-MC achieves the smallest packet loss rate. When N =
100, the packet loss rate of DDPG-MC is smaller than SeqRS
and SeqCA by 82.2 percent and 23.5 percent, respectively.
The performance gains keep growing with N . The reason is
that DDPG-MC learns the ground sensors’ buffer lengths,
battery levels, and channel states, so that the maneuver con-
trol and the node selection can minimize the data packet
loss of the entire network. Furthermore, DDPG-MC gener-
ally achieves 18.6 percent lower packet loss rate than DQN.

Fig. 5. The trajectories and the velocities of the drone, and the network cost of DDPG-MC with regard to three deployments of the ground sensors.
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This is because the action space in DQN is discrete, where
the drone adapts the heading and the velocity intermit-
tently. As a result, some maneuver control and communica-
tion scheduling policies that can achieve a smaller network
cost are not explored by DQN. In contrast, uðaÞ and vðaÞ in
DDPG-MC are optimized in the continuous action space,
which adjusts the trajectory in real time while scheduling
more potential ground sensors for minimizing the packet
loss rate.

Fig. 6b shows that the packet loss rate of DQN, SeqCA,
and SeqRS grows to 55.3 percent, 79.6 percent, and 96.3
percent, respectively, when the packet arrival rate �
increases from 0.1 to 0.5. On the contrary, the packet loss
rate of DDPG-MC increases to 40.1 percent which is lower
than the other three benchmarks. The reason is that
DDPG-MC optimizes the future maneuver control and
communication schedules at every location of the drone
by taking advantage of the learning experience in the
replay memory, which controls uðaÞ and vðaÞ adapting to
the data traffic. It can also be observed from Fig. 6b that
the performance gap decreases with �. This is reasonable
because a larger � leads to more buffer overflows at the
ground sensors, while one ground sensor can be selected
by the drone for the data transmission.

Fig. 6c depicts the packet loss rate when the buffer size
of the ground sensor, D, is extended from 100 to 500. In
general, the packet loss rate drops with an increased D.
Particularly, DDPG-MC outperforms DQN, SeqCA, and
SeqRS on the packet loss rate by 15.2 percent, 47.6 per-
cent, and 60.3 percent, respectively, when D = 500.
Although DQN can also learn the actions of the drone
based on the experience replay, DDPG-MC trains the
actions in the continuous action space that is much larger
than the one with DQN. Therefore, DDPG-MC obtains

the actions that can further minimize the network cost
than the DQN policy.

As shown in Fig. 6d, the packet loss rates of DDPG-MC,
DQN, SeqCA, and SeqRS generally grow when the altitude
of the drone increases from 50 meters to 300 meters, due to
the increasing large-scale fading. DDPG-MC achieves the
lowest packet loss rate when the drone is under the different
altitudes. In addition, when the altitude increases from 50 m
to 300 m, the packet loss rate of DDPG-MC increases by 20
percent, which is much lower than the 30 percent of DQN,
41 percent of SeqCA, or 40 percent of SeqRS.

6.2.4 Goodput of the Ground Sensors

In this case, we study the goodput of the ground sensors,
which is illustrated by the number of generated (stored in
the data queue) and transmitted packets. The deployment
of the ground sensors follows a uniform distribution with
the average density of 0.5 per square meter. Given N =
100, it can be observed in Fig. 7 that all the ground sen-
sors are scheduled to transmit the data to the drone. This

Fig. 6. Packet loss rate with regards to the number of ground sensors, the packet arrival probabilities, the buffer sizes, and the altitudes of the drone.
Each error bar presents the standard deviation over ten experiments.

Fig. 7. The goodput of the ground sensors given N = 100, where the
standard deviation is calculated based on 10 experiments.
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is benefited from the joint optimization of maneuver con-
trol and node selection in DDPG-MC. Interestingly, we
also see that most of the ground sensors have similar
number of transmitted packets given a specific data
buffer size. This is because the TTA value ti recorded at
the drone increases by 1 if sensor i is not selected to trans-
mit data. Sensor i can have a large number of buffer over-
flows with the growth of the TTA value. Therefore,
DDPG-MC adapts the drone maneuver to collect data of
sensor i to minimize the packet loss.

We also adopt Jain’s index, denoted as J , as the fairness
measurement of the transmitted packets in the following:

J ¼

PN
i¼1 d

tx
i

� �2

N
PN

i¼1ðd
tx
i Þ

2
; (22)

where dtxi is the number of transmitted packets of sensor i.
Table 2 shows the Jain’s fairness index under the three
deployment schemes of the ground sensors. The indexes
achieved by DDPG-MC are over 0.93 under all the three
deployments. This is because DDPG-MC can adjust the
drone maneuver to visit and schedule the ground sensors,
to minimize the packet loss of the sensors. The index is 0.94
under the ring-shaped deployment, lower than 0.98 under
the uniform deployment or 0.99 under the normal deploy-
ment. This is due to the fact that the drone tries to align its
trajectory with the circular deployment of the sensors, as
shown in Fig. 5c. The trajectory can be too long to have all
sensors visited. The delay can be too high between two vis-
its to every sensor. If the delay is longer than the average
interval between packet arrivals at a sensor, the buffers of
the sensors would overflow. In this case, the drone has to
bypass some sensors, take a shortcut, and reduce the num-
ber of sensors undergoing buffer overflows, costing the fair-
ness of the bypassed sensors.

6.2.5 Runtime Measurements

Fig. 8 shows the runtime measurements of DDPG-MC,
where N and tlearning are set to 100 or 600, and 100 or 200.
The runtime of DDPG-MC with N = 100 and tlearning = 100 is
around 0.52 ms, and it increases to 1.12 ms when tlearning
grows to 200.

This is because the increased tlearning leads to more train-
ing iterations in DDPG-MC, which consumes extra time on
updating the onboard neural networks. Moreover, the run-
time increases from 1.12 ms to 3.49 ms when N = 600. This
is because the increased N enlarges the state space.
Nevertheless, the relative increase in the runtime is much
slower than that in the number of ground sensors. This is
because the action space does not grow dramatically with

N . In particular, given a network state, the actions that the
drone can take are limited by its current position and the
number of sensors within the radio coverage.

7 CONCLUSIONS AND DISCUSSIONS

This paper investigates the joint maneuver control of the
drone and communication schedule. The drone-assisted
data collection is formulated as an absorbing Markov chain
to minimize the data lost due to buffer overflows at the
ground sensors and fading airborne channels. Given the
continuous action space of the maneuver control, onboard
DDPG-MC is proposed to optimally determine the instanta-
neous headings and patrol velocities as well as the selection
of the ground sensor for the data collection. The proposed
DDPG-MC utilizes the experience replay to train the policy
gradients for minimizing the approximation loss between
the actor-critic neural networks and the target neural net-
works. DDPG-MC is implemented on Google TensorFlow.
Numerical results demonstrate that DDPG-MC dynamically
adapts the maneuver control for minimizing the packet loss
under diverse deployments of the ground sensors. More-
over, DDPG-MC significantly reduces the packet loss rate
with regards to different number of ground sensors, buffer
sizes, and packet arrival probabilities, compared to the
state-of-the-art strategies.

The proposed DDPG-MC scheme is elemental to drone-
assisted sensor networks, and can be potentially extended
in the scenarios where multiple drones are employed to col-
lect the data of ground sensors. The multiple drones indi-
vidually or collaboratively make their decisions of
maneuver control and communication schedule based on
their observed network states. DDPG-MC can be conducted
at each of the drones to train its action, according to its
observed network states which implicitly reflect the actions
of the rest of the drones.
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TABLE 2
Jain’s Fairness Index With Regard to the Three

Deployments of the Ground Sensors

J

Uniform 0.98
Normal 0.99
Ring-shaped 0.94

Fig. 8. Runtime measurements of DDPG-MC with regards to the number
of ground sensors and the learning iterations.

2742 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 21, NO. 8, AUGUST 2022

Authorized licensed use limited to: b-on: Instituto Politecnico do Porto. Downloaded on January 26,2023 at 12:01:00 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] Z. Li, Y. Jiang, Y. Gao, L. Sang, and D. Yang, “On buffer-constrained
throughput of a wireless-powered communication system,” IEEE J.
Sel. Areas Commun., vol. 37, no. 2, pp. 283–297, Feb. 2019.

[2] S. Sudevalayam and P. Kulkarni, “Energy harvesting sensor
nodes: Survey and implications,” IEEE Commun. Surveys Tuts.,
vol. 13, no. 3, pp. 443–461, Third Quarter 2011.

[3] D. S. Ghataoura, J. E. Mitchell, and G. E. Matich, “Networking and
application interface technology for wireless sensor network sur-
veillance and monitoring,” IEEE Commun. Magazine, vol. 49,
no. 10, pp. 90–97, Oct. 2011.

[4] H. Wang, H. Zhao, J. Zhang, D. Ma, J. Li, and J. Wei, “Survey on
unmanned aerial vehicle networks: A cyber physical system
perspective,” IEEE Commun. Surveys Tuts., vol. 22, no. 2,
pp. 1027–1070, Second Quarter 2019.

[5] B. Li, Z. Fei, and Y. Zhang, “UAV communications for 5G and
beyond: Recent advances and future trends,” IEEE Internet Things
J., vol. 6, no. 2, pp. 2241–2263, Apr. 2019.

[6] A. Fotouhi et al., “Survey on UAV cellular communications: Prac-
tical aspects, standardization advancements, regulation, and secu-
rity challenges,” IEEE Commun. Surveys Tuts., vol. 21, no. 4,
pp. 3417–3442, Fourth Quarter 2019.

[7] S. Corp., “Softbank corp. develops aircraft that delivers telecom-
munications connectivity from the stratosphere,” 2019. [Online].
Available: https://www.softbank.jp/en/corp/news/press/sbkk/
2019/20190425_02/

[8] A. Garcia, “Optus and ericsson complete australia’s first 5G drone
flight,” 2019. [Online]. Available: https://www.optus.com.au/
about/media-centre/media-releases/2019/11/optus-and-
ericsson-complete-australias-first-5g-drone-flight

[9] C. Ashraf, “How verizon 5G ultra wideband is lifting drone tech-
nology to the next level,” 2019. [Online]. Available: https://www.
verizon.com/about/our-company/5g/how-verizon-5g-ultra-
wideband-lifting-drone-technology-next-level

[10] J. Meredith, “3GPP: Study on enhanced support for aerial
vehicles,” 2018. [Online]. Available: http://www.3gpp.org/
dynareport/36777.htm

[11] K. Lee, J.-R. Lee, and H.-H. Choi, “Learning-based joint optimiza-
tion of transmit power and harvesting time in wireless-powered
networks with co-channel interference,” IEEE Trans. Veh. Technol.,
vol. 69, no. 3, pp. 3500–3504, Mar. 2020.

[12] A. Jushi, A. Pegatoquet, and T. N. Le, “Wind energy harvesting
for autonomous wireless sensor networks,” in Proc. Euromicro
Conf. Digit. Syst. Des., 2016, pp. 301–308.

[13] K. Li, W. Ni, L. Duan, M. Abolhasan, and J. Niu, “SWPT: A joint-
scheduling model for wireless powered sensor networks,” in Proc.
IEEE Global Commun. Conf., 2017, pp. 1–6.

[14] K. Li et al., “Fair scheduling for data collection in mobile sensor
networks with energy harvesting,” IEEE Trans. Mobile Comput.,
vol. 18, no. 6, pp. 1274–1287, Jun. 2019.

[15] F. Wang, S. Wu, K. Wang, and X. Hu, “Energy-efficient clustering
using correlation and random update based on data change rate
for wireless sensor networks,” IEEE Sensors J., vol. 16, no. 13,
pp. 5471–5480, Jul. 2016.

[16] A.-J. Garcia-Sanchez et al., “Wireless sensor network deployment
for monitoring wildlife passages,” Sensors, vol. 10, no. 8,
pp. 7236–7262, 2010.

[17] J. Romeo et al., “Camera sensor arrangement for crop/weed detec-
tion accuracy in agronomic images,” Sensors, vol. 13, no. 4,
pp. 4348–4366, 2013.

[18] I. Potamitis and I. Rigakis, “Novel noise-robust optoacoustic sen-
sors to identify insects through wingbeats,” IEEE Sensors J.,
vol. 15, no. 8, pp. 4621–4631, Aug. 2015.

[19] Z. M. Fadlullah, D. Takaishi, H. Nishiyama, N. Kato, and R.
Miura, “A dynamic trajectory control algorithm for improving the
communication throughput and delay in UAV-aided networks,”
IEEE Netw., vol. 30, no. 1, pp. 100–105, Jan./Feb. 2016.

[20] Q. Wu, L. Liu, and R. Zhang, “Fundamental trade-offs in commu-
nication and trajectory design for UAV-enabled wireless
network,” IEEE Wireless Commun., vol. 26, no. 1, pp. 36–44,
Feb. 2019.

[21] D. Yang, Q. Wu, Y. Zeng, and R. Zhang, “Energy tradeoff in
ground-to-UAV communication via trajectory design,” IEEE
Trans. Veh. Technol., vol. 67, no. 7, pp. 6721–6726, Jul. 2018.

[22] J. Liu, X. Wang, B. Bai, and H. Dai, “Age-optimal trajectory plan-
ning for UAV-assisted data collection,” in Proc. IEEE Conf. Com-
put. Commun. Workshops, 2018, pp. 553–558.

[23] W. Shi et al., “3D multi-drone-cell trajectory design for effi-
cient IoT data collection,” in Proc. IEEE Int. Conf. Commun.,
2019, pp. 1–6.

[24] X. Zhang and L. Duan, “Fast deployment of UAV networks for
optimal wireless coverage,” IEEE Trans. Mobile Comput., vol. 18,
no. 3, pp. 588–601, Mar. 2019.

[25] Y. Lin and S. Saripalli, “Sampling-based path planning for UAV
collision avoidance,” IEEE Trans. Intell. Transp. Syst., vol. 18,
no. 11, pp. 3179–3192, Nov. 2017.

[26] H. Oleynikova, M. Burri, Z. Taylor, J. Nieto, R. Siegwart, and E.
Galceran, “Continuous-time trajectory optimization for online
UAV replanning,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
2016, pp. 5332–5339.

[27] K. Dogancay, “UAV path planning for passive emitter local-
ization,” IEEE Trans. Aerosp. Electron. Syst., vol. 48, no. 2,
pp. 1150–1166, Apr. 2012.

[28] Y. Zeng and R. Zhang, “Energy-efficient UAV communication
with trajectory optimization,” IEEE Trans, Wireless Commun.,
vol. 16, no. 6, pp. 3747–3760, Jun. 2017.

[29] P.-V. Mekikis and A. Antonopoulos, “Breaking the boundaries of
aerial networks with charging stations,” in Proc. IEEE Int. Conf.
Commun., 2019, pp. 1–6.

[30] Z. Wang, L. Duan, and R. Zhang, “Adaptive deployment for
UAV-aided communication networks,” IEEE Trans. Wireless Com-
mun., vol. 18, no. 9, pp. 4531–4543, Sep. 2019.

[31] X. Li, H. Yao, J. Wang, S. Wu, C. Jiang, and Y. Qian, “Rechargeable
multi-UAV aided seamless coverage for QoS-guaranteed IoT
networks,” IEEE Internet Things J., vol. 6, no. 6, pp. 10 902–10 914,
Dec. 2019.

[32] Q. Wu and R. Zhang, “Common throughput maximization in
UAV-enabled OFDMA systems with delay consideration,” IEEE
Trans. Commun., vol. 66, no. 12, pp. 6614–6627, Dec. 2018.

[33] Q. Zhang, M. Mozaffari, W. Saad, M. Bennis, and M. Debbah,
“Machine learning for predictive on-demand deployment of
UAVs for wireless communications,” in Proc. IEEE Global Com-
mun. Conf., 2018, pp. 1–6.

[34] C. Zhan, Y. Zeng, and R. Zhang, “Energy-efficient data collection
in UAV enabled wireless sensor network,” IEEE Wireless Commun.
Lett., vol. 7, no. 3, pp. 328–331, Jun. 2018.

[35] C. R. Ashokkumar and G. W. York, “Observer based controllers
for UAV maneuver options,” in Proc. AIAA Guid. Navigation Con-
trol Conf., 2016, Art. no. 0643.

[36] A. Fotouhi, M. Ding, L. G. Giordano, M. Hassan, J. Li, and Z. Lin,
“Joint optimization of access and backhaul links for UAVs based
on reinforcement learning,” in Proc. IEEE Globecom Workshops,
2019, pp. 1–6.

[37] A. Fotouhi, M. Ding, and M. Hassan, “Understanding autono-
mous drone maneuverability for internet of things applications,”
in Proc. IEEE 18th Int. Symp. A World Wireless Mobile Multimedia
Netw., 2017, pp. 1–6.

[38] A. Al-Hourani, S. Kandeepan, and S. Lardner, “Optimal LAP alti-
tude for maximum coverage,” IEEE Wireless Commun. Lett., vol. 3,
no. 6, pp. 569–572, Dec. 2014.

[39] A. Al-Hourani, S. Kandeepan, and A. Jamalipour, “Modeling
air-to-ground path loss for low altitude platforms in urban
environments,” in Proc. IEEE Global Commun. Conf., 2014,
pp. 2898–2904.

[40] K. Li, W. Ni, X. Wang, R. P. Liu, S. S. Kanhere, and S. Jha, “Energy-
efficient cooperative relaying for unmanned aerial vehicles,” IEEE
Trans. Mobile Comput., vol. 15, no. 6, pp. 1377–1386, Jun. 2016.

[41] I. Osband and B. Van Roy, “Near-optimal reinforcement learning
in factored MDPs,” in Proc. Advances Neural Inf. Process. Syst.,
2014, pp. 604–612.

[42] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel,
“Benchmarking deep reinforcement learning for continuous con-
trol,” in Proc. Int. Conf. Mach. Learn., 2016, pp. 1329–1338.

[43] T. P. Lillicrap et al., “Continuous control with deep reinforcement
learning,” 2015, arXiv:1509.02971.

[44] K. Li, W. Ni, E. Tovar, and A. Jamalipour, “On-board deep Q-net-
work for UAV-assisted online power transfer and data collection,”
IEEE Trans. Veh. Technol., vol. 68, no. 12, pp. 12 215–12 226,
Dec. 2019.

LI ETAL.: CONTINUOUS MANEUVER CONTROL AND DATA CAPTURE SCHEDULING OFAUTONOMOUS DRONE IN WIRELESS SENSOR... 2743

Authorized licensed use limited to: b-on: Instituto Politecnico do Porto. Downloaded on January 26,2023 at 12:01:00 UTC from IEEE Xplore.  Restrictions apply. 

https://www.softbank.jp/en/corp/news/press/sbkk/2019/20190425_02/
https://www.softbank.jp/en/corp/news/press/sbkk/2019/20190425_02/
https://www.optus.com.au/about/media-centre/media-releases/2019/11/optus-and-ericsson-complete-australias-first-5g-drone-flight
https://www.optus.com.au/about/media-centre/media-releases/2019/11/optus-and-ericsson-complete-australias-first-5g-drone-flight
https://www.optus.com.au/about/media-centre/media-releases/2019/11/optus-and-ericsson-complete-australias-first-5g-drone-flight
https://www.verizon.com/about/our-company/5g/how-verizon-5g-ultra-wideband-lifting-drone-technology-next-level
https://www.verizon.com/about/our-company/5g/how-verizon-5g-ultra-wideband-lifting-drone-technology-next-level
https://www.verizon.com/about/our-company/5g/how-verizon-5g-ultra-wideband-lifting-drone-technology-next-level
http://www.3gpp.org/dynareport/36777.htm
http://www.3gpp.org/dynareport/36777.htm


Kai Li (Senior Member, IEEE) received the BE
degree from Shandong University, China, in
2009, the MS degree from the Hong Kong Univer-
sity of Science and Technology, Hong Kong, in
2010, and the PhD degree in computer science
from the University of New South Wales, Sydney,
Australia, in 2014. Currently, he is a senior
research scientist and project leader with Real-
Time and Embedded Computing Systems
Research Centre (CISTER), Portugal. He is also
a research fellow with Carnegie Mellon Portugal

Research Program. Prior to this, he was a postdoctoral research fellow
with the SUTD-MIT International Design Centre, The Singapore Univer-
sity of Technology and Design, Singapore (2014-2016). He was a visiting
research assistant with ICTCentre, CSIRO, Australia (2012-2013). From
2010 to 2011, he was a research assistant with Mobile Technologies
Centre, Chinese University of Hong Kong. His research interests include
vehicular communications and security, resource allocation optimization,
cyber-physical systems, Internet of Things (IoT), human sensing sys-
tems, sensor networks, and UAV networks. He has been serving as an
associate editor for the IEEE Access Journal, Demo Co-chair for ACM/
IEEE IPSN 2018, the TPC member of IEEE Globecom’18, MASS’18,
VTC-Spring’18, Globecom’17, VTC’17, and VTC’16.

Wei Ni (Senior Member, IEEE) received the BE
and PhD degrees in electronic engineering from
Fudan University, Shanghai, China, in 2000 and
2005, respectively. Currently, he is a group leader
and principal research scientist with CSIRO, Syd-
ney, Australia, and an adjunct professor with the
University of Technology Sydney and an honorary
professor with Macquarie University, Sydney.
Prior to this, he was a postdoctoral research fel-
low with Shanghai Jiaotong University from 2005-
2008, a deputy project manager with the Bell

Labs, Alcatel/Alcatel-Lucent from 2005-2008, and a senior researcher
with Devices R&D, Nokia from 2008-2009. His research interests include
signal processing, stochastic optimization, as well as their applications
to network efficiency and integrity. He is the chair of IEEE Vehicular Tech-
nology Society (VTS) New South Wales (NSW) Chapter since 2020 and
an editor of the IEEE Transactions on Wireless Communications since
2018. He served first the secretary and then vice-chair of the IEEE NSW
VTS Chapter from 2015-2019, track chair for VTC-Spring 2017, track
co-chair for IEEE VTCSpring 2016, publication chair for BodyNet 2015,
and student travel grant chair for WPMC 2014.

Falko Dressler (Fellow, IEEE) received the MSc
and PhD degrees from the Department of Com-
puter Science, University of Erlangen, in 1998
and 2003, respectively. He is currently a full pro-
fessor and chair for Data Communications and
Networking, School of Electrical Engineering and
Computer Science, TU Berlin. He has been asso-
ciate editor-in-chief for the IEEE Transactions on
Mobile Computing and the Elsevier Computer
Communications, as well as an editor for journals
such as the IEEE/ACM Transactions on Network-

ing, IEEE Transactions on Network Science and Engineering, Elsevier
Ad Hoc Networks, and Elsevier Nano Communication Networks. He has
been chairing conferences, such as IEEE INFOCOM, ACM MobiSys,
ACM MobiHoc, IEEE VNC, IEEE GLOBECOM. He authored the text-
books Self-Organization in sensor and Actor Networks published by
Wiley & Sons and Vehicular Networking published by Cambridge Univer-
sity Press. He has been an IEEE Distinguished Lecturer as well as an
ACM Distinguished Speaker. He is also a ACM distinguished member.
He is a member of the German National Academy of Science and Engi-
neering (acatech). He has been serving on the IEEE COMSOC Confer-
ence Council and the ACM SIGMOBILE Executive Committee. His
research interests include adaptive wireless networking (radio, visible
light, molecular communications) and embedded system design (from
microcontroller to Linux kernel) with applications in ad hoc and sensor
networks, the Internet of Things, and cooperative autonomous driving
systems.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

2744 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 21, NO. 8, AUGUST 2022

Authorized licensed use limited to: b-on: Instituto Politecnico do Porto. Downloaded on January 26,2023 at 12:01:00 UTC from IEEE Xplore.  Restrictions apply. 


